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Abstract

Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change.
Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual
quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in
ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the
heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential
of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for
the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular
image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously
marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a
group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory
HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable
variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by
iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e.
overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri
remain challenging, for both human observers and iSIS.
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Introduction

Despite recent advances in technology and increased efforts to

‘‘Census the Marine life’’, the deep ocean floor remains the largest

and yet least explored ecosystem on Earth [1]. Deep benthic

communities are characterized by a high species diversity, which

reflects a much larger regional pool of species than in shallow

waters [2], constituting a pool of transient potential immigrants to

other areas [3]. Megafauna play an important role in benthic

ecosystems and contribute significantly to benthic biomass [4–6],

particularly in the Arctic [7]. Benthic megafauna are defined as

the group of organisms inhabiting the sediment-water interface,

exceeding 1 cm diameter [8,9]. Megafaunal organisms increase

habitat heterogeneity as they create pits, mounds, tracks and traces

in the sediment. Erect biota, such as sponges, bryozoans and coral,

increase three dimensional habitat complexity and provide shelter

from predation [10,11]. Megafauna can therefore increase the

diversity of smaller sediment-dwelling biota in otherwise largely

homogenous soft-bottom environments of the deep-sea [12–14]. In

addition, megafaunal predators control the population dynamics

of their prey and are thus important in determining benthic food

webs and community structure [15–19]. They also contribute

considerably to benthic respiration and affect the physical and

biogeochemical micro-scale environment [20–26]. It is also

important to note that deep-sea benthic megafauna sequester

carbon through the continuous redistribution of organic matter,

oxygen and other nutrients within surficial sediments [23,27].

While time series data on megafaunal dynamics over longer

scales are still scarce [12,28–31], multi-year time-series studies

from the Porcupine Abyssal Plain and the northeast Pacific have

attributed megafaunal changes to environmental and climate

variation [32,33]. To date, most studies on megafaunal assem-

blages in the Arctic represent single snapshots in time, scattered

over different basins [7,34–43]. Although such studies provide

important biogeographic information, there is currently a serious

gap in the knowledge of the temporal dynamics of megafaunal

assemblages from these northern latitudes over longer time spans.

The HAUSGARTEN observatory [44], established in 1999,

represents an important step forward in temporal investigation of

the polar region, with large volumes of data collected from the
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observatory on a regular basis, consisting of both oceanographic

data and repeated video and still image collection from a number

of fixed survey transects.

Conventionally, megafaunal assemblages are investigated by

bottom trawls [45,46]. However, such gears have low and/or

variable catch efficiencies for different organisms [47,48] and are

invasive. In recent years, towed camera systems have become a

key method to determine the density and distribution of deep-sea

megafauna [29,40,42,49–52]. Although visual surveys are limited

to species that are large, epibenthic and non-evasive, they enable

the study of the seafloor on a range of scales from cm to kilometers

without disturbing habitats [53,54]. Large scale analysis is

Figure 1. Map of the HAUSGARTEN Observatory. The main sampling station (HAUSGARTEN IV) is located at the intersection of the red lines.
doi:10.1371/journal.pone.0038179.g001

Figure 2. Three samples of each of the eight taxa used for detection. From left to right: small white sponge, Kolga hyalina, Elpidia heckeri,
Bathycrinus carpenterii, burrow hole, purple anemone, Bathycrinus stalk, small white sea anemone.
doi:10.1371/journal.pone.0038179.g002
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important, as deep-sea megafauna species are often characterized

by rare or aggregated occurrence [43,55]. Furthermore, this

method allows repeated observations of defined tracks, both

minimizing the noise produced by spatial variation and allowing

time series analysis. Inevitably, the application of imaging

techniques generates large quantities of digital image material.

Particularly large volumes of footage accumulate in the archives of

institutions that run modern remotely operated and autonomous

underwater vehicles. The analysis of these images constitutes a

bottleneck, since the evaluation of one image with a footprint of 3–

4 m2, can take 30–60 min or longer, requires training, is subjective

and potentially error-prone [56]. Indeed, similar taxonomic

classification tasks yielded human consistencies as low as 67–

83% (intra-observer) and #43% (inter-observer) [56,57]. To solve

this bottleneck problem, computational approaches for taxon

detection and classification have been proposed in different

contexts. Until now, a number of these are restricted to controlled

environments [58,59], the detection of manufactured objects [60–

62] or designed to work specifically in the water column [58,63]

where no sediment (i. e. background) has to be distinguished from

the taxa investigated. In the majority of published cases, a single

taxon or a group of similar taxa [56,63–68] is studied and taxon-

customized features are utilized. In other studies, whole images are

classified [69] or seafloor images are segmented and each segment

is classified automatically afterwards [70–73].

To quantify a heterogenous group of megafauna successfully

with one system a flexible software approach is needed, which can

be applied to taxa exhibiting a variatey of features, such as

differing morphologies or colors. The iSIS (intelligent Screening of

underwater Image Sequences) system was developed with such an

approach in mind, utilizing a generalized pattern recognition

approach for the semi-automated quantification of megafauna in

transect data collected at HAUSGARTEN. The approach is

referred to as general, since no explicit heuristics were used to

design and optimize the algorithmic detection of individual taxa.

