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Abstract

This thesis revolves about the relationship between orbital forcing and climate vari-
ability. To place paleo and modern climate variability in context, the spectrum of
temperature variability is estimated from time-scales of months to hundreds of thou-
sands of years using a patchwork of proxy and instrumental records. There is an
energetic background continuum and rich spatial structure associated with tempera-
ture variability which both scale according to simple spectral power-laws. To comple-
ment the spatial and temporal analysis of temperature variability, a description of the
full insolation forcing is also developed using Legendre polynomials to represent the
spatial modes of variability and singular vectors to represent seasonal and long-term
changes. The leading four spatial and temporal modes describe over 99% of the inso-
lation variability making this a relatively simple and compact description of the full
insolation forcing. Particular attention is paid to the insolation variations resulting
from the precession of the equinoxes. There is no mean annual insolation variability
associated with precession — precession only modulates the seasonal cycle. Nonlin-
ear rectification of the seasonal cycle generates precession-period variability, and such
rectification naturally occurs in the climate system but also results from the season-
ality inherent to many climate proxies. One must distinguish this latter instrumental
effect from true climate responses. Another potential source of spurious low-frequency
variability results from the stretching and squeezing of an age-model so that noise
in a record is made to align with an orbital signal. Furthermore, and contrary to
assertions made elsewhere, such orbital-tuning can also generate an eccentricity-like
amplitude modulation in records that have been narrow-band-pass filtered over the
precession bands.

An accurate age-model is the linchpin required to connect insolation forcing with
any resulting climatic responses, and to avoid circular reasoning, this age-model
should make no orbital assumptions. A new chronology of glaciation, spanning the
last 780 kilo-years, is estimated from 21 marine sediment cores using a compaction
corrected depth scale as a proxy for time. Age-model uncertainty estimates are made
using a stochastic model of marine sediment accumulation. The depth-derived ages



are estimated to be accurate to within ±9, 000 years, and within this uncertainty
are consistent with the orbitally-tuned age estimates. Nonetheless, the remaining
differences between the depth and orbitally derived chronologies produce important
differences in the spectral domain. From the δ18O record, using the depth-derived
ages, evidence is found for a nonlinear coupling involving the 100KY and obliquity
frequency bands which generates interaction bands at sum and difference frequencies.
If an orbitally-tuned age-model is instead applied, these interactions are suppressed,
with the system appearing more nearly linear.

A generalized phase synchronization analysis is used to further assess the nonlinear
coupling between obliquity and the glacial cycles. Using a formal hypothesis testing
procedure, it is shown that glacial terminations are associated with high obliquity
states at the 95% significance level. The association of terminations with eccentricity
or precession is indistinguishable from chance. A simple excitable system is intro-
duced to explore potential mechanisms by which obliquity paces the glacial cycles.
After tuning a small number of adjustable parameters, the excitable model repro-
duces the correct timing for each termination as well as the linear and nonlinear
features earlier identified in the δ18O record. Under a wide range of conditions the
model exhibits a chaotic amplitude response to insolation forcing. One chaotic mode
gives a train of small and nearly equal amplitude 40KY cycles. Another mode per-
mits ice to accumulate over two (80KY) or three obliquity cycles (120KY) prior to
rapidly ablating and thus, on average, generates 100KY variability. The model spon-
taneously switches between these 40 and 100KY chaotic modes, suggesting that the
Mid-Pleistocene Transition may be independent of any major shifts in the background
state of the climate system.

Thesis Supervisor: Carl Wunsch
Title: Cecil and Ida Green Professor of Physical Oceanography
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Introduction

While one can make mathematical approximations to the climate system, or pro-

duce phenomena of a limited spatial scale and duration in a laboratory, the climate

experiment most relevant to us has been run once. The fate of the other known

planets, at best, provides a remote analogue to the Earth’s climate. As climate sci-

ence is primarily driven by observations and because the instrumental record is short

relative to many of the climate phenomena of interest, one must piece together an

understanding of past climates from the available evidence contained in historical,

biological, and geological records. With the aid of such climate proxies, many inroads

have been made into understanding the structure of long-term climate variability,

often utilizing an approach whereby a systems model is constructed which is consis-

tent with the available data [e.g. Imbrie et al, 1992, 1993]. Owing to more accurate

and abundant proxies of past climate, it is now increasingly possible to objectively

test many of the plausible climatic inferences which have been drawn from the proxy

record of climate change.

Much attention has been paid to a few relatively narrow bands of the low-frequency

variability in the paleoclimate record, and these receive due attention throughout the

thesis. It is, however, also important to recognize the energetic background con-

tinuum of climate variability [e.g. Imbrie and Shackleton, 1990; Wunsch, 2003a].

After all, a linear response to insolation forcing is a narrow and untenable descrip-

tion of the climate record. One expects fluctuations in the circulation of heat in the

atmosphere and ocean to contribute a rich low-frequency spectral behavior to tem-

perature spectra. Furthermore, significant temperature influences are expected from

feedbacks associated with long-term changes in ice-sheets, ground cover, atmospheric

composition, etc. Much work remains to be done in understanding what controls the

background spectrum of temperature variability at these longer timescales.

When it comes to interpreting the narrow-band behavior of the climate at lower

frequencies, many theories invoke a response to insolation forcing. At the obliquity

and precession bands, one expects and finds a climatic response to insolation vari-

ability [Hays et al, 1976]. What is less certain is the origin of the energetic 1/100KY
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band which contains the majority of the energy at frequencies below 1/10KY [e.g.

Wunsch, 2004]. This 1/100KY band is identified with the late Pleistocene glacial

cycles, and understanding the mechanisms which control this variability remains an

outstanding question in the climate sciences.

One of the most fundamental and long-standing questions regarding the glacial

cycles is whether they are deterministic or stochastic [e.g. Kominz and Pisias, 1979;

Wunsch, 2004]. The contending explanations for the glacial variability can be divided

into two categories: those which are wholly internal to the climate system [e.g. Ghil,

1994; Saltzman, 2002; Wunsch, 2003a], and those which call upon orbital forcing

[e.g. Hays et al., 1976; Paillard, 1998; Gildor and Tziperman, 2000]. The latter can

be further categorized according to orbital parameter. The most widely accepted

version of the orbital forcing of the glacial cycles is that a nonlinear response to

the precession forcing demodulates the eccentricity envelope and generates a roughly

100KY timescale [e.g. Imbrie and Imbrie, 1980; Imbrie et al, 1993].

Other theories call directly upon the eccentricity forcing to pace the glacial cycles

[e.g. Benzi et al., 1982], but the insolation changes this causes are only on the order

of a few W/m2 and are probably too small to be of much climatic relevance. While

eccentricity has the attractive quality of varying at a frequency near 1/100KY, the

1/400KY frequency is in fact more energetic so that its absence from Pleistocene

climate variability must be explained. Rial [1999] goes so far as to suggest that the

frequency modulation associated with the 1/400KY eccentricity band is responsible

for causing the 1/100KY variability, but a known physical mechanism which would

behave in this way is conspicuously absent.

Obliquity has played a more obscure role in theories of the glacial cycles, largely

because it is not obvious how a forcing dominated by 41KY variability can be related

to a roughly 100KY climatic signal. Unlike the climatic precession, the amplitude and

frequency modulation of obliquity are small, but it has nonetheless been suggested

that these modulations are related to the 100KY glacial cycles [Liu et al, 1998].

Ridgwell et al [1999] briefly consider that the glacial cycles may be paced by two or

three obliquity cycles, but dismiss the idea as yielding results inconsistent with the

spectra associated with the SPECMAP climate record [Imbrie et al, 1984]. Later this

hypothesis of obliquity pacing of the glacial cycles is revisited in greater detail.

Given the abundance of plausible explanations for the glacial cycles, at this point

it is necessary to find some means of distinguishing between theories. Roe and Allen
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[1999] made a pioneering statistical comparison of six simple models which assume

either a deterministic orbital response to insolation forcing or the existence of a free

oscillation internal to the climate system, but were unfortunately unable to distinguish

between the various hypotheses. Wunsch [2004] discusses a number of difficulties in

statistically differentiating between the various glacial hypotheses: these are (1) the

uncertainty associated with Pleistocene age-models, (2) the small number of Pleis-

tocene glacial cycles (there are seven), and (3) the fact that narrow band spectral

processes are embedded within an energetic background continuum. These three hur-

dles to making a definitive test for the origins of the glacial variability can each be

overcome.

1. Serious effort has gone into dating the Pleistocene glacial cycles. The chronol-

ogy of the last deglaciation is well known [e.g. Hughen et al, 2000], but there are

conflicting estimates for the age of the penultimate deglaciation which argue for

[e.g. Broecker, 1968; Bard, 1990] and against [e.g. Henderson and Slowey 2000;

Gallup, 2002] orbital control. Similarly, orbital control of the earlier deglacia-

tions can be argued for [e.g. Herbert, 2001] or against [e.g. Winograd et al, 1997].

In Chapter 3 a new age-model is introduced which, following the suggestion of

Shaw [1964], uses depth as a proxy for time. This depth-derived chronology

builds on earlier efforts [Shackleton and Opdyke 1972, from 900 to 0 KY BP;

Hays et al. 1976, 500-0 KY BP; Williams 1988, 1900-0 KY BP; Martinson

et al. 1987, 300-0 KY BP; and Raymo 1997, 800-0 KY BP] by incorporating

nearly double the number of sediment core records, making an important correc-

tion for down-core compaction, and rigorously deriving uncertainty estimates.

The resulting chronology is sufficiently accurate to permit testing of the orbital

hypothesis of climate change.

2. When it comes to increasing the skill associated with statistical tests for the

origins of the glacial cycles, it is impractical to wait for the number of glacial

cycle realizations to increase, but one can decrease the degrees of freedom asso-

ciated with the hypotheses. That is, each of the models considered by Roe and

Allen [1999] have at least six free parameters associated with them; given that

the models are compared against seven realization of the glacial cycles, there

is little surprise that the results are inconclusive. In Chapter 4, a generalized

model is developed which has no free parameters and, accordingly, fairs better

in distinguishing between the various glacial hypotheses.
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3. As noted, the low-frequency spectral peaks reside amid a significant background

variability, suggesting that much of climate variability is stochastic and/or non-

linear. Fourier based techniques can only go so far in distinguishing between

stochastic internal variability and nonlinear orbital control of the glacial cycles

[e.g. Huybers and Wunsch, 2004]. In Chapter 4 a new technique is applied for

determining the coupling between orbital variability and the glacial termina-

tions based on concepts associated with phase synchronization [e.g. Rosenblum

and Pikovsky, 2003]. Also, a new statistic is introduced — termed the nonlinear

coherence — which quantifies the phase coupling in a nonlinear system. The

nonlinear coherence proves a useful statistic for testing the hypothesis of orbital

control of the glacial cycles.

Much has been done to determine the causes of the glacial cycles [e.g. Imbrie et

al 1992; 1993]. This thesis seeks to gather together the relevant data and tools, and

hone these toward making a definitive test for the origins of the glacial cycles. Apart

from those discussed above, other implements include a compact representation of the

full spatial and temporal variations in insolation forcing, an exploration of how the

proxy record will record climate responses to insolation forcing, and the use of simple

models to aid in the physical interpretation of identified statistical relationships.

This thesis attempts to cover a lot of ground, and a road map may prove useful

to the reader. Chapters 1 and 2 respectively provide an overview of climate and inso-

lation variability, both on timescales ranging from months to hundreds of thousands

of years. Chapter 3 is devoted to developing a chronology for marine sediment cores

which is independent of orbital assumptions; the chapter is repeated verbatim from

Huybers and Wunsch [2004]. Chapter 4 uses the new chronology to test whether

the glacial cycles are paced by orbital variations. A significant association is iden-

tified between obliquity and glacial terminations whose meaning is further explored

in Chapter 5 using very simple climate models. An effort has been made to place

technical discussion which is less central to the thesis into appendices at the end of

each chapter.
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Chapter 1

Temperature variability from

modern to glacial timescales

Processes affecting Earth’s climate occur at all scales, ranging in size from the molec-

ular to planetary scales and in time from nearly instantaneous to billions of years.

These space and time scales of variability are intimately coupled so that, for example,

sea-ice thermodynamics influences the oceanic circulation of heat; cloud micro-physics

influences Earth’s albedo. Thus, to understand climate variability at any one scale

requires some understanding of the whole. This Chapter attempts to place some

aspects of paleoclimate variability in relation to the modern variability. The discus-

sion provides a bird’s eye perspective of Earth’s climate variability; along the way

attention is drawn to topics which will be discussed in more detail in the subsequent

chapters.

A number of related studies have also discussed climate variability over a wide

range of timescales. Mitchell [1976] gave a qualitative description of climate variabil-

ity over timescales of hours to billions of years. Pelletier [1998] made a quantitative

estimate of atmospheric temperature variability from ice-core proxy and instrumental

records. Shackleton and Imbrie [1990] pieced together temperature estimates from

marine sediment-cores spanning timescales of thousands to millions of years. W.

Curry [personal communication] has extended the approach of Shackleton and Im-

brie [1990] to monthly timescales using higher-resolution marine sediment proxies as

well as coral records for tropical sea surface temperatures. Here, the more recent

results of Pelletier [1998] and of W. Curry are built on to further investigate tropical

sea-surface temperature and high-latitude surface air temperature variability.
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An analogy can be made between the interpretation of temperature variability

and other state variables in the climate system. One example is the study of modern

sea-level records, which provides insight into the response of the ocean to periodic

tidal forcing as well as stochastic forcing owing to weather and baroclinic ocean fluc-

tuations. Impressively, oceanographic theory explicitly accounts for roughly 90% of

the total sea-level variance between periods of hours and decades [e.g. Wunsch, 1972].

At lower frequencies, however, the attribution of causes becomes much more uncer-

tain. Accordingly, this overview aims at a quantitative description of temperature

variability, in some places pointing out potential mechanisms, but cannot be said to

explicitly account for the structure of the temperature variability. A true explanation

of the spectral structure of long-term temperature variability awaits the development

of a detailed theory of climate.

1.1 A spectral patchwork

To compare modern climate variability at monthly resolution with glacial-interglacial

timescales requires spanning six orders of temporal magnitude; such a span cannot be

estimated in one shot. No single timeseries has a short enough sampling interval to

resolve seasonal variability over a duration long enough to resolve glacial-interglacial

variability. Instead, temperature variability is estimated through a patchwork of

instrumental records and proxy temperature records. The data and references are

discussed in Appendix A.

Temperature variability is quantified in terms of power-density spectra, computed

using the multi-taper method [Thomson, 1990] with three windows. To compare

spectral estimates from records of differing lengths and sampling intervals, it is im-

portant to consider the normalization employed. In this study the normalization gives

a power-density independent of record length for stochastic processes, but periodic

processes have increasing power-density with record length. A post-hoc correction is

made so that periodic variability is commensurate between records of varying length.

Appendix B discusses the multi-taper method and the normalization of power-density

in more detail.

An effort is made to avoid orbitally-tuned age-models as these can bias records

towards showing an assumed behavior [see Chapter 3 for more details]. Of the records

analyzed here, only the Mg/Ca [Lea et al., 2000 and 2003] and Vostok δD [Petit et
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al, 1999] age-models contain orbital assumption. In the following, attention is called

to where these orbital age assumptions may influence the results, particularly with

respect to enhanced orbital band concentrations of variability.

Figure 1-1 shows the power density spectrum of tropical sea surface temperatures

(SSTs), and Figure 1-2 shows the power density spectrum of high-latitude surface

atmospheric temperatures (SATs). The structure of these composite spectra are

describable in terms of the concentrations of variability at selected frequencies and

the power-law processes of the background spectral variability. The concentrations

of spectral energy, or peaks, are discussed first.

1.1.1 Spectral peaks

Concentration of variability in climate spectra help identify regions in frequency space

where the climate system behaves uniquely, thus providing handles by which to grasp

some of the mechanisms responsible for climate variability. For reference in identify-

ing significant concentrations of variability, Figures 1-1 and 1-2 have vertical marks

indicating the approximate 95% confidence level at which spectral estimates are con-

sidered inconsistent with being simply part of the background variability: the dot

indicates the level of background variability and the line segments indicate positive

and negative excursions from this background level. Significant positive excursions

from the background variability indicate a relative excess of energy at a particular

band of frequencies, and these will be referred to as spectral peaks. Spectral peaks

are thus associated with both quasi-periodic (e.g. El Niño) and periodic processes

(e.g. the tropical, as opposed to anomalistic, year). Given sufficient resolution, the

spectrum of a periodic process will appear as a line; but due to noisy records, impre-

cise age-models, and finite record duration it is often difficult to distinguish between

periodic and quasi-periodic processes.

One or more of the spectral estimates shown in Figures 1-1 and 1-2 have peaks

above the 95% confidence level at the annual and semi-annual cycles, and a number

of lower frequencies: 1/1.5, 1/22, 1/41, and 1/100KY. Each peak is briefly considered

in order of highest to lowest frequency. The most obvious explanation for some of

these spectral peaks are as a responses to changes in the distribution and intensity of

the insolation forcing. To facilitate comparison, the spectrum of diurnally averaged

insolation at 65◦N is also shown in Figure 1-1.

It is tempting to ignore the annual variability in insolation because of its very
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high frequency relative to paleoclimate timescales, and perhaps also because of its

familiarity. But the sheer strength of the annual cycle relative to any other tem-

perature variability, excepting perhaps the diurnal cycle, strongly suggest its affects

should be considered. Phenomena such as aliasing [e.g. Pisias and Mix, 1988; Wunsch

and Gunn, 2003], nonlinear responses to the annual cycle1 [e.g. Imbrie and Imbrie,

1980], and nonlinear recording of the annual cycle [e.g. Huybers and Wunsch, 2003]

makes consideration of the annual cycle and its effects of prime importance for under-

standing paleoclimate variability — Chapter 2 discusses these issues in greater detail.

Figures 1-1 and 1-2 show the dramatic concentration of temperature variability at

annual and semi-annual periods. The semi-annual periods are due to a variety of

effects, including the suns twice annual zenith in the tropics, clipping due to polar

night at high-latitudes, and nonlinear climatic responses.

To facilitate comparison between the high and low-frequency quasi-periodic2 pro-

cesses, the power density of the annual and semi-annual peaks were adjusted to the

expected value for a record with an 800KY duration for SSTs (the length of the plank-

tonic δ18O records) and 420KY duration for SATs (the length of the Vostok ice-core

record). For the tropical SSTs, this results in annual and semi-annual periods having

over three times as much energy as that contained at all frequencies below 1/15KY,

and indicates the first order importance of the annual variability. The logarithmic

plotting convention used in Figures 1-1 and 1-2 compresses the high-frequency vari-

ability. To further compare the orbital and annual bands, Figure 1-3 shows these

same spectra after multiplying each band by its associated frequency and plotted on

log-linear axes, thus giving an area preserving scaling and making the dominance of

the annual variability strikingly clear.

Moving to paleoclimate timescales, there is a significant concentration of energy

near 1/1.5KY in proxies of Greenland temperature [see Mayewski et al., 1997; Fig-

ure 1-2]. Because there is no obvious orbital forcing at this period [Munk et al, 2002],

its presence is difficult to rationalize, though there are some theories [e.g. due to

solar-variability, Bond et al, 1997]. Wunsch [2000] has suggested that the variability

near periods of 1.5 KY in the Greenland δ18Oice record could result from an alias of

1As discussed later, any climatic precession signal requires a nonlinear response to the annual
cycle.

2The term quasi-periodic is used here to refer to a signal with variable amplitude and frequency
but which returns to the same phase after roughly equal time intervals. The changes in Earth’s orbit
are quasi-periodic as is the anomalistic (as opposed to tropical) annual cycle; a point discussed in
more detail in Chapter 2.
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Figure 1-1: top: Power-density spectra of tropical sea surface temperature variability.
Temperature variability is estimated using, from lowest to highest frequency, marine
planktic δ18O (blue), planktic Mg/Ca measurements (green), planktic assemblages
(magenta), coral Sr/Ca (black), and instrumental tropical pacific sea surface temper-
atures from the Climate Analysis Center (red). The length of each record is indicated
in the legend in KY BP; references are provided in Appendix A. A least squares
estimate of the spectral slope between 1/100 and 1000 cycles/KY gives a power law
relationship with q ≈ 1. At frequencies above the annual cycle, the power-law steep-
ens to about 2 (not shown). The annual and semi-annual estimates are adjusted
to have the power-density expected for a record 800 KY long — the duration of the
planktic δ18O records. bottom Periodogram of diurnally averaged insolation at 65◦N
over the last 1000 KY BP and sampled monthly. Vertical dashed lines indicate bands
centered on 1/100, 1/41, 1/23, 1/1.5, 1000, and 2000 cycles per KY. The power-
density units are in degrees Celsius squared divided by the number of samples, N ,
and the spectral band-width, df . The vertical bar indicates the approximate 95%
confidence level. Estimates are made using the multi-taper method with three win-
dows. This insolation spectra is discussed more fully in Chapter 2, specifically with
regard to the weak 1/100KY and absence of energy at the 1/23KY precession band.
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Figure 1-2: Similar to Figure 1-1 but now for the power-density spectra of surface air
temperature. Estimates are derived from measurements of Deuterium (D) from the
Vostok ice-core (cyan), δ18O form Byrd (blue), δ18O from GISP2 (black), tree-ring
densities (green), and the Central England instrumental temperature observations
(red). The length of each record is indicated in the legend in units of KY BP. The
annual and semi-annual estimates were adjusted to have the power-density expected
for a record that is 400 KY long — the Vostok record length. Least squares estimates
of the power law scaling give a q of roughly 2 between 1/100 and 5 cycles per KY,
and a q of 0.4 between 1/200 and 6 cycles per year. Compared with the tropical SST
estimates, the low-frequency power-law is steeper. The high-frequency power-law is
more nearly white and extends over a greater band-width.

the annual cycle. The massive energy concentrated in the annual band suggests that

even a small leakage of energy from the annual cycle to this lower frequency could be

responsible for the peak. Appendix C discusses the phenomenon of aliasing in more

detail.
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Figure 1-3: Similar to Figure 1-1 (tropical SST, top) and Figure 1-2 (high-latitude
SAT, bottom) but now with the spectral estimates scaled by frequency, plotted with
a linear y-axis, and having an area beneath the curve proportional to energy. Both
plots indicate a relative minimum in energy between the orbital and annual bands
roughly centered on 1/100 years. Figures are truncated for visual clarity: the energy
at the annual cycles is roughly 40,000 and 80,000 ◦C2f/(Ndf) respectively for SSTs
(top) and SATs (bottom).
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At the next lowest frequency there exists a small spectral peak in marine δ18O

near 1/22KY [see Figure 1-1]. This 1/22KY peak is also weakly present in the Mg/Ca

SST estimates and Vostok deuterium measurements [Figure 1-2]. Concentrations

of variability near 1/22KY in climate records are typically attributed to precession

period insolation forcing [e.g. Hays et al., 1976; Ruddiman and McIntyre, 1981;

Imbrie et al., 1992], but because precession only modulates the seasonal cycle, there

is no true precession-period variability in the solar forcing [see Figure 1-1; Chapter 2;

Rubincam, 1994]. If the peaks in temperature variability are due to insolation forcing,

a nonlinear mechanism must be involved. Once a nonlinearity is involved, the field

of possibilities is much wider: concentrations of variability may indeed owe their

existence to precessional modulation, but also to the manner in which the records are

sampled, insolation forcing at some other period (e.g. the first overtone of obliquity

at 2/41KY), or internal climate variability. Chapters 2 and 3 further discuss the

interpretation of precession period signals in proxy records.

The 41KY temperature variability indicated in Figure 1-1 is attributable to a

linear response to the insolation shifts caused by changes in Earth’s obliquity [Hays

et al., 1976]. Similar to the 1/22KY band, a spectral peak at 1/41KY is observed

in the marine δ18O record [Figure 1-1] and to a lesser extent in the Mg/Ca SST

[also Figure 1-1] and Vostok deuterium records [Figure 1-2]. L. Hinnov [personal

communication] has suggested that a more accurate age-model for the GISP2 ice-

core gives a more pronounced obliquity peak. Also, Bender [2002] has shown that

O2/N2 ratios from the Vostok ice-core have a pronounced obliquity band variability

and appear to respond to local changes in insolation. The attribution of the 41KY

climate variability to changes in Earth’s obliquity is straightforward, but the physical

mechanisms which translate a shift in insolation into a change in temperature remains

a topic of debate. One dynamical possibility is that because high-latitude insolation

increases with obliquity, causing snow and ice to melt, Earth’s albedo decreases, and

global mean temperatures increase [e.g. Milankovitch, 1941]. Another possibility is

that increased obliquity reduces the meridional gradient of insolation in the summer

hemisphere, thus reducing atmospheric vapor transport and decreasing albedo [e.g.

Raymo and Nisancioglu, 2003]. As a final possibility, increased obliquity may cause

reduced oceanic heat loss at high-latitudes, and assuming a fixed heat budget, a

deepening of the tropical thermocline resulting in permanent El Niño like conditions

and an associated mean SST warming [Philander and Fedorov, 2003]. Thus, power
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density spectra help connect the forcing and response, but determining the dynamical

pathway requires more detailed observations and examination of the dynamics.

For perspective, it is useful to estimate the fraction of variability contained in

these Milankovitch bands. Estimates are made by interpolating the spectra of each

climate record to a standard resolution, averaging all SST or SAT spectral estimates

available at each band, summing the average energy in the bands 1/22±1/200KY and

1/41 ± 1/200KY, and then dividing by the total energy at frequencies below a year.

The Milankovitch bands are estimated to account for 11% of the SST variability and

21% of the SAT variability at frequencies below the annual cycle. Note that these

fractions are positively biased by the inclusion of the background variability in the

Milankovitch band energy estimates as well as the use of orbital-tuning to estimate the

ages of the Vostok δD SAT record and the Mg/Ca SST record. As only a few orbitally-

derived age-control points were used in constraining the Vostok age-model [Petit et

al., 1999] and since the δ18O record is much more energetic than the Mg/Ca record

at the SST Milankovitch bands, it is expected that, in this case, orbital-tuning has

only a minor effect on the estimated fraction of variance in the Milankovitch bands.

Furthermore, the Milankovitch band energy estimates are also likely to be negatively

biased by age-model errors which diminish the energy concentrated in spectral peaks

[see Chapter 3]. At this point, the net bias on the Milankovitch band energy owing

to age-model errors, orbital-tuning, and background variability is unclear. Future

work will address the net affect of these sources of uncertainty on the Milankovitch

band energy estimates. That the Milankovitch bands account for nearly twice as

much SAT variability, as compared with the SST variability, probably owes to both

orbital-tuning and the more rapid decrease in SAT energy at frequencies above the

Milankovitch bands.

Some comment is required as to why the relatively small fractions of Milankovitch

variability command so much of the attention in this thesis. There are two reasons.

First, the presence of concentrations of climate variability in bands related to orbital

variations provides an opportunity to assess the climate response to a known forcing.

This permits application of well understood techniques for evaluating the response of

a system to a nearly periodic forcing, particularly in the case of the linear obliquity

response. Second, following Hays et al. [1976], many paleoclimate studies operate

under the assumption that the Milankovitch bands control low-frequency climate

variability. However, outside of the narrow bands centered on the obliquity and
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(maybe) the precession frequencies, the applicability of the Milankovitch hypothesis

remains uncertain. It is thus important to continue evaluating the scope and accuracy

of the Milankovitch hypothesis.

Perhaps the most intriguing band of variability is centered at 1/100KY [see Fig-

ures 1-1 and 1-2] and is associated with the glacial-interglacial transitions. This

1/100KY band of variability accounts for roughly half of the spectral energy at fre-

quencies below the annual cycle in both SAT and SST. It is tempting to link this

glacial variability with the small insolation peak near 1/100KY due to eccentricity

variability, but eccentricity proves an unlikely candidate due to its weak influence

on insolation [e.g Hays et al., 1976] and lack of evidence for the earth resonating at

such a frequency [e.g. Imbrie et al., 1993; Wunsch, 2003a]. In Chapter 4 evidence

is presented that the relative phasing between eccentricity variations and the glacial

cycles also argues against a relationship. Some theories call on the eccentricity mod-

ulation of precession variability to pace the glacial variability [e.g. Hays et al., 1976;

Imbrie and Imbrie, 1980]. In Chapters 4 and 5 it is argued that obliquity is a better

candidate for the orbital pacing of the glacial cycles.

1.1.2 The spectral continuum

When it comes to the spectra of paleoclimate variability, the peaks receive much

more attention than the back-ground continuum. In a sense, this focus on the peaks

is at odds with modern climate studies. For the atmospheric sciences, weather holds

greater interest than the annual temperature cycle; in oceanography, mixing garners

more interest than tidal cycles. This focus could be because the annual cycle and

tides are largely solved problems. A better comparison might be made between

the quasi-periodic ice-ages and the North Atlantic Oscillation or El Niño variability.

Regardless, just as the modern spectral continuum embodies a rich set of physics, one

should expect the spectral continuum at low-frequencies to provide insight into the

processes which govern long-term climate variability.

A useful description of the background spectrum observed in Figures 1-1 and 1-2

is the spectral power-law, q, which relates power-density, Φ, to frequency, s,

Φ = As−q.

A is a multiplicative factor which sets the level of the background spectrum. Spectra
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with a positive q are referred to as red, in analogy with visible light being red at its

lowest-frequencies. For the same reason a negative q is blue, and an approximately

zero q indicates a white spectrum. Because of uncertainties in the proxy measure-

ments, spatial variability, and temporal nonstationarity (discussed in Appendix A

and the subsequent sections) these power-laws estimates should be thought of as in-

dicators of the scaling relationships in temperature variability, not physical constants.

A particular concern, detailed in Appendix C, is that aliased higher-frequency energy

will bias the power-law estimates towards being too red. While establishing how ap-

plicable the observed scaling laws are to the global temperature variability will require

much further work, the relatively simple power-law behavior and the agreement be-

tween multiple different proxies found here suggests the power-law estimates provide

a useful description of tropical SST and high-latitude SAT variability. The influence

of age-model errors and orbital-tuning on spectral power-laws is largely unknown;

pending further study, it is assumed that the effect is small.

In keeping with most geophysical records, tropical SSTs have red spectra. In this

case, the power-law is remarkably stable, with a value of one between frequencies

of 1/100KY and 1/1yr — five orders of magnitude. This behavior is well replicated

in multiple proxies, giving some confidence in its accuracy (but see Appendix C for

other ways of producing such a power-law). At frequencies above the annual cycle,

the spectrum falls off more quickly with frequency, with q ≈ 2. There is a bulge

of energy centered on 1/100KY so that for slightly lower frequencies, the power-law

is briefly blue. Imbrie and Shackleton [1990] find that at even lower frequencies, a

power-law near one resumes.

The power-density spectrum of high-latitude SATs [see Figure 1-2], has a more

complicated power-law behavior than tropical SSTs. From the highest resolved fre-

quencies to 1/200yr, the spectrum has a power-law relationship of 0.4, while frequen-

cies between 1/200yr and 1/100KY are more red with a power-law near two. At

the millennial timescales there are marked differences between the power-laws de-

rived from the three ice-cores records included here. The most energetic millennial

scale variability is observed in temperatures estimated from the Greenland Ice-sheet

Project 2 (GISP2) ice-core, followed by the Antarctic Byrd and then Vostok records.

