PROSOPE

H. CLAUSTRE : head of mission and project leader

PHOSPHATE ACTIVITY : A. VAN WAMBEKE

Method | References | Data

Alkaline phosphatase activity

METHOD

France Van Wambeke

Laboratoire de Microbiologie Marine, CNRS-INSU, UMR 6116, Centre d'Océanologie de Marseille, Université de la Méditerranée, Campus de Luminy, Case 907, 13 288 Marseille Cedex 9, France.

E mail wambeke@com.univ-mrs.fr

Alkaline phosphatase activity (APA) was measured fluorometrically using methyl-umbelliferone phosphate (MUF-P). Stock solutions of 5 mM in methylcellosolve were stored at –20°C and diluted with boiled-filtered sea water prior to use. The increase in fluorescence was measured during the linear increase with time over 9 hours, with excitation set at 365 nm and emission at 460 nm, with a Kontron SFM 23B spectrofluorometer. Calibration curves were made with MUF standards. On the horizontal transect, we ran concentration kinetics using a concentration set from 25 to 1000 nM. The following transformation of the Michaelis –Menten equation was used to determine kinetic coefficients :

S/V = (K+Sn)/Vm + S/Vm

Plotting turnover time S/V versus S resulted in a straight line from which the in situ turnover time (TT) is the crossing point with y axis, the maximum hydrolysis rate Vm is the inverse of the slope and the sum of the half saturation constant plus the natural concentration K+Sn is the crossing point with the x-axis.

Due to the number of parameters to be processed simultaneously on the vertical profiles of the stations DYF and MIO, APA activity was measured with only one concentration added. We used a trace concentration (25 nM) of MUF-PO4 which insurred appropriate conditions for estimating in situ turnover time (TT). Indeed, TT measured with 25 nM MUF-P additions was not different from the value obtained from concentration kinetics (comparison made on surface layers of the stations of the transect with TT ranging 14 to 182 h, n=11, slope = 1.05, r² =0.99).

References

Van Wambeke F, Christaki U, Giannakourou A, Moutin T, Souvemerzoglou S.Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microbial Ecology, submitted

Data set

n° CTD	station	bout n°	depth	ТТ АРА	Vm APA	Km APA
			m	h	nM/h	nM
2	UPW	15	15	786	1.1	848
11	MED1	18	11	135	1.2	168
14	MED 2	18	15	182	1.0	175
17	MED 3	18	10	114	1.8	206
20	MED 4	18	12	51	2.6	133
23	MED 5	18	11	52	1.6	86
26	MED 6	18	10	31	2.6	83
28	MIO 1	18	15	27	4.0	111
63	MED 7	18	14	11	7.9	88
68	MED 8	18	15	21	4.6	95
70	MED 9	18	15	19	6.0	114
73	DYF 1	18	10	14	12.6	178
33	MIO2	20	5	31		
33	MIO2	18	14	25		
33	MIO2	16	30	34		
33	MIO2	13	50	117		
33	MIO2	10	70	203		
33	MIO2	8	90	249		
33	MIO2	6	100	372		
33	MIO2	4	131	438		
	n					
78	DYF2	20	4	15		
78	DYF2	18	9	16		
78	DYF2	16	19	24		
78	DYF2	12	29	66		
78	DYF2	10	39	53		
78	DYF2	8	47	150		
78	DYF2	6	60	298		
78	DYF2	4	70	2674		