The taxonomic scope of the system is set to a user defined group of

taxa. These groups are defined in the system by a hand-labelled

training set of images with marked positions for the taxa. In this

way, the user (e. g. a marine biologist) can use her/his primary

visual expertise to tune and extend the system without a deeper

knowledge of the image-processing algorithms being required. So

although the pre-processing and the taxa detection in iSIS runs

fully automated, the system is characterized as semi-automatic as

the system is trained using these manually identified taxa from

within a small image subset of the full transect. In this article we

describe the iSIS architecture and present its application to

transect data collected at a HAUSGARTEN station. The

accuracy of the taxa detection is assessed using a gold standard

of taxa positions in 70 images, with this gold standard generated

from position labeling of taxa by five experts who evaluated the 70

images manually.

The paper is organized as follows: In the next section, we will

first introduce the image data, used in this study. Afterwards, the

position labeling study, carried out by the five independent experts

is described. The remainder of the section deals with the

algorithmic details of the iSIS system. In the results section, the

findings of the human position labeling experiment, the pre-

processing step and the learning and detection performance of

iSIS are presented and discussed.

Materials and Methods

The deep-sea observatory HAUSGARTEN [44] is located in

the eastern Fram Strait west of Svalbard, the only deep-water

connection between the Atlantic and Arctic Ocean proper

(Figure 1). No specific permits were required for the described

field studies as the data was obtained outside national waters. The

location of HAUSGARTEN is not privately-owned or protected

in any way as it is outside the exclusive economic zone of any

nation. To our knowledge our study did not involve any

endangered species, and given the remote photographic nature

of the data collected, no negative impact on biota was made.

HAUSGARTEN comprises nine sampling stations along a

bathymetric gradient (1200–5500 m). A latitudinal transect crosses

at the central HAUSGARTEN station IV, which serves as an

experimental area for long-term experiments and measurements

[74–81]. In 2002, the AWI started regular towed camera

observations of the HAUSGARTEN stations during expeditions

of the research icebreaker RV Polarstern. To capture images from

the seafloor, an ‘‘Ocean Floor Observation System’’ (OFOS) was

deployed at different stations with water depths between 1200 and

Figure 3. The combination of human labels to gold standard labels. The left image shows a small white sea anemone with two human labels
(as circles) which is not enough to create a gold standard label as a supporter count of k§3 was required (see text for details). The image in the
middle shows a Kolga hyalina labeled by k~5 experts and its resulting gold standard label in between (as a cross). The right image shows a
Bathycrinus carpenterii with human labels for the crown (blue) as well as the stalk (yellow). Both human label cliques have k§3 supporter and thus
two gold standard labels are created.
doi:10.1371/journal.pone.0038179.g003
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Table 1. Taxa counts and observer agreements.

observer agreement

Label amounts inter intra

Taxa Human Gold std. average std-dev. average std-dev.

Background 4764 4764 2 2 2 2

Bathycrinus carpenterii 2524 503 0.67 0.08 0.80 0.06

Bathycrinus stalks 1729 341 0.36 0.08 0.55 0.14

Burrow 5701 1112 0.65 0.04 0.72 0.08

Caulophacus arcticus 48 2 0.55 0.15 0.78 0.27

Caulophacus debris 131 2 0.44 0.13 0.54 0.24

Cladorhiza gelida 59 2 0.43 0.19 0.80 0.21

Purple anemone 498 97 0.68 0.05 0.72 0.07

Elpidia heckeri 551 87 0.35 0.09 0.52 0.11

Gersemia fructicosa 78 2 0.56 0.17 0.62 0.18

Kolga hyalina 172 30 0.97 0.09 0.93 0.07

Saduria megalura 67 2 0.53 0.10 0.72 0.14

Mohnia spp. 31 2 0.00 0.00 0.10 0.21

Small white sea anemone 2438 457 0.70 0.06 0.79 0.08

Small white sponge 637 94 0.32 0.09 0.55 0.08

Total: 19428 7485

The taxa with their human and gold standard label amounts. Gold standard labels are computed as the centroid of a group of closely neighbouring human labels of the
same taxon. Only groups with §3 human labels were taken into account. The background labels were randomly distributed and were all used as gold labels.
Additionally, the inter- and intra-observer agreements are given by average and standard deviation pone.0038179.g001.tif(std-dev.) for the five experts.
doi:10.1371/journal.pone.0038179.t001

Figure 4. The complete (semi-)automated detection process. Different transects with several thousand images are stored in the BIIGLE online
platform (top left). These images can be accessed by experts via the WWW (bottom left). For this experiment, a subset of one transect (marked green
on the upper left) was shown to five experts to create a manually labelled training set for a group of pre-defined taxa. Those manual labels were at
first used to optimize an image pre-processing for illumination correction (top middle). Afterwards, high dimensional feature vectors were extracted
at the label positions to gain a training and test set for SVM optimization (bottom middle). The trained SVMs were then applied pixel-wise to the full
field of view, to obtain a confidence value for each pixel and taxon (top right). These confidence values were then post-processed into a classification
map, where each pixel is assigned to one taxon which allows taxon counts per image. These taxon counts can then be plotted along the length of
the transect (bottom right).
doi:10.1371/journal.pone.0038179.g004
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5500 m (for details see [43]). The OFOS is a towed camera system

and its altitude is affected by waves, currents, bottom topography

and skill of the winch operator.