As one approaches the 100KY timescale, the power-density of the three ice-cores con-

verges. This touches on the topic of spatial changes in temperature variability: in

the following section the spatial and temporal shifts in temperature variability are
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discussed in more detail.

Comparison of the power-law structures shown in Figures 1-1 and 1-2 indicates

roughly equal decadal variability in tropical SSTs and high-latitude SATs, greater

centennial SST variability, and for periods longer than centuries greater high-latitude

SAT variability. The greater SAT variability at lower frequencies agrees with es-

timates indicating tropical SSTs underwent relatively small glacial to interglacial

changes relative to high-latitude temperatures [e.g. CLIMAP Project Members, 1981].

Apart from tropical/high-latitude differences, the spectral structure probably also re-

flect differences between atmospheric and sea-surface temperature variability and/or

inaccuracies in the proxy measurements.

Figure 1-3 shows the composite spectra from Figures 1-1 and 1-2 after multiplying

the power-density by frequency. This representation has the virtue of making the

area under a log-linear plot proportional to the variance contained within each band.

Another effect of multiplying by frequency is to remove a power-law of one from each

composite spectra. That is, the area preserving plots scale as,

Φ = As−q × s = As−q+1.

Because q ≈ 1 for the SAT and SST variability, the area preserving representation

removes the trend in the background continuum and makes the detailed structure

more evident. High-latitude SAT shows a relative minimum in scaled energy near

frequencies of 1/100year (this minimum was identified as a change in the spectral

slope in Figure 1-2.) The scaled tropical SST spectra also shows a weak minimum

at the same 1/100year band. Qualitatively, this spectral structure suggests that the

mechanisms responsible for climate variability change near the 1/100year timescale.

As insolation forcing is weak between the annual and secular periods of variability,

it is tempting to identify the structure of the climatic background continuum with

high and low-frequency responses to the insolation forcing. Other possibilities are

that slow temperature fluctuations associated with the deep oceans and cryosphere

only become important at the 1/100year timescale. Determining the cause of this

apparent change in slope, however, awaits further investigation into the mechanisms

controlling the background variability of the climate spectrum.

The estimates presented here generally agree with previous studies of the back-

ground spectrum. At periods shorter than 200yr, Pelletier [1998] finds nearly the

same SAT spectral structure, including a greater decline in subannual SAT variabil-
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ity for stations near marine environments, in qualitative agreement with the SST

spectrum. One difference is that, on the basis of a Lomb-Scargle periodogram anal-

ysis [e.g. Press et al, 1999] of the Vostok deuterium record, Pelletier [1998] suggests

the spectral continuum of SAT is white at frequencies below 1/40 KY. Given the

bulge of energy expected near the 100KY periods, and that the Vostok record cannot

resolve frequencies below 1/420KY, it is difficult to draw inferences regarding such

low-frequency behavior from analysis of the ice-core record. It appears safer to assume

that at long periods SATs behave like SSTs, and continue to have a red power-law

behavior.

The power-laws of climate records are also discussed by Wunsch [2003b]. For

ice-core δ18Oice and deuterium records his results agree with those shown in Fig-

ure 1-2. Wunsch [2003b] does find a steeper power-law for marine sediment-core

δ18O, but this is not an unexpected result. In focusing on the 100KY variability,

Wunsch [2003b] estimated the power-law behavior of δ18O over frequencies of 1/100

to roughly 1/10KY. This band of variability is steeper than other parts of the δ18O

spectrum [see Imbrie and Shackleton, 1990; Figure 1-1] and, as argued in Appendix A,

is probably strongly influenced by ice-volume variability. In support, note that the

Mg/Ca estimates shown in Figure 1-1 are not sensitive to ice-volume and maintain

a power-law relationship much closer to one. Note Wunsch [2003b] interpreted the

δ18O record as indicative of climate, not temperature, variability.

The origins of the background climate continuum remain an important ques-

tion. One possibility is for the climate system to have a long memory, causing

high-frequency variations to accumulate into progressively larger and longer period

variability. Wunsch [2003b] has presented a simple random walk model of ice accu-

mulation which is driven at all frequencies (a white forcing spectrum) but generates

an energetic quasi-100KY variability and, at higher-frequencies, a background contin-

uum with a power-law of two. Generalizing this idea to temperature, the power-law

relationship observed in Figures 1-1 and 1-2 could represent the organization of high

frequency temperature variability into progressively larger and longer timescale vari-

ations — similar to the SST variability modeled by Hasselmann [1976], but extending

over longer timescales. In a recent paper, Pelletier [2003] has suggested an explana-

tion for the overall spectral shape of the temperature record in terms of a coherence

resonance model incorporating radiative, ice-sheet, and lithospheric deflection pro-

cesses. Apart from creating an excess of energy near the 100KY timescale, the most
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notable feature of the modeled temperature variability is a transition in the spectral

power-law relationship from q = 2 to q = 0.5 near 1/2 KY, similar to observations.

The possibility also exists that the background variability observed in Figures 1-1

and 1-2 is related to the annual cycle, at least in part. Chapter 2 discusses how

rectification of the annual cycle causes precession period variability to appear. Such

rectification also causes a transfer of energy to the background continuum between

1/100 and 1 cycle per KY. The background continuum of rectified insolation has

a steep power-law at low-frequencies and a transition to a more white spectrum at

higher-frequencies, in qualitative agreement with Figure 1-2. Alternatively, low fre-

quency insolation forcing could drive a low-frequency temperature response which

cascades towards higher frequency temperature variations. In certain regimes, such

as Kolmogorov’s turbulent spectra, this flow of energy from low to high frequencies is

well known. A larger scale example is the conversion of potential energy, supplied by

the meridional insolation gradient, into synoptic scale variations by baroclinic insta-

bility [e.g. Eady, 1949; Charney and Stern, 1962]. A variety of plausible mechanisms

exist to explain the background spectrum of climate variability; further observations

and dynamical research are needed to quantify and understand the mechanisms re-

sponsible for the continuum energy at these broad range of frequencies.

1.2 Heterogeneous climate variability

In many ways referring to the climate spectrum is a misnomer. Different state vari-

ables of the climate system will, in general, have different spectral descriptions, as sug-

gested in the discussion of ice-volume versus temperature variability in Appendix A.

Furthermore, as shown by comparing tropical SST variability and high-latitude SAT

variability, observations of the same state variable in different mediums and/or regions

can have significantly different spectral representations. Developing an understanding

of how measurements at a point in space over a finite period of time are related to

the greater system is crucial for interpreting climate records.

Temperature estimates over the last 50 years from the NCEP/NCAR reanalysis

[e.g. Trenberth, 1991] are used to develop a quantitative estimate of how climate

variability itself varies in space and time. Two-meter temperatures are used because

these are less influenced by the prescribed annual cycle in surface conditions, but for

convenience these are nonetheless referred to as surface air temperatures (SATs). The
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reanalysis temperatures come gridded in latitude and longitude for each month, but

rather than temperature at a point, we seek a representation in terms of spatial and

temporal scales. Quantitative estimates of the variability at different spatial scales

are made by projecting the reanalysis output onto a spherical harmonic basis3 [e.g.

Jackson, 1999]. A computer code was written to compute the spherical harmonic

loadings using the Gaussian meridional grid employed by NCEP. The temporal scales

of variability are estimated by computing the spectra of the spherical harmonic load-

ings with respect to time and summing together estimates with equal spatial scales.

For further discussion of this transformation, but applied to sea surface height, see

Wunsch [1991]. The transformation is normalized so that the spectra (P (s, n)) are in

units of ◦C2 and are a function of frequency (s in cycles/year) and spherical harmonic

degree number (n). As an example, the spectrum with {s = 0, n = 0} describes

the mean global temperature, and {s = 1, n = 1} primarily describes the annual

inter-hemispheric gradient in temperature. If a quantity only varies in latitude, the

spherical harmonic description reduces to the Legendre polynomials; these are dis-

cussed in greater detail in Chapter 2.

1.2.1 Spatial variability

A plot of P (s, n) is shown in Figure 1-4, along with the frequency spectrum (P (s) =
∑

n P (s, n)) and the spatial spectrum (P (n) =
∑

s P (s, n)) of variability. As expected,

the dominant feature of P (s, n) is a ridge at annual periods with a maximum at degree

number n = 1. Ridges are also apparent at the higher frequency harmonics of the

annual cycle, i.e. 2,3,4... cycles/year, and each of these ridges appear as peaks in

the frequency spectrum, P (s). As observed in the earlier atmospheric temperature

records [Figure 1-1], away from the peaks, the frequency spectrum is characterized

by a power law process with q = −0.4. The degree number spectrum also shows

greater energy towards longer spatial scales, but with a broad peak surrounding an n

of roughly five.

Because the SAT response to the annual cycle is so large, it obscures the behavior

of the background continuum. Removing mean monthly temperatures, as calculated

at each grid point, suppresses the energy associated with the annual cycle and its

higher harmonics. Results are shown in Figure 1-5. The background continuum asso-

3Because the NCEP/NCAR reanalysis uses a spectral model, it should be possible to find the
spherical harmonic loadings without ever transforming into the gridded domain.
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Figure 1-4: top The spectrum of spherical harmonic coefficients for NCEP tempera-
ture variability plotted as a function of spatial degree number (n) and frequency (s)
measured in cycles/year. Spectral estimates are made using the multi-taper method
with three windows, and the resulting n by s field is smoothed using a tapered 5x5
window. bottom A summation over frequency yields the degree n spatial spectrum
(left), while summation over spatial scales yields the frequency spectrum (right). The
degree n spectrum increases towards larger spatial scales with q = 2 up to n = 7, and
then increases more weakly with q = 1, as indicated by the dashed red-lines. In the
frequency spectrum, the concentration of energy at the annual cycle and its higher
harmonics is evident, and the background variability has q = 0.4.

ciated with the frequency spectra of the filtered and unfiltered monthly temperature

estimates is nearly the same, but after filtering the degree number spectrum now

shows enhanced variability at n = 5 to 7, with power rolling off remarkably steadily

with q = .9 for n < 5 and q = −2 for n > 7. Thus it appears that temperature

variability, at monthly to decadal timescales, predominantly occurs at spherical har-
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Figure 1-5: Similar to Figure 1-4 but for NCEP temperature variations with the
monthly averages removed. Most notable is the peak of energy at degree n = 6 and
7, with energy diminishing at an exponential rate towards the larger and smaller
scales.

monic degree number 6. Note that taking the monthly average of SAT effectively

filters out the synoptic scales of variability; these shorter scales were the focus of

the study by Trenberth and Solomon [1993]. At periods longer than a month, the

most active spatial-scales of temperature variability are on the order of continents

and oceans, and are probably associated with the land-sea temperature contrast, as

well as hemispheric meridional temperature gradients. Connecting these results with

the synoptic scale variability could prove useful, but is not further pursued here.

Figure 1-6 shows the first moment of the spatial scale as a function of frequency
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and weighted by the fraction of temperature variance,

M1(s) =

∑

n nP (s, n)
∑

n P (s, n)
. (1.1)

Small values of M1 indicate relatively more energy at large spatial scales, and will

be interpreted as greater organization of the temperature variability. Away from the

annual cycles and its higher-harmonics, M1 hovers around eleven. At the annual

cycles M1 drops to four because the annual cycle is spatially organized. At two cy-

cles per year, a weak organizing effect is evident, while at higher harmonics slightly

greater disorganization is observed — an unexpected result. For temperatures with

their monthly means removed, M1 remains close to 11 showing only minor variability

at the annual cycle and its harmonics. The consistency of spatial organization at

timescales ranging from months to decades suggests that the spatial description of

climate variability is no simpler at long timescales than it is at the monthly timescales.

This result is apparently at odds with Mitchell ’s [1976] suggestion of larger spatial

scales of variability at longer timescales, and is in some sense surprising. One might

expect that dissipative systems such as the atmosphere and ocean would not main-

tain strong gradients over long timescales. But perhaps the persistence of features

such as the atmospheric jets, western boundary currents, land/ocean configuration,

mountains, ice-sheets, vegetation, etc. is more telling. Suffice it to say that the long-

term behavior of fluids on a rough, heterogeneous, and rotating planet is not easily

intuited, particular when dynamical interactions with the cryosphere, geosphere, and

biosphere come into play.

The spectra discussed in conjunction with Figures 1-4 and 1-5 contain a lot of

information but are rather abstract. To provide a more tangible example, the cross-

correlations between temperature at a single location with temperature at every other

point (the one-point correlation) is shown in Figure 1-7. To focus on the inter-annual

timescales of interest, all timeseries were first filtered to remove the energy at the

annual and higher frequencies. First, the GISP2 site in Greenland is considered.

There is a strong local correlation extending over parts of the Arctic, Northeastern

Canada, and Siberia. Interestingly, there also exists weak positive correlation with

the Atlantic and Antarctic. But the overall result is patchy. Given only observations

from Greenland, it would be difficult to infer inter-annual temperature variability

outside of the Northern N. Atlantic.

Another record which has aroused attention comes from Devils Hole in Nevada
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Figure 1-6: The first moment of the degree number, weighted according to the spectral
energy associated with each n (see Figure 1-4), and plotted as a function of frequency.
Results for the monthly filtered (red) and unfiltered (black) temperatures are shown.
The background variability has an average degree number which hovers around eleven,
while the annual and semi-annual bands for unfiltered temperatures have much larger
scales (smaller n). Conversely, at harmonics of three cycles per year and higher, the
spatial scale is slightly smaller than the background variability.

[e.g. Winograd et al., 1992; also discussed in Chapter 3]. The one-point correlation

for this site is also shown in Figure 1-7 to make the somewhat obvious point that

inter-annual temperatures in California do not have a simple relationship with the

rest of the globe. In general, global temperatures are weakly positively correlated,

but there are broad features which are weakly anti-correlated such as the Southern

ocean. The point is that one cannot a priori connect low-frequency phenomena with

large-scale phenomena and that reconstructing climate variability on long timescales

will probably require numerous detailed records from around the globe. Obtaining

proxy information which both constrains the climate state and can be accurately

synchronized with other proxy measurements represents a major scientific challenge

which has only begun to be addressed.

1.2.2 Temporal variability

In addition to spatial variability in climate signals, the variability associated with

climate at a point can vary as a function of the background state. Perhaps the

most notable example is the dramatic variations observed in Greenland temperatures

during the last glacial, often referred to as Dansgaard-Oeschger events, which are

absent during the Holocene. Figure 1-8 shows power-density spectra from successive
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Figure 1-7: Examples of spatial correlation. top Cross-correlations of NCEP two-
meter surface air temperatures with temperature at the GISP2 site in Greenland
(indicated by an x). Also the location of the Byrd site is indicated by a circle in
Antarctica, and for Vostok by a diamond. bottom Cross-correlations with the loca-
tion of Devils Hole in Nevada. Prior to computing cross-correlations, the timeseries
of temperature at each grid point were low-pass filtered to remove the annual and
higher-frequency variability. The trends in temperature were also removed, due to
concerns regarding their accuracy [M. Serreze, personal communication].
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10KY increments of the GISP2 δ18O record. At millennial timescales, the power-

density is one to two orders of magnitude greater for intervals occurring in the last

glacial than for the Holocene. Also shown are histograms of Holocene and Last

Glacial temperature variability, with a roughly Gaussian and bimodal distribution

respectively. Apparently, the transitions from glacial to inter-glacial states causes the

crossing of some threshold in the dynamics associated with temperature variability.

It thus appears that the Greenland record is nonstationary, but rigorously proving

such an assertion is difficult [see Wunsch, 2000]

This raises the question of how representative the low-frequency spectra shown in

Figures 1-1 and 1-2 are of temperature variability in general, or whether they are only

indicative of conditions during a certain interval. For the case of Greenland, it appears

the steep millennial portion of the spectrum is only indicative of glacial variability.

Likewise, the higher-frequency portion is probably also sensitive to the glacial state.

For example, if one assumes greater sea-ice in the North Atlantic during glacial times,

the reduced buffering of temperature by the oceanic mixed layer would probably result

in a larger annual cycle in air temperature. Without subannual resolution records

of temperature during glacial climates, or an accurate model of glacial climate, the

answer remains poorly constrained. It does appear likely, however, that major shifts

in temperature variability occur at millennial and shorter timescales as the glacial

state of the climate varies.

1.2.3 Further remarks

The foregoing discussion sought to give a broad overview of climate variability. One

theme was the importance of the highly energetic annual cycle — for tropical SSTs

it has over three times more energy than the glacial-interglacial variability. The

next chapter further explores how changes in Earth’s orbital parameters influence the

annual cycle and discusses how climate and climate proxies can respond to changes

in the annual forcing.

Another theme was the disparity between the spectrum of the orbital forcing and

the spectrum of the climate system. Excepting at the obliquity and annual bands,

there is no linear explanation for why the climate system should exhibit narrow-band

behavior. This opens the possibility of internal quasi-periodic climate variability as

well as nonlinear responses to insolation forcing. In practice, nonlinear means most

everything, and the possible explanations proliferate quickly. Chapter 4 seeks to clar-
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Figure 1-8: Power-density spectra of temperature estimates from GISP2 for 10KY
intervals starting near the beginning of the last glacial, 70 to 60 KY BP, and ending
during the Holocene, 10 to 0 KY BP. At periods longer than a KY, the last glacial
temperatures monitored by Greenland ice-cores are more than one order of magni-
tude more variable than Holocene temperatures. This difference greatly exceeds the
confidence interval (vertical black bar). It thus appears that climate is nonstationary
and that the climate spectrum will depend on the measurement interval.

ify the mechanisms responsible for quasi-periodic climate variability by formulating

objective tests of the relationship between insolation and climate.

Finally, some examples of the spatial and temporal changes in temperature vari-

ability were discussed. This reinforces the notion that any one climate record gives

but a small window into the workings of the climate system. In this view, synthesizing

the information content of multiple paleoclimate records is crucial for unraveling the

causes of climate variability. One essential feature of such a synthesis is the place-
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ment of multiple records on a single chronology: age-models are the primary topic of

Chapter 3.

1.3 Appendix

1.3.1 Data

Tropical Sea Surface Temperatures

Two different compilations of data are made: one recording equatorial sea-surface

temperature [see Figure 1-1], and another recording high-latitude tropospheric tem-

peratures [see Figure 1-2]. The equatorial records are described first, in order from

the highest sampling resolution to the lowest. Because it is important to distinguish

between climate variability and variability due to proxy behavior, some discussion

of the uncertainties associated with each proxy is also included. For a more general

discussion of these proxies see the textbooks by Cronin [1999] and Bradley [1999].

The most accurate tropical SST observations come from the instrumental network.

I use mean monthly tropical Pacific observations from the Climate Analysis Center

[available at http://ingrid.ldeo.columbia.edu/SOURCES/.CAC/] which extend over

the last 30 years. A complementary set of coral proxy observations is available from

the subtropical South Pacific at approximately monthly resolution over the period

1726 to 1997 [Linsley et al., 2000]. The spectrum of these coral proxy temperatures

are impressively similar to the instrumental spectrum where the bands overlap and

the corals have the added advantage of resolving centennial timescales.

High-resolution planktic δ18O records also resolve centennial timescales. By com-

bining the spectra of these high-resolution records with lower resolution planktic δ18O,

power-density estimates are extended to periods of 800KY. Where multiple δ18O

records overlap, the average spectrum is used. Spectra are computed from the δ18O

records between 10◦N and 10◦S listed in Table 2.1, using the depth-derived age-model

[see Chapter 3], as well as three higher-resolution records: OCE205-103GGC from the

Little Bahama Bank [W. Curry and D. Oppo unpublished data], EW9209-1JPC from

the Ceara Rise [Curry and Oppo, 1997], and C166-8GGC from the Florida Margin

south of Dry Tortugas [Lund and Curry, submitted to Paleoceanography]. Tempera-

ture was estimated from planktic calcite δ18O using a conversions of 4◦C per δ18O per

mill, in agreement with empirical estimates [e.g. Bemis et al, 1998]. Because calcite
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δ18O is also sensitive to the ambient sea water δ18O, there is a significant contribution

from changes in ice-volume. While the LGM to Holocene change in sea-water δ18O

is close to 1 per mil [Ed Boyle personal communication; also see Adkins and Schrag,

2001; Adkins et al, 2002; Adkins and Schrag, 2003], the centennial variability is virtu-

ally unknown. Here I make the assumption that ice-volume changes slowly relative to

centennial scale temperature variability, and thus at centennial and shorter periods

the calcite δ18O signal reflects temperature, not ice-volume variations. By this as-

sumption, converting all the calcite δ18O variability to its equivalent in temperature is

expected to give power-density estimate of the correct magnitude at high-frequencies,

but to over estimate power-density at the lowest frequencies. In total, the amplitude

of δ18O variations owing to temperature and ice-volume is about twice that expected

from ice-volume alone [Bill Curry, personal communication].

Independent estimates of lower-frequency temperature variability are also included

from foram assemblage reconstructions of sea surface temperature from the subtrop-

ical Atlantic [deMenocal et al., 2000]. Finally, planktic Mg/Ca measurements from

the tropical Pacific [Lea et al., 2000] and Cariaco basin [Lea et al., 2003] are also

included. At frequencies between 1/300yr and 1/10KY the power-density of the

Mg/Ca and foram assemblage temperature estimates are in good agreement with cal-

cite δ18O temperatures, while at frequencies below 1/10KY the δ18O estimates have

greater power-density than the Mg/Ca estimates. This difference agrees with the

assumptions regarding slowly varying ice-volume, and suggests ice-volume variability

significantly influences calcite δ18O variations at timescales longer than 10KY.

High-Latitude Atmospheric Temperatures

The longest continuous instrumental timeseries of surface air temperature comes from

Central England, and begins in 1659 [Manley, 1974]. Tree ring density measurements

are used to resolve the next longer timescales. There exists a serious limitation with

most temperature estimates derived from trees, called the segment length curse [Cook

et al., 1995], whereby low-frequency variability is obscured by systematic changes in

ring-density and ring-width as a tree develops. Briffa et al. [2001] have attempted to

address this problem through a technique known as the age-band decomposition stan-

dardization procedure, and have provided multiple standardized tree-density records

from N. America and Europe. The spectral estimate is made by averaging the power-

density of the seven longest tree-density records, spanning the period between 1443
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and 1983 at annual resolution.

Temperature estimates derived from ice-cores are employed to extend the analysis

to periods of tens to hundreds of thousands of years. The δ18Oice signature recorded

in Greenland ice-cores are correlated with past local temperature changes in a ratio

of roughly 1.85◦C per unit δ18Oice [Caillon et al., 2001]. The spectrum is estimated

from the second Greenland Ice-Sheet Project (GISP2) δ18O measurements averaged

at two meter intervals [Grootes and Stuiver, 1997]. Because the flow of an ice-sheet

acts to thin the annual layers with depth, the time resolution of the δ18Oice record

decreases significantly with depth. Temperature estimates from Antarctica are also

included. Temperature is estimated from the Byrd ice-core [Blunier and Brook, 2001]

using a conversion factor of 1.5◦C per unit δ18Oice per mil [Salamatin et al., 1998],

and from the Vostok ice-core [Petit et al., 1999] with a conversion factor of 1◦C per

9 units δDice per mill. The GISP2 record is the most highly resolved, having an

average sampling interval of less than a hundred years over the last 50KY, while the

Vostok record is the longest, extending to 420KY BP.

1.3.2 Power-density spectra

To compare a broad range of climate spectra, ideally, one wants a normalization which

is independent of both sampling interval and record length — but in most cases this

is an impossibility. The choices which arise when normalizing spectral estimates can

be illustrated via taking the Fourier transform of a real, discretely sampled signal,

xn n = 0, 1, 2, 3...N . For convenience, assume the total number of data points, N , is

odd. Then

xn =
√

2
(N−1)/2
∑

n=1

ak cos

(

2πkp

N

)

+ bk sin

(

2πkp

N

)

, n = 1, ...N,

where the Fourier coefficients are given by,

ak =

√
2

N

N
∑

n=1

xn cos

(

2πkp

N

)

, k = 1, ...
N − 1

2
,

bk =

√
2

N

N
∑

n=1

xn sin

(

2πkp

N

)

, k = 1, ...
N − 1

2
.

The factor of a square root of two multiplying the expressions for xn and the ak, bk

gives a particularly simple expression for the Parseval relationship [e.g. Bracewell,
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2000],

1

N

N
∑

n=1

x2
n =

(N−1)/2
∑

k=1

(a2
k + b2k). (1.2)

The Parseval relationship states that the variance in timeseries xn must equal the

sum of the squared Fourier coefficients and indicates that the energy dissipated by a

system is intimately related to the square of the Fourier coefficients. This relationship

will be useful when considering how the frequency representation of climate records

should be normalized. Also note that there are as many Fourier coefficient as values

in x; if the mean of x were non-zero, we would have to include an ao term making

the total number of Fourier coefficient equal to N. The squared sum of the a and b

Fourier coefficients is referred to as the periodogram,

Ψ(k) = a2
k + b2k, s =

k

N4t ,

where the physical frequency, s, is related to k by the sampling interval, 4t, and

number of samples N .

Normalization

Due to the normalization employed for the periodogram, an increase in the record

length, N , of a stochastic process will lead to a decrease in the expected value of each

estimate, < Ψ(s) >. To see this, observe that the expected variance, < 1
N

∑N
n=1 x

2
n >,

will remain constant, and that by Eq. 1.2 the sum of the squared Fourier coefficients

will equal this variance. Because increasing the record length increases the number of

Fourier coefficients, the average value of the Periodogram estimates must diminish.

To compensate for this inverse dependence of the Fourier coefficient magnitudes

on N , it is useful to multiply Ψ(s) by N . How shall the quantity then be interpreted?

One possibility is to note that the duration of the record, N4t, is the inverse of

the frequency interval associated with each Fourier coefficient, 4s. Thus, if the

periodogram is also multiplied by 4t it is equivalent to dividing each periodogram

estimate by its associated bandwidth. When the periodogram is normalized by the

bandwidth, the resulting estimate is termed the power-density, denoted by Φ.

An unavoidable side-effect of multiplying by N4t, or dividing by 4s, is that

spectra of periodic processes are no longer independent of record length. Instead,

the energy in the spectral peak associated with a harmonic process will grow linearly
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with record length. Again, appealing to Eq. 1.2, but now having multiplied both

sides by N4t, the left term will grow with record length, and because the process is

periodic, this energy will be concentrated within a single band. No single normaliza-

tion can render the spectral representation of both periodic and stochastic processes

independent of record length. Because climate varies both stochastically and period-

ically, some compromise must be made. Here power-density spectra are used so that

estimates of stochastic processes are independent of record length, and a post-hoc

correction is applied to the magnitude of power-densities associated with periodic

processes. The correction is,

Φ′(s) =
No

N
Φ(s),

were N is the number of observations associated with Φ(s) and No is the num-

ber of observations required to span the longest duration considered. For instance,

if one has thirty years of tropical Pacific temperatures sampled monthly, but the

longest record considered is a million years long, the scaling factor is No/N =

(12 × 106 months)/(12 × 50 months) = 2 × 104.

Multi-taper spectral estimates

The periodogram of geophysical processes tends to be noisy and difficult interpret.

Generally, a much better approach is to use the multi-taper method [Thomson, 1990].

This method employs a set of orthogonal weights known as discrete prolate spheroidal

sequences, h(n,m), to partition xn into a number of nearly orthogonal components.

By calculating the periodogram associated with each nearly orthogonal component

and averaging the results, a more stable estimate of the power-density spectrum is

achieved,

Φ(s) =
N4t
M

M
∑

m=1

Ψm(s).

Φ(s) is referred to as the multi-taper power-density spectral estimate. The rational for

multiplying Φ by N4t was discussed in the previous section. M is the selected number

of tapers, yielding approximately 2M degrees of freedom in the spectral estimate (each

estimate comes from a complex value with two degrees of freedom). The trade-off for

increasing the degrees of freedom is a decrease in resolution. Further refinements are

possible, for example employing adaptive weights to maximize both resolution and

degrees of freedom. See Percival and Walden [1993] for a comprehensive description

of the multi-taper method.
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1.3.3 Aliasing

The normalization issues discussed in Appendix B are benign in that they are easily

corrected. A more insidious problem arises in that unresolved variability in a climate

record will masquerade as lower frequency variability — a phenomenon Tukey called

aliasing. First, a simple example of aliasing is given, and afterward the requirements

for correcting for its affects are discussed.

Origins

The origins of aliasing can be understood by considering a discretely sampled signal,

xn, where the spectrum exists for frequencies 1/(N4t), 2/(N4t), ....1/(24t). Now

consider what happens to the spectrum when xn is sampled at half the rate, vn = x2n.

To compute the spectrum of the subsampled series, define another vector that has

every other index of x set to zero,

un =





xn, n even

0 n odd





=
1

2
(xn + xn × (−1)n). (1.3)

The utility of this second vector is that u2n equals x2n. The final relationship suggests

the effects of subsampling is to combine x(n) with a higher frequency process, which

becomes more clear after taking the Fourier transform,

ûk =
1

2N

[

N
∑

n=0

xne
− i2πkn

N +
N
∑

n=0

xne
− i2πn(k+N/2)

N

]

, k = 1, 2, ...
N − 1

2
.

The (−1)n in Eq 1.3 contributes an e−inπ to the second term on the right hand side

of the above equality. It is straight-forward to relate vn and u2n because un is zero at

odd indices. Substituting into the above equation yields,

v̂k =
1

2(N/2)





N/2
∑

m=0

x2me
− i2πk2m

N +
N/2
∑

m=0

x2me
− i2π2m(k+N/2)

N



 , k = 1, 2, ...
N/2 − 1

2

where the total number of observation, N , is now cut in half. The expected peri-

odogram becomes,

Ψv(s) =

[

Ψx(s) + Ψx(s+
1

24t)
]

,
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assuming the frequencies s and s+ 1/24t are uncorrelated. Decreasing the sampling

resolution by a factor of two results in the power which is no longer resolved, fre-

quencies 1
24t

to 1
4t

, being folded into the resolved band, 1
N4t

to 1
24t

. That is, all the

energy in Ψx(s) is present in Ψv(s) but in half the number of estimates. This result

can be generalized to any degree of undersampling, [see e.g. Priestley, 1984] where

the estimated spectrum is related to the true spectrum, Ψt(s),

Ψv(s) =
∞
∑

r=0

Ψt(s+
r

24t). (1.4)

All spectral energy above the Nyquist frequency will alias into the resolved lower

frequencies, biasing those estimates towards too large of values. See Wunsch and

Gunn [2003a] for a general discussion of the effects of aliasing on the interpretation

of paleoclimate records.

