PROSOPE

H. CLAUSTRE : head of mission and project leader

FLOW CYTOMETRY : D. MARIE

PROSOPE flow cytometry data (SBR, Roscoff)

Responsible person : Dominique Marie (marie@sb-roscoff.fr)

Other scientits involved : Frédéric Partensky and Laurence Garczarek

Roscoff PROSOPE database management : Daniel Vaulot(vaulot@sb-roscoff.fr)

For protocols used : see

- Marie D., Simon N., Guillou, L., Partensky F. and Vaulot D. 2000. DNA, RNA analysis of phytoplankton by flow cytometry. In: Current Protocols in Cytometry. John Wiley & Sons, Inc.11.12.1-18
- Marie D., Brussaard C., Partensky F. and Vaulot D. Flow cytometric analysis of phytoplankton, bacteria and viruses. 1999. In: Current Protocols in Cytometry. John Wiley & Sons, Inc. 11.11.1-11.11.15.

Data description

Populations

Pro	Prochlorococcus
Syn	Synechococcus
Euk	Picoeucaryotes
Bact	Bacteria
VI	Virus de type I
VII	Virus de type II

Parameters for each population

ml	Cell concentration per ml
Fit	Flag depending on the degree of merging into noise. If Fitting=2, the population is there but impossible to separate from the noise. If Fitting=1, the populations is close the noise, but it has been possible to estimate its actual concetration with a gaussian fit to the right part of the distribution
FSC	Forward scatter related to 0.95 um beads
SSC	Side scatter related to 0.95 um beads

FL1	Green fluorescence related to 0.95 um beads (DNA for bact and viruses)
	Orange fluorescence related to 0.95 um beads (PE for cyanobacteria and cryptophytes)
FL3	Red fluorescence related to 0.95 um beads (Chl)

Other data

	Name of data file for photosynthetic populations
Sybr_File	Name of data file for bacteria
Virus_File	Name of data file for viruses