From 2002–2008, more than 45,000 images were taken by an

analogue camera, with these images then digitized at a resolution

of 350462336 pixels. The images were then made accessible in the

BIIGLE online platform for browsing and taxa annotation [82]. A

number of benthic megafauna experts have acquired BIIGLE

accounts in the last two years and to date have labelled w350,000

objects in w12,000 images. For this study, one transect of

intermediate water depth was chosen (HAUSGARTEN IV,

2500 m [31]), which has been successfully visited four times by

Polarstern to date (2002,2004,2007,2011). During each campaign,

some 700 images were taken. In all images, a field of view of

150061800 pixel size at position x = 1800, y = 300 was selected, to

exclude the image region covered by the OFOS forerunner weight

and the camera time stamp.

The OFOS operator tried to maintain the OFOS at a uniform

1.5 m height above the seafloor, resulting in a real-world footprint

of 1.2–8.5 m2 per image with an average of 3.77 m2 across the

entire transect. The OFOS altitude varied throughout the entire

transect as the winch operator adapted to bottom topography and

sea state resulting in variable lighting conditions, with overexposed

images produced when the OFOS was too close to the seafloor,

and almost black, poorly illuminated images produced when the

OFOS was too distant from the seafloor. Some 10% of the images

of a transect showed no signal contrast at all and were excluded

from this study. The remaining images showed a decrease in

lighting and contrast towards the image corners - a vignette effect.

Human Expert Labeling
The basic idea behind the iSIS architecture is that a general

machine learning based object detection system acquires the

knowledge of the structural features of objects of interest (here

taxa) as well as the non-interesting patterns from a set of image

patches showing representative examples of all taxa. The

performance of the system can be assessed using a so-called gold

standard, created from taxa positions provided by human experts

for comparision with the machine produced results. Since we were

aware of the inter- and intra-observer agreement problem in

human expert labeling tasks, we carried out a position labeling

study with five human experts (i.e. the authors M. B., J. T., J. G.,

A. P. and J. D. ). This study had two aims: firstly, assess the taxon-

specific human experts’ inter- and intra-observer agreements

across a range of images. The second aim of this study was to allow

collection of human expert position labels for use in generating a

gold standard for the taxa detection. To carry out the study, a

subset of 10% of the 2004 transect (i. e. N = 70 images) were shown

to five experts. These 70 images were randomly chosen from those

with a footprint of 3.5–4.5 m2 (i. e. 226 images). The experts were

given the task of labelling the positions of all individuals in these

images belonging to a set of 14 taxa/seabed features (the sponges

Cladorhiza gelida, Caulophacus arcticus, Caulophacus debris, a small

white sponge, the soft coral Gersemia fruticosa, a small white sea

anemone, a purple anemone, the whelk Mohnia spp., the isopod

Saduria megalura, the sea cucumbers Kolga hyalina and Elpidia heckeri,

the sea lily Bathycrinus carpenterii, Bathycrinus stalks and ‘‘burrow

hole’’). Taxa that gathered v150 labels across the 70 images were

excluded from further analysis. Samples of the eight remaining

taxa (Tm,m [ f1,::,8g, including the category ‘‘burrow hole’’) are

given in Figure 2.

We chose the 2004 transect as it had already been extensively

labelled by two of the experts and it was evident that different

species, characterized by a variety of structure and color features,

Figure 5. Successive classification with different SVMs. To prevent a time-consuming classification of each feature vector with all SVMs, the
SVMs were ordered in a tree structure. The order of SVMs and the confidence thresholds as well as the blob sizes were tuned automatically according
to the resulting Sensitivity and Positive Predictive Value.
doi:10.1371/journal.pone.0038179.g005

Table 2. Training, test and validation performance.

Taxa Training Test Validation Correlation

SE PPV SE PPV SE PPV

Background 0.95 0.97 0.91 0.93 2 2 2

Bathycrinus carpenterii 1.00 1.00 0.92 0.97 0.74 0.61 0.64

Bathycrinus stalks 1.00 1.00 0.86 0.98 0.63 0.38 0.56

Burrow 1.00 1.00 0.98 0.97 0.93 0.50 0.95

Purple anemone 1.00 1.00 0.87 0.98 0.69 0.28 0.28

Elpidia heckeri 1.00 1.00 0.82 0.98 0.91 0.04 0.14

Kolga hyalina 1.00 1.00 0.53 1.00 1.00 0.88 0.97

Small white sea
anemone

1.00 1.00 0.92 0.97 0.86 0.60 0.71

Small white sponge 1.00 1.00 0.73 0.98 0.89 0.43 0.65

Total 0.84 0.34

Total excluding
Elpidia heckeri

0.83 0.50

Total after
re-evaluation

0.87 0.67

Given are the training, test and validation performance as measured by
Sensitivity (SE) and Positive Predictive Value (PPV). The training and test
performances are computed with a 4-fold cross validation on the training set. In
the validation step, iSIS was applied to the entire images for taxa detection and
the detection results were compared to our gold standard g(k)

m by computing SE
and PPV. The performance decreases significantly from the test data to the
validation due to an increase in FP. The last row shows SE and PPV results after
a careful re-evaluation of the FP (see text for details) yielding our final estimates
for iSIS’ SE and PPV. The last column shows the correlation between object
counts of the gold standard items and the machine detection result for the full
transect.
doi:10.1371/journal.pone.0038179.t002
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occurred in this image series. This species heterogeneity was

important to investigate the general applicability of the iSIS

system.