Effect on power-law processes

Aliasing can have serious effects on power-law estimates made from records of varying

lengths and sampling intervals. Assume Ψt represents a band-limited white noise

process with a uniform spectral distribution between zero frequency and a cutoff

frequency, sc, and is zero at all higher frequencies. If the sampling interval gives a

Nyquist frequency greater than or equal to the cut-off frequency, 1/24t ≥ sc, no

aliasing will occur. Building from the previous example, assume a sampling interval,

4t = 2(h−1)

sc
. When h = 0 the spectrum of Ψt is fully resolved, but for h > 0 aliasing

will occur; from Eq 1.4,

Ψv =
2(h−1)
∑

r=0

Ψt(s+
r

24t).

In the case of white noise this reduces to,

Ψv = 2(h−1)Ψt(s).

The Nyquist frequency of each spectral estimate is sc2
−h, and the mean frequency is

sc2
−(h+1). Writing the ratio of power density to the mean frequency gives,

2(h−1)Ψt

2−(h+1)sc
=

2hΨt

2−hsc
,
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showing that the power density of the composite spectra with h = 0, 1, 2... will scale

as, 2h/2−h. In logarithm-power and logarithm-frequency space this will be, h log(2)/−
h log(2), giving rise to a spurious red spectrum with a power law of q = 1 (the power-

law is defined as s−q so that positive q’s indicate that energy decreases with higher

frequency). Note that the aliased version of each individual spectra will itself be

white, but because greater amounts of aliasing occurs for the lower-frequency spectral

estimate, the overall power-law estimated from the composite spectra will be red.

If one seeks to correct for the effects of aliasing, assumptions about the unresolved

higher-frequency variability are required. Wunsch [1972] gives an example of account-

ing for the bulge in the high-frequency spectral estimates of a tidal-gauge record by

assuming a constant power-law with q = 2 and applying Eq 1.4. The solution involves

an infinite sum, which only converges when q is greater than one. This implies that

if one measures a finite spectrum with a power-law of one or less, in order to keep

the total energy bounded, at higher frequencies the power-law must become more

red. Therefor a plausible assumption regarding unresolved high-frequency tempera-

ture variability would be a steady power-law up to a cut-off frequency, above which

there exists negligible energy.

So far the discussion has focused on stochastic processes. A further consideration

is that when the annual cycle is not resolved we can expect its energy to be aliased

to lower-frequencies. Were paleo-proxies sampled at a uniform sampling interval, it

would be straight-forward to calculate where the annual variability would appear. In

practice, this is hardly ever the case, and the jitter in the sampling interval is expected

to distribute the unresolved annual variability over a broad range of frequencies [see

Moore and Thomson, 1991]. As a final consideration, the manner in which each proxy

averages the climate variability will also influence the degree of aliasing. For example,

if a tree-ring record represented a uniform average over the year, an annually resolved

record would have no aliasing. But if the tree has a differing sensitivity to temperature

at different times of the year, and different points in its growth cycle, some aliasing

is inevitable. Then, in addition to a model of high-frequency temperature behavior,

one needs to model the proxy sampling characteristics when assessing the effects of

aliasing. Such a detailed analysis is not further pursued here.

The power-law found for aliased white noise, when successive records are sub-

sampled by a factor of two, is the same as for tropical sea surface temperatures [see

Figure 1-1]. The scope of the bias in the proxy records is unclear, but it appears that
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for white, or nearly white, signals there will be a general trend towards increasingly

over-estimated spectra as the sampling interval grows. This will tend to bias power-

laws towards being too red. Some further observations can be made that argue

against the power-law estimates being wholly an artifact of aliasing. First, multiple

different proxies of tropical sea surface temperature variability are each consistent

with a power-law of one. Second, the high-frequency estimates which resolve the

annual variability are consistent with the low-frequency estimates where they overlap.

Further study of the impact of aliasing on power-law processes is required.
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Chapter 2

On Insolation Forcing

The previous chapter presented a spectral description of the spatial and temporal

variations in long-term climate variability. Much of climate variability is characterized

by simple spectral power-laws. While there remain important questions regarding the

origins of the climate continuum, the following Chapters focus on the Milankovitch

bands of variability. Such a focus can be justified by the wide-spread interpretation of

long-term climate variability as being strongly influenced by orbital forcing which can

be traced back to the identification of Milankovitch bands of variability in deep-sea

cores by Hays et al. [1976]. In seeking to better assess the role of orbital forcing

in causing climate variability, this chapter investigates the orbital variations, the

attendant changes in insolation forcing, and the manner in which these signals are

likely to appear in the climate recorded.

The spatial and temporal variations in insolation are examined from a signal pro-

cessing point of view, with attention paid to the frequency and amplitude modulation

occurring at both the annual and longer period timescales. Two aspects of precession

variability are considered in detail. First discussed is how precession period signals

in the climate record should be interpreted; there are a number of potential sources,

and there are certain requirements the climate system must meet in order to produce

this variability. Second, the frequency modulation of the precession variability is dis-

cussed in relation to orbitally derived age estimates. It is shown that the amplitude

modulation of precession period signals cannot be used to test the accuracy of these

orbital age-estimates.

The concentrations of insolation variability at both the annual and secular1 timescales

1In astronomy, secular changes refer to the long-term variations in a planet’s orbit. There are
many short-term variations due to, for example, the gravitational influence of other planets, but
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makes insolation difficult to represent and interpret. Often, the representation of

insolation variability is simplified to a single one-dimensional low-frequency signal,

inevitably altering or ignoring important features of the variability. These simpli-

fications are briefly reviewed and compared with one another, after which a more

complete representation of the insolation forcing is presented. The new representa-

tion is developed in terms of spatial modes of variability, and retains a full description

of the seasonal and secular variability. The description is accurate and compact, and

provides insight into how the spatial modes of insolation forcing vary seasonally and

at long time periods.

2.1 Earth’s orbital parameters

The insolation for any time and point on the globe can be represented as [e.g.

Vernekar, 1972],

I = Io

(

1 + e cos(λs −$)

(1 − e2)

)2

(sin φ sin θ sin λs+cosφ cos θ cosλs cos (λ− η)), I ≥ 0,

(2.1)

where Io is the solar constant (about 1368W/m2), φ latitude, λ longitude, e orbital

eccentricity, θ obliquity, $ the argument of perigee, λs solar longitude, and η the

hour angle. The frequency of variation for the last five variables is e ∼ (400Kyr)−1

and (100Kyr)−1, θ ∼ (41Kyr)−1, $ ∼ (21Kyr)−1, λs = 1yr, and η = 1 day; thus

the frequency range extends over more than seven orders of magnitude. The ’∼’

symbol indicates a band of variability centered on the specified frequency. All of the

orbital parameters are frequency modulated [Hinnov, 2002] and thus, in fact, can

only be partially described using a single frequency. A diagram of earth’s present

orbital configuration is shown in Figure 2-1. The form of Eq. 2.1 indicates the secular

variations in insolation are controlled by eccentricity, obliquity, and the argument of

perigee — each orbital parameters is discussed in turn.

which over relatively short periods average to zero.
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Figure 2-1: Earth’s orbit around the sun. The argument of perigee ($), measured
from the vernal equinox (do) to perihelion (P ), is shown with its current configura-
tions, but for visual purposes, the eccentricity of the orbit is shown with ten times the
current value. Relative to the fixed stars, do has a fixed period of 25.8 KY while P
moves with periods varying from 100 to 400 KY. Relative to one another the motions
of do and P give a climatic precession period ranging from 23 to 18 ka. The vernal
equinox currently occurs on March 20th, and up to the small variations caused by
the non-integer number of days in the year (hence the use of leap-years), has a fixed
solar-longitude. Also shown are Northern Hemisphere summer solstice (λ = 90◦),
autumnal equinox (λ = 180◦), and winter solstice (λ = 270◦), which currently oc-
cur on June 21st (d1), September 22nd (d2), and December 21st (d3) respectively.
These latter set of dates are associated with varying solar-longitudes, depending on
the degree of eccentricity and on the argument of perigee. The maximum variations
in solar-longitude associated with the dates of each solstice and spring equinox over
the last 1000KY are indicated on the above figure by the red arc segments.

2.1.1 Eccentricity

Eccentricity is measured as

e =

√

√

√

√1 −
(

Lmajor
Lminor

)2

, (2.2)
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where L represents the length of the major and minor orbital axis. Currently, the

eccentricity of the earth is 0.01672. This produces a 7% annual-period change in the

insolation incident at the top of the atmosphere from 354 W/m2 during perihelion to

331 W/m2 during aphelion. The difference in insolation is primarily due to the sun’s

displacement from the geometric center of the earth’s orbit to one of the two foci of

the orbital ellipse. For illustrative purposes, the ellipse shown in Figure 2-1 has an

eccentricity of 0.1672, ten times the present value.

Eccentricity is unique among the orbital parameters in that it affects net annual

insolation, in proportion to Io(1 − e2)−2. The timeseries and periodogram of eccen-

tricity are shown in Figure 2-2 where the orbital solution of Berger and Loutre [1992]

is used as throughout this thesis. While eccentricity is dominated by a few low-

frequency terms, it also has a significant broadband component. Note however, that

at timescales of less than 10 million years, the orbital parameters are deterministic

[e.g. Laskar, 1993], and the frequency domain behavior of eccentricity is not that of

a stochastic process. This broadband behavior has to be included in any discussion

of the effects of eccentricity on climate.

2.1.2 Obliquity

The obliquity term appears in the final right-hand portion of Eq. 2.1, and varies the

meridional distribution of incoming insolation, but does not affect the global total

insolation on any timescale. Obliquity is a measure of the angle between earth’s

equatorial and orbital planes and is currently 23.5o. The earth’s equatorial plane

precesses with a period of 25.8KY and the earth’s orbital plane precesses with a

period of 70KY. Obliquity measures the difference between these two planes and

results in the climatically relevant 1/25.8 − 1/70 = 1/41KY frequency [see Muller

and MacDonald, 2000]. Apart from the ≈ 7% change in insolation due to eccentricity

and timed by precession, the obliquity of the Earth’s orbital axis with respect to the

orbital plane accounts for the magnitude of the seasonal insolation variations.

The amplitude of the obliquity variations ranges from 2.4◦ to 0.7◦, primarily due

to changes in the inclination of the orbital plane as measured relative to the invariant

plane. The orbital and invariant planes rotate with respect to one another with a

roughly 100KY period where the invariant plane is the plane perpendicular to the

total angular momentum vector of the planets [e.g. Muller and MacDonald, 2000].

The periodogram of the obliquity variations has a central peak flanked by minor side-
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Figure 2-2: Each orbital parameter is shown over the last two million years (left)
along with the associated periodogram (right). For eccentricity (top) variability is
primarily concentrated in bands near 1/400, 1/125, and 1/95KY; obliquity (middle)
variability is concentrated at 1/41KY; and climatic precession (bottom) variability is
at 1/19, 1/22, and 1/24KY.

lobes, the latter owing to the amplitude and frequency modulations [see Berger et al,

1998].

2.1.3 Precession

The precession of the equinoxes occurs because of the torque exerted on its equatorial

bulge by the moon and sun, and to a lesser extent by the other planets. Of the secular

motions associated with the Earth’s orbit, the interpretation of precession is the most

complex. The Oxford English Dictionary defines precession of the equinoxes as,

“the earlier occurrence of the equinoxes in each successive sidereal year,

due to the retrograde motion of the equinoctial points along the ecliptic,

produced by the slow change of direction in space of the earth’s axis, which

moves so that the pole of the equator describes a circle (approximately:
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see nutation) around the pole of the ecliptic once in about 25,800 years.

Hence commonly used to denote this motion of the equinoctial points, of

the earth’s axis, or of the celestial pole or equator; also the motion of the

earth itself which manifests itself as the precession of the equinoxes.”

The climatic relevance of the precession of the equinoxes, however, is only in its rela-

tion to Earth’s eccentric orbit — at zero eccentricity there is no precession effect. In

particular, one would like a quantity indicating how the argument of perigee is related

to insolation variations. If one takes the spatial and diurnal average of insolation, and

neglects terms involving e2 and higher, then the insolation becomes,

I ≈ Io
4

[1 + 2e cos (λs −$)] .

Milankovitch [1941] hypothesized that the amount of insolation during summer is of

prime importance for causing deglaciations. Setting the solar longitude to the summer

solstice, λs = 90◦, then yields,

I ≈ Io
4

[1 + 2e sin ($)] ,

where the relationship,

e cos (90◦ −$) = −e sin (−$) = e sin ($),

was used. The last term above is called the climatic precession parameter [e.g. Berger,

1993], or just the precession parameter. The precession parameter measures the sine

of the angle between vernal equinox and perihelion and scales with the eccentricity of

the earth’s orbit. It is approximately proportional to the spatial and diurnal average

of insolation during the summer solstice.

Rubincam [1994] has expanded the diurnally averaged version of Eq. 2.1 in terms

of Legendre polynomials, and has shown that each of the leading order terms involving

$ all vary at periods equal to or less than a year. That is, for example, terms are

of the form sin($ + M) where M is the mean anomaly and has a period of one

tropical year. The frequency associated with the precession plus mean anomaly term

is d($+M)/dt ∼ dM/dt ∼ 1/year, or one cycle per anomalistic year. The difference

between the tropical and anomalistic years are discussed in more detail later.
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The precession parameter has a rich behavior that requires careful interpretation.

The remainder of this chapter is devoted quantifying and interpreting the behavior

of precessional variability in four different contexts:

• Section 2.2 shows that the amplitude and frequency modulation of the preces-

sion parameter are linked. This linkage causes the accuracy of many paleocli-

mate age-models based on orbital assumptions to be questionable.

• Section 2.3 points out that precession-band energy appearing in the climate

record requires the existence of a seasonal-cycle rectifier. Such rectifiers appear

both in the climate system itself, and also in the recording devices, making the

origins of precession energy in climate proxies indeterminate.

• Section 2.4 calls attention to how simplifications of insolation tend to emphasize

one or another mode of insolation variability, and neglect others.

• Finally, in Section 2.5, a compact yet full expression of insolation variability

is developed. This expression provides an accurate and relatively simple de-

scription of how the spatial patterns of insolation forcing evolve over timescales

ranging from seasons to millions of years.

2.2 Precession amplitude modulation: confirma-

tion of orbital climate control or signal pro-

cessing artifact?

The appearance of precession-like amplitude modulation in paleoclimate records has

been cited as lending strong support for the existence of orbital forcing within the

climate system, as well as validating the accuracy of paleoclimate age-models. While

there are other lines of evidence which support the existence of orbitally forced cli-

mate change, as well as the accuracy of orbitally derived age-models [see Chapter 3],

here the question is raised as to whether the orbital results have been received with

greater confidence than is warranted. For example, Imbrie et al. [1984] state that the

“statistical evidence of a close relationship between the time-varying amplitudes of

orbital forcing and the time-varying amplitudes of the isotopic response implies that

orbital variations are the main external cause of the succession of late Pleistocene ice

ages.”
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More recently Shackleton et al. [1995] conclude, “Probably the most important

feature through which the orbital imprint may be unambiguously recognized in an-

cient geological records is the amplitude modulation of the precession component

by the varying eccentricity of the Earth orbit.”As a final example, in comparing a

narrow-band-passed SPECMAP record with precession, Paillard [2001] states “It is

remarkable that both time series have a quite similar modulation of their amplitude.

This is probably one of the strongest arguments in favor of a simple causal rela-

tionship between the precessional forcing and the climatic response in this frequency

band. Indeed, in contrast to other techniques, amplitude modulation is not affected

by tuning.”

In this context, tuning refers to the practice of stretching and squeezing the age-

model of a paleoclimate record so as to sharpened and enhance features of its orbital

variability. Obviously tuning can affect the frequency of signals within a record; less

obviously, and contrary to the above author’s conclusions, when narrow-band-pass

filtering is required (as it usually is), this also affects estimates of the amplitude

of precession band variability in paleoclimate records. An example of how orbital-

tuning can influence the amplitude of the precession variability was first pointed out

by Neeman [1993], but which has not been paid much attention. Here, a more thor-

ough investigation of how eccentricity-like amplitude modulation can be generated is

undertaken.

2.2.1 Precession frequency and amplitude modulation

Over the last million years, the mean frequency of the precession parameters has been

1/20.4KY. This frequency is higher than the 1/25.8KY frequency associated with the

precession of the equinoxes because the longitude of perihelion rotates towards the

vernal equinox at an average rate of 1/97KY where 1/97KY+1/25.8KY=1/20.4KY

[see Figure 2-1]. The mean frequency of the precession parameter, however, provides

only a partial description as the perihelion tends to move episodically. The episodic

motions are generated by Earth’s gravitational interaction with other planets and

cause the instantaneous frequency of the precession parameter to be highly variable.

To further examine the perturbations to the precession parameter’s frequency it

is useful to model the influence of other planets on Earth’s orbit as impulsive forces,

F = Rr̂ +Nĥ + T ĥ× r̂, (2.3)
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Here F has vector components, r̂, pointing from the sun to the earth and, ĥ, perpen-

dicular to the orbital plane. The change in the longitude of perihelion resulting from

F is [e.g. Danby Eq. 11.5.11, 1992],

d$′ =

√
1 − e2

nae

{

−R cos v + T sin v
2 + e cos v

1 + e cos v

}

dt (2.4)

where n is earth’s average orbital angular velocity, v is the angle between perihelion

and the earth, and a is earth’s mean distance from the sun. The equation is meaningful

over at least the last 5Ma as eccentricity, e, is always greater than zero. Note that only

those components of the impulse in the orbital plane (R and T ) act to change $. The

instantaneous frequency associated with the precession parameter, d$/dt, is the sum

of the instantaneous frequency associated with the longitude of perihelion, d$′/dt,

plus the (nearly) constant 1/25.8KY precession of the equinoxes term. As stated

earlier, the longitude of perihelion has a mean frequency of d$′/dt = 1/97KY giving

an averaged climatic precession parameter frequency of 1/25.8+1/97=1/20.4KY.

Importantly, Eq 2.4 shows that the longitude of perihelion is more susceptible to

perturbations when the eccentricity is small. That is, one expects the magnitude of

d$′/dt to be largest when the eccentricity is smallest. Figure 2-3 shows the instan-

taneous amplitude and frequency associated with precession parameter over the last

5 million years (Ma) calculated using a Hilbert transform [see e.g Bracewell, 2001] of

the orbital solution of Berger and Loutre [1991]. As expected from Eq. 2.4, there is a

clear relationship between large excursions in instantaneous frequency and low values

of the eccentricity. To quantify this relationship, Figure 2-3 also shows the abso-

lute deviations in instantaneous frequency, |d$′/dt− d$′/dt|, plotted against inverse

eccentricity, 1/e. The squared-cross-correlations between the absolute frequency de-

viations and inverse eccentricity over the last 5 Ma is 0.56, indicating that variations

in eccentricity account for the majority of the frequency variability in the climatic

precession parameter.

2.2.2 Narrow-band-pass filtering and amplitude modulation

In the last section it was shown that variations in eccentricity cause changes in both

the amplitude and frequency of the precession parameter. In this section it is shown

that frequency modulation can be transformed into an amplitude modulation as a

result of standard narrow-band-pass filtering of a signal. In a geophysical context,
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Figure 2-3: Top left, The instantaneous amplitude of the precession parameter
which, by definition, is the eccentricity. Bottom left, the instantaneous frequency
of the precession parameter measured in cycles per KY and estimated using a Hilbert
transform. The average frequency of the precession parameter over the last 5Ma is
1/20.4KY. Significant excursions from the mean are observed to occur during times of
low eccentricity, as expected from Eq. 2.4. Right, To highlight the coupling between
eccentricity and the precession frequency, the absolute deviations in instantaneous
frequency, |d$/dt − 1/20.4KY |, are plotted against inverse eccentricity, 1/e. Note
the plot is logarithmically scaled. A strong positive cross-correlation of 0.75 exists
between the variability in |d$/dt− 1/20.4KY| and 1/e.

narrow-band-pass filtering is often utilized to isolate a narrow-band signal of interest

from the broad-band continuum or other narrow-band signals. Therefor it is natural

that narrow-band filtering is often used to isolate precession variability in paleoclimate

records [e.g. Imbrie et al., 1984; Imbrie et al., 1993]. It is shown below that when the

signal of interest has a frequency modulation associated with it, the resulting filtered

signal will have an amplitude modulation related to its frequency modulation.

To see how narrow-band-pass filtering can generate amplitude modulation it is

first useful to review some aspects of amplitude and frequency modulated signals.

Consider a pure cosine, cos(2πtf1), of carrier frequency f1 multiplied by another

cosine of frequency f2. Then,

µ(t) = cos(2πtf1) cos(2πtf2) = cos(2πt(f1 + f2)) + cos(2πt(f1 − f2)) (2.5)
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here the carrier frequency, f1, is split into two new frequencies, f1 ±f2, in the process

known as amplitude modulation. A power spectrum of µ (t) would display peaks not

at f1, but at (f1 ± f2), that is, with two-sidebands.

If instead a cosine is frequency modulated by another cosine we have,

µ(t) = cos(2πtf1 + 2πδ cos(2πtf2))

= cos(2πtf1) cos(2πδ cos(2πtf2)) + sin(2πtf1) sin(2πδ cos(2πtf2)). (2.6)

Using a simple identity [Olver 1962, Eqs 9.1.44-45] Eq. (2.6) is,

µ(t) = cos(2πtf1)[Jo (2πδf2) + 2
∞
∑

k=1

J2k (2πδf2) cos(4πktf2)]

− sin(2πtf1)
∞
∑

k=0

−1kJ2k+1 (2πδf1) cos(2π(2k + 1)tf2), (2.7)

where the Jp are Bessel functions. Now µ(t) has spectral peaks at f1 ± kf2 for k =

[0, 1, 2...] with the relative amplitudes determined by the strength of the modulation

term and the displacement from the carrier frequency.

The relevant point to be drawn from Eq 2.7 is that generating a frequency modu-

lated signal, which is not amplitude modulated, requires contributions from frequen-

cies extending out to infinity. Thus, any narrow-band-pass filtering of a frequency

modulated signal will produce some amplitude modulation. The exact form of the

amplitude modulation will depend on the frequency modulation and on the specifi-

cations of the narrow-band-pass filter which is employed.

To be specific, a version of Eq 2.6 is used with

µ(t) = cos
(

2πt

21
+ w′

)

(2.8)

w′ =
2π

5

[

cos
(

2πt

100

)

+ 1
]

where the frequency modulation term, w′, is non-negative and has a 100KY period

in rough analogy with the eccentricity variability. The frequency modulated signal,

µ(t), is shown in Figure 2-4. Also shown is the periodogram of µ(t) which displays

side-bands at 1/21 ± k/100 for k = {0, 1, 2...} as predicted by Eq. 2.7. Up to this

point µ(t) has no amplitude modulation, but now consider the effects of narrow-band-

pass filtering. For clarity, a simple filtering technique is adopted whereby the Fourier

transform of µ(t) is taken, all the Fourier coefficients outside of a frequency band 1/25
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to 1/17KY are set to zero, and then the inverse Fourier transform of the modified

Fourier coefficients gives the filtered signal, µ̃(t). µ̃(t) is shown in Figure 2-4 along

with its periodogram.

The narrow-band-pass filtering suppresses spectral energy outside of the band

between 1/25 to 1/17KY, leaving only two dominant frequency components in µ̃(t)

at 1/23KY and 1/23+1/100=1/19KY of nearly equal magnitude. Thus, the filtered

signal can be approximated as

µ̃(t) ≈ cos
(

2πt

23

)

+ cos
(

2πt

19

)

.

Eq. 2.5 shows that the sum of two cosines can be re-written as an amplitude modulated

signal; in this case giving

µ̃(t) ≈ cos
(

2πt

200

)

× cos
(

2πt

20.6

)

.

One further modification is now necessary to relate the amplitude modulation of µ̃(t)

to the frequency modulation, w′. The amplitude modulation term, cos( 2πt
200

), becomes

negative whereas the instantaneous amplitude is typically defined as a positive quan-

tity. The absolute value of the amplitude modulation term can be written,

AM =

[

cos
(

2πt

200

)2
] 1

2

,

1√
2
×

[

cos
(

2πt

100

)

+ 1
]

1
2

, (2.9)

where the relationship cos(f)2 = cos(2f) + 1 was used. Thus, both the amplitude

modulation, AM, and frequency modulation, w′, terms are positive and periodic at

100KY. Figure 2-4 shows the excellent correspondence when both these terms are

plotted against one another.

2.2.3 Eccentricity modulation of precession

For the simple periodic modulation of a cosine by another cosine it was shown that

narrow-band-pass filtering can generate an amplitude modulation with a period sim-

ilar with the original frequency modulation. Now we turn to the more complicated

precession signal. It was shown earlier that both the amplitude and precession of the

climatic precession parameter are modulated by the eccentricity variability. In this
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Figure 2-4: Top left the frequency modulated signal µ(t) given by Eq. 2.9. Note there
is no amplitude modulation. Top right shows the periodogram of µ(t) with power
concentrated at the carrier frequency of 1/23KY and side-bands at 1/23±k/100KY ,
k = {0, 1, 2...}. Middle left applying a narrow-band-pass filter to µ(t) gives µ̃(t) with
amplitude modulation. Middle right shows the periodogram of µ̃(t). The pass-band
filter cut-off frequencies at 1/23KY and 1/16KY are indicated by the vertical dashed
lines. A small amount of white noise was added for plotting purposes. Bottom
shows that the instantaneous amplitude of µ̃(t) (black) is strongly correlated with
the instantaneous frequency of µ(t) (red).

section it is shown that, in direct analogy with the previous simple example, eccentric-

ity amplitude modulation can be generated from precessional frequency modulation

alone.

Figure 2-5 shows the frequency modulated precession signal sin$; note there is no

eccentricity amplitude modulation. The periodogram of sin$ contains concentrations

of energy at 1/23 and 1/19KY as well as concentrations of energy at a variety of side-
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Figure 2-5: Similar to Figure 2-4 but now for the precession signal. Top left the
precession signal sin$ without eccentricity amplitude modulation. Top right The
periodogram of sin$ showing excesses of energy near 1/23 and 1/19KY but also
significant energy in numerous side-bands. Upper left is sin$ after narrow-band-
pass filtering, and upper right is the associated periodogram. The filtering cut-off
frequency are indicated by the vertical dashed lines at 1/25 and 1/18KY. Lower
left shows the strong similarity between the instantaneous amplitude of the filtered
precession signal (black) and the eccentricity (red), each plotted on their own scales.
Bottom is again the instantaneous amplitude (black) but also the instantaneous
frequency (red) of the filtered precession signal. The horizontal dashed lines indicate
the cut-off frequencies used for filtering the precession signal. Note that when the
instantaneous frequency strays outside the cut-off frequencies, the amplitude of the
filtered precession signal tends to be small.
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bands. For the signal µ(t), the distribution of side-band energy was particularly

simple [see Figure 2-4]; by contrast, the distribution of precession side-band energy is

complicated by the more abrupt and episodic changes in the frequency of precession.

Nonetheless, Figure 2-5 shows that after narrow-band-pass filtering sin$ between

cut-off frequencies of 1/25 and 1/18KY, an eccentricity-like amplitude modulation

appears.

The instantaneous amplitude of the filtered sin$ signal closely corresponds with

the eccentricity variability with a cross-correlation of 0.87. A qualitative explanation

for the close resemblance between the filtered signal’s amplitude and the eccentricity

is that during times of low eccentricity, precession tends to have significant deviations

in instantaneous frequency [see Eq. 2.4]. These deviations in frequency manifest as

the side-band energy in the periodogram of sin($). The removal of this side-band

energy by narrow-band-pass filtering also removes the energy associated with the

anomalously high or low frequencies in sin($), tending to give a reduced amplitude

during times of low eccentricity. Thus the amplitude of the filtered precession vari-

ability corresponds in phase and magnitude with the eccentricity induced frequency

modulations.

The further question arises of whether an eccentricity amplitude modulation can

be built into a signal, absent any true precession energy. In Appendix C of Chap-

ter 3, it is demonstrated that orbitally-tuning a noisy signal to precession and then

narrow-band-pass filtering over the precession band does, in fact, generate a pre-

cession period signal with eccentricity-like amplitude modulation, consistent with the

results of Neeman [1993]. Thus, contrary to assertions made elsewhere, it is concluded

that the appearance of eccentricity-like amplitude modulation in orbitally-tuned and

pass-band-filtered paleoclimate records does not provide evidence for orbital control.

In summary, it was shown that the frequency of the precession parameter under-

goes large deviations when the eccentricity is small. It was also shown that narrow-

band-pass filtering a frequency modulated signal can generate an amplitude mod-

ulation similar in period to the original frequency modulation. Because it is well

established that orbital-tuning can build frequency modulation into a signal [e.g.

Shackleton et al, 1995], it is expected and shown that eccentricity amplitude modula-

tion will appear in records which are tuned to precession and then narrow-band-pass

filtered. Thus, the presence of eccentricity amplitude modulation in records tuned to

precession does not provide evidence for orbital climate control.

61



2.3 Rectification and precession signals in the cli-

mate system

The appearance of precession signals in orbitally-tuned records is somewhat suspect

because of the ability to build-in concentrations of variability at the precession bands

and to generate eccentricity-like amplitude modulation. However, it has been shown

that even in the absence of orbital age-model assumptions, concentrations of preces-

sion period variability do appear in the δ18O record [e.g. Hays et al., 1976; also see

Chapter 3]. In the following section, repeated verbatim from [Huybers and Wun-

sch, 2003], the origins of such precession period variability in the climate record are

discussed in more detail.

The following is repeated verbatim from Huybers and Wunsch [2003]

Abstract: Precession of the equinoxes has no effect on the mean annual inso-

lation, but does modulate the amplitude of the seasonal cycle. In a linear climate

system, there would be no energy near the 21,000 year precession period. It is only

when a non-linear mechanism rectifies the seasonal modulation that precession-period

variability appears. Such rectification can arise from physical processes within the

climate system, for example a dependence of ice cover only on summer maximum inso-

lation. The possibility exists, however, that the seasonality inherent in many climate

proxies will produce precession-period variability in the records independent of any

precession-period variability in the climate. One must distinguish this “instrumental”

effect from true climate responses. Careful examination of regions without seasonal

cycles, for example the abyssal non-equatorial ocean, and the use of proxies with

different seasonal responses, might permit separation of physical from instrumental

effects.

2.3.1 Introduction

One of the most important elements in the discussion of climate change concerns

the appearance in, and possible dominance by, Milankovitch cycles in paleoclimate

records. Setting aside the 100 kyr band, whose relationship to Milankovitch forcing

remains problematic [e.g Roe and Allen, 1999], the Milankovitch-forced energy is

largely, but not wholly, contained within two bands around 41 kyr and 21 kyr—the

obliquity and precessional bands respectively [Bradley, 1999; Cronin, 1999].

In particular, reports of strong precessional signals in various records are widespread;
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among the most recent reports are Lamy et al. [1998] for deep-sea sediments, Thaman

et al.. [2002] for monsoon strength, and Bozzano et al.. [2002] for atmospheric dust.

Such signals are usually interpreted as demonstrating orbital-period climate vari-

ability [e.g., Ruddiman and McIntyre, 1981; Imbrie et al., 1992]. Here we raise the

question of whether these signals are due to subannual climate variability or, at least

in part, are an artifact of the way in which climate signals are recorded.