The position labeling results of the five experts were compared

to determine inter-observer agreements [83]. Observer agree-

ments (OA) were computed for all pairwise combinations of two

experts U and V and their corresponding sets of hand labels LU

and LV by:

OAU ,V ~
#OAz

U ,V

#OAz
U ,V z#OA{

U z#OA{
V

ð1Þ

where # means ‘‘items in’’ and OAz is given as the set of labels

contained in both LU and LV :

OAz~LU\LV ð2Þ

and OA{
U as the set of labels contained only in LU :

OA{
U ~LU \OAz

U ,V ð3Þ

and analogous for OA{
V .

To measure intra-observer agreements, each expert re-exam-

ined 35 images after 14 days. The intra-observer agreements were

computed for each expert U and her/his hand labels created

before (LU ) and after the 14 day break (i. e. LV ~Lz14
U )) with

eq. (1).

To collect a gold standard for the taxon detection, the position

labels Lm (m [ 1,::,8) for each taxon Tm, obtained by all five

experts within an image were fused to taxon cliques, each clique

summarizing the marked positions for one object of a taxon class

Tm. A set of position labels of one taxon Tm with a pairwise

Euclidean distance smaller than a taxon-specific maximum

distance dm is regarded as a clique. The number of labels in a

clique is denoted by k, which ranges from k~1, where only one

expert (i. e. supporter) found the item, to k~5, where all experts

agree on the occurrence of this item. For each clique, a gold label

position g(k)
m ~(x,y) of x,y-coordinates was computed as the

Figure 6. Illustration of the pre-processing. Image A is an original sample taken from the HAUSGARTEN IV transect. B - F show the effect of
different kernel sizes M for the Gaussian filter. The kernel sizes are as follows: B: M = 11, C: M = 101, D: M = 701, E: M = 1101, F: M = 1401). The curves
show the output of the cluster-indices, plotted against M. The first value (M = 0) represents the unfiltered image. The curves are as follows: blue:
Chalinski-Harabasz, green: Index-I, yellow: Davies-Boudlin, pink: intra-cluster variance, red: inter-cluster variance. The bold, black line is the mean of
the five measures. The cluster indices were normalized to the interval [0.1] and show a good correlation, supporting a reasonable selection of the
value M = 701.
doi:10.1371/journal.pone.0038179.g006
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Figure 7. Detection results for five species. From top to bottom: A: small white sea anemone, B: burrow, C: Bathycrinus stalk, D: Bathycrinus
carpenterii, E: Kolga hyalina. Each unit on the x-axis represents an image of the transect (i. e. 70 images). The y-axis represents the object counts.
Green bars stand for the amount of gold standard objects with k§3. Blue bars represent the machine counts. The plots are normalized according to
the maximum object count for each taxon individually. The correlation between the gold standard and machine counts are given in Table 2.
doi:10.1371/journal.pone.0038179.g007
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Figure 8. Example of the final classification. On the left we show the original seafloor image with expert labels shown as colored squares. The
colors encode taxa: red: Kolga hyalina, green: Elpidia heckeri, blue: Bathycrinus carpenterii, yellow: Bathycrinus stalk, pink: small white sea anemone,
dark blue: small white sponge, dark red: purple anemone, dark green: Burrow, turquoise: background. On the right we show the images’ classification
results. The same color code is used as for the expert positions labels on the left. Black regions were rejected by all SVMs.
doi:10.1371/journal.pone.0038179.g008
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centroid of its supporting clique’s position labels (see Figure 3).

The taxon label numbers and observer agreements are given in

Table 1.

The iSIS System
The approach for object detection encompasses three major

steps: Pre-processing and feature extraction (Step 1) is necessary to

reduce illumination effects and to map image patches to high-

dimensional representations in a vector space model, so-called

feature vectors. In Step 2, these feature vectors are used to train a

machine learning algorithm (Support Vectors Machines (SVMs)),

utilizing the human expert position labels. To detect the taxa in

one image, the trained SVM classifiers are applied to the feature

vectors derived at every pixel within the field of view of each

image. The pixel-wise classifications are written to so-called

confidence maps. In the final Step 3, these confidence maps are

then post-processed to derive positions of possible taxa and a

numerical value for the number of taxa in every field of view. An

overview of the whole approach is given in Figure 4.