2.3.2 Obtaining precessional rectification

Changes in Earth’s obliquity alter the amplitude of the seasonal cycle and generate

low-frequency shifts in the latitudinal distribution of insolation. Precessional changes

also alter the seasonal cycle, but in contrast to obliquity, cause no change in an-

nual average insolation at any latitude [Rubincam, 1994],. A general expression for

insolation contains terms related to seasonal variability of the form,

F = a sin ε sinM + b sin(M −$) + ... (2.10)

≡ F1 + F2 + ....

Here, M is the true anomaly, an angle increasing by 360◦ per year, ε is the obliquity,

varying between 22◦ and 25◦ with a time scale of about 41 kyr; and $ is the angle

between perihelion and the vernal equinox and varies with periods dominantly be-

tween 19 and 23 kyr. a, b are coefficients that are either constant or have even lower

frequency dependencies.

Both terms F1,2 vary at periods of close to one year. F1 has an annual carrier

frequency, sa = Ṁ/2π, the dot denoting the time derivative, and is amplitude mod-

ulated by obliquity at a frequency sε = ε̇/2π. The amplitude modulation involves

two combination frequencies sa±sε ≈ sa, which vanish when averaged over a tropical

year. In F2, the frequency is sa − s$ ≈ sa; because s$ << sa, the forcing averages to

zero over any integral multiple of durations 2π/(sa−s$), that is over one anomalistic

year. In the full insolation forcing ε also occurs independent of M , thus varying at

low-frequencies, while all instances of $ appear in combination with M , thus varying

at periods near one year.

How does one obtain a low frequency response to high frequency insolation vari-

ations? There are several possibilities. Suppose, following the very large literature

on Milankovitch forcing, that the climate system responds primarily to summer in-
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Figure 2-6: Production of low-frequency variability. (a), Simple amplitude-modulated
signal of form (2.10) having no low frequency content. (b), Rectified signal according
to (2.11) and then, (c), low pass filtered to leave only the envelope function. For
visual clarity, the periods of the secular orbital terms are decreased by a factor of
1000 giving roughly 1/23 precession and 1/41 obliquity cycles per annual cycle.

solation. That is, simplifying slightly, let the climate system respond only when F is

above some threshold, τ ,

Fr = |F|ν, τ ≤ F (2.11)

= 0, otherwise

The effect of Equation (2.11) on F is an example of what is called a νth-power-law

device [Davenport and Root, 1958; Middleton, 1960]. General nonlinearities can be

represented by superposition of devices with differing values of ν.

A simple example is given by taking τ = 0, ν = 1, which is a “half-wave recti-

fier”or “detector”[e.g., Zimmerman and Mason, 1959]; an example of its effects can

be seen in Figure 2-6. The simple supposition that only positive values are important

immediately, and drastically, changes the frequency content of the forcing. Figure 2-7

displays the periodogram of forcings (2.10) and (2.11). Fo has no energy below the

annual cycle, while the rectified signal Fr does. We will call this “climate-system

rectification”and there are many physical processes which can act this way [e.g., Kim

et al., 1998; Clement et al., 2000].
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Figure 2-7: Periodograms of the original and rectified forcings. Solid line is from
the original forcing (2.10) plus a small amount of white noise. The energy near the
annual cycle, sa, is split owing to modulation by the precession and obliquity terms,
but there is no excess energy at the lower frequencies. Circles are the result after
applying a half-wave rectifier to the signal. Now excess energy appears at the higher
harmonics of sa as well as the frequencies s′$ and s′ε where the primes indicate that
the orbital terms have a 1000 fold decrease in period.

So far there is nothing new here. But consider that exactly the same low frequency

effect can be produced by the recording devices. These recorders can represent any-

thing that has a seasonality, including foraminifera that grow only during one season

or month, or just grow more in summer than in winter, or a tracer laid down by

a windfield direction confined primarily to one month or season. (Rectification of

the annual cycle is not the same as its aliasing [Wunsch, 2000], which is a result of

discrete sampling. Purely analogue devices, such as ordinary radio receivers, employ

rectifiers.) That is to say, the most obvious representation of a seasonal growth,

wind, or precipitation dependence in tracers or organisms will be the same form as

Equation (2.11).

At least some of the inferred precessional signals are thus likely an artifact of

seasonal biases in growth, wind, or temperature patterns, among other possibilities.

Any recording medium, be it biological or physical, subject to an annual cycle, has

to be examined for such rectification effects, and which could actually dominate the

observed signals.
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2.3.3 A more complete discussion

General analytical expressions, involving hypergeometric functions, are available for

the response of rectifiers to a variety of inputs [Davenport and Root, 1958; Middleton,

1960]. Because there are many terms in F , however, a discussion of its rectifica-

tion is more complicated than can be obtained by examining only one or two carrier

frequency contributions, and it is simpler to compute the results numerically. We

therefore use estimates of the secular variability in Earth’s orbital parameters [Berger

and Loutre, 1992] along with a numerical code to estimate mean diurnal insolation

(J. Levine, personal communication, 2003) at 65◦N over the last 800 kyr. This rep-

resentation is incomplete at the highest frequencies—not including diurnal variations

nor other very high-frequency perturbations. It is adequate, nonetheless, to illustrate

the influence of rectification on the annual cycle.

Owing to the vastly different periods between the annual variability and the sec-

ular modulating terms, it is impractical to plot the full time series of insolation over

timescales of interest. Instead, Figure 2-8 shows insolation at 65◦N plotted at the

equinoxes and solstices. The date of the solstices and autumnal equinox, assuming

the vernal equinox is fixed at March 20th, can vary substantially [Vernekar, 1972].

Over the last 1000 kyr, for example, the autumnal equinox occurred between Septem-

ber 5th and October 1st, depending on Earth’s mean radial velocity, or equivalently,

the eccentricity and phase of precession. The magnitude of equinoctial insolation de-

pends only on eccentricity and precession, whereas solstice insolation at high-latitudes

is primarily controlled by obliquity. The variability in the date and magnitude of

these snapshots of mean diurnal insolation are indicative of the phase and amplitude

modulation of the full annual cycle.

Application of the rectification device (2.11) to the insolation signals dramatically

alters the low-frequency content of the insolation record. Figure (2-9) shows results

using τ = 250 Watts/m2 and ν = 1, where the parameters are largely arbitrary. Other

choices of τ and ν would change the distribution of energy in the rectified signal, but

the basic effect—transferring energy from the high to low frequencies—is robust.

Apart from the concentration of energy in the obliquity and precession bands, the

rectified insolation also has enhanced energy in a broad-band ranging from millennial

to 100 kyr periods. One source of this energy appears to be interactions between the

modulation terms; another is the presence of low-frequency obliquity energy which,

after rectification, is transferred into higher harmonics. The second harmonic of
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Figure 2-8: Mean diurnal insolation at 65◦ N. The full timeseries, sampled at 30
day intervals, oscillates too rapidly to be usefully plotted; instead snapshots of the
insolation at the solstices and equinoxes are shown. Uppermost solid line is for the
summer solstice, middle solid line is for the autumnal equinox, and near-zero solid line
is at the winter solstice. The dotted line indicates the vernal equinox insolation. A
similar plot appears in Imbrie et al. [1993], but there the vernal equinox and solstices
are incorrectly assigned fixed dates. Horizontal dashed line indicates the lower level
at which rectification is applied, denoted τ in Equation (2.11).

obliquity, 2/41 kyr, lies within the precession-band [Huybers and Wunsch, 2003] thus

providing another potential source for precession-band energy.

2.3.4 Further considerations

Another small rectification effect exists for insolation. In Figure 2-8 it is evident

that winter solstice insolation variations are attenuated as compared with those of

the summer solstice. Above the Arctic or Antarctic circles, attenuation becomes

“clipping”as insolation goes to zero during polar night. This polar clipping is a form

of rectification and is solely due to geometry. The effects account for the higher

harmonics in the insolation cycle shown in Figure (2-9), and the very slight excess

in energy in the precession band. At higher latitudes, the geometric rectification is

more pronounced, and Figure (2-9) shows a periodogram of the low-frequencies in

insolation at 85◦N calculated over the last 800 kyr. Concentrations of energy are

apparent in both the obliquity and precession bands. Geometrical rectification is also
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Figure 2-9: Periodograms of mean diurnal insolation plus a small amount of white
noise. (a), Solid line is from insolation at 65◦N, while circles are from insolation
passed through a νth-law device with τ = 250 Watts/m2 and ν = 1. After rectifi-
cation, low frequency energy at the obliquity band (sε) is enhanced, and energy at
the precession band (s$) now appears. The ordinate and abscissa are logarithmic.
For plotting purposes, an exponentially diminishing number of periodogram estimates
are shown for frequencies above 1/10 kyr except near the annual cycle and its first
harmonic where full resolution is used—no significant structural changes result. (b),
Periodogram of insolation at 85◦N. Vertical lines from left to right are centered on
the obliquity bands at 1/41 and a minor side-band at 1/29 kyr [Melice et al., 2001]
and precession at 1/23 and 1/19 kyr. The abscissa is linear, and for visual clarity,
only the low-frequencies are shown. The seasonal cycle, sa, is so much more powerful
than any other insolation frequency (other than the diurnal) that its rectification is
of greatest concern, but all frequencies are susceptible to such effects.

expected for the diurnal cycle, but we do not consider this higher frequency variability

here.
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Suppose a component of the apparent signal arises from the recorder rectification

with amplitude a and in-phase with the precession angle, written as x1 (t) = a cos($);

suppose too, that the climate system itself produces a rectified signal with phase, η,

which is faithfully reproduced in a core record as x2 (t) = b cos($−η). Then omitting

any stochastic component, the apparent signal at the precession frequency is,

x(t) = a cos($) + b cos($ − η)

= (a2 + b2 + 2ab cos η)1/2 ×
cos($ − tan−1{b sin η/(a+ b cos η)}), (2.12)

and one faces the problem of separating the recorder-rectified signal from that of

the climate system. If another source is present due e.g., to geometrical rectification

or higher harmonics of the obliquity energy, one has to separate a three-component

vector sum.

There is one medium, the deep ocean (below about 300m, with the major exception

of the equator) that typically displays no sign of seasonal signals in temperature

or velocity. Measured variables reflecting only these physical processes, nonetheless

having significant precessional-band signals, have a straightforward interpretation as

showing rectification of the climate system, rather than that of the recording devices

– assuming no seasonal cycles in the infalling nutrient supply to biological recorders.

The possibility of instrumental rectification renders the discussion of the relation-

ship of proxies to climate variables a somewhat intricate one. In particular, one must

carefully define “climate” change. Consider for example an earth in which hotter

summers gave rise to a corresponding increase in precipitation, P . Suppose further

that the increased P was exactly compensated by increased evaporation, E, during

the colder winters. Then the anomaly of P − E vanishes in the annual average, and

there is no net climate change at low frequencies. Now suppose that increased pre-

cipitation and temperatures also lead to an increase in leaf mass of deciduous trees

during the growing season and that all such leaves were shed during the autumn.

Then a proxy based upon the annual mass of leaf generation would be rectified by

the autumn shedding, and there would be a signal in the precession band that would

be an incorrect measure of the annual average P − E. To the contrary however, if

P, or E, by themselves are of interest, then the rectified leaf signal directly measures

their low frequency content. Furthermore, leaf mass, with its influence on albedo and
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evapotranspiration, is itself a climate variable, and the rectified leaf-mass signal could

itself be regarded as real climate change. Evidently, one must specify in detail the

particular physical variable that the proxy is intended to represent before it can be

interpreted.

2.3.5 Conclusion

Our central point is that any precession-band energy appearing in climate time series

requires the existence of a seasonal-cycle rectifier, and such rectifiers appear not only

in the climate system itself, but also in the recording devices, both biological and

physical. A similar phenomenon exists for the obliquity band, but analyzing this

effect is more complex because obliquity band energy is also present in the forcing

itself. To understand the origins of Milankovitch band energy in the climate record,

one must apparently model the seasonal cycle in the recording instruments and correct

for it in the climate variables.

2.4 Simplifications of insolation variability

To resolve the temporal variability of insolation requires a sampling interval of less

than a day,2 and for most paleoclimate contexts, extending over thousands of years

— a prohibitively large data-set. Ninety such timeseries are required if one seeks

two degree latitudinal resolution. Thus, for many applications, simplified versions

of the insolation are instead used, often which aim to reduce the variability to a

single timeseries requiring only a low sampling resolution. This over simplification

inevitably enhances some modes of variability while diminishing or suppressing others.

In this section some of the most common insolation simplifications are reviewed and

compared with one another. In the next section a more complete description of the

insolation is developed.

Spatial simplifications of insolation forcing usually take the form of choosing a

particular latitude [e.g. Milankovitch, 1941], the difference between two latitudes

[e.g. Raymo and Nisancioglu, 2003], or averaging over a hemisphere or the globe [e.g.

Berger, 1978]. Common temporal simplification of the full forcing function are to

2Technically, because of the day-night clipping of insolation, a much shorter sampling interval is
required to perfectly reconstruct the signal, but in practice hourly samples provide a good approxi-
mation.
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Figure 2-10: The root-mean-square insolation variability due to changes in (a) obliq-
uity and (b) precession, shown as a function of latitude and day of year running from
March 22nd (vernal equinox) to March 21st. Because the root-mean-square variabil-
ity is only calculated on a single day of the year, it is rectified, and thus has precession
period variability. Contour lines are labeled in W/m2.

pick a particular solar-longitude, day of the year, or some interval of time or solar

longitude [e.g. Vernekar, 1972]. Depending on the location and day selected, different

modes of secular variability are more pronounced. Also note that the solar longitude

and day of the year do not have a unique relationship [e.g. Figure 2-1; Vernekar,

1972; Berger et al., 1993]. Joussaume and Braconnot [1997] show that paleoclimate

simulations which do not take into account changes in the seasonal cycle can have

biases of the same order as the simulated climate change.

Figure 2-10 shows the root-mean-square (rms) insolation variability due to obliq-

uity and precessional variations, contoured as a function of latitude and day of the

year. Insolation calculations are made using the orbital solution of Berger and Loutre

[1992] and a program provided by J. Levine [personnel communication] which calcu-

lates insolation based on Earth’s position and orientation relative to the sun. The

program has been modified to run more efficiently and to calculate insolation either

according to day of the year or to solar longitude. At the equinoxes, currently occur-

ring on March 20th and September 22nd, earth’s tilted spin axis is perpendicular to

the direction of the sun, and obliquity has no effect on insolation. Insolation varia-

tions due to obliquity are the most pronounced during summer and have the opposite
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Figure 2-11: ((a) Astronomical and (b) caloric half-year insolation averaged for lat-
itudes ≥ 60◦ where averages are area weighted. The corresponding periodograms
are plotted at right with vertical dashed lines at frequencies of 1/41KY (obliquity)
and 1/21KY (precession). Note that calculating insolation only over half the year
is a rectification which generates the precession period variability. In addition, the
astronomical half-year insolation is averaged over a period which itself depends on
precession. The caloric half-year and calendar half-year insolation (not shown) are
both averaged over fixed periods and are very similar with a squared-cross-correlation
greater than 0.99. (c) Caloric half-year insolation averaged between zero and 30◦N
along with its periodogram (right). At low-latitudes, the astronomical and caloric
half-years are both dominated by precession and are very similar to one another.

sign during winter. At high-latitudes, increases in obliquity cause small decreases

in winter insolation and larger increases in summer insolation, so that the net effect

is to increase the annual insolation. At lower-latitudes, the net winter decrease in

insolation due to obliquity has a greater magnitude than the summer increase, with

the cross-over in seasonal influence occurring at 43◦ North and South. This cross-over

can be derived from the insolation equations of Rubincam [1994] by omitting all the

annual and higher frequency terms and solving for the zeros. Therefore, depending

on the selected date and latitude, the variability due to obliquity or precession can

vary substantially.

Rather than calculating insolation for a given day or solar longitude, it is possible
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to average insolation over some portion of the year. For the case of half-year insolation,

several possibilities exist: astronomical, calendar, and caloric half-year insolation (see

Figure 2-11). (1) Astronomical half-year insolation is obtained by averaging between

solar-longitudes, λ = 0 and λ = π [e.g. Vernekar, 1972]. Although the seasons are

strictly defined, the duration of the averaging period changes, according to the degree

of eccentricity and the angle of perigee. The earliest and latest dates corresponding

to the autumnal equinox (λ = π) are separated by a month.

(2) Calendar half-year insolation averages between two selected dates — usually

vernal equinox and somewhere near the time variable autumnal equinox. The du-

ration of the calendar half-year is fixed, but because the date of autumnal equinox

is time-variable, it does not ensure a true winter or summer season. This prompted

Milankovitch [1941] to introduce: (3) the caloric half-year which maintains equal du-

rations between the summer and winter half-years, while maximizing the insolation

contrast [e.g. Milankovitch, 1941]. Vernekar [1972] and Berger [1978] give good

discussions of both astronomical and caloric half-year insolation. The astronomical

half-year insolation has more precession variability than either the calendar or caloric

half-year insolations owing to precession’s influence on both the intensity of the inso-

lation and period over which the insolation is averaged. It is also possible to average

over some latitude band (see Figure 2-11); when the average is confined to only high or

low latitudes, the variance and frequency structure of the signal changes only slightly.

There exists an endless number of possibilities regarding the temporal and spa-

tial averaging of insolation. Various choices can be motivated by physical concepts,

but in the absence of a general theory for how changes in radiation at the top of

the atmosphere affect climate, many choices remain plausible but largely arbitrary.

Furthermore, no low-frequency timeseries of insolation can represent how the secular

changes in insolation affect both the seasonal and low-frequency changes in insolation.

As the annual cycle is extremely powerful3, this constitutes a major short-coming of

traditional simplification of the insolation variability. In Chapter 1, it was shown how

neglecting high-frequency variability could lead to incorrect power-law estimates; and

in Section 2.3 it was shown how the proxy response to the annual cycle could be misin-

terpreted as low-frequency climate variability. For these reasons, a full representation

of the seasonal and secular insolation variability is important for understanding the

3Consider that the annual range in Arctic temperatures is on the order of 50◦C, roughly double
the difference between mean temperatures during the Holocene and the Last Glacial Maximum
calculated by Dahl-Jensen et al. [1998] using the GRIP borehole.
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relationship between climate and orbital forcing.

2.5 A Compact representation of insolation

One alternative to simplifying the forcing is to determine an analytical expression for

the full insolation variability. Rubincam [1994] and B. Bills [personal communica-

tion, unpublished] have derived general expressions for insolation as a function of the

orbital parameters. These solutions provide useful insight into insolation variability,

but involve summations over numerous basis functions, some of which require many

terms to converge, making the results somewhat opaque. A complementary approach

is to numerically solve for basis functions which are optimally efficient at explain-

ing the variability. While lacking the elegance of an analytical solution, in practice

this numerical estimate allows insolation to be accurately represented using a small

number of functions, and is amendable to physical interpretation.

The goal is to find the simplest representation of insolation variability. Here I

consider diurnally averaged insolation, which only varies meridionally. A full repre-

sentation of diurnally averaged insolation, then, only requires latitude and time. One

approach is to generate a matrix, X, of insolation values with N rows of latitude and

M columns of time. But as suggested when reviewing the common simplification of

insolation forcing, the number of columns is prohibitive. To resolve both days and the

longest major period in eccentricity variability (400KY) requires roughly 150 million

time columns. If insolation is calculated at each latitude, the total number of values

is roughly 30 billion. To reduce these sizes, a compact representation of the spatial

and temporal variability is first presented, after which the various modes of insolation

variability are interpreted.

While efforts are made to make the representation of insolation as compact and

simple as possible, the following is a rather involved discussion of orthogonal decom-

positions using Legendre polynomials and singular value decompositions. The results

are useful for interpreting the insolation variability, but none of the conclusions drawn

in the following section are essential for understanding the remainder of the thesis.

Thus the reader may find it useful to only skim the following sections.

74



2.5.1 Spatial variability

In Chapter 1, spherical harmonics were used to decompose temperature variability

from the NCEP reanalysis. Since diurnally averaged insolation has no zonal structure,

the one dimensional counter-part of spherical harmonics, the Legendre polynomials

[e.g. Jackson, 1999], are a natural choice for spatial basis functions. The basis

functions are chosen, rather than solved for, because in practice they prove to be

both efficient descriptions and are readily interpretable as physical modes of insolation

of forcing. The temporal basis functions will be solved for. Figure 2-12 shows the

Legendre polynomials from order zero to three, L(0−3). Zero and even orders are

symmetric, while the odd orders are anti-symmetric. For continuous functions the

polynomial expansion can be carried to arbitrarily high orders of accuracy, but for

discretely sampled functions there is a limit beyond which higher order polynomials

vary too rapidly to be useful — in close analogy with the Nyquist frequency in Fourier

analysis. Here, insolation is calculated at 1◦ intervals over the range {−89.5◦, 89.5◦}
and polynomials of up to order 40 give stable results.

To begin, two-dimensional slices of the insolation variability are considered: one

slice is of the spatial and seasonal variability and another of the spatial and secular

variability. Although both seasonal and secular variations are referenced to time, it

proves useful to consider these variations as independent coordinates because of their

vastly different timescales. Figure 2-13 shows the diurnally averaged insolation for the

year of 10 KY BP contoured as a function of latitude and day. A matrix representation

of this information can be written as X, with N = 180 rows of latitude and M = 365

days of the year (matrices will always be printed in bold-face). To project X onto a

set of Legendre polynomials, form another matrix L with N columns corresponding

to polynomials 0 to N − 1 and M = 180 rows corresponding to latitude. Then,

P = LX, (2.13)

gives the loadings associated with each Legendre polynomial. By recombining the

Legendre polynomials according to the loadings, X can be approximated,

X ≈ LTP = LTLX,

where the accuracy depends on the number polynomials included in L and how well

these polynomials span the vector space of X. As the Legendre polynomials are or-
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Figure 2-12: The Legendre polynomials from order zero to three, each normalized to
unit variance. Note zero and even orders are symmetric, while the odd orders are
anti-symmetric. P0 alone has a non-zero mean and represents mean global changes
in insolation; P1 represents the inter-hemispheric gradient in insolation; P2 indicates
hemispherically symmetric differences between high-latitude and low-latitude inso-
lation; and P3 indicates hemispherically anti-symmetric differences between high-
latitude and low-latitude insolation. Higher order polynomials account for only a
small fraction of the variability and are not discussed.

thogonal, LTL = I, where I is the identity matrix. The utility of this decomposition

is that X can be reconstructed to a high degree of accuracy using a small number

of polynomials: on average, the first four explain 99.9% of the variance in diurnally

averaged insolation, the first eight explain 99.9994% [see Figure 2-13]. The actual

variance explained by each polynomial changes according to the day of the year. As

might be expected, the larger inter-hemispheric insolation asymmetry during summer

or winter makes the odd Legendre polynomials more important for explaining insola-

tion variance, while during the equinoxes, the even polynomials describe more of the

insolation variance. The diurnally averaged insolation calculations are weighted by

the fraction of surface area they represent. All insolation calculations are made refer-

enced to a vernal equinox fixed at March 20th. Note, this differs from the Gregorian

calendar which has the vernal equinox occur on either March 20th or 21st so as to

maintain an integer number of days in the year.

Having considered the decomposition of the seasonal-spatial variability, now at-
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Figure 2-13: Regression of diurnally averaged insolation variability onto the Legendre
polynomials. a Diurnally averaged insolation contoured in Watts per meters squared
against latitude and day for 10 KY BP. b The fraction of the insolation variability ex-
plained by Legendre polynomials of order zero through four L(0−4) for each day of the
year. By way of example, note that during the solstices, when insolation is meridion-
ally symmetric, the fraction of variance explained by L2 (symmetric) increases while
L(1,3) (anti-symmetric) goes to zero. The vertical dotted line indicates the vernal
equinox which, in the convention used here, always occurs on day 80 (March 20th).
c shows residual insolation variability after subtracting the full calculated insolation
quantities by the reconstruction using only L(0−3); d is the residual using L(0−7).
L(0−3) explains 99.9% of the meridional insolation variability, while L(0−7) explains
99.9994%.

tention is turned to the secular-spatial variability. Figure 2-14 shows global insolation

for a fixed day of the year, July 15th, over a period of 40KY and its representation

using a small number of the leading Legendre polynomials. There is less overall

variability to explain than in the seasonal case because, for example, mean spatial
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insolation, L0, only changes slightly depending on the precession and eccentricity, and

the hemispheric gradient, L1, varies in amplitude according to the obliquity but is

always positive. The leading four Legendre polynomials explain 98% of this secular

(i.e. long-term) variability, and the leading 8 explain 99.997%. Thus the Legendre

polynomials provide an efficient description of the meridional insolation variability at

seasonal and secular timescales.
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Figure 2-14: Similar to Figure 2-13 but now for a fixed day with time-steps in KY.
a Average July 15th insolation in W/m2 contoured against latitude and KY BP. b
The fraction of the insolation variability explained by Legendre polynomials, L(0−4),
for each KY BP. Variations in polynomial loadings are related to secular variations in
earth’s orbit, and are much less pronounced than for the annual variability. c shows
residual insolation variability after subtracting the full calculated insolation quantities
by the reconstruction using only L(0−3); d is the residual using L(0−7). L(0−3) explains
98% of the meridional insolation variability, while L(0−7) explains 99.997%.
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2.5.2 Temporal variability

The time-varying weights associated with the n-th Legendre polynomial, Pn, (from

Eq. 2.13) are of a length equal to the number of time-steps, which for most applications

is still too large to be easily interpreted. The difference in timescales between seasonal

and secular orbital variations suggests rearranging Pn into a matrix Pn with rows

corresponding to days and columns corresponding to years. The secular changes

in earth’s orbit are smoothly varying (nearly band-limited), and with little loss of

information only one year out of each KY needs to be recorded in the columns of Pn.

A basis set for Pn could be motivated through the knowledge that both the annual

cycle and secular changes in Earth’s orbit must be present. A somewhat more general

approach, however, is to take the singular value decomposition [e.g. Wunsch, 1996;

von Storch and Zwiers, 1999] of Pn,

UnSnV
T
n = Pn.

Here U represents the daily variability while V represents inter-annual changes in

insolation. This orthogonal decomposition is ordered such that the first row of Un,

multiplied by the transpose of the first row of Vn, together known as the first set

of singular vectors, explains the largest fraction of variance in Pn. The second set

of singular vectors explains the largest possible fraction of the remaining variability

in Pn, and so on. All the variance will be explained when the number of pairs of

singular vectors is less than or equal to the number of columns or rows (whichever is

less) in Pn. The fraction of variance explained by each pair of singular vectors is,

lkn =
(Sk

n)2

∑

k(S
k
n)2

,

where Sn is a diagonal matrix containing the singular values, and Sk
n is the singular

value corresponding to the kth set of singular vectors.

2.5.3 A simple example

At this point it is useful to consider a simple example. Assume a fictional sun-earth

system where the spatial distribution of diurnally averaged insolation is uniform, e.g.

a cylinder whose axis is perpendicular to the orbital plane. In this case, only the

Legendre polynomial L0 is required, and the time-variable weightings are given by
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P0. Further assume that the temporal variability in insolation is,

I(d, y) =

[

1

1 − e(y)2

]2

×
[

340 + 20 sin

(

2πd

365

)]

, (2.14)

where the seasonal cycle is a function of the day, d, and the amplitude is a function

of the eccentricity, e, on year, y. Here, the year is approximated as having an integer

number of days. The selected constants in Eq. 2.14 give values roughly corresponding

to the seasonal variations in global mean insolation, measured in W/m2. The ec-

centricity term in Eq 2.14 represents the secular insolation variability, while the sine

term represents the seasonal variability.

Continuing with the simple example, P0(d,y)=I(d,y) because insolation is spa-

tially uniform. Furthermore, the singular value decomposition of P0 will only require

a single pair of singular vectors with U∼ (340+20 sin( 2πd
365

)), V∼ [1/(1−e(y)2)]2, and

a singular value S=
∑

y

∑

d I
2(d, y); the ’∼’ means proportional to. Thus, insolation

at any given latitude (φ), day (d), and year (y) can be calculated as,

I(φ, d, y) = L0(φ) U(d) S VT (y).

Note that the variability in space, seasonal time, and secular time are divided between

the Legendre polynomials, U singular vectors, and V singular vectors respectively.

In this simplified case, the result is trivial, and there is little benefit to representing

the insolation in terms of Legendre polynomials and singular vectors. However, for

the real insolation variability, the Legendre/singular vector representation proves an

efficient descriptions which provides real insight into the modes of insolation variabil-

ity.

2.5.4 Interpretation

Returning now to the real earth-sun system, Figure 2-15 shows the fraction of variance

explained by each set of singular vectors for each matrix of Legendre polynomials,

Pn. The leading three pairs of singular vectors explain over 99.99% percent of the

variance in each Pn. After the first, the singular values associated with each Pn come

in pairs — that is, the second and third set of singular vectors explain nearly equal

amounts of variance, likewise for the fourth and fifth, etc. Closer inspection of these

paired singular vectors indicates that they are nearly identical, except for a 90◦ shift
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Figure 2-15: The variance explained by the leading singular vectors for each matrix of
Legendre polynomial weightings, Pn. In each case, the leading singular vector explains
over 99% of the variability in the weightings — note the logarithmic scaling of the
y-axis. The variance explained by higher order singular vectors comes in pairs, where
each pair explains roughly 99% of the remaining variance. In this case, the pairings of
explained variance indicates the presence of a traveling wave of insolation, due to the
effects of precession on climate. Since the anomalistic year, controlled by precession,
comes in and out of phase with the tropical year, which is controlled by obliquity,
the precessional influence is manifested as a traveling wave, and is represented by two
sets of singular vectors which are separated by 90◦ of phase.

in phase. This result implies the presence of a traveling wave present in the insolation

variability. Because its phase shifts relative to the basic seasonal cycle, two sets of

singular vectors are required to explain this wave, in direct analogy with adding a sine

and cosine together to form a new signal with the same period but different phase.

It is possible to describe this wave using a single set of complex singular vectors,

by means of a Hilbert transform of Pn [e.g. von Storch and Zwiers, 1999], but for

these purposes it is simpler to interpret the second and third sets of singular vectors

together.

To understand the presence of this traveling wave, observe that Eq. 2.1 contains

two different annual periods: λs and λs − $. λs has a period of one tropical year

(365.2422 days) and measures the mean interval between vernal equinoxes. Following

the example of the Gregorian calendar, the insolation calculations used here define

the vernal equinox as the 80th day of year, tying the seasonal phase to the vernal

equinox and the tropical year. The λs −$ period is associated with the anomalistic

year (currently equal to 365.2422 days minus 1/21,000KY, or 365.2596 days) and
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measures the time from one perihelion passage to another. Because insolation is

calculated with respect to the tropical year, in the time it takes the angle of perigee,

$, to make a 360◦ rotation the anomalistic year will move in and out of phase with

the tropical year, thus manifesting as a 21KY period traveling wave in the insolation

calculations. Thomson [1995] has made the somewhat perplexing observation that

temperatures in different cities around the world seem to follow one or the other of

these annual cycles. Thus, this seemingly small difference in years appears to have

real physical effects even on relatively short timescales.