Step 1: Feature extraction and pre-processing. To keep

the taxon detection as generic as possible, a set of feature

descriptors capable of describing arbitrary objects, based primarily

on the MPEG7 standard was computed [84,85]. The MPEG7

standard defines 18 descriptors for different characteristics of

digital images, each descriptor comprising an individual number of

features. There are five descriptors for color features, three for

texture, and ten others, which focus on structure, motion and face

detection. Depending on the image domain, some of these are

more useful than others (e. g. face descriptors were not used here).

The descriptor set consisted of four color descriptors (i. e. Color

Structure, Color Layout, Scalable Color, Dominant Color), one

texture descriptor (Edge Histogram) as well as an adapted

structure descriptor [86].

In principle, the two other texture descriptors specified in the

MPEG7 standard would have been useful too, but require a

minimum region for extraction (§1286128 pixels), which would

have added too much background signal in this setup. Those

MPEG7 texture descriptors are based on a multi-scale, multi-

orientation Gabor Wavelet filtering and describe spatial relation-

ships between Gabor responses as well as dominant responses in

the extraction region. To include the principal ability of Gabor

Wavelets to describe textural features, the outputs of a modified

version of a 3-scale, 5-orientation Gabor bank [87,88] were added

as additional features without regard to their spatial occurence or

dominance.

Features were extracted within a frame of 32632 pixels to

create a rich feature representation of 424 dimensions (Figure 4,

middle) for a neighborhood around an image pixel.

To correct the lighting conditions of an image In (n = 1.N), it was

filtered with a Gaussian kernel of size M and yielded a smoothed

image Gn. In and Gn are composed of three color channels c (c [
red (R), green (G), blue (B)), here denoted by a superscript (e. g. IG

n

for the green channel of image In). By subtracting Gn channel-wise

from In, the lightness falloff towards the corners was removed:

ÎI c
n~255zIc

n{Gc
n ð4Þ

Afterwards, the histograms of each of the ÎIn were transformed to

gather similar color distributions across the whole transect and

thus yielded the image Fn that was then used for feature

extraction. Fn is also a 3-channel image and each of the channels

is computed by:

Fn~½C|(ÎI c
n{gmin)�c ð5Þ

with:

C~
256

gmax{gmin
ð6Þ

and:

c~
log (128)

log (C|(gpeak{gmin))
ð7Þ

The values gmin, gmax and gpeak were computed using the gray-

scale image In:

In~
1

3

X

c[R,G,B

ÎIn ð8Þ

by searching the peak in the histogram of In (i. e. the gray value

gpeak with the highest pixel number in In). Starting from the peak

value, gmin/gmax were chosen as the nearest gray values below/

above the peak with 1=1000th of the peak’s pixel number.

To omit a dispassionate manual tuning of one important

parameter in this pre-processing, the Gaussian kernel size M, a

data driven tuning approach was developed. Feature vectors were

computed for each human label position from images pre-

processed with different M values, ranging from 1 to 1501.

Following the standard pattern recognition paradigm, feature

vector clusters should identify the taxa. This motivates the

selection of that particular M value that leads to separated taxa

feature clusters, i. e. a crisp cluster structure. To measure the

clustering quality for different values of the kernel size M, the

cluster indices (i. e. Chalinski-Harabasz [89], Index-I [90] and

Davies-Boudlin [91]) were computed as well as the intra- and

inter-cluster variance. The kernel size M leading to the best

clustering result was chosen for pre-processing the entire transect.

Table 3. Re-evaluation of false positives.

Expert 1 Expert 2

True positives 26% 35%

Misclassification 9% 12%

Untrained taxa 17% 38%

Background 32% 11%

Unknown 16% 4%

Re-evaluation results of the detected false positives by two authors (MB,TS).
doi:10.1371/journal.pone.0038179.t003
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Step 2: Training data and machine learning. For the

machine learning step, i. e. teaching the classifiers to distinguish

one taxon from other objects and from the background, training

sets of feature vectors for each taxon are required. To collect a

training set for a taxon Tm, feature vectors were computed for

positions g(k)
m condition to a support count k§3. Because of the

low numbers of remaining taxon labels, caused by some taxa’s

sparse population of the seafloor, the amount of feature vectors

were boosted five-fold by computing them at the human label

positions as well as at their 4-connected neighbours [92] in two

pixel distance. This also adds some variation to the taxa

representations. In addition, feature vectors were extracted from

randomly distributed positions within each image and with a

minimum distance to all human labels within each image. These

feature vectors served as representatives of the background class

(T0).

In pattern recognition, normalization of features is of crucial

importance. In the iSIS system, features are grouped according to

domains, e. g. all of the 15 Gabor features or the single

‘‘number_of_dominant_colors’’ feature (which belongs to the

descriptor Dominant Color [84,85]) form two domain groups.

Feature domain groups are treated individually in the normaliza-

tion and features values within a group were normalized together

to have a mean of 0 and a standard deviation of 1.

After normalization of all domain groups, an individual set of

feature vectors Cm~fxg(x [ ½0,1�D) was composed for every

taxon Tm, that consisted of 50% positive and 50% negative

samples. The positive samples were all feature vectors computed

for training set positions of one taxon Tm. One half of the negative

samples consisted of background (T0) feature vectors. The other

half comprised equal amounts of all other taxa Tp=m,0. The

background feature set C0 consisted of 50% background samples

(positives) and 50% of equal amounts of all other taxa (negatives).

Since the abundance of species varied, the size of the feature

vector sets C0{C8 also varied. Using the nine feature vector sets

Cm, nine classifiers were trained, each one to classify a feature

vector as either taxon-positive or negative. iSIS uses SVM

classifiers [93] for feature vector training and classification. SVMs

are widely used, because of their generalization performance in

non-trivial, high-dimensional feature spaces, i. e. their ability to

correctly classify previously unseen data. Further advantages are

the absence of local minima in their training errors during

optimization [94] and the low number of parameters (i. e. two in

this case) that have to be tuned.

To train the nine SVMs (one for each taxon and one for the

background), an implementation of SVMlight was used [95],

wrapped by our own C/C++ machine learning library. A

Gaussian kernel was used, and, in a first training step, optimal

parameters for the kernel size s and the SVM penalization

parameter C were estimated by logarithmic sampling of the

parameter space (10a, a [ f{1,::,2g for C and s, respectively).

Small values of C indicate low penalization of errors, leading to a

better generalization. Small values of s can create SVMs that tend

to over-fit the training data, which results in a poor generalization.

A 4-fold cross validation [96] was applied to tune the SVM

parameters, i. e. three quarters of the feature vector set Cm were

used as the SVM training set for the SVM of taxon Tm and the 4th

quarter as the test set.

A trained SVM classifies a feature vector either as class-positive

or -negative. The classification result for one feature vector can

thus be assigned to one out of three groups: 1) True positives (TP)

were correctly identified positive samples. 2) False positives (FP)

are negative samples, that were falsely classified as positive. 3)

False negatives (FN) are positive samples classified as negative.

From the counts of these three cases, standard classifier-

performance measures (i. e. Sensitivity (SE), Positive Predictive

Value (PPV)) were computed for the classification of the training

and test sets. SE and PPV are defined as:

SE~
#TP

#TPz#FN
and PPV~

#TP

#TPz#FP
ð9Þ

where # means ‘‘amount of’’. Both measures range between 0 and

1. The PPV of the test set is of special interest in detection tasks,

since the highest priority is to minimize the number of false

positives in unseen data. After determination of the optimal s and

C, the SVM training was repeated for each taxon Tm with the full

feature vector set Cm. Those SVMs were then used for

classification of the full field of view of all images fFng in the

transect.
Step 3: Post-processing. All SVMs were forced to create a

normalized output between 0 and 1 [97], such that a confidence

map is created for each species. To gather a quantification of the

species at hand, a post-processing was applied to the confidence

Table 4. Classification performance by supporter.

k 1 2 3 4 5

Taxa SE PPV SE PPV SE PPV SE PPV SE PPV

Bathycrinus carpenterii 0.58 0.63 0.68 0.62 0.74 0.61 0.80 0.60 0.85 0.54

Bathycrinus stalks 0.51 0.49 0.60 0.45 0.63 0.38 0.64 0.25 0.82 0.10

Burrow 0.88 0.53 0.89 0.52 0.93 0.50 0.91 0.46 0.96 0.39

Purple anemone 0.57 0.28 0.65 0.28 0.69 0.28 0.79 0.27 0.90 0.23

Elpidia heckeri 0.68 0.05 0.75 0.05 0.91 0.04 0.96 0.03 1.00 0.01

Kolga hyalina 1.00 0.88 1.00 0.88 1.00 0.88 1.00 0.88 1.00 0.86

Small white sea anemone 0.71 0.63 0.79 0.62 0.86 0.60 0.91 0.59 0.94 0.53

Small white sponge 0.53 0.48 0.61 0.46 0.89 0.43 0.89 0.29 0.91 0.19

Total 0.70 0.37 0.77 0.36 0.84 0.34 0.88 0.30 0.93 0.24

Total excluding Elpidia heckeri 0.70 0.54 0.77 0.53 0.83 0.50 0.88 0.46 0.93 0.39

Given are the Sensitivity (SE) and Positive Predictive Value (PPV) for all taxa, compared to different supporter values k for the gold standard. While the SE is increasing with
increasing supporter value, the PPV is performing inversely. This shows, that the automated detection is more likely to find objects with a high observer agreement.
doi:10.1371/journal.pone.0038179.t004
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maps, which consisted of two steps for each taxon Tm. First the

confidence maps were binarized with thresholds tm. Connected

regions (i. e. blobs) in the resulting binary image were then

compared to a taxon-specific minimum blob size sm. The trained

SVMs were organized to a tree (Figure 5), to avoid a time-

consuming classification of each pixel by all nine SVMs. Because

the average taxon occurrence per image was sparse (i.e. ranging

from 0.5 for Kolga hyalina up to 16.3 for ‘‘burrow hole’’), a 5 pixel

margin around classified pixels was not used for further

classification, to prevent false positives in unusually short distances

around detected objects.

For the background confidence map, the binarization threshold

was set to t0~0:6 and no blob detection was performed. The other

taxa confidence thresholds tm, the minimum blob size thresholds

sm and the order of the SVMs in the classification tree were

automatically tuned, analogous to the pre-processing. Similar to

the fusion of human label cliques to gold standard labels, a

distance threshold was used for each taxon Tm to match the gold

standard labels gk
m with the detected blob centroids. These

assignments were evaluated to classify each blob centroid and

each gold standard position as TP, FP or FN. From these

quantities, the SE and PPV were computed.