This dual-period year effect is present in all insolation calculations, but only when

the full annual cycle is resolved does it become obvious. When only a portion of the

year is resolved, a significant fraction of the variability can be due to the anomalistic

year coming in and out of phase with the tropical year. If only a portion of the annual

cycle or a portion of the meridional variability is resolved, it is difficult to distinguish

between a traveling wave, changes in mean annual insolation, and meridional shifts

in insolation. Presumably, each of these redistributions of insolation will force differ-

ent types of climatic responses, and it appears knowledge of the full insolation field

is crucial when attempting to understanding the dynamical response to insolation

forcing.

Figures 2-16 through 2-19 shows the leading three singular vectors associated

with each matrix of Legendre polynomial loadings, Pn. The singular vectors of the

Pn describe how the spatial patterns of insolation vary at both seasonal and secular

timescales. The singular vectors associated with the U describe the daily variations in

insolation and are referred to as the seasonal vectors; while the V describe long-term

changes in insolation and are called the secular vectors. For instance, variations in

eccentricity cause changes in net annual insolation and are therefor associated with

the secular vectors of P0 [see Figure 2-16]. The leading secular vector associated

with P0, as originally computed, had a small component of precessional variability

which accounted for less than 0.0001% of the spatially averaged insolation variance.

To make the mean annual insolation variability easier to interpret [see Figure 2-16],

this precessional variability was removed and placed in the precessional vectors. This

was the only change made. For the decomposition of the other Pn, n > 0, the secular

variability in the leading set of singular vectors is determined by obliquity, and these

singular vectors are therefor referred to as the obliquity vectors. The secular variability

in the second and third sets of singular vectors are controlled by the climatic precession
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and its 90◦ phase shift, e cos($), and are referred to as the precession vectors.

The seasonal obliquity vectors associated with even (symmetric) Legendre poly-

nomials [see Figures 2-16 and 2-18] have a non-zero mean value indicative of changes

in obliquity causing meridional redistributions of insolation. Conversely, changes in

precession are independent of any annual mean variations at any latitude and thus the

seasonal precession vectors are always zero-mean. It appears that the net insolation

received by each hemisphere is equal as the seasonal vectors associated with all the

odd (asymmetric) Legendre polynomials [e.g. Figures 2-17 and 2-19] are zero mean.

The precession vectors associated with odd (asymmetric) Legendre polynomials

[see Figures 2-17 and 2-19] are doubly-periodic. To understand this, consider the case

when aphelion occurs at the summer solstice. Then the argument of perigee is 90◦,

climatic precession is positive, and cos(90◦) = 0: thus, the only precessional contri-

bution will come from the seasonal vector associated with the precession parameters.

By Kepler’s second law, being closer to the sun during Northern Hemisphere summer

means the Earth will move more quickly, therefor reaching summer solstice prior to

the average date of June 19th (depending on the magnitude of eccentricity). Summer

solstice is a maximum in the inter-hemispheric gradient, and approaching it quickly

results in an anomalously large insolation gradient for that period of the year. In ad-

dition, being closer to the sun during summer solstice increases the inter-hemispheric

gradient in insolation. Because Earth reached the summer solstice quicker than usual,

it also leaves more quickly, and by mid-July the precessional effect is negative. This

negative trend continues, reaching a minima at the autumnal equinox. Note that

adding this precessional seasonal vector to the obliquity vector yields seasonal vari-

ations which have both the summer solstice maximum and the autumnal equinox

zero-crossing occurring earlier in the year. The cycle then repeats for the Northern

hemisphere winter solstice, but now with a relatively slow Earth velocity, an anoma-

lously large distance to the sun, and a change in sign of the insolation-gradient. These

effects combine to create another oscillation with a maximum during the winter sol-

stice, giving the doubly-periodic signal. The larger response during the autumnal

equinox occurs because its date has the most variability, being furthest away from

the fixed vernal equinox.

Paralleling the simple example given earlier, the insolation, I, is represented as

I(φ, d, y) =
N
∑

n=0

L(φ, n)

(

M
∑

m=1

Un(d,m)Sn(m,m)Vn(y,m)

)

, (2.15)
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Figure 2-16: Singular value decomposition of P0 showing spatial average insolation
variability over the last 1000 KY. The seasonal singular vectors (left) are scaled to
units of W/m2; the secular singular vectors (right) indicate the modulation of the
mean and annual variability. a,b: The leading pair of singular vectors explain 99.8%
of the spatial average insolation variance. a, the leading seasonal singular vectors
represents the spatial and time average insolation over the last million years, 341.4
W/m2; the solar constant is 1365 W/m2. There is no seasonality associated with this
mean value, thus the flat line. b, the secular variations in total annual insolation
are only a function of eccentricity, scaling as 1/(1 − e2)2, and increasing by 0.65%
from a minimum eccentricity, 0.005, to a maximum, 0.057. As discussed in the text,
a slight modification was made to these singular vectors. c,d: the second and third
sets of singular vectors, termed the precession vectors, show the anomalistic year
coming in and out of phase with the tropical year and each account for 0.1% of the
variance, almost all the variance not explained by the leading set of singular vectors.
c, the seasonal precession vectors are a sine (solid) and cosine (dashed) pair with
zero phase at the vernal equinox (the vertical dotted line at day 80, or March 20th)
and can together be interpreted as a traveling wave. d, variations in eccentricity
and argument of perigee control the amplitude and phase of this annual period wave
in spatial average insolation. One secular precession vector is proportional to the
precession parameter (solid); the other is phase shifted by 90◦, and is proportional to
e cos$ (dashed).
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Figure 2-17: Similar to Figure 2-16 but for P1 — the inter-hemispheric gradient in
insolation. a, b: the leading set of singular vectors, termed the obliquity vectors,
account for 99.4% of the variance in the insolation gradient. a, The leading seasonal
obliquity vector is a sine wave with an annual period, amplitude of 110 W/m2, and
zero phase at the vernal equinox (vertical dotted line) — during the equinoxes there
is no inter-hemispheric gradient in insolation. The seasonal obliquity vector is zero
mean because changes in obliquity redistributes insolation between the hemispheres,
but does not change global insolation values. b, the annual variability in insolation
gradient is modulated by up to ±4% due to changes in obliquity. Because obliquity is
always positive, the associated secular singular vector is also a positive function. c,d:
The precessional vectors together explain 0.5% of the inter-hemispheric gradient. c
The seasonal variability is mostly controlled by changes in the timing of the inter-
hemispheric insolation gradient. As the vernal equinox is fixed to March 20th and,
by definition, has no inter-hemispheric gradient in insolation its value must be zero.
The doubly-periodic nature of the seasonal vectors and the large excursion near the
autumnal equinox is explained in the text. d Changes in climatic precession can add
or subtract up to 20 W/m2 from the inter-hemispheric insolation gradient. Note the
precession singular vectors are zero mean because precession variations do not affect
annual mean insolation at any latitude.

and is a function of latitude (φ), the day (d), and the year (y). The inner summation

is over the leading M singular vectors to obtain the weighting for the nth Legendre
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Figure 2-18: P2 measures symmetric shifts of insolation from low-latitudes towards
the high-latitudes (> 52◦). a,b the leading set of singular vectors accounts for 99.8%
of the variability in P2 (0.0012% due to obliquity variability), and always contributes
a negative value (note the secular obliquity vector is negative), primarily accounting
for the increased angle of incidence at high-latitudes. a, The seasonal singular vector
is proportional to a doubly-periodic cosine wave with zero phase at the vernal equinox
plus a mean value of 215W/m2. During the equinoxes insolation is at a maximum
over the equator, thus the obliquity vectors make a maximal negative contribution.
The double-period reflects the suns twice-annual zenith in the tropics. b, the secular
obliquity vector is negative because an increase in obliquity causes greater inter-
hemispheric asymmetry and less variance to be explained by the symmetric Legendre
polynomial, P2. c,d The precession vectors together explain 0.2% of the variance in P2

and are nearly the negative of those associated with P0. c When the Earth is closest
to the sun during vernal equinox, that is cos($) = 1), the earth receives roughly 10
W/m2 more insolation at low-latitudes than at high latitudes. As is generally the case
for the Legendre polynomials greater than zero, the seasonal precession vectors are not
perfect harmonics because of the change in the timing of the seasons (i.e. frequency
modulation) caused by precession and changes in eccentricity. d Precession can cause
symmetric shifts in insolation from high to low latitudes with magnitudes as high as
20 W/m2. These effects are purely seasonal, however, and average out in the annual
mean.
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Figure 2-19: P3 primarily describes shifts of insolation from the Northern mid-
latitudes to the Southern mid-latitudes. This seasonal vectors are nearly the negative
of those for P1, suggesting that when the gradient in insolation is energized, so are the
Northern mid-latitudes at the expense of the Southern mid-latitudes. a, b The obliq-
uity vectors describe 99.4% of the variance. During Northern hemisphere summer
this mode indicates there are 160W/m2 more insolation at Northern than Southern
mid-latitudes. Changes in obliquity will modulated this value by up to ±4%. c,d
The precessional vectors explain 0.5% of the insolation variability, and again have a
doubly-periodic structure due to changes in the timing and amplitude of the seasons.

polynomial as a function of time. The Un matrix represents the seasonal variability in

the Legendre polynomials weights. When n is odd, the annual average Un weights are

zero mean, demonstrating that the net annual insolation received by each hemisphere

is equal. The Vn matrix represents the secular variability in Legendre polynomial

weights. The secular variations in V are composed of either eccentricity, obliquity, or

precession signals depending on the n and m. The precession variability in V is zero-

mean as there are no net annual changes in I resulting from precession. The leading

four singular vectors (M=4) and four Legendre polynomials (N=4) are generally

sufficient to reconstruct over 99% of the variability in I.
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2.5.5 Take home messages

Any single timeseries of insolation can only represent a single spatial quantity (e.g.

the value at a point, a mean, or a gradient) and a single time coordinate (a day of

the year, or some average). The difficulty with using only one timeseries is that it

is difficult to distinguish between changes in seasonality, the meridional distribution

of insolation, or the mean value. From a physical point of view, a change in the

seasonal timing of insolation is very different from a change in the latitudinal distri-

bution of insolation, and the two should not be confused. Derived quantities, such as

the insolation gradient between two latitudes, are useful but nonetheless incomplete

representations of insolation variability — the inter-hemispheric gradient, L1, ac-

counts for less than 10% of the total spatial insolation variance. It is better to think

of changes in the orbital parameters as causing changes in the relative weightings

of meridional (the Legendre polynomials) and seasonal (annual or bi-annual cycles)

modes of insolation variability. The compact representation of insolation developed

here accurately represents the connection between changes in the orbital parameters

and both seasonal and spatial modes of variability.

Each spatial model of variability has secular variability owing to multiple orbital

parameters. The relative variance attributable to each orbital parameter is a function

of the spatial mode and time of year considered. Arguments that attempt to rational-

ize the relative strengths of orbital variations, or the phase of precession variability,

must consider both the spatial and temporal influence on the climatic quantity ob-

served. Furthermore, the likelihood that time-varying climate signals are rectified by

their recording devices adds another layer of complexity in interpreting proxy records

of the climate. Thus, one should be wary of assuming a fixed ratio of orbital energies,

or fixing the phase of the precessional variability, when investigating orbital climate

change. Note that choosing a single timeseries of insolation does fix the relative am-

plitudes and phases. For applications where a small number of insolation timeseries

is desirable, it appears better to follow the example of Imbrie and Imbrie [1980] and

work directly with the obliquity and (phase variable) precession parameters.
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Chapter 3

A Depth-Derived Age-Model and

Nonlinear Climate Change

The material included in this chapter is reproduced verbatim from Huybers and Wun-

sch [2004]. In addition to the original paper, an appendix is included concerning the

averaging of records whose relative ages are uncertain.

A chronology of glaciation, spanning the last 780,000 years, is estimated from

21 marine sediment cores using depth as a proxy for time. To avoid biasing this

“depth-derived” age estimate, the depth-scale is first corrected for the effects of sed-

iment compaction. To provide age uncertainty estimates, the spatial and temporal

variability of marine sediment accumulation rates are estimated and modeled as an

autocorrelated stochastic process. Depth-derived ages are estimated to be accurate

to within ±9, 000 years and within this uncertainty are consistent with the orbitally-

tuned age estimates. Nonetheless, the remaining differences between the depth and

orbitally-tuned chronologies produce important differences in the spectral domain.

From the δ18O record, using the depth-derived ages, we infer that there are weak

nonlinearities involving the 100KY and obliquity frequency bands which generate in-

teraction bands at sum and difference frequencies. If an orbitally-tuned age-model is

instead applied, these interactions are suppressed, with the system appearing more

nearly linear.

89



3.1 Introduction

Inference concerning past climate change relies heavily upon the assignment of ages

to measurements and events recorded in marine and ice cores as well as to a variety of

isolated markers in the geological record. Sedimentation and snow accumulation are

analogous to strip-chart recorders, marking the past climate state in a large variety

of physical variables. These records tend to be noisy and blurred by bioturbation

and a variety of diffusive-like processes, [e.g. Pestiaux and Berger, 1984]. The ma-

jor difficulty however, is that these strip-chart recorders run at irregular rates, stop

completely, or even rewind and erase previous sections. If depth is taken as a simple

proxy for time, irregularities in sedimentation stretch and squeeze the apparent time

scale, and so distort the signals being sought. To the degree that the changes in rates

are proportional to the signals themselves, one has a challenging signal demodulation

problem. It is not an exaggeration to say that understanding and removing these

age-depth (or age-model) errors is one of the most important of all problems facing

the paleoclimate community. Timing accuracy is crucial to understanding the nature

of climate variability and the underlying cause and effect. Here we attempt to under-

stand the nature of some of these age-model errors, and to then apply that insight to

construct a time scale for marine sediment cores spanning the last 780,000 years.

The currently favored method for estimating Pleistocene age is orbital-tuning

[e.g. Imbrie, 1984; Martinson et al., 1987; Shackleton et al., 1990] wherein a constant

phase relationship is assumed between paleo-climatic measurements and an insolation

forcing based on Milankovitch theory [Milankovitch, 1941]. One of the well-known

successes of orbital-tuning was the Johnson [1982], and later Shackleton et al. [1990],

prediction of a Brunhes-Matuyama magnetic reversal (B-M) age older than previously

estimated, an inference which was subsequently confirmed by argon-argon dating [e.g.

Singer and Pringle, 1996]. A number of radiometric dates for termination 2 also

support the orbital age-model [e.g. Broecker et al., 1968].

Milankovitch theory however, has come under question [e.g. Karner and Muller,

2000; Elkibbi and Rial, 2001; Wunsch, 2003a] and radiometric ages conflicting with

the orbital ages have also been reported: for termination 2 by Henderson and Slowey

[2000], and Gallup [2002]; for terminations 3 by Karner and Marra [1998]; and for a

variety of events by Winograd et al. [1992], among others. To understand long term

climate change, it is necessary to resolve these conflicting age estimates. To avoid

circular reasoning, an age-model devoid of orbital assumptions is needed.
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As suggested by Shaw [1964], the age of geological events identifiable in multiple

stratigraphies may be estimated using mean sediment accumulation rates, here termed

“depth-derived” ages. The literature has numerous examples of depth-derived ages

[e.g. Shackleton and Opdyke 1972, from 900 to 0 KY BP; Hays et al. 1976, 500-

0 KY BP; Williams 1988, 1900-0 KY BP; Martinson et al. 1987, 300-0 KY BP;

and Raymo 1997, 800-0 KY BP], but whose results have been inconclusive. The

most comprehensive existing study, that by Raymo [1997], used 11 marine sediment

cores. Owing to her inference of systematic core extension during recovery, she could

not distinguish between the conflicting orbital and radiometric termination 2 age

estimates.

This present study extends the depth-derived approach to 21 sediment cores, de-

scribed below and, in what is a critical factor, accounts for the down-core trend in

sediment compaction. An age uncertainty estimate for the depth-derived age-model

is provided, in part, by modeling accumulation rate variability as an autocorrelated

stochastic process. Within the estimated uncertainty, the depth-derived and orbital

age-models are consistent with one another, but the depth-derived age-model implies

nonlinear relationships between earth’s orbital variations and the δ18O climate proxy

that are absent when the orbital age-models are applied.

3.2 Data

An ensemble of 26 δ18O records from 21 separate coring sites are used in this study.

The core sites are shown in Figure 3-1 and can be divided into four geographical

regions: the North Atlantic, Eastern Equatorial Pacific, Equatorial Atlantic, and the

Indian and Western Equatorial Pacific Oceans. Core site locations heavily favor the

northern hemisphere. Four of the records are from piston cores (V22-174, V28-238,

V28-239, and MD900963) while the remainder are composite records spliced together

from multiple cores recovered by the Deep Sea Drilling Program (DSDP) or Ocean

Drilling Program (ODP). For ODP and DSDP sites, the composite depth scale or, if

available, the ODP revised composite depth scale, is used. Table 3.1 lists the pertinent

statistics and a reference for each core.

All δ18O records that were available to us, believed to be stratigraphically intact,

and which extend through the B-M were included in this study. Use of planktic

records, in addition to the benthic, allows for the inclusion of seven more sediment
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Name Reference Species S̄ 4t W. Dep Lat Lon

DSDP502T Prell, 1982 P 1.9 6.5 3052 12N 79E

DSDP552MT Shackleton and Hall, 1984 B 1.9 6.4 2301 56N 23W

DSDP607MT Ruddiman et al., 1989 B 4.0 3.5 3427 41N 33W

MD900963M Bassinot et al., 1994 P 4.6 2.3 2446 5N 74E

ODP659M Tiedemann et al., 1994 B 3.1 3.9 3070 18N 21W

ODP663 de Menocal et al., unpublished P 3.9 3.0 3706 1S 12W

ODP664M Raymo, 1997 B 3.7 3.4 3806 0 23W

ODP677MT Shackleton et al., 1990 B,P 3.9 2.1,1.8 3461 1N 84W

ODP758MT Chen et al., 1995 B,P 1.6 6.5,6.7 2924 5N 90E

ODP806T Berger et al., 1994 B,P 2.0 4.8 2520 0 159E

ODP846MT Mix et al., 1995a B 3.7 2.5 3461 3S 91W

ODP849MT Mix et al., 1995b B 2.9 3.6 3296 0 111W

ODP851MT Ravelo and Shackleton, 1995 P 2.0 5.0 3760 2S 110W

ODP925 Bickert et al., 1997; B 3.7 2.2 3041 4N 43W
Curry and Cullen, 1997.

ODP927T Cullen et al., 1997 B,P 4.5 3.2,2.2 3315 6N 43W
Curry and Cullen, 1997.

ODP980T Flower, 1999; B 12.3 1.6 2169 55N 17W
McManus et al. 1999, 2002;
Oppo et al. 1998, 2001.

ODP982T Venz et al., 1999. B,P 2.5 2.3,2.0 1134 57N 18W

ODP983 Channell et al., 1997; B 11.4 .9 1983 61N 22W
McManus et al. 2003.

V22-174 Thierstein et al., 1977 P 1.8 5.3 2630 10S 13W

V28-238MT Shackleton and Opdyke, 1976 P 1.5 5.5 3120 1N 160E

V28-239M Shackleton and Opdyke, 1976 P 0.9 5.6 3490 3N 159E

Table 3.1: The characteristics and primary references for each core. An ’M’ ap-
pended to the core name indicates the B-M was identified via magnetic susceptibility
measurements, and a ’T’ indicates the availability of a published orbitally-tuned age-
model. Columns from left to right display δ18O species benthic (B) and/or planktic
(P), the mean sediment accumulation rate (S̄, cm/KY), the mean interval between
δ18O measurements (4t,KY ), water depth (meters), and the latitude and longitude
of each core site.
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Figure 3-1: The locations of the records used in this study. Markings indicate geo-
graphic groupings: the North Atlantic (circles), Indian and Western Equatorial Pacific
(triangles), Equatorial Atlantic (diamonds), and Eastern Equatorial Pacific Oceans
(squares).

cores and decreases the uncertainty associated with the depth-derived age-model.

The depth of the B-M was reported in the literature as identifiable via magnetic

stratigraphy in 12 of the 21 cores, and these cores are indicated by an “M”appended

to the name in Table 3.1. For the δ18O records associated with these 12 cores, the B-M

invariably occurs within δ18O stage 19. Where the B-M transition is not identifiable,

the depth of event 19.1 – the most negative δ18O value in stage 19 – is instead used,

and in all cases an age of 780 Kiloyears before present (KY BP) [Singer and Pringle,

1996, rounded to the nearest ten KY] is assigned.

At the outset, it is convenient to correct for the effects of compaction on the depth

scale. Sediment compaction typically increases with depth [e.g. Bahr et al., 2001]

and thus systematically compresses a greater quantity of time into a given depth

interval. Assuming that the estimated trends in porosity reflect inhomogeneities in

relative compaction, we apply a correction based on conservation of dry sediment

volume wherein the thickness of each sediment layer is adjusted so as to remove

trends in porosity. Porosity trends are estimated by fitting a low order polynomial to

porosity observations; for cores without observed porosity profiles – comprising 13 of

the 21 cores – the mean down-core porosity trend from the observed porosity profiles is
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instead used. While this method introduces an age-model uncertainty of up-to ±6KY,

the alternative is an expected age-model bias of up-to 15 KY. See Appendix A for

more details. All subsequent depth references are to this de-compacted scale. Note

Huybers [2002] did not adequately account for the effects of compaction and thus

arrived at older age estimates.

It is helpful to define some terminology used in estimating the depth-derived age-

model. An “event” is a δ18O feature whose depth can be uniquely identified within

each δ18O record. When an age is fixed to an event, it becomes an age control point

(ACP). Two types of events are referred to, “stages” and “terminations.” Stages are

defined as local minima or maxima in the δ18O record [Prell et al., 1986] where the

numbering system suggested by Imbrie et al. [1984] is used. All the stages referred

to in this study have odd numbers after the decimal point, corresponding to low ice

volume excursions in the δ18O record. Terminations are defined as an abrupt shift

from glacial to interglacial conditions [Broecker, 1984], where the assigned depth is

the midpoint between the local δ18O minimum and maximum. Figure 3-2 shows the

eight termination mid-points and nine stages which were visually identified in each

δ18O record. For comparison purposes, figure 3-2 also shows these seventeen events

identified on the SPECMAP δ18O stack [Imbrie et al., 1984].

A second, more objective, method of event correlation was also implemented using

an automated cross-correlation maximization procedure. Within an expected error

of 1KY, this algorithm, termed XCM, yielded event correlations which were identical

to those determined from the visual procedure. This result gives some confidence in

the ability to relate events in different δ18O records. For more detail see Appendix B

and Huybers [2002].

The choice of seventeen ACPs reflects a minimalist strategy for constraining the

δ18O record, especially when compared with the SPECMAP δ18O stack which uses

over 90 ACPs in the same 770KY interval. We do not use more ACPs for three

reasons: (1) only a small decrease in age-model uncertainty would result (Section 4.1);

(2) while more high-frequency structure in the composite δ18O record is expected to

be retained, false structure could be built into the averaged record by aligning noisy

features; and (3) more ACPs are not expected to aid in resolving the spectra of higher-

frequency processes because of the spectral smearing due to age-model uncertainty

(Section 5.1).
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Figure 3-2: The δ18O isotope records, grouped into the four geographic categories shown in
Figure 3-1: the North Atlantic (top left), Eastern Equatorial Pacific (top right), Indian and
Western Equatorial Pacific (bottom left), and Equatorial Atlantic Oceans (bottom right).
As described in the text, simultaneity between all records is enforced at 17 isotopic events.
The ordinate is labeled with the B-M boundary location and termination numbers. The
abscissa is to scale, and the δ18O records are vertically off-set from one another. The arrows
at each event indicate how the age-model was adjusted from a linear age-depth relationship
beginning with stage 18.3 and working toward stage 5.1. The letters B and P are appended
to the record name to indicate it as benthic or planktic. Bottom panel is the SPECMAP
δ18O stack oriented such that upward indicates lighter δ18O (inter-glacial). The SPECMAP
stack is labeled with each of the 17 events for which ages are later estimated and the ordinate
is arbitrary. Note that in this paper, time always increases to the right.
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3.3 Time and sediment accumulation

3.3.1 A random walk model

To understand the relationships between age and depth, we need a model of sediment

accumulation rates. Both are expected to have systematic and stochastic elements,

the latter here modeled as a random walk. Let dn be the depth of a layer of sediment

in a core at timestep n. Then for a unit time step, 4t, dn increases as,

dn+1 = dn + 4tS̄ + 4tS ′
n +Wn, (3.1)

where S̄ is the mean sediment accumulation rate, S ′
n is the zero-mean stochastic

contribution, and Wn is a systematic term. Dividing by S̄ converts the change in

depth for each increment to a true time increment plus two anomaly terms,

t′n+1 = t′n + 4t+ 4tS
′
n

S̄
+
Wn

S̄
, (3.2)

where t′n = dn/S̄, is the linear age estimate. Wn is treated here primarily as the

sediment compaction affect – see Appendix A – although long-term variation in bio-

productivity, terrigenous discharge, dust transport, and coring artifacts are also im-

plicated. We focus first on the random element.

The simplest case is when S ′
n is a white noise process, < S

′

nS
′
m >= 0, n 6= m

(brackets, < · >, denote an ensemble average) and the variance of the difference

between the apparent and true time grows linearly on average [Feller, 1966],

< (t′n − n4t)2 >= n4tσ
2

S̄2
. (3.3)

where σ2 =
〈

S
′2
n

〉

. Following Moore and Thomson [1991] and Wunsch [2000], we

term the variance growth rate the “jitter,”

J =
(

σ

S̄

)2

, (3.4)

an appropriate measure when only one δ18O event is constrained to a known age. If

the duration of the temporal random walk is fixed by introducing a second ACP at

t = N∆t, the expected variance between the two fixed points behaves as a “Brownian

bridge” process. Following Odell [1975] and Bhattacharya and Waymire [1990], the
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Brownian bridge analogue of Eq. 3.3 is,

< (t′n − n4t)2 >= n4tJ
(

1 − n

N

)

, 0 ≤ n ≤ N (3.5)

where N is the total number of time steps between the 2-ACPs. Age variance is

then zero at the two end points, with a maximum at the midpoint. Integrating, and

comparing Eqs. 3.3 and 3.5, shows that the inclusion of a second ACP results in a

three-fold reduction in mean age variance.

3.3.2 Determining the stochastic element

To estimate the character and degree of jitter in deep sea sediment cores, it is use-

ful to construct some simple age-models. Rather than using the mixed stage and

termination notation, each event is assigned a number, 1 ≤ k ≤ 17, running in tem-

poral sequence from termination 1 to stage 19.1. Mean accumulation rates in core j

between events 17 (stage 19.1) and 13 (termination 7) can be estimated as,

S̄
(1)
j =

dj,17 − dj,13

160
, (3.6)

where dj,k is the depth of event k, and 160 KY is roughly the duration between events

17 and 13. If event 1 is pinned to an age of 10.6KY before present (BP), the ages of

events 1 through 13 are then estimated as

A
(1)
j,k =

dj,k − dj,1

S̄
(1)
j

+ 10.6, 1 ≤ k ≤ 13, (3.7)

where the superscript indicates the use of one ACP. If a second ACP at the B-M

transition is incorporated, an age-model may be expressed as,

S̄
(2)
j =

dj,17 − dj,1

780 − 10.6
,

A
(2)
j,k =

dj,k − dj,1

S̄
(2)
j

+ 10.6, 1 ≤ k ≤ 17. (3.8)

where 780 KY BP is the age of B-M transition.

Calculation of the variance in age estimates for each event permits comparison

with the random walk models of sediment accumulation. First, the mean age of each
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event is determined by averaging over all cores,

Ā
(i)
k =

1

21

21
∑

j=1

A
(i)
j,k, (3.9)

for both the i =1 and i = 2 ACP cases. When planktic and benthic δ18O records are

available within the same core, only the benthic record is used. The age variance can

then be estimated as,

v
(i)
k =

1

20

21
∑

j=1

(A
(i)
j,k − Ā

(i)
k )2, 1 ≤ k ≤ 17. (3.10)

Figure 3-3 shows the calculated age variances, v
(i)
k i = 1, 2. As expected, v

(1)
k

increases with the elapsed time from event one, t, and v
(2)
k has a Brownian bridge

character. Also shown are the simple random walk and Brownian bridge models

as determined from Eqs 3.3 and 3.5 with J = 10 in both cases. Were the model

adequate, a single value of the jitter should be applicable to modeling both v
(1)
k and

v
(2)
k , but it is evident from Figure 3-3 that J = 10 under-estimates the variance of v(1)

and over-estimates that of v(2). Eq. 3.3 also predicts v
(1)
k is proportional to t, but it

appears more nearly proportional to t2 and is thus inconsistent with the hypothesis

of a simple random walk in sediment accumulation. Some other effect is required to

explain the result.

3.3.3 Sediment accumulation with autocovariance

A generalization of the simple random walk to a correlated random walk is capable

of accounting for the observed quadratic growth in the v(1) age variance. This gen-

eralization is plausible because sediment accumulation rates are themselves climate

variables and can be expected to have a structured frequency spectrum implying

temporal autocorrelation. To proceed, it is first necessary to adopt an age-model

estimated independent of accumulation rates.

The Devils Hole record is devoid of orbital assumptions [Winograd et al., 1992]

and has a radiometric age-model with uncertainties ranging from ±10KY at its oldest

time, 519 KY BP, to ±2KY at its youngest, 140 KY BP. A complication, however,

is that the Devils Hole record is, in places, offset from the marine δ18O by up to 10

to 15 KY and is thus not suitable for directly dating the marine δ18O records [Wino-
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Figure 3-3: The observed age variance (circles), and simple models of age variance
using correlated (solid line) and un-correlated (dotted lines) sediment accumulation
rates. Both the one ACP (left) and two ACP (right) cases are shown with a simple
random walk using J = 10 and a correlated random walk using J = 0.5 and so = 1/40.
The simple random walk respectively under- and over-estimates the age variance,
while the correlated random walk is similar to the calculated variance.

grad et al., 1997; Herbert et al., 2001]. In estimating marine sediment accumulation

rates, only the duration between events needs to be equal, and we assume that the

relative timing between the marine and Devils Hole δ18O records is constant during

most intervals. Acknowledging that this fixed-lag assumption probably breaks down

during glacial maxima and terminations, the marine A(2) age-models are none the less

adjusted to maximize the squared zero-lag cross-correlation between the marine and

Devils Hole δ18O records using the XCM algorithm (see Appendix B). The derivative

of depth relative the adjusted A(2) age-models then provide estimates of accumulation

rates.

For the purpose of comparison, accumulation rates were also estimated from the

orbitally derived age-models provided by other authors, as indicated in Table 1. Fig-

ure 3-4 shows the power density spectral estimates of sediment accumulation rates

using the multitaper method [Thompson, 1990] with both the Devils Hole and the

published orbital age-models. Both spectra may be characterized as,

Φ(s, s0) =
1

s2 + s2
o

, (3.11)

where Φ is the power density and s the frequency. Such a relationship is consistent

with an autoregressive process of order 1 (AR(1)), and implies a minus two power law
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Figure 3-4: The multitaper spectral estimate of sediment accumulation rates for
each record (dots), the mean from all the spectral estimates (dashed line), and an
approximate spectral fit (solid line). Left panel is the analysis using the Devils Hole
age-model, and the right panel is from the orbital age-models. Vertical bars indicate
the approximate 95% confidence interval for the estimates from individual records
(dots).

relationship for frequencies above so, with white noise at the lowest frequencies. The

Devils Hole age-model gives so ≈1/40KY, but the orbital age-models are consistent

with the result of Mix et al. [1995] with so ≈ 1/100KY. This difference in shape

is likely due to errors in one or both of the age-models. The scope of the spectral

damage owing to jitter is unclear, but as discussed later, either value of so gives a

parameterization of accumulation rate variations consistent with the observed v(1)

and v(2) age variances.

To estimate the uncertainty in ages due to accumulation rate variability, it is

simplest to generate ensemble members from the stochastic accumulation model and

calculate derived statistics from them. A synthetic accumulation rate with specified
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jitter (J) and power density (Φ) can be generated as,

S(t) = =−1{η̂
√

JΦ′ (s, 1/40)} + 1, (3.12)

where =−1 is the inverse Fourier transform, η̂ is the Fourier transform of a white noise

process, and Φ′ (s, s0) = Φ (s, so) /
∑

Φ (s, s0) where the sum is over all frequencies.

Summing the accumulation rate gives a depth profile, d(t) =
∑

S(t), with the specified

autocorrelation and jitter. By generating a large number of synthetic depth profiles

and converting each to age with Eq. 3.7, a least squares best fit was sought between

the observed and modeled v
(1)
k , 1 ≤ k ≤ 13, distribution by varying the jitter in

Eq. 3.12. A best fit was achieved with J = 0.5, and the resulting modeled v(1) and

v(2) are shown in Figure 3-3. The autocorrelated random walk model reproduces the

quadratic growth in v(1) and a single value of the jitter fits both the calculated v(1)

and v(2) age variances. Further tests (not shown) indicate the autocorrelated random

walk is equally consistent when greater numbers of age control points are used, and we

will assume the same value of J is appropriate for our 17-ACP model (see Figure 3-7).

If so = 1/100KY, corresponding to the orbitally-tuned accumulation estimates, the

observations are fit equally well using a smaller value of J ; with this method one

cannot distinguish between the Devils Hole and orbital age-model accumulation rate

estimates in the marine cores.

3.4 The depth-derived age-model

An age-model based on a single linear age-depth relationship will be stretched or

squeezed by every variation in sediment accumulation and each coring artifact. We

seek to mitigate these age-model errors by using multiple age-depth relationships.

Table 3.2 indicates the A
(2)
j,k event ages for each record along with the averages, Ā

(2)
k .

An age-model based on these mean event ages, using all 17 events and termed the

“depth-derived age-model,” may be expressed as,

A
(17)
j =

Ā
(2)
k − Ā

(2)
k−1

dj,k − dj,k−1
dj + Ā

(2)
k−1, dj,k−1 ≤ dj ≤ dj,k,(3.13)

1 ≤ j ≤ 21,

2 ≤ k ≤ 17.
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event 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
19.1 18.3 VIII 17.1 VII 15.1 VI 13.11 V 11.1 IV 8.5 III 7.1 II 5.1 I

dsdp502P 780 730 695 660 601 560 510 435 395 342 327 260 220 157 102 49 11
dsdp552B 780 734 693 677 576 519 505 474 362 321 293 265 253 176 122 63 11
dsdp607B 780 730 703 n/a 586 510 488 454 408 361 311 259 206 184 128 91 11
md900963P 780 751 735 715 663 619 563 496 446 412 365 310 278 234 160 73 11
odp659B 780 723 702 673 664 595 558 519 456 389 345 285 237 189 123 73 11
odp663P 780 737 710 664 612 567 534 489 415 356 319 278 230 194 126 86 11
odp664B 780 728 693 660 599 564 527 480 411 368 321 288 228 177 118 82 11
odp677B 780 735 699 680 604 562 526 476 413 378 333 283 244 195 143 96 11
odp677P 780 723 702 676 603 555 527 470 412 368 330 287 243 191 142 99 11
odp758B 780 739 714 679 642 598 558 512 475 458 409 357 293 235 170 123 11
odp758P 780 746 725 691 649 602 562 508 477 450 404 341 290 236 170 128 11
odp806B 780 765 733 709 641 578 530 478 411 370 325 284 235 175 117 73 11
odp806P 780 756 730 705 635 572 528 485 419 367 334 276 232 174 115 72 11
odp846B 780 737 697 676 622 592 552 514 433 378 347 296 256 215 144 99 11
odp849B 780 751 721 712 642 596 558 518 450 404 372 314 276 228 136 82 11
odp851P 780 765 734 687 626 594 484 437 359 328 286 249 213 187 125 87 11
odp925B 780 735 715 698 633 581 553 515 424 379 329 306 231 191 119 75 11
odp927B 780 734 706 680 622 580 542 496 421 395 350 298 255 205 125 84 11
odp927P 780 732 704 688 619 582 542 496 423 386 342 293 248 203 125 84 11
odp980B 780 748 737 726 647 605 568 546 481 397 359 296 238 192 126 83 11
odp982B 780 750 723 684 611 576 529 453 366 286 245 210 170 132 95 78 11
odp982P 780 751 720 693 611 576 522 470 362 289 244 210 164 133 93 74 11
odp983B 780 738 721 686 621 562 504 449 396 328 289 244 198 151 102 80 11
v22-174P 780 736 707 679 612 565 490 433 400 375 346 305 269 224 158 106 11
v28-238P 780 741 718 684 654 615 561 530 481 415 375 305 266 213 133 86 11
v28-239P 780 738 712 672 605 541 506 465 393 363 329 287 236 196 123 78 11
mean age 780 741 713 685 623 576 532 485 419 372 332 284 239 192 129 85 11
uncertainty 3 5 7 8 9 10 11 11 11 11 10 10 9 8 7 6 1
SPECMAP 731 711 693 668 621 574 531 481 423 368 337 287 244 194 128 80 11
ODP677B 784 743 709 690 620 574 531 482 417 382 335 283 243 200 129 73 11
Devils Hole 519 461 416 383 340 287 251 195 142 81
Vostok (GT-4) 383 327 277 240 202 133 85 15

Table 3.2: The A(2) age estimate (KY BP) for each event in each δ18O record, and
the mean age of each event along with its estimated uncertainty (±KY). The events
numbers are listed at top along with the associated stage (Arabic) and termination
(Roman) numbers. For comparison, the orbitally-tuned SPECMAP stack [Imbrie
et al., 1984], orbitally-tuned benthic ODP677 [Shackleton et al., 1990], radiometric
Devils Hole [Winograd et al., 1997], and Vostok GT-4 deuterium age estimates [Petit
et al., 1999] are also shown.

For each record, j, age is linearly interpolated with depth, dj, between each pair of

ACPs, k − 1 and k, yielding a piecewise linear age-model. A
(17)
j is our best-estimate

of the core ages.

3.4.1 Uncertainty analysis

There are at least five sources of error in the A(17) age-model: non-simultaneity

between isotopic events, uncertainty in identifying the depth of each event, variations

in accumulation rates, post-depositional processes, and uncertainty in the age of the

B-M. Each source of error is considered in turn, and a Monte Carlo method is applied

in conjunction with the stochastic sediment accumulation model to assess the overall

uncertainty.

Simultaneity (1) The ocean mixing times for the δ18O signal can range out to 1000

years and longer [Wunsch, 2003c]. Imposing simultaneity between δ18O events, if
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Figure 3-5: Lagged cross-correlation between sets of benthic and planktic δ18O records
measured in the same core. Positive values indicate a benthic lead.

correct, de-blurs this mixing effect. To account for the ocean mixing time, a random

variable with a ±1KY standard deviation is added to the δ18O event ages in the

stochastic sediment accumulation simulation.

(2) This study incorporates benthic and planktic foraminiferal species over a wide

geographic range. Foraminiferal δ18O responds to both the temperature and δ18O of

their environments [e.g. Schrag et al., 1996], and these environmental values likely

fluctuate asynchronously and spatially heterogeneously. The presence of system-

atic offsets between benthic and planktic records can be estimated by means of a

lagged cross-correlation when both species are measured in the same core. Figure 3-5

shows that the five benthic and planktic δ18O pairs used here have a maximum cross-

correlation at positions within a 1KY lag; a 1KY error is included in the stochastic

accumulation model. More localized offsets between benthic and planktic records may

occur in parts of the isotopic sequence, but we find no obvious pattern; if present,

these localized offsets are apparently secondary to uncertainties associated with event

identification.

Identification Owing to machine error in measuring δ18O, finite sampling resolu-

tion, and bioturbational blurring, events are only identifiable to within a finite depth

range [Pisias, 1984; Huybers, 2002]. For the mean accumulation rates of the cores

sampled here, we estimate the depth uncertainty translates to approximately ±4KY.

Larger errors are incurred if δ18O events are misidentified, but we do not account for

this possibility.
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Accumulation Rate Variations (1) Core-site variations in accumulation rate will

introduce errors in linear age-depth relationships, as discussed in Section 3.3.3. Av-

eraging multiple age-depth realizations, to the degree that they are independent,

reduces this uncertainty. An empirical orthogonal functions (EOF, or “singular vec-

tors”) analysis [e.g. Wunsch, 1996; von Storch and Zwiers, 1999] of accumulation rate

variability, as estimated using A(17), indicates there are about 11 degrees of freedom

in accumulation rate variations, and thus also in the age estimates.

(2) Trends in global mean accumulation rates, as monitored at these 21 core sites,

could bias the depth-derived age-model. Spectra from both Devils Hole and from

orbitally-tuned chronologies, however, show low frequency white noise behavior (Fig-

ure 3-4) precluding long period global variations in accumulation. In agreement with

this inference, Lyle [2003] found no evidence for spatially coherent long-period trends

in Pacific carbonate accumulation during the Pleistocene. Thus, no uncertainties due

to trends in accumulation are incorporated into the model.

(3) Porosity is itself a climate variable and is known to change with other com-

ponents of climate system, [Herbert and Mayer, 1991; Hagelberg et al., 1995]. While

random variations in porosity are implicitly accounted for in (2) above, climatically in-

duced quasi-periodic age errors could contribute to the nonlinear and/or non-Gaussian

structure of the δ18O signal discussed below in Section 3.5 [see also Herbert, 1994].

Changes in porosity are often linked with changes in organic and calcium carbonate

deposition [Herbert and Mayer, 1991], and, it is likely that porosity-climate biases

tend to cancel out when one aggregates cores from different ocean basins, owing to

the opposite response of Pacific and Atlantic carbonate cycles. Furthermore, spectral

estimates of sediment accumulation rate variations using the orbital age-models (see

Figure 3-4) show a smooth red-noise trend both on a site-by-site basis and in the

mean. This result indicates the absence of strong quasi-periodic variations in total

accumulation rates, or alternatively that such variability is not resolved by orbital

age-estimates. In Section 5.3 we further evaluate the potential these quasi-periodic

variations have to influence our results.

Post-depositional Effects (1) Appendix A compares A(17) with a similar age-

model in which compaction is not accounted for. The latter displays a bias, with ages,

on average, 10KY older than the compaction-corrected age-model, but tapering to

zero at the fixed end-points. Two sources of error exist in the compaction correction.

First, scatter in the porosity measurements introduces uncertainty in determining
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the trend toward lower porosity with depth. Second, a larger source of uncertainty

results from the absence of porosity measurements for 13 of the records, requiring an

indirect compaction correction as discussed in Appendix A. The combined compaction

correction uncertainty averages ±5KY, and is listed for each event in Table 3 of

Appendix A. While large, this uncertainty is preferable to an age-model bias which

is expected to average 10KY. In future work, the de-compaction uncertainty could

be reduced by using more porosity measurements or, possibly, by accounting for

differential compaction according to sediment composition.

(2) The effects of coring on a sediment column are a further source of uncertainty

for the depth-derived age-model. Most of the records used here are from the advanced

piston corer of the Ocean Drilling Program (ODP-APC) which uses a rigid-drill pipe

and a stationary piston in extracting cores. This drilling method reduces age-depth

uncertainties related to over-sampling, a common problem for conventional non-rigid

piston-corers, and related to under-sampling, a common problem for gravity-corers

[Skinner and McCave, 2003]. A remaining problem, however, is that the depth-scale

of cores obtained with the ODP-APC are typically stretched due to elastic rebound of

the sediment after the core is recovered [MacKillop et al., 1995; and Moran, 1997]. The

degree of rebound depends on sediment lithology and is likely to be heterogeneous.

The high-frequency variations and down-core trends in age-depth relationships caused

by sediment rebound are effectively folded into the previous estimates of accumulation

rate variability and trends in sediment compaction. Because we seek only to estimate

an age-model, it is not necessary to disentangle these in-situ and post-coring sources

of uncertainty.

Brunhes-Matuyama Reversal Singer and Pringle [1996] estimate that the age

of the B-M is radiometrically constrained to within ±2KY. The depth of the rever-

sal however, is not always clearly identifiable [Tauxe et al., 1996] and thus another

uncertainty of ±4KY is added.

Monte Carlo Analysis The combined uncertainties associated with the depth-

derived age-model are incorporated into a stochastic age-depth model and estimated

with a Monte Carlo analysis. All errors, except those associated with the compaction

correction and accumulation rate variations, are modeled as independent realizations

of a zero-mean Gaussian distribution. The expected squared error in the Ā
(17)
k age
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estimates is then,

< e2k >=
1

21
42 + 12 + 12 + 22

∣

∣

∣

k=17
, 1 ≤ k ≤ 17. (3.14)

The first term on the right is the event-depth determination error, assumed to be in-

dependent in each core and hence divided by the number of cores, 21. The second and

third terms are the benthic/planktic timing error and the ocean signal propagation

times. The last term is the estimated radiometric age error applied only for k = 17,

the Brunhes-Matuyama. Apart from the depth determination error, each error is

likely to be correlated between cores, and thus not effectively reduced by averaging.

The compaction correction uncertainty, denoted ck, is strongly correlated between

events, biasing the entire age-model toward either younger or older ages. Realizations

of ck are thus generated by multiplying the expected uncertainty structure (see Table 3

of Appendix A) by single a value drawn from a zero-mean unit standard deviation

Gaussian distribution.

To account for the effects of jitter, a depth profile is generated according to Eq. 3.12

with J = 0.5 and so = 1/40KY. This depth profile nominally spans events 1 (10.6KY

BP) to 17 (780KY BP), and has a true age, t, associated with each depth. Seventeen

depths are identified such that,

t(dk) = Āk 1 ≤ k ≤ 17, (3.15)

where each dk represents the depth of a synthetic-event and Āk are the fixed values

estimated in Eq. 3.9. Applying Eq. 3.8, the depth profile is linearly converted to age

yielding a jittered age estimate for each synthetic-event. This process is repeated

11 times, corresponding to the approximately 11 degrees of freedom in accumulation

rate estimates. Averaging over each of the synthetic records, j, yields a mean jittered

age estimate,

Ā′
k =





1

11

11
∑

j=1

A′
j,k



+ ek + ck, 1 ≤ k ≤ 17, (3.16)

to which the additional ek and ck error realizations are added.

Applying Eq. 3.13 to Eq. 3.16 generates a single stochastic depth-derived age-

model realization. The root-mean-square (rms) age deviation of numerous stochastic

model realizations are used to estimate the expected A(17) age-model uncertainty.

As shown in Figure 3-7, each event is a local minimum in uncertainty and events
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are spanned by short Brownian bridges. The event uncertainties are also tabulated

in Table 3.2 and have a mean of ±9KY. As the magnitude of the short Brownian

bridges is on the order of ±1KY and there are approximately 11 independent age-

depth relationships, additional ACPs and independent age-depth relationships would

only marginally reduce the uncertainty of this age-model. Compared to the expected

accuracy of most geochronological markers, particularly between the B-M and termi-

nation 2, the A(17) depth-derived age-model has good age control.
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Figure 3-6: The impact of age-model jitter on the power spectrum of a harmonic
processes, H (Eq. 3.17). Shading indicates the logarithm of the power estimate plotted
against frequency (1/KY) and the degree of jitter where so = 1/40KY (see Eq. 3.11).
Both plots show spectra of H after distorting its timescale according to the specified
jitter: (a) has errors as expected for a single age-depth relationship, while (b) has
errors as expected for the depth-derived age-model. The degree of jitter expected in a
real core is 0.5, and is indicated by the horizontal dashed line. In (a) only the 100KY
band can be distinguished, while (b) retains good resolution of the 100KY and 41KY
bands and a semblance of the 23KY band.

In Section 5.1 the depth-derived age-model is used in estimating the spectra of

δ18O records. It is expected that higher frequency processes will, in general, be more

susceptible to age-model jitter [Moore and Thomson, 1991; McMillan et al. 2002].
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To gain a sense of the influence jitter will have on spectral estimates, consider the

harmonic process,

H(t) = cos(2πt/100) + cos(2πt/41) + cos(2πt/23). (3.17)

Figure 3-6 shows successive periodograms of H(t′), where time, t, is stretched and

squeezed to t′ using an increasingly large jitter. Jitter is modeled as realizations of

Eq 3.16 with J increasing from zero to one and so = 1/40KY (see Eq. 3.11). For

comparison, periodograms of H(t′) are also shown with the jitter expected for a single

age-depth relationship, i.e. Eq 3.16 with ek = 0 and without the summation. For a

single age-depth relationship, the 100KY variability is poorly resolved, and the higher

frequency variability is smeared into a red-noise back-ground. The depth-derived

age-model does considerably better at resolving the 100KY and 41KY (obliquity)

variability, but none the less has significant spectral smearing associated with the

23KY variability. Thus, if present, excess precession band variability is expected to

be poorly resolved.

3.4.2 Comparison with other age-models

The A(17) age-model makes no assumptions about orbital control of climate, and thus

provides independent age estimates to compare against the orbitally-tuned chronolo-

gies. Figure 3-7 shows the difference between A(17) and the orbitally derived age-

models for the SPECMAP stack [Imbrie et al., 1984] and the ODP677 benthic δ18O

record [Shackleton et al., 1990]. The SPECMAP orbital age estimates beyond 625KY

BP are generally considered too young—due to an incorrect B-M age [e.g. Shackleton

et al., 1990; Singer and Pringle, 1996], and ages beyond termination 7 for SPECMAP

are adopted from the orbitally-tuned ODP677 chronology. There are up-to 2 KY dif-

ferences between termination ages listed in Imbrie et al. [1984] and in Table 3.2 due

to our use of the δ18O midpoint in defining termination depths; also note there are

typographical errors for the termination 5 and 7 ages in the Imbrie et al. [1984] table.

Using the Table 3.2 ages, the root-mean-square (rms) event age discrepancies between

the depth and orbital age-models are 3KY (SPECMAP) and 5KY (ODP677). Con-

sidering A(17) has an estimated uncertainty of ±9KY and SPECMAP one of ±5KY,

the depth-derived chronology is consistent with the orbitally derived age estimates.

The depth-derived age estimate for termination 2 closely agrees with the orbitally-
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Figure 3-7: The A(17) depth-derived age-model relative to other δ18O age-models.
Negative values indicate the depth-derived age-model is relatively younger. Root-
mean-square age-model differences are listed in the legend. Depth-derived ages are
most consistent with the orbitally-derived age-estimates. The inner and outer gray
clouds respectively indicate the one and two standard deviation depth-derived age-
model uncertainty. Within two standard deviations, all age-models are consistent
with the depth-derived ages.
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derived age estimates (128KY BP), thus supporting the younger termination 2 radio-

metric age estimates [e.g. Broecker, 1968; Bard, 1990] over the older ages [e.g. Gallup,

2002; Henderson and Slowey, 2000]. Note, however, this conclusion is directly depen-

dent upon the compaction correction which shifts the mean termination 2 age from

139 to 129KY BP (see Table 3 in Appendix A; at termination 2 uncertainties in the

compaction correction are about ±4KY.) Using a depth-tuning approach, but not

correcting for compaction, Raymo [1997] estimated an age of 136KY BP for termi-

nation 2 and concluded this age was anomalously old due to sediment extension in

the upper core. In general, however, the magnitude of sediment extension is expected

to increase down-core because of the greater changes in effective stress [Moran, 1995;

MacKillop et al., 1995]. Acting alone, greater extension with depth will give anoma-

lously young ages. Anomalously old ages are more readily explained by a down-core

increase in compaction. Because compaction is partially plastic [Moran, 1995], the

post-coring sediment rebound does not fully compensate for compaction. If uncor-

rected, this residual trend in compaction leads to the anomalously old termination 2

ages (see Table 3).

Figure 3-7 also compares the Vostok deuterium (δD) ages [Petit et al., 1999, GT-

4 ice age] with the Ā(17) event ages. Clearly, the δD of Antarctic ice (Vostok) and

δ18O need not have a simple relationship with marine foraminiferal δ18O records.

Nonetheless, the rms age deviation between GT-4 and Ā(17) is only 6KY (events 2

through 8 only), and is within the expected uncertainty of the depth-derived age-

model. More striking in Fig. 3 − 7 is the tendency of some of the Devils Hole event

dates to differ markedly from those of the deep-sea cores—beyond the one-sigma error

estimates of both data types. Devils Hole has an rms age deviation with Ā(17) (events

2 through 11) of 11KY where the depth-derived chronology is relatively younger

between terminations 2 and 5, and older beyond termination 5. One should not infer

from this result that either is incorrect: as noted, there is no necessity in the climate

system for open ocean changes to be contemporaneous with those near-shore or over

continents [Winograd et al., 1997].

Of the available Pleistocene age-models, Ā(17) most closely accords with the orbitally-

tuned age estimates. Because the orbital and depth-derived age-models were esti-

mated using completely independent assumptions, their approximate accord encour-

ages the belief that there is real skill in both of them. Nonetheless, as we will see,

the differences between them have important consequences for the interpretation of
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Figure 3-8: (a) The leading empirical orthogonal function of the five best resolved
planktic records (EOFp) and (b) the five best resolved benthic records (EOFb). The
squared cross-correlation between EOFb and EOFp is 0.89. (c) The leading EOF
of both the best resolved benthic and planktic records (EOF1); each EOF is on
the depth-derived age-model. (d) The SPECMAP stack on its orbitally-tuned age-
model. The squared cross-correlation between the SPECMAP stack and EOF1 is 0.68,
slightly higher than the correlation between SPECMAP and either EOFb or EOFp.
Dots indicate the location of ACPs used for the depth-derived and SPECMAP stack
age-models.

the climate record.

3.5 The δ18O signal and nonlinear climate change

We now turn our attention away from the age-models and toward the δ18O signal

itself. To extract a well resolved and representative signal from the ensemble of 26

δ18O records, the leading empirical orthogonal function (EOF1) is calculated from the

five planktic and five benthic records with an accumulation rate of 3cm/KY or greater

and the smallest available mean sampling interval (see Table 3.1). EOF1 explains 78%

of the δ18O variance and represents an almost uniformly weighted average of the ten
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best-resolved δ18O records, thus making it similar to a mean or “stacked” record. For

comparison, the leading EOFs of the five best resolved benthic records (EOFb) and

planktic records (EOFp) are also calculated (see Figure 3-8). EOFb and EOFp are

very similar to EOF1: each has a squared cross-correlation with EOF1 of 0.97. The

squared cross-correlation between EOFp and EOFb is 0.89, indicating the ubiquity

of the oceanic δ18O signal. Given these high correlations, it is not surprising that the

spectral description of EOF1 presented in the following sections also holds for EOFb

and EOFp.

Figure 3-8 shows EOF1 from A(17) and the SPECMAP δ18O stack [Imbrie et al.,

1984] on its orbitally-tuned age-model. The SPECMAP age-model was constructed

by imposing a constant phase relationship between the obliquity and precessional

orbital parameters and the respective frequency bands in five separate δ18O records

[Imbrie et al., 1984]. The five orbitally tuned δ18O records were then averaged to

form the stack. The initial discussion here compares EOF1 with the SPECMAP

stack; afterward, for purposes of comparison, an orbitally-tuned version of EOF1 is

also investigated.

The ten δ18O records used in EOF1 are independent of the five SPECMAP stack

records, yet the isotopic variations in the SPECMAP stack and EOF1 are strongly

similar in timing, number, and amplitude. That there is only a 3KY rms age-model

difference between the SPECMAP stack and EOF1 is rather remarkable. When

pinned to their respective independent age-models, the squared correlation between

EOF1 and SPECMAP is 0.68. This is a higher correlation than between the exclu-

sively planktic SPECMAP stack and EOFp — even when the single high-latitude

planktic record from ODP982 is excluded from EOFp.

3.5.1 The spectral description of the δ18O record

The spectral distribution of the SPECMAP stack, shown in Figure 3-9, has a power

law relationship with frequency, s−q, q ≈ 2.7 and spectral peaks lying above the

approximate 95% level-of-no-significance in the 1/100, 1/41 (obliquity), 1/23 and

1/18KY (precession) bands relative to the background continuum. Bands are defined

as the interval ±1/400KY about the central frequency. The SPECMAP distribu-

tion of energy has been widely accepted as accurately representing long-period δ18O

variability [e.g. Imbrie et al., 1993], with the spectral peaks in the obliquity and

precession bands commonly interpreted as showing linear responses to the respec-
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tive orbital variations [e.g. Hagelberg et al., 1991]. Of course, this obliquity and

precession prominence is assumed in the orbital-tuning. Note in particular that the

energy fraction lying in the obliquity and precessional bands is a small fraction of the

record total. The origins of the 100KY band variability are much more contentious

owing to the paucity of insolation forcing in this band. Climatic resonance, nonlinear

climatic response, and additional forcing mechanisms have all been postulated as ex-

planations for the 100KY-band variability (for a review see Elkibbi and Rial, 2001).

Roe and Allen [1999] point out the difficulty in differentiating among these competing

100KY-band orbital theories, and there is some doubt whether an orbital relationship

exists at all [Wunsch, 2003a].

The depth-derived age-model provides a somewhat different perspective on δ18O

variability. The periodogram of EOF1, shown in Figure 3-9, has a power law, like that

of the SPECMAP stack, with q ≈ 2.7. But unlike the SPECMAP result six, rather

than four, spectral bands are above the approximate 95% level-of-no-significance at

1/100, 1/70, 1/41, 1/29, 1/23, and 1/18KY. A simple relationship between the central

frequencies, s (n) , of these bands is,

s(n) =
1

41
+

n

100
, −1 ≤ n ≤ 3. (3.18)

s(n) is written in terms of the 1/41KY band (obliquity) rather than the 1/23 or 1/18

bands (precession) because the 1/41KY band accounts for a greater fraction of the

δ18O variability.

The energy in the 1/100, 1/41 (n = 0), 1/23 and 1/18KY (n = 2, 3) bands has

been much discussed. Excess energy near 1/70 and 1/29KY has also been noted in

the literature [e.g. Nobes et al., 1991; Yiou et al., 1991; Bolton and Maasch, 1995;

Mix et al., 1995]. The simple rule embodied in Eq. 3.18 is strongly suggestive of a

spectral structure resulting from a weak nonlinear interaction of the obliquity band

with the 100KY band. The conventional interpretation, referred to as the “pace-

maker” hypothesis [Hays et al., 1976], requires that the timing of the very energetic

quasi-100KY variability be controlled by the weaker high frequency elements. Here,

it appears that the most energetic bands (100KY, 41KY) interact to produce sum

and difference frequencies, as is typical of a weakly nonlinear system. A complication

of the conclusion is the possibility that the enhanced precession band energy is due,

all or in part, to overtones of the obliquity band response.
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Figure 3-9: Periodograms are (a) SPECMAP, (b) EOF1, and (c) the orbitally-tuned
EOF1. For presentation purposes each periodogram, after the first, is shifted down-
ward by two orders of magnitude. Dashed lines are 3rd order polynomials fit to the
noise background of each periodogram. Numbers within each band (1/100, 1/70,
1/41, 1/29, 1/23, and 1/18KY) are the energy above the background noise level as a
fraction of the entire spectrum. The approximate 95% confidence interval (from χ2

with two degrees-of-freedom) is indicated by the vertical bar in the upper right hand
corner; the open circle represents the expected background level.
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3.5.2 Higher-order spectral analysis

A higher-order statistic, the auto-bicoherence, aids in distinguishing the behaviors

of EOF1 and the SPECMAP stack age-model. The 95% level-of-no-significance for

auto-bicoherence—computed by Monte Carlo methods for Gaussian red noise with a

power law of minus two—is 0.7 along the diagonal (s1 = s2) and 0.55 off the diagonal

(s1 6= s2). Appendix D discusses the auto-bicoherence test in more detail. Before

examining auto-bicoherence in the δ18O records, the nature of the possible forcing is

investigated using a test signal,

T (t) = θ(t) + p(t), (3.19)

where θ is obliquity and p is precession as calculated by Berger and Loutre [1992].

Both components of T (t) are normalized to have unit standard deviation and zero

mean. Because the origins of the 100KY band are so uncertain, no corresponding

forcing term is included. The completely deterministic T (t) displays a number of

significant auto-bicoherencies (see Figure 3-11) related to the amplitude and frequency

modulations inherent to these orbital parameters [e.g. Hinnov, 2000]. The strong

auto-bicoherence at (1/41,1/41) highlights the potentially ambiguous origins of the

precession band; that is, the first harmonic of obliquity (2/41KY) and the precession

band (1/23 to 1/18) overlap. Note that a rectification of the annual cycle is required

for long-term precessional variability to appear in a record [Rubincam, 1994; Huybers

and Wunsch, 2003], and that such rectification is also expected to generate harmonics

of the obliquity energy.

Significant auto-bicoherence can indicate the presence of a nonlinearity in a record,

or that the distribution is non-Gaussian, or both (nonlinear records are usually non-

Gaussian). Here, T (t) is non-Gaussian (it is deterministic). The distribution of the

δ18O record — shown as a histogram of δ18O measurements from the 26 records

shown in Table 1 — appears in Figure 3-10. The δ18O signal has a skewness of -0.1

and a kurtosis of 2.5, clearly indicating its non-Gaussian nature and as with T (t),

interpretation of the auto-bicoherence must account for this fact.

The auto-bicoherences of EOF1 and the SPECMAP stack are shown in Figure 3-

11. The SPECMAP estimate displays significant auto-bicoherence at frequency pairs

(1/70,1/70), (1/70,1/41), and (1/41,1/29), a pattern which resembles that of T (t),

on which the chronology of SPECMAP is based. The SPECMAP auto-bicoherencies
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Figure 3-10: Histogram of δ18O measurements between 10 to 780KY BP from the 26
records listed in Table 1.

which are most emphasized however, involve the 1/70 and 1/29KY bands, and unlike

EOF1, these bands display no significant concentrations of energy. Hagelberg et al.

[1991] also find evidence of a (1/80, 1/41) auto-bicoherence in the orbitally-tuned

ODP 677 benthic and planktic δ18O records, which given the coarseness of their

frequency resolution, is indistinguishable from the SPECMAP (1/70, 1/41) pair.