Results

The human experts showed varying degrees of inter-observer

agreement across different taxa, which is a phenomenon well-

known from similar visual diagnosis and assessment tasks. An

agreement of 97% was found only for the conspicuous sea

cucumber Kolga hyalina whereas the human detection performance

was only 70% for a small white sea anemone and even 35% for the

sea cucumber Elpidia heckeri and 32% for a small white sponge.

While the semi-automatic approach showed a performance at least

similarly accurate for the ‘‘easy’’ species (see details below), it

produces good, and, above all, re-producible detections (Table 2).

The performance for taxa with morphological characteristics close

to the resolution limit prevented successful identification by either

humans or iSIS. In the following we will summarize the results

obtained using the iSIS approach.

Pre-processing
For the tuning of the Gaussian kernel size M, all cluster indices

showed similar results: features extracted from unfiltered images

were sub-optimal in their ability to create clusters in feature space,

while pre-processing with small kernels (Mv20) reduced the

performance even further. The same occurred when using larger

kernels (Mw1100), where the cluster measures tended to show

poorer results as well. Interestingly, all cluster measures remained

relatively stable for kernel sizes between 50 and 1000 with no

obvious peak, i. e. no optimum kernel size could be derived.

Although the color distributions of differently pre-processed

images are diverging (small kernels lead to grayish images with

high contrast, large kernels to smoother colors with less local color

deformation), the utilized features do not seem to be affected in

their capability to form taxon clusters. A kernel size of M = 701

was chosen, as the resulting images usually showed good lighting

correction and contained only moderate color distortion. Some

examples of the pre-processing and the normalized output of the

cluster indices are given in Figure 6. The pre-processing takes ca.

three minutes per image.

Machine Learning and Post-Processing
The normalization of the feature vectors and the construction of

the training and test sets took less than one minute. The SVM

parameters differed for different species. The performances for

training and test data are given in Table 2. The first training step

to determine the optimal C and s took about five minutes per

SVM, which is the same as the time needed for the final SVM

trainings together. The post-processing takes less than one minute

for all nine SVM outputs combined.

The performance measures for iSIS are shown in Table 2. The

classification performance on the training data is displayed as

training- and test-error, showing a satisfying learning result for all

taxa. In the validation experiment, we applied the trained SVMs

to every pixel within the full field of view for a pixel classification

and to be able to detect the taxa. We evaluated the classification

result using our gold standard g(k)
m , computing SE and PPV for

each taxon class individually. The total counts for the gold

standard and the machine results are given for each image in

Figure 7, the correlation values of these are also given in Table 2.

These correlation values give a different view of the results. While

the SE and PPV values show the detailed performance at single

object level, the correlation measure averages out some mistakes if

false positives and false negatives occur within the same field of

view. Two examples of the detection result are given in Figure 8.

The final results, as given in Table 2, look unsatisfying at first

sight, especially the PPV values for the detection experiment in the

entire images, i. e. the validation. A closer look at single FPs leads

to the assumption that the false positive counts based on the

reference gold standard were incorrect, i. e. many positives found

by iSIS, which were not included in the gold standard were

actually true positives. All false positives were thus re-analyzed by

two of the authors (the authors M. B., T. S. ) to determine, what

kind of mistakes happened during the detection. The results of this

re-evaluation are given in Table 3. The last row of Table 2

incorporates these numbers and indicates a much better perfor-

mance (SE: 87%, PPV: 67%). Approximately one third of the false

positives were indeed true positives that were not labelled by the

experts at all (k = 0) or were not included in the gold standard due

to a low supporter count (kv3).

To study the effect of a higher or lower value of k, i. e. the effect

of a more or less conservative gold standard setting, iSIS was run

with values of k~1,2,::,5. This was done only in the post-

processing, so the SVMs were not retrained, which would have

affected the detection process. While a low value of k resulted in a

higher PPV, a high value of k resulted in a higher SE. The

performance values for different k are given in Table 4. The results

show that the performance of a semi-automated detection

approach is significantly affected by the initial training gold

standard. If the main goal is to lose the lowest number of objects,

which are prototypal for their species, only gold standard objects

with a high supporter value should be used in the analysis.

One particular taxon (Elpidia heckeri) could not be detected

reliably since its features (color and morphology) could not

sufficiently be discerned from the sediment background. Samples

of this species cover only a small amount of pixels (v50) and

resemble stones in their structural appearance. While the SE of

0.91 is satisfying, the PPV of 0.04 shows, that a vast amount of

false positives are detected by the SVM trained for this taxon. The

challenges in detecting Elpidia heckeri with iSIS reflect the low inter-

and intra-observer agreements for this species. Omission of Elpidia

heckeri from the detection process led to a removal of about half of

the total false positives (see 13th row in Table 2).