EOF1 displays a gridded pattern of auto-bicoherencies: all combinations of fre-

quencies in Eq. 3.18 with integers −1 ≤ n ≤ 2 are coincident with significant local

maxima in auto-bicoherence except for (1/29, 1/29) and (1/23, 1/23). Whether the

auto-bicoherence arises from non-Gaussian statistics in the forcing, or nonlinearity in

the response, its distinct frequency structure supports the inference of weak inter-band

interaction within the climate system. The absence of bicoherence at the strongest

precession band (1/23, 1/23) points to obliquity’s central role in this coupling.

3.5.3 The importance of age-models

There are important differences between EOF1 and the SPECMAP δ18O stack:

SPECMAP has more than three times the energy concentrated within the precession

band but no discernible concentration of energy at 1/70 and 1/27KY; furthermore

the auto-bicoherent features are significantly different. The small amount of pre-

cession band energy in EOF1 may be a result of age-model jitter (see Figure 3-6).

We attribute the remaining differences to the orbital tuning of the SPECMAP age-

model; support for this hypothesis is provided by considering the effects of jittering

SPECMAP and orbitally-tuning EOF1.
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Figure 3-11: Auto-bicoherence of (a) SPECMAP, (b) EOF1, (c) orbitally-tuned
EOF1, and (d) the orbital test signal, T (t). The tick marks on the frequency axes
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Monte Carlo simulations indicate that random age-model errors tend to diminish

both concentrations of spectral energy and auto-bicoherence, making such errors an

unlikely explanation for the structure in EOF1. Quasi-periodic age-model errors,

however, can create spurious structure in spectral estimates [see Section 4.1; Herbert,

1994]. To examine this possibility, the spectral and auto-bicoherence structures of

SPECMAP were examined after distorting the age-model using periodic and quasi-

periodic functions. The most relevant results occur for 100KY periodic distortions of

the SPECMAP age-model, yielding significant concentrations of energy at the 1/70

and 1/27KY bands. Similarly, distorting SPECMAP ages in proportion to the δ18O

signal yields a concentration of energy at 1/70KY. All of these age-model errors,

however, tend to decrease auto-bicoherence without making the pattern appear more

like that of EOF1.

On the other hand, in Appendix C, we show that the orbital tuning of EOF1

makes its spectra and auto-bicoherence pattern appear more similar to the SPECMAP

stack. It is further demonstrated, using synthetic signals, that orbital tuning tends to

suppress evidence of weak nonlinearity in a record, by shifting energy out of overtone

and interaction bands and into the Milankovitch bands. We thus conclude that orbital

tuning tends to suppress evidence of real nonlinearity in the δ18O record.

3.6 Conclusions

Age-models assigned to paleo-climatic records strongly influence the inferences drawn

about past climate behavior. Variations in sediment accumulation rate cause errors

in linear age-depth models, so that a simple linear age-depth relationship is often not

sufficiently accurate to yield meaningful results. Use of orbital-tuning to remove these

age-model errors, however, suppresses evidence of nonlinearity at low frequencies in

the system.

An alternative to orbital-tuning is to estimate sediment core age using spatial

mean sediment accumulation rates, and in conjunction with an important compaction

correction, this alternative is used at 21 core sites to construct a depth-derived age-

model spanning the last 780KY. The observed error in linear age-depth relationships

is modeled as an autocorrelated stochastic process, and the A(17) age-model is esti-

mated to be accurate to within ±9KY. The depth-derived ages make no assumptions

regarding orbital control, but agree with the orbitally-tuned age-models to within
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±5KY, and thus within the error limits are consistent with one another. The remain-

ing discrepancies, however, have important consequences.

Spectral analysis of EOF1, using the A(17) age-model, indicates significant spec-

tral energy at combination tones of the 1/100KY and obliquity bands. There is also

significant auto-bicoherence between each of these bands in EOF1, all of which indi-

cates a weakly nonlinear climatic response to obliquity forcing interacting with the

quasi-100KY variability. These results may aid in differentiating between the various

mechanisms proposed to explain glacial inter-glacial climate variability.

3.7 Appendix

3.7.1 Compaction correction

Sediment compaction is, to first order, a function of pressure and lithology [e.g. Athy,

1930; Baldwin and Butler, 1984]; factors such as time, temperature, and porewater

chemistry [e.g. Tada, 1991] are generally secondary. Because pressure increases with

depth, systematic down-core compaction is expected, and this phenomenon is ob-

served in a wide variety of marine cores [e.g. Baldwin and Butler, 1984; Bahr et al.,

2001]. Post-coring sediment rebound partially compensates for in-situ compaction,

but because compaction is more plastic at higher pressure [e.g. Moran, 1995], resid-

ual down-core trends towards greater compaction are retained. Variations in lithology

can also modify the compaction profile, for instance clay deposited above limestone

can lead to reduced compaction with depth [e.g. Schwarzacher, 1975], but there is

no reason to expect such structures to be systematically present in the global array

of cores studied here. Climatically driven quasi-periodic changes in compaction are

addressed in Sections 4.1 and 5.3.

The effect of compaction on linear age-depth relationships is discussed qualita-

tively by Hays et al. [1976], Williams et al. [1988], and Raymo [1997]. Here, a

quantitative age correction function is developed for gross trends in compaction and

then applied to the depth-scale of each core. Athy [1930] first showed an increasing

load on porous sediment results in pore water draining from the sediment matrix and

an exponentially decreasing porosity. Porosity, φ, is the fraction of sediment volume

occupied by water,

φ = 1 − ρ

ρd
, (3.20)
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Figure 3-12: Changing porosity with depth in ODP cores from the E. Equatorial
Pacific, Ceara Rise, and N. Atlantic. An exponential curve or straight line (whichever
is better) was fit to each porosity profile, except for ODP980 which showed no distinct
pattern. The vertical dotted lines bound the change in porosity between Termination
1 and the B-M.
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where ρ is the bulk density, and ρd is the dry density.

Given a functional relationship between depth and porosity, it is possible to esti-

mate the effects of compaction on a linear age-model. Take h = 0 and t = 0 as the

sediment height and date of the B-M magnetic reversal. Sediment accumulates at a

rate S so that,

h =
∫ t

0
S(t)dt, (3.21)

and without compaction, the final height would be, H = S̄T . S̄ is the mean accumu-

lation rate, H and T are the final-time values of h and t.

If compaction is assumed to result solely in the upward expulsion of pore water

[e.g. Berner, 1980], the compacted and un-compacted sediment column heights are

related by,

h =
∫ h′

0

1 − φ′

1 − φ
dh′, (3.22)

where primes indicate the compacted quantity. For the moment, assume post-depositional

compaction is present, but accumulation rates are constant. Then, if age is taken to

be linear with depth between h = 0 and h = H, an error is incurred as,

δt = t′ − t = T

(

h

H
− h′

H ′

)

. (3.23)

The age error is zero at the top, h = H, h′ = H ′, and bottom, h = h′ = 0, but

between these fixed points errors occur to the degree that h′ is a nonlinear function

of time. If compaction increases with depth, as expected, a layer of sediment between

the top and bottom has h/H > h′/H ′, δt > 0, and compacted age estimates which

are erroneously old.

To illustrate the possible effects of compaction on an age-model, assume that φ

is constant and that compaction occurs at a linear rate with depth, c, such that

φ′ = φ− c(H ′ − h′). Inserting this porosity relationship into Eq. 3.22 and integrating

yields

h = h′ +
ch′

(1 − φ)

(

H ′ − h′

2

)

. (3.24)

Substituting Eq. 3.24 into Eq. 3.23 and writing h′ = Ht′/T ′ gives,

δt = t′
(

1 − φ+ cH ′(1 − t′/(2T ))

1 − φ+ cH ′/2
− 1

)

. (3.25)

Plausible values for Eq. 3.25 are φ = 0.7, c =.001m/m, H ′ =30m, and T =800KY,
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yielding a maximum age-offset, δt = 9KY at 400KY BP. Eq. 3.25 shows that offsets

toward older ages will increase with greater porosity, compaction, and accumulation

rate.

Figure 3-12 shows the porosity profile plotted against depth for eight ODP cores

located in the eastern equatorial Pacific [ODP846, 849, and 851; Leg 138 ODP Initial

Reports CD-ROM], Ceara Rise [ODP925 and 927; Leg 154 Log and Core Data CD-

ROM, Borehole Research Group, LDO], and the N. Atlantic regions [ODP980, 982,

and 983; Leg 162 Log and Core Data CD-ROM, Borehole Research Group, LDO]

measured using gravimetric techniques [Boyce, 1976]. The Eastern Equatorial Pacific

group shows a general trend of decreasing porosity with depth superimposed on a large

degree of scatter where the scatter is in-part attributable to variations in lithology,

coring effects, and measurement error.

For the eight cores in which data are available, porosity trends are estimated from

400 meters below the sea floor to the core top. For the Eastern Equatorial Pacific

cores, a line is fit to each porosity profile, and for the Ceara Rise and North Atlantic

cores a second order exponential is used. ODP980 was alone in showing no discernible

trend. Assuming that the estimated trends in porosity reflect inhomogeneities in

relative compaction, we apply a compaction correction based on conservation of dry

sediment volume [e.g. Berner, 1980],

h(1 − φ) = h′(1 − φ′). (3.26)

Here, the thickness of a compacted sediment layer, h′, is adjusted to thickness, h, by

adjusting the down-core trend in porosity, φ′(h′), to a constant value, φ. Note, the

depth-derived ages are insensitive to the choice of reference porosity, φ, because they

are pinned to a constant age at termination 1 and the B-M.

Although it is highly likely that trends in compaction exists at all, or most, of

the core sites [e.g. Bahr et al., 2001], the compaction correction has considerable

uncertainty for the thirteen sites at which porosity measurements are not available.

Standard decompaction formula are only applicable at depths well below that of the

B-M [Baldwin and Butler, 1984; Bahr et al., 2001] (greater than 200m), and we

choose to use the mean of the seven identified porosity trends (see Fig. 3-12) as the

basis for decompacting the remaining fourteen cores according to Eq. 3.26, to include

ODP980. To estimate the associated uncertainty, each of the fourteen cores are also

decompacted using the individual porosity-depth trends, yielding seven estimates of
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event 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
19.1 18.3 VIII 17.1 VII 15.1 VI 13.11 V 11.1 IV 8.5 III 7.1 II 5.1 I

dsdp502P 0 2 4 5 8 9 10 11 12 12 12 11 10 8 6 3 0
dsdp552B 0 2 4 5 8 10 10 11 12 12 11 11 11 9 7 4 0
dsdp607B 0 3 5 7 11 14 15 16 17 17 17 17 15 14 11 8 0
md900963P 0 2 3 5 8 11 13 16 17 18 19 19 18 17 14 8 0
odp659B 0 3 4 6 6 9 11 12 13 14 15 14 13 12 9 5 0
odp663P 0 3 5 7 10 12 14 15 17 17 17 17 16 15 11 8 0
odp664B 0 3 6 7 11 12 14 15 16 17 17 17 15 13 10 7 0
odp677B 0 3 5 6 10 12 14 15 17 17 17 17 16 14 12 9 0
odp677P 0 4 5 7 10 13 14 15 17 17 17 17 16 14 12 9 0
odp758B 0 2 3 4 6 7 8 9 10 10 10 11 10 9 8 6 0
odp758P 0 2 2 4 5 7 8 9 10 10 10 10 10 9 8 6 0
odp806B 0 1 2 4 7 9 10 11 12 13 13 12 11 10 7 5 0
odp806P 0 1 3 4 7 9 10 11 12 12 12 12 11 9 7 4 0
odp846B 0 2 3 3 5 5 6 7 7 7 7 7 7 6 4 3 0
odp849B 0 0 1 1 1 2 2 2 2 2 2 2 2 2 1 1 0
odp851P 0 0 1 2 3 3 4 4 4 4 4 4 3 3 2 2 0
odp925B 0 5 7 9 15 20 22 24 29 30 30 30 28 26 20 13 0
odp927B 0 5 7 10 14 17 20 22 25 26 27 27 26 24 18 14 0
odp927P 0 5 7 9 15 17 20 22 26 26 27 27 26 24 18 14 0
odp980B 0 3 4 5 12 15 17 19 22 25 25 25 24 22 17 12 0
odp982B 0 2 3 5 8 9 10 12 13 12 12 11 10 8 6 5 0
odp982P 0 1 3 4 7 9 10 11 13 12 12 11 10 8 6 5 0
odp983B 0 5 6 10 16 21 25 28 30 31 31 30 28 24 19 15 0
v22-174P 0 2 3 5 7 8 10 11 11 11 11 11 11 10 8 6 0
v28-238P 0 2 3 4 5 6 8 9 10 10 11 10 10 9 6 4 0
v28-239P 0 1 2 3 5 6 6 7 7 7 7 7 6 6 4 2 0
mean 0 3 4 5 8 10 12 13 15 15 15 15 14 13 10 7 0
σ 0 1 2 2 3 4 4 5 5 6 6 6 5 5 4 3 0

Table 3.3: The de-compacted age corrections in KY applied to each core where all
age corrections produce a relatively younger age-model. Event numbers are listed
at top along with the associated stage (Arabic) and termination (Roman) numbers.
At bottom are the mean correction and the associated uncertainty. The applied
corrections are a continuous function of depth, but are listed only at the 17 selected
events.

decompacted depth. Age is then estimated from each realization of the decompacted

depth-scale according to Eq 3.13, and the standard deviation of these ages is taken

as the estimated uncertainty.

Table 3.3 lists the age correction resulting from de-compaction at each event for

each δ18O record and the uncertainty in the mean age off-set. All corrections make

the δ18O events relatively younger and range from zero at the endpoints to 15 KY at

350KY BP. While uncertainties range up-to 6 KY, they are always less than half the

magnitude of the estimated bias, and thus decompaction is inferred to significantly

improve the accuracy of the depth-derived age estimates.

3.7.2 The XCM tuning algorithm

A simple and repeatable algorithm, termed XCM (cross-correlation maximizer), is

used for objective tuning. In common with most such methods [e.g. Martinson et

al., 1982; Bruggerman, 1992; Lisiecki and Lisiecki, 2002], the algorithm adjusts the

timescale of a record, ψ(t′), in relation to a target record, τ(t), while seeking to
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maximize a given quantity; in this case, the squared cross-correlation coefficient

r2 =





∑

t ψ(t′ + µ(t′))τ(t)
√

∑

t ψ(t′ + µ(t′))2
√

∑

t τ(t)
2





2

. (3.27)

Here µ(t′) is the time adjustment function. For the applications presented in this

paper, τ (t′) and ψ(t′) are discretely sampled at 1-KY intervals and age control points

(ACPs) are assigned to ψ(t′) at specified intervals. A simulated annealing optimiza-

tion method [Press et al., 1999] is then applied to estimate the arrangement of ACPs

which maximizes the cross-correlation. To prevent unrealistic changes in implied ac-

cumulation rates, XCM may be constrained to not stretch or squeeze time beyond

a specified factor. The final control-point arrangement provides a piecewise linear

approximation to µ(t′). It should be noted that XCM may significantly increase the

cross-correlation between two records without there being any true relationship (see

Appendix C).

Most tuning algorithms employ narrow-band-pass filtering to isolate the Milankovitch

band of interest. A difficulty with this approach is that even slight errors in the pre-

liminary age-model can smear spectral energy across the entire frequency range [e.g.

Martinson et al., 1987]. This mistiming results in a form of aliasing of the spectral

power, and like all aliasing, no filter can undo it. Thus we have chosen not to filter

records prior to tuning, and instead use what is termed the direct response approach

[Martinson et al., 1987].

3.7.3 The impact of orbital-tuning

If climate linearly responds to insolation variations, one would expect the modula-

tion structure of the forcing to be at least qualitatively mimicked in the response.

If one seeks to tune to precession, this assumption is immediately complicated by

the requirement for a rectifier to be present [Rubincam, 1984; Huybers and Wunsch,

2003]. Nonetheless, assuming some climatic response to insolation forcing, a multi-

tude of methods have been used to orbitally-tune paleo-climatic records. The criteria

generally used to assess the accuracy of an orbitally-tuned timescale [e.g. Imbrie et

al., 1984; Bruggerman, 1992; Shackleton et al., 1995] are that geochronological data

should be respected within their estimated accuracies, sedimentation rates remain

plausible, variance should become concentrated at the Milankovitch frequencies with
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a high coherency between the orbital signal and the data, and – what is often referred

to as the clinching argument – similar amplitude modulation should appear in the

Milankovitch derived insolation functions and in the orbitally-tuned result.

To comply with the criteria for a successful orbital-tuning result, the XCM algo-

rithm is constrained to not stretch or squeeze a record by more than a factor of four,

thus keeping accumulation rates within plausible levels. Considering the difficulty of

determining geochronological dates in the interval between termination two (approx-

imately 130KY BP) and the Brunhes-Matuyama (B-M) boundary (approximately

780KY BP), it seems unlikely the available geochronological constraints would con-

flict with most tuning results. Three signals are selected to demonstrate the impact

of orbital-tuning: EOF1, white-noise, and a weakly nonlinear signal.

EOF1

The selected target curve for orbitally-tuning EOF1 is,

τ(t) =
√
.2θ′(t) +

√
.8p′(t). (3.28)

The primes indicate the phases of obliquity and precession are each phase-lagged

assuming a linear response with a time constant of 17KY, consistent with the orbital

target curves of Imbrie et al. [1984]. Rather than iteratively tuning to precession

and obliquity respectively, as done by the SPECMAP group, the two parameters are

combined into a single target curve, τ(t), with precession accounting for 80% of the

total variance. ACPs are assigned to the A(17) age-model every eight KY, and XCM

was used to maximize the cross-correlation between EOF1 and τ(t).

The difference between the A(17) and the fully orbitally-tuned EOF1 age-model is

shown in Figure 3-7. Not surprisingly, orbital-tuning brings A(17) into close agreement

with the SPECMAP and orbital ODP677 age-models. The periodogram (Figure 3-9c)

and auto-bicoherence (Figure 3-11c) of the orbitally-tuned EOF1 now resemble those

from SPECMAP. In particular, orbital-tuning enhances the obliquity and precession

peaks in EOF1 while diminishing the 1/29 and 1/70KY spectral peaks and making the

(1/70,1/29) and (1/41,1/41KY) auto-bicoherence appear insignificant. The spectrum

of EOF1 is sensitive to the process of orbital-tuning, and assuming a linear response to

obliquity and precession imposes a behavior consistent with the SPECMAP analysis.
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Figure 3-13: Results from the orbital tuning of white noise. Top left panel shows time
series of white noise. Middle left panel shows the precession curve (thick line) and
same white noise process tuned to precession (thin line). Lower left panel displays
the band-pass filtered, tuned white noise (thin line), and the precession curve. Note
that the band-pass filtered white noise shows an amplitude modulation similar to the
precession curve. Right panel displays the power density spectra of the original white
noise (top), of the tuned white noise (middle) and of the band-pass filtered tuned
white noise (bottom). These spectra are displaced in the vertical by a factor of 104

for visual clarity, and the vertical dotted lines delineate the precession band, 1/23 to
1/18 KY.

Noise

It is also useful to investigate signals with known statistical properties. We begin with

a white noise Gaussian distributed process, ψ(t′), and tune it to the precession param-

eter [Berger and Loutre, 1992] over a 800KY period. A typical realization of XCM

tuning is presented in Figure 3-13 where the squared cross-correlation is increased

from zero to 0.19. Consistent with the results of Neeman [1993], a concentration of

variance at the triplet of precessional peaks occurs, coherence in the precession band

is greater than 0.9 (0.65 is the approximate 95% level-of-no-significance), and both

amplitude and frequency modulation similar to the precession parameter appears —

completely spuriously. When band-pass filtered, the imposed frequency modulations
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Figure 3-14: (a) The orbital signal ψ(t) from Eq 3.29 (left) and its associated peri-
odogram (right). The linear components of ψ(t) give spectral peaks at 1/100; 1/55, a
side-band of obliquity; and 1/41KY, the main obliquity band. The nonlinear compo-
nents give spectral peaks at 1/70, the 1/100-1/41 combination tone; 1/50, the 2/100
overtone; 1/29, the 1/100+1/41 combination tone; 1/23, an interaction tone; 1/21,
the 2/41 overtone; and 1/17KY, another interaction tone. (b) After a small degree
of orbital-tuning, assuming a linear response to obliquity and precession (bottom
curve), the signal is visually similar but the periodogram has concentrations of en-
ergy primarily at the 100KY, obliquity, and precession bands. The approximate 95%
confidence interval for red-noise is indicated by the vertical bar.

produce the visual amplitude modulation in the tuned signal [see Huybers, 2002].

Similar results hold when red-noise, rather than white-noise, is orbitally-tuned. Thus

precession-like amplitude modulation in an orbitally-tuned record does not guarantee

the accuracy of an age-model.

A nonlinear signal

Finally, the observations regarding EOF1 in Section 5 motivate investigation of an-

other signal,

ψ(t) = 2 cos(2πt/100) + θ(t) + 0.5 (cos(2πt/100) + θ(t))2 , (3.29)
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Figure 3-15: The auto-bicoherence of ψ(t) before (left) and after (right) orbital-
tuning. Significant auto-bicoherence is indicated by light-shading for the off-diagonal
and dark-shading for the on-diagonal.

involving linear and nonlinear contributions from a 100KY harmonic and zero-mean

unit variance obliquity variability. The relative amplitudes are selected to reflect

the distribution of variance observed in EOF1, and for statistical stability, a small

amount of white noise is added. As evident from the periodogram in Figure 3-15,

the nonlinearity generates variability at a number of combination and over-tones. A

potentially confusing result is that energy appears at the first overtone of the main

obliquity band 1/21KY, and, because of the frequency and amplitude modulation

inherent to obliquity, at interaction bands of 1/23 and 1/17KY. Without knowing

the form of ψ(t), a triplet of spectral peaks at these frequencies could readily be

mistaken for evidence of precession variability.

Figure 3-14 also shows ψ(t′) after orbital-tuning to the target curve, τ(t), given

in Eq. 3.28. Typical results increase the squared cross-correlation between the tar-

get curve and ψ from 0.1 to 0.25. After tuning, the nonlinear spectral peaks are

suppressed while precession period variability is enhanced. Similarly, figure 3-15

shows that the auto-bicoherent structure of ψ(t) is almost totally obscured by the

orbital-tuning, all of which indicates that orbital-tuning will suppress evidence of real

nonlinearity.

3.7.4 Auto-bicoherence

A test for quadratic coupling was presented by Hasselmann et al. [1963] and used to

evaluate weak nonlinearities in shallow water wave propagation. When two harmon-
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Figure 3-16: Results of a Monte Carlo estimate indicating the approximate level
below which 95% of auto-bicoherence estimates, made using Gaussian red noise, are
expected to occur by chance. The results are symmetric about the diagonal, and
values are about .55 for k 6= l and .7 for k = l.

ics are coupled so as to modulate one another, a third harmonic with a particular

frequency and phase is expected,

S(t) = e2πifkt+φke2πiflt+φl = e2πi(fk+fl)t+φk+φl .

To test for this relationship define the bispectrum as

Bk,l =< ŜkŜlŜ
∗
k+l >

where Ŝk is the discrete Fourier transform of S(t) at frequency k, S∗ is the conjugate

(S∗
k+l = S−k−l), and <> indicates the expected value. Unless φk+l = −(φk + φl),

B(k, l) will be complex. The magnitude of B(k, l) depends on both the magnitude

of the complex Fourier coefficients, |Ŝk||Ŝl||Ŝk+l|, and the stability of the phase re-

lationship between the coefficients; i.e. for random phasing < ŜkŜlŜk+l >= 0. The

auto-bicoherence is defined as,

Ck,l =
< ŜkŜlŜk+l >

< |Ŝk||Ŝl||Ŝk+l| >
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where the denominator represents B(k, l) for the case of perfect phase coherence,

and 0 ≤ Ck,l ≤ 1. The expected value of the auto-bicoherence is estimated here

by adapting the bispectral routine presented by Muller and MacDonald [2000]. The

algorithm consists of subtracting the mean value of S(t), applying a Hanning window,

and estimating the auto-bicoherence as

Ck,l =
|
∑k+2

k−2

∑l+2

l−2
ak,lŜkŜlŜk+l|

∑k+2

k−2

∑l+2

l−2
ak,l|Ŝk||Ŝl||Ŝk+l|

,

ak+n,l+m = 1√
(k−n)2+(l−m)2

, n,m ∈ {−2,−1, 1, 2}, ak,l = 1,

where ak,l is a weighting coefficient. A Monte Carlo method was used to estimate

uncertainty levels for auto-bicoherence computed according to the above algorithm.

Figure 3-16 shows the approximate 95% level-of-no-significance to reject the null

hypothesis of Gaussian distributed red noise; levels are roughly .55 for k 6= l and .7

for k = l. A significant auto-bicoherence can also indicate the presence of a non-

Gaussian signal, thus care is required in interpreting the result.

3.7.5 Averaging Geophysical Records with Uncertain Age-

Models

This final appendix in Chapter 3 was not included in the original paper of Huybers

and Wunsch [2004].

An understanding of the impacts of age-model error in geophysical analysis is

emerging [e.g. Moore and Thomson, 1991; McMillan et al., 2002], but there remains

a strong potential for bias in statistical tests which do not account for age-model errors

or assumptions built into the age estimate. In Chapter 3, for example, it was shown

that a narrow-band spectral peak subject to random age-model error (jitter) has a

substantial fraction of its narrow-band energy dispersed over a wide frequency range.

In this note, the influence of jitter on averaging, or stacking, geophysical records is

explored. Forming an averaged record is useful for suppressing noise and enhancing

the signal common to a number of records1 [e.g. for the marine δ18O record, Imbrie

et al. 1984; Karner et al., 2002; Huybers and Wunsch, 2004]. However, when the

relative ages have errors — referred to as synchronization jitter — both the noise

1The use of empirical orthogonal functions to extract the δ18O signal common to numerous
records [e.g. Huybers and Wunsch, 2004] gives a weighted average which, in practice, is similar to
the more common simple average in that the weights were found to be all of the same sign and of
similar magnitude.
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and the signal will be suppressed. Note that synchronization uncertainty is not the

same as age-model uncertainty — the relative ages of two records could be perfectly

synchronized without knowing the absolute timing.

In Chapter 3, records were synchronized by identifying common δ18O events and

enforcing simultaneity. This synchronization is inevitably uncertain, owing to diffi-

culty in identifying the depth of events and to the growth of age-model uncertainty

away from the identified events. Once ages are assigned to these events, they are

termed Age Control Points (ACPs). The use of seventeen ACPs reflects a minimalist

strategy in constructing an averaged record, particularly when compared with the 90

ACPs employed in constraining the SPECMAP δ18O over the same 770KY interval.

A minimalist ACP strategy is useful for guarding against artificially building struc-

ture into the average δ18O time-series. That is, if peaks and troughs are aligned in

a noisy time-series, the average signal can show spurious structure. On the other

hand, insufficiently synchronizing time-series prior to averaging, suppresses the signal

common to each of the records. Thus one wants to use a sufficient number of ACPs

to minimize suppression of the signal, but also few enough ACPs to guard against

building spurious structure into a record. The best number of ACPs will depend on

the noise, signal structure, age-model uncertainty, and intended use of a given record.

Nonetheless, it is possible to come to some general conclusions regarding averaging

in the presence of synchronization jitter. These conclusions are then applied to the

specific case of the marine δ18O record.

Understanding how errors in synchronization influence averaged records directly

relates to the interpretation of EOF1, presented in Chapter 3. In Chapter 3 it is

argued that the difference between the SPECMAP stack and EOF1 can be accounted

for on the basis of age-model discrepancies. As support, it was shown that orbitally-

tuning EOF1 makes the resulting time-series appear more similar to the SPECMAP

stack. Developing a depth-derived stack with a greater number of ACPs will permit

further evaluation of whether the discrepancies between EOF1 and the SPECMAP

stack owe to age-model differences, or if they are also influenced by the fewer number

of ACPs used in constructing EOF1.

Furthermore, Chapters 4 and 5 argue that the simplest interpretation of EOF1 is

that obliquity paces the glacial cycles. The nonlinear coherence calculated between

the orbital parameters and EOF1 in chapter 4 is a function of the timing of the glacial

terminations. As there exists an ACP at each glacial termination in EOF1, adding
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more ACPs will not change the termination timing nor the nonlinear coherence. In

chapter 5, however, a simple model is fit to the entire EOF1 time-series. It is expected

that adding more ACPs will make the substage variability in EOF1 more pronounced,

and this could influence the model fit to the observations.

An analytical expression

To demonstrate the effects of averaging imperfectly synchronized records, consider a

set of time-series composed of a signal, Φ, plus an independent, normally distributed

noise term, ηn,

yn(t+ εn) = Φ(t + εn) + ηn(t + εn) n = {1, 2, ...N}. (3.30)

The synchronization error, εn, is modeled as an independent random variable drawn

from a normal distribution. While the use of a constant time-shift to model the

synchronization jitter is simplistic (one expects time-variable synchronization errors),

this form permits an analytical solution whose utility is later demonstrated under

more realistic conditions. Averaging the realization of yn(t+ εn) yields,

a(t) =
1

N

N
∑

n=1

y(t+ εn). (3.31)

Absent age-model errors (εn = 0), the expected variance of a(t) is

< a2 > = Φ2 +
ν

N
, (3.32)

where ν is the variance associated with η(t). The important point is that the signal

variance is unaffected by the averaging, while the noise variance decreases by a factor

1/N . However, if age-model errors are present, the variance of the signal will also be

suppressed.

Figure 3-17 shows an example where y(t) is taken to be a signal whose spectral

energy is inversely proportional to frequency (i.e. a red spectrum) containing no noise

and sampled at 1 kiloyear (KY) intervals. a(t) is realized by averaging ten time-shifted

realization of y(t) where the synchronization jitter, ε, has a standard deviation of

2KY. It is visually evident that a(t) is a smoothed version of y(t). To better quantify

this smoothing effect, Figure 3-17 also shows the spectral power density estimates

associated with a and y. The ratio of the spectra associated with a and y is called
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the gain, and shows that for frequencies greater than 1/10KY, a has less than half

the spectral energy of y. Next, an analytical expression is derived which relates the

gain to the frequency, synchronization jitter, and number of records averaged.
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Figure 3-17: Left, a signal (yn, black line) and the average of ten time-shifted (jit-
tered) realizations of yn (red line). The jitter has a standard deviation of 2KY. Top
right, the multi-taper power density spectra of the signal (black) and its jittered
averaged (red) showing reduced energy at high frequencies. Bottom right, the gain
(black line) computed as the ratio of energy between the signal and its jittered aver-
age. Also shown is the analytically derived expected gain (red dashed line).