Discussion

In our work we have addressed the question how the concepts of

pattern recognition and machine learning can be applied to design
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a data-driven approach to the automation of taxa detection and

megafauna quantification in large underwater image collections

from camera transects. The most important design principle of this

study was to develop a system which would enable a non-

computer expert, a typical skilled taxonomist or other user, to

adapt the system to new transects and/or for detection of further

megafauna species (for instance starfish, which have not been

considered here but occur in HAUSGARTEN transect data). Our

results show how a gold standard of human labelled taxon

positions in a training subset of images can be used to tune pre-

processing steps and to train supervised machine learning

algorithms (such as SVMs) in pixel classification tasks. Our results

for training-, test- and validation errors show that the biggest

remaining challenge is to improve the training step, reducing the

FPs in the validation and to improve the estimates for the errors on

new data, since the contrast between test- and validation error is

considerable. We also found two factors to have a negative

influence on the PPV estimates. First, the re-evaluation of the FP

showed that about one third of the false positives were indeed true

positives. Second, another 30–40% of the FP were species that

were not included in the SVM training (e. g. Caulophacus arcticus,

Caulophacus debris, Mohnia spp., etc.). Thus, including these species

in the training data could have the potential to reduce the FPs. We

estimate the remaining true FPs to be approx. 30% of the original

number. These FPs are misclassifications between different taxa or

background pixels classified as taxa. Incorporating the additional

true positives, the total SE value rises to 0.87, which is only a

minor advantage, although the total PPV is then 0.67, which is a

major improvement. Assuming optimistically that those species for

which iSIS was untrained so far in this study can be identified with

similar SE and PPV values as the species thus far studied, the PPV

for the dataset as a whole could potentially increase to 0.83.

Another strategy to further improve the results would be to omit

regions within images from classification, based on the density of

detected objects. Parts of images, covered by fauna such as

Caulophacus arcticus (Figure 8, bottom), create several FP, which are

closely distributed and hence distinguishable from other regions as

detection results are usually sparse.

Although false positives remain in the iSIS analyzed data, the

system can be applied to speed up the quantification of megafauna

taxa substantially. A full manual evaluation takes approx. 30–60

minutes per image (and is error prone for many taxa). One way to

massively reduce this time would be to first apply iSIS to mark all

potential positions of taxa of interest and let a user review the

positions (for instance in a guided zoom-in mode) and mark iSIS

produced detections as accept or reject. Such a posterior evaluation

of iSIS-detected taxa in an image takes about 1 minute, estimated

from our own experience using the BIIGLE system in similar

contexts. Without such a re-evaluation, the detection results may

overestimate the occurences of taxa and can thus not yet be used

for quantitative investigations of transects.

If the system is not trained with key species of the ecosystem, the

detection counts may lead to incomplete or incorrect assumptions

about habitat processes. Careful consideration of relevant species

and suitably large sample sizes of those species are therefore vital

for successful application of the iSIS approach.

The number of individual examples of a species required for

successful detection may vary across species. An approach to

estimate this amount could utilize cluster indices as for the

optimization of the kernel size M in the image preprocessing. The

iSIS system could thus request further labels from the expert if

the cluster indices indicate that insufficient amounts of a taxon

have been labelled (i.e. the feature representations of this taxon do

not yet form clusters in the feature space).

Keeping those prerequisites in mind, iSIS currently allows the

collection of taxa positions with reduced effort, which enables

researchers to carry out investigations of the taxa densities, their

dynamics over time and species co-occurences more efficiently.

This could potentially open the large data archives created by far-

sighted seafloor observation programmes and give deeper insights

into distributions and dynamics of communities of benthic

megafauna. The use of iSIS with re-evaluation allowed us to

quantify megafaunal densities over the whole HG IV transect for

the first time (Fig. 4 bottom right). From this analysis, certain

conclusions on species distribution are immediately apparent, such

as a patchy occurrence of the small white sea anemone (possibly

Bathyphellia margaritacea) along the HG IV transect, which is

corroborated by [43]. Although present throughout the whole

transect, iSIS detected higher densities of the sea lily Bathycrinus

carpenterii towards the last two thirds of the transect whereas the

opposite was true for the sea cucumber Kolga hyalina. This could be

a result of species interactions and/or differences in the spatial

distribution of resources. Since megafaunal organisms affect the

distribution of smaller-sized biota and shape benthic food webs

through predation such findings are important in understanding

ecosystem functioning. Furthermore, the envisaged application of

iSIS to HG IV footage from different years will enable us to assess

changes in the distribution of key megafaunal species over time in

an area particularly vulnerable to the effects of climate change. We

will also apply iSIS to images from other HAUSGARTEN stations

and possibly other benthic locations. Advances in camera

technology, associated with higher image resolution, will allow

improved detection performances in the near future.

iSIS shows how computerized image analysis can assist in the

inspection and monitoring of deep-sea benthos. The results

resemble those produced manually by human experts, whilst

greatly reducing human time commitment and removing the

negative effects of observer fatigue. Further publications on

automated detection approaches for benthic images are worth-

while to investigate non-easily accessible marine areas without

contemporary intervention in the benthic system by sampling

gears. The development of such automated systems is a new field

of marine research, and allows the creation of new tools to

improve the ongoing efforts to explore and understand the vast

uncharted regions of the seafloor.
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