To proceed, we take the Fourier transform of 3.31,

â(s) =
1

N

N
∑

n=1

(

Φ̂(s) + ηn(s)
)

e−i2πsεn , (3.33)

where s is the frequency and e−i2πsεn translates the age errors in yn into frequency de-

pendent phase-shifts [see Bracewell, 2000]. Because η(s) has a uniformly distributed

phase, the further randomization does not alter its distribution. As might be ex-
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pected, uncorrelated white noise is equivalently suppressed when averaging synchro-

nized or unsynchronized records. The important point is that the signal term in

Eq. 3.33 is multiplied by e−i2πsεn, indicating that some phase randomization of the

signal will take place. The resulting amount of signal suppression can be written as

a spectral gain function,

ĝ(s) =

∣

∣

∣

∣

∣

1

N

N
∑

n=1

e−i2πsεn

∣

∣

∣

∣

∣

2

, (3.34)

where |.| indicate the absolute magnitude. This gain function relates the spectra of

the original and averaged signals,

|â|2 = ĝ|ŷ|2.

As the simplest case, consider averaging two records (N=2). Then the gain func-

tion can be written as,

ĝ(s) =
1

4
(e−i2πsε1 + e−i2πsε2) × (ei2πsε1 + ei2πsε2)

=
1

2
+

1

2
cos (2πs(ε2 − ε1))

In terms of the original standard deviation associated with the ε, the probability

density function (PDF) of ε2 − ε1 is,

p(x) =
1

2σ
√
π
e−x2/(4σ2). (3.35)

Thus, the expected value of the gain function is,

< ĝ(s) >=
1

2
+
∫ +∞

−∞

1

4σ
√
π
e−x2/(4σ2) cos(2πsx). (3.36)

This expression can be evaluated using an identity [Beyer, 1991, p272],

∫ +∞

−∞
e−bx2

cos(cx)dx =

√
π

2b
e−c2/(4b2), (bc 6= 0), (3.37)

so that,

< ĝ(s) >=
1

2
e−(2πsσ)2 +

1

2
. (3.38)

The expected gains when N = {3, 4, 5...} are obtained using a similar approach, and
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by induction, the solution to Eq 3.36 is

< ĝ(s) >=
(

1 − 1

N

)

e−(2πsσ)2 +
1

N
. (3.39)

As a check, the above solution was found to be consistent with Monte Carlo results

over a wide parameter range to within a standard deviation of 10−5.
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Figure 3-18: The expected gain, Eq 3.39, plotted against frequency, s, times the
standard deviation of the relative age-model jitter, σ. Plots are for averaging N =
2, 4, 8, and 16 records. The gain scales equivalently with both σ and s (σs ∼

√
− ln g)

so that it is more general to plot the gain against σs. For small σs the gain approaches
one, while for large σs the gain asymptotes to 1/N — the expected behavior for perfect
synchronization and complete phase randomization respectively.

The expected spectral power of the averaged signal is

< |ŷ(s)|2 >=< ĝ(s) > |Φ̂(s)|2 +
ν

N
. (3.40)

This expression can be connected with with Eq 3.32 using the Parseval relationship

[e.g. Bracewell, 2000]. The gain function is plotted for various N in Figure 3-18. At

high-frequencies and high standard-deviations, < ĝ(s) > asymptotes to 1/N so that

both the signal and noise are equally suppressed. This can be understood in that a

phase-randomized signal behaves like Gaussian noise. At low-frequencies and small
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errors, < ĝ(s) > tends to 1 so that little signal suppression occurs. As a rule of thumb,

stacking errors are expected to attenuate more than half the energy of frequencies

above (10σ)−1 where σ is the standard deviation in the stacking synchronization.

Averaging marine δ18O records

To better evaluate the effects of synchronization jitter on averaged marine δ18O

records, it is useful to identify more than the seventeen ACPs used in EOF1. Thir-

teen additional ACPs are identified which, following the decimal notation employed

by Imbrie et al. [1984], are labeled 3.1, 3.3, 5.3, 6.5, 7.3, 8.3, 9.1, 11.3, 12.31, 13.13,

14.3, 15.3, and 16.3. Figure 3-19 shows the SPECMAP stack labeled with all thirty

of the ACPs employed in this study. An increase in the number of ACPs is expected

to decrease the synchronization jitter. The amount of decrease will depend on how

well events can be identified and how quickly age-model errors grow away from the

ACPs. Given the inevitable presence of noise, there is some limit to how well records

can be synchronized, but at present, there is little theory to guide one in determin-

ing the degree of synchronization uncertainty. Synchronization uncertainty is further

discussed in the last section.
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Figure 3-19: The SPECMAP δ18O stack [Imbrie et al., 1984] with each of its ACPs
labeled as red dots. The thirty ACPs used to construct the high-resolution EOF1 are
indicated by black circles and are numbered according the decimal notation used for
the SPECMAP stack. Time goes from left to right and the units are normalized.

In Chapter 3, seventeen events were identified in the depth-domain in each of

twenty-seven δ18O records. In this case, not all records are of sufficient resolution to

permit identification of the additional thirteen events. Instead, only the four highest

resolution tropical planktic records are used. The use of tropical planktic records

follows that of the SPECMAP stack, but were benthic or high-latitude records instead
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used, the results are not expected to change. These planktic δ18O records have a mean

sampling interval of no greater than 2.5KY and are distributed across the equatorial

oceans at core sites MD900963, ODP663, ODP677, and ODP927. A map of core

locations is shown in Chapter 3, Figure 3-1. Figure 3-20 shows the four δ18O time-

series along with each of the identified ACP.

The introduction of additional ACPs provides for a new age-model estimate, re-

ferred to as A(30). The values of the thirteen additional ACPs in A(30) are estimated

by averaging the A(17) age estimates obtained from each of the four planktic records.

This is in direct analogy to how A(17) was estimated from A(2), and the interested

reader is referred to Chapter 3 for more detail. Another age-model is employed, A(9),

which is similar to A(17), but only has ACPs at the terminations and stage 19.1. The

four age-models used here, A(2), A(9), A(17), and A(30) give a mean spacing between

ACPs of roughly 800, 100, 50, and 25KY respectively. The four planktic δ18O records

are averaged using each of the four age-models yielding records M2, M9, M17, and

M30 — results are shown in Figure 3-20.

As expected, the averages made with fewer ACPs have less high-frequency vari-

ability. For example, substages 5.1 and 5.3 (near 85 and 100KY BP respectively) are

absent from M2 and M9. As there is good physical evidence that sea-level was anoma-

lously high during substages 5.1 and 5.3 [e.g. Broecker et al., 1968; Bard et al., 1990],

it is reasonable to infer that the global planktic δ18O signal should show local min-

ima at these substages. Furthermore, substages 5.1 and 5.3 are absent from M2 and

M9, but identifiable in the individual planktic δ18O records, suggesting that M2 and

M9 both suppress variability at periods of 20KY and less because of synchronization

errors.

The introduction of eight further ACPs, including one at substage 5.1, gives M17.

M17 shows small minima near substages 5.1 and 5.3 and, relative to M9, a variety of

other more distinct isotopic excursions. The addition of a further thirteen ACPs gives

M30, as shown in Figure 3-20. substages 5.1 and 5.3 and other isotopic excursion are

somewhat more distinct than in M17, but there is evidence that a point of diminishing

returns has been reached. The squared-cross-correlation between M2 and M9 is 0.60,

and between M9 and M17 is 0.90, showing that the addition of ACPs will affect

the variability in M2 and M9. However, the squared-cross-correlation between M17

and M30 is 0.98 (they are nearly identical), showing that the addition of ACPs to

A(17) has little affect on the overall variability in M17. Furthermore, the spectral
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Figure 3-20: Top, Planktic δ18O records pinned to the A(30) age-model. Open red
circle indicate ACPs used in A(17), while the red dots indicate the thirteen additional
ACPs. Bottom, The average of the four records when constrained by A(2), A(9),
A(17), and A(30), termed M2, M9, M17, and M30 respectively. The ACPs used for
each average are indicated by the open circles. The squared cross-correlation between
M2 and M9 is 0.60, between M9 and M17 is 0.90, and between M17 and M30 is 0.98.
So while there are appreciable differences between M2, M9, and M17, the very high
correlation between M17 and M30 suggests a point of diminishing returns has been
reached in using more than 17 ACPs.

estimates (Figure 3-21 and auto-bicoherence patterns (not shown) associated with

M17 and M30 are virtually indistinguishable. Given the small change between M17
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and M30, it is expected that the addition of more ACPs would not affect the spectra

or auto-bicoherence estimates associated with the estimated average δ18O variability.
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Figure 3-21: Multi-taper spectral estimates of the averaged δ18O records shown in
Figure 3-20 using 3 windows. In general, fewer numbers of ACPs gives a reduced
spectral power.

A further test was made to determine if the differences between M17 and M30

might influence the parameter estimates for the simple model introduced in Chap-

ter 5. Using the simulated annealing approach described in Chapter 5, the maximum

cross-correlation between model results and both M17 and M30 was found to occur

for the same parameters. That is, the simple model results are insensitive to the

addition of further ACPs to M17. It is concluded that spacing ACPs by roughly

50KY is sufficient for accurately representing the late-Pleistocene δ18O variability at

time-scales of 20KY and longer. Considering the similarity of M17 and M30 results,

Occam’s Razor suggests using A(17). In cases where it is important to resolve individ-

ual events (e.g. substages 5.1, 5.2 and 5.3, 5.3), the use of slightly more ACPs would

be preferable.
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Comparing analytical results against observations

In this final section a comparison is made between the analytical results from Sec-

tion 3.7.5 and the observational results from Section 3.7.5. In deriving the expected

gain (Eq .3.39), the simplifying assumption was made that synchronization jitter

could be modeled as a constant off-set in time. In reality, the accuracy of the syn-

chronization between geophysical records is expected to be time-variable and depend

on the distribution of ACPs and how the accuracy of the linear age-depth assumption.

Furthermore, to apply Eq 3.39 to interpreting averaged δ18O records, one requires an

independent estimate of the uncertainty in synchronization.

For M2, the jitter is estimated using the A(2) ages for the 30 identified events in

each of the four records. For example, the termination 2 ages according to A(2) are 160,

126, 142, and 125KY BP, giving a standard deviation of ±16KY. Similarly, standard

deviations are calculated for each of the 30 identified events and then averaged to

estimate the over-all synchronization jitter; for M2 this is ±17KY. The same technique

is used to estimate the synchronization jitter for M9 and M17 using A(9) and A(17)

respectively, yielding estimates of ±5KY and ±1.5KY. The M30 synchronization jitter

must be estimated separately because in A30) all the identified events have been forced

to coincide. The range of plausible M30 jitter values is bounded by the M17 jitter

and zero. Fortunately, at the frequency bands of interests, the results are largely

insensitive to what jitter is selected for M30, and for simplicity, a value of ±1KY is

adopted for the M30 jitter. Figure 3-22 shows the three gain ratios computed using

Eq. 3.39 with N=4 and the respective estimates of the synchronization jitter.

Now we turn to the averaged δ18O records themselves. Without knowledge of the

true δ18O spectrum, it is not possible to compute the gain of the spectral estimates

shown in Figure 3-21. It is, however, possible to compute the relative gain between

different spectra. Because M30 is presumably closest to the true δ18O spectrum,

it will be used to compute the relative gain associated with M2, M9, and M17.

Another consideration is that the δ18O records are expected to have a significant

noise component, so that computing the expected gain of the whole spectrum would

require an accurate understanding of the noise structure. To side-step this issue,

it is assumed that at the most significant spectral peaks, the noise component is

negligible. Thus, the gain will only be computed at bands centered on frequencies

of 1/100KY, 1/41KY, and 1/23KY using a bandwidth of ±1/400KY. Figure 3-22

shows the spectral energy in M2, M9, and M17 at these bands after normalizing by
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Figure 3-22: The ratio of energy between M30 and the other averaged records —
M2, M9, and M17. Marks are the ratio of energy at bands centered at 1/100, 1/41,
and 1/23KY derived from the averaged δ18O records, and lines are the expected
ratio of energy based on analytical results. Analytical results are from Eq. 3.39
using estimates of synchronization jitters of ±17KY for M2, ±5KY for M9, ±1.5KY
for M17, and ±1KY for M30. The good correspondence between the observed and
expected ratios indicates the applicability of the analytical gain function to marine
δ18O records. The correspondence also suggests that the energy in the identified
spectral bands is common to each of the four planktic records shown in Figure 3-20.

the narrow-band energy in M30.

The analytically derived ratio of gains corresponds well with the marine δ18O ra-

tios. This correspondence indicates that the analytical gain function is applicable

for use with the marine δ18O records and may be appropriate for other geophysical

records derived from marine and ice-cores. The correspondence between the analyt-

ical and observational results also supports the assumption that the spectral energy

centered at 1/100, 1/41, and 1/23KY is common to each of the planktic marine δ18O

records.
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Chapter 4

Are the Glacial Cycles Paced by

Orbital Variations?

In the previous chapter, a significant nonlinear coupling was found between the

1/100KY and 1/41KY bands of climate variability, suggesting some relationship be-

tween the glacial cycles and obliquity. This chapter uses hypothesis testing procedures

to further explore the relationship between glacial cycles and orbital forcing. Of the

three orbital parameters, the obliquity results are the most conclusive. A phase cou-

pling between terminations and maxima in obliquity is found to be significant at the

5% level. From this phase-coupling, it is inferred that deglaciations are triggered by

shifts in insolation owing to change in obliquity. The largest insolation shifts related

to increasing obliquity are greater high-latitude insolation, greater seasonality, and

a reduced annual average hemispheric insolation gradient. Glacial cycles span either

two or three obliquity cycles, giving an average duration of 100KY. Tests of the cou-

pling between precession and the glacial cycles are inconclusive due to an age-model

uncertainty approaching half a precession cycle. Many models call on the eccentricity

amplitude modulation of precession to pace the ice-ages. It is shown that eccentricity

maxima lag terminations and drift in timing, making eccentricity an unlikely pacing

mechanism for the ice-ages. The simplest supposition supported by the observations

appears to be that obliquity variations pace the glacial cycles.
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4.1 Introduction

The cause of the quasi-100KY climate variability remains uncertain due to an over-

abundance of plausible explanations [e.g. Roe and Allen, 1999]. The contending

explanations for the quasi-100KY variability can be divided into two categories: those

which are wholly internal to the climate system [e.g. Ghil, 1994; Saltzman, 2002;

Wunsch, 2003a], and those which call upon orbital forcing [e.g. Hays et al., 1976].

The latter can be further divided according to orbital parameter. Eccentricity [e.g.

Benzi et al., 1982; Rial, 1999] has the virtue of varying at 100KY period (although the

400KY variability is stronger), but the insolation changes this causes are only on the

order of a few W/m2 and are probably too small to be of much climatic relevance. The

climatic precession variability has a much larger signal, with seasonal changes in global

insolation of up to 30 W/m2. The most widely accepted version of the orbital forcing

of the glacial cycles is that a nonlinear response to the precession forcing demodulates

the eccentricity envelope and generates a roughly 100KY timescale [Imbrie et al.,

1993]. Note that this is a two-fold nonlinearity: first, a nonlinear seasonal response

must generate the precession period variability (see Chapter 2), and second, some

longer timescale nonlinearity generates a climatic eccentricity response. Obliquity

has played a more obscure role in theories of the glacial cycles, largely because it is

not obvious how a forcing dominated by 41KY variability can be related to a roughly

100KY climatic signal. Unlike the climatic precession, the amplitude and frequency

modulation of obliquity are small, but it has none-the-less been suggested that these

modulations are related to the 100KY glacial cycles [Liu et al., 1998]. In the following

chapter a new model is introduced which suggests a mechanism for phase-locking the

glacial cycles to changes in Earth’s obliquity.

In searching for the cause of the quasi-100KY variability, the marine Pleistocene

δ18O record has been examined using a wide variety of statistical tests. Most com-

monly employed are Fourier based spectral techniques [e.g. Hays et al, 1976] and

cross-spectral techniques [e.g Imbrie et al., 1992], but also non-Fourier methods such

as wavelet analysis [e.g. Bolton and Maasch, 1995]. However, in so much as a re-

lationship exists between glacial cycles and obliquity or precession variability, it is

necessarily nonlinear. This excludes many of the simplest and most powerful tools

available for testing the relationship between two signals.

Higher order spectral analysis [e.g. Hagelberg, 1991; Wara et al., 2000] is a useful

tool for exploring possible nonlinear coupling in the climate record. To date, however,
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results are inconclusive regarding the degree to which orbital variations are related to

the 100KY variability. For instance, Muller and MacDonald [2000] use higher order

spectral analysis techniques to argue against a causal link between precession vari-

ability and the ice-ages. In Chapter 3 a nonlinear coupling between the 100KY and

41KY variability was identified using both spectral and bispectral techniques, but

it was not possible to distinguish between orbital control of the 100KY variability

and a weak nonlinear coupling between obliquity and an independent 100KY vari-

ability. Despite the large literature analyzing the 100KY variability, it has not been

established whether or not orbital variations somehow control the glacial cycles.

The depth-derived age-model developed in Chapter 3 provides a new opportunity

to apply hypothesis testing procedures [e.g. Devore, 2000, or any standard statistics

textbook] to the question of whether glacial cycles are coupled with orbital variations.

The important features of the depth-derived age-model are its independence from

orbital assumption, good age-control, and uncertainty estimates, all of which are

crucial for conducting a rigorous test of the orbital hypothesis of glacial variability.

The relationship between orbital variability and the glacial cycles is analyzed using the

generalized phase-coupling between glacial terminations and the orbital parameters.

The method involves estimating the distribution of orbital phases relative to the

glacial terminations, and determining the degree to which the phase distribution is

distinguishable from chance. Whereas higher order spectral analysis techniques are

well suited to identifying weak nonlinear coupling in a system, the generalized phase

coupling approach is better able to identify coupling in fully nonlinear systems. The

magnitude and abruptness of the glacial terminations suggests the presence of strong

nonlinearity in the climate system and motivates use of a generalized phase coupling

analysis. Similar approaches to studying nonlinear coupling in timeseries have been

successfully applied in a wide range of contexts including physics, chemistry, biology,

and the social sciences; for an overview, see Rosenblum and Pikovsky, [2003].

At the outset, it is important to note the small number of observations we are

dealing with — there are seven or eight (depending on how you count) glacial ter-

minations during the late Pleistocene. This small population could render the test

results inconclusive or sensitive to the particular assumptions employed. In seeking to

make the results of the test as general as possible, a range of plausible formulations

of the hypotheses are investigated to determine the sensitivity of the result to the

methodology employed. Of course, this work does not exhaust the statistical tests
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that might be made, and is therefore best viewed as an installment towards a more

rigorous test of the orbital theory of climate change.

4.2 Features of an orbital hypothesis

To test the relationship between the glacial cycles and orbital variability, one seeks

a hypothesis which is general enough to encompass many of the possible climatic

responses to insolation forcing, yet specific enough to permit testing. Generality

is necessary because there are numerous mechanisms which might link climate and

orbital variability. Milankovitch [1941] hypothesized that increases in Northern Hemi-

sphere summer insolation would lead to deglaciations, thus setting the phase of the

glacial cycles. Another possibility is that high-latitude insolation increases North

Atlantic sea-ice, reduces atmospheric moisture, and eventually starves the Northern

Hemisphere glaciers [Gildor and Tziperman, 2000]. A related mechanism for starving

glaciers is to decrease the meridional moisture flux by decreasing obliquity [Raymo

and Nisancioglu, 2003]. As a final example, consider that during the last deglaciation,

Antarctic temperatures warmed roughly three kiloyears prior to Greenland tempera-

tures [e.g. Imbrie et al., 1993; Blunier and Brook, 2001; Wunsch, 2003c], suggesting

that southern hemisphere insolation might also play a role in pacing the glacial cycles.

Given the variety of plausible insolation forcing mechanisms, the hypothesis should

not be restricted to a single orbital configuration when testing whether the glacial

cycles are paced by orbital variations. That is, not simply whether high-latitude

Northern Hemisphere summer insolation controls the glacial cycles, but also insolation

gradients, Southern Hemisphere insolation, winter insolation, etc. As discussed in

Chapter 2, the orbital elements of eccentricity, obliquity, and precession control the

long-term evolution of each mode of insolation forcing. By testing for a relationship

between the glacial cycles and each orbital parameter individually, this omnibus test

is generalized to all long-term variations in modes of insolation variability.

To make a statistical test possible, it is necessary to demand consistency in the

dynamics associated with each glacial cycle. A statistical test is not possible if each

glacial cycle is permitted to have a different relationship with the insolation forcing.

The hypothesis used here will assume a fixed relationship between the glacial cycles

and orbital variability over the record duration.

It is also important for the hypothesis to depend on quantities which can be ac-
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curately identified. It is straight-forward to identify the Earth’s orbital configuration

at any given point in time over the last ten million years [e.g. Laskar, 1993]. It

is more challenging to identify the Earth’s climate state at a given time. For the

glacial variability, terminations are focused on because their magnitude makes for

easy identification and their abruptness permits more precise determination of the

timing. The timing of terminations is estimated from the depth-derived age-model

presented in Chapter 3; it is no exaggeration to say that the use of an age-model in-

dependent of orbital assumptions is crucial for making a test of the coupling between

terminations and orbital variability. Orbital-tuning attempts to drive energy into the

orbital-bands; one way to do this is to align the termination with times when the

climate response to orbital variability is also increasing. It is therefore expected, and

found to be the case in Monte Carlo experiments (not shown), that the termination

ages of orbitally-tuned records are preferentially aligned to be in-phase with the or-

bital variability. For similar reasons, and again found to be the case in Monte Carlo

simulations, narrow-pass-band filtering over the orbital bands will produce signals

which are biased towards being in-phase with the terminations.

This test focuses on the orbital configuration during a termination occur, rather

than the climate state during daring a particular orbital configurations. For eccen-

tricity, the distinction is a small one, as there is a nearly one to one correspondence

between local maxima and glacial terminations. For obliquity and precession, how-

ever, the distinction is more important as terminations only occur every two or three

obliquity cycles and every four or five precession cycles [e.g. Raymo, 1997]. The

assumption is that the climate of the last 650KY may somehow skip beats in re-

sponding to the orbital forcing. Examples of such nonlinear phase-locking are well

known in many biological and physical contexts; for a good introduction see Pikovsky

et al. [2001]. Chapter 5 discusses nonlinear phase-locking of the climate system with

orbital variations in more detail.

It should be noted that the more signals which are tested in relation to the ter-

minations, the higher the chance of obtaining at least one false positive. For this

reason, only those parameters are considered which cause significant long-term shifts

or modulations in the insolation forcing. Other forms of orbital variability which

are not included in the test, but which have been postulated to be responsible for

the glacial cycles are variations in the orbital plane [Muller and MacDonald, 2000],

frequency modulation of the obliquity, [Liu, 1998], and frequency modulation of the
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eccentricity [Rial, 1999]. If one did test the timing of the glacial terminations against

each orbital parameter, their frequency and amplitude modulations, and variations

in the orbital plane this would comprise some ten tests, and there are probably more.

Given such a large number of tests, it should be expected that at least one of the

tests would give a result significant at the 10% level, even if the orbital variations are

wholly independent of the terminations. Given sufficient data, it would be possible

to carry out a multivariate test to simultaneously test several parameters. However,

given the small number of glacial cycles, it is important to keep the hypothesis test

confined to the most likely orbital suspects.

4.2.1 Identifying glacial terminations

As noted above, glacial terminations provide clear markers for defining the phase of

the glacial cycles. Terminations have been qualitatively defined as abrupt shifts in the

marine δ18O record [Broecker, 1984], suggesting that a quantitative definition should

be formulated using the rate of change of δ18O. Figure 4-1 shows the histogram of

rates of change in EOF1 over the last 650KY. Because EOF1 is linearly related to

δ18O, the relative distribution of the rates of change will be the same. The age esti-

mates are from the depth-derived age-model discussed in Chapter 3. The distribution

of EOF1 indicates that ice-volume is usually slowly increasing, while the presence of

a long positive tail indicates less frequent but more rapid melting events which are

identified with the glacial terminations. There is also a significant temperature com-

ponent to the δ18O variability recorded in EOF1 [e.g. Lea et al., 2000], so that the

rapid events identified in EOF1 cannot be interpreted as ice-volume changes alone.

Here, terminations are defined as instances when EOF1 rises faster than two

standard deviation of the distribution. To more precisely specify the timing, the

initiation of a termination is defined by when the rate of sea-level change first exceeds

the two standard deviation threshold. To prevent short-lived climate events and noise

from falsely appearing as termination events, EOF1 was first lightly smoothed using a

three point triangular window. The termination initiation time is defined as the zero

phase point for each glacial cycle, and the identified terminations are shown along

with EOF1 in Figure 4-2. Only the last 650KY of the climate record is examined

as this period corresponds to the interval in which quasi-100KY glacial variability

predominates [e.g. Schmieder et al., 2000]. There are some indicators that quasi-

100KY glacial variability is also present at earlier periods in the climate record [e.g.
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Figure 4-1: The normalized distribution of the rate of change of EOF1 over the last
650KY (black). The bulk of the distribution is weakly negative, but note the long tail
extending into rapid increases in EOF1. The vertical line indicates the two standard
deviation level above which terminations are defined to occur.

Beaufort, 1994], but these periods are not covered by the depth-derived age-model

and are thus outside the scope of this study.

By convention, there are seven terminations identified in the δ18O record over the

last 650KY [see Chapter 3], and these same features are identified by the two standard

deviation criterion. An additional event also meets the termination criterion during

stage 7, near 210KY BP. This additional event occurs roughly 30KY after what is

conventionally called termination three; to distinguish the two, termination three

is labeled 3b while the additional event is labeled termination 3a. It is possible

to exclude either event 3a or 3b by employing more elaborate rules for identifying

terminations. Examples are: requiring the preceding maximum in ice-volume to be

above some threshold or requiring terminations to be spaced by some number of years.

But adding such a rule to exclude a single event is ad hoc, and instead all eight events

are treated as glacial terminations. Reassuringly, the test results are not sensitive to

whether 3a or 3b are included or not. It is also worth noting that the model results of

Paillard [1998] reproduce the timing of each glacial termination in a robust fashion,

except for that of termination 3 which is sensitive to the model parameterization and

occurs at either event 3a or 3b. It is possible that termination 3 is split between two

distinct time intervals.
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Figure 4-2: The relationship between terminations and orbital variability. Plotted
is EOF1 with filled dots indicating the termination initiation times. Vertical lines
indicate local maxima in eccentricity (top) and obliquity (bottom), and are counted
starting from near termination one. Precession maxima occur too often to be usefully
plotted.

4.2.2 Orbital phase

The climatic precession parameter and earth’s obliquity vary smoothly and quasi-

periodically in time [e.g. Hinnov, 2000], making the time-varying phase of each

parameter simple to estimate, for instance using a Hilbert transform method [e.g.

Bracewell, 2000]. Eccentricity is not amenable to the Hilbert transform method as

the phase is poorly defined when the Earth’s orbit is nearly circular. Thus it is most

straight forward to define the local maximum in each orbital parameter as being

zero-phase. Between local maxima, the phase is linearly interpolated with time so

that a full 360◦ revolution occurs between each maximum. However, the phase of

the orbital parameters during terminations will not be so simple to calculate due to

frequency modulation effects and the more abrupt changes in eccentricity. A more

general approach is to identify the two local maxima nearest to Tn, where the closest

is denoted M1n and the next closest as M2n. Assuming the signal is not severely

frequency modulated, M1n and M2n will bracket Tn, and the phase is calculated as

φn =
|Tn −M1n|
M2n −M1n

× 360◦ n = {1, 2...N}, (4.1)
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Term. 7 6 5 4 3b 3a 2 1
Age -626 -532 -421 -334 -239 -213 -130 -12
σ 9 10 11 11 10 12 8 2
∆p 5 4 -7 -1 -3 -7 3 1
∆θ 5 -5 4 1 -13 0 -1 3
∆e 32 37 16 25 23 -3 14 -2
φp 60 50 -130 -10 -50 -120 50 10
φθ 40 -40 40 10 -120 0 -10 20
φe 120 140 70 90 90 -10 50 -10

Table 4.1: The timing and phasing of orbital variations relative termination initiation
times. Listed are the termination number, the initiation time for each termination in
kiloyears, and the one standard deviation timing uncertainty, also in kiloyears. ∆ is
the timing difference in KY between the termination time and the nearest local max-
imum for each orbital parameter; subscripts p, θ, and e refer to precession, obliquity,
and eccentricity respectively. φ is the phase of each orbital parameter at the termi-
nation time listed in degrees. Positive ∆ and φ indicate that the nearest maxima in
the orbital parameter lags the termination.

So defined, the phase estimates for obliquity and precession are very similar to those

obtained using the Hilbert transform. The timing of the local maxima for obliquity

and eccentricity over the last 650KY are shown in Figure 4-2; precession varies too

rapidly to be usefully plotted.

As discussed in Chapter 2, the precession parameter is defined as p = e sin$,

where e is the eccentricity and $ is the angle between perihelion and vernal equinox.

So defined, increases in precession lead to greater insolation during Northern high-

latitude summer and lower insolation during winter. Increases in obliquity cause

greater annual average insolation at high-latitudes (the increase in summer more than

compensates for the decrease in winter high-latitude insolation) and lower annual av-

erage hemispheric insolation gradients. Finally, zero phase in eccentricity means the

Earth receives maximum annual average insolation and the seasonal effects of pre-

cession are largest. Thus defined, when each of the orbital parameters are near zero

phase, the orbital configuration gives anomalously high Northern hemisphere sum-

mer insolation, the configuration Milankovitch [1941] postulated would cause glacial

terminations.

While all calculations will be made using the orbital phase, it is sometimes clearer

to discuss differences between orbital maxima and terminations in units of time. Be-

cause the orbital parameters are frequency modulated, there is no constant mapping

between phase and time. However, the orbital variations are close to being periodic,
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and an approximate translation of time into phase can be made using the average

period between local maximum in the orbital parameters over the last 650KY. These

are: 96.7 KY/360◦ for eccentricity, 40.8 KY/360◦ for obliquity, and 22.0 KY/360◦ for

precession.

Table 4.1 lists the time between each termination and the nearest maximum for

each orbital parameter, denoted by ∆p,θ,e for precession, obliquity, and eccentricity

and by ∆ for all three. Also listed are the phase of each orbital parameter relative

to the initiation of each termination, denoted by φ. Figure 4-3 shows this same

information visually. There are some notable features. The plus and minus one

standard deviation age-model uncertainty is of the same order as half a precession

cycle. Thus it is expected that age-model uncertainty will overwhelm our ability to

determine the phasing between precession and the terminations.

A rough test of the significance of the obliquity phasing can be made by noting

that seven of the eight ∆θ are contained within ±10KY of each termination. The

probability of having seven or more of the ∆θ results cluster into either one or the

other half of the phase space, assuming a uniform phase distribution, is 0.07. This

statistical sketch suggests that a more careful analysis may show that the clustering

of the obliquity phases is significant.

Finally, the eccentricity ∆e shows a distinct trend of about -6KY per 100KY,

suggesting that the average time between eccentricity maxima is shorter than the

average glacial cycle. One might expect that the phasing of the precession would also

influence the climate response to eccentricity, but note that the drift in the relative

timing of eccentricity maxima and terminations in 650KY is over 30KY, or well over

a precession cycle. From a physical view point, it seems difficult to reconcile orbital

pacing of the glacial cycles with this drift in ∆e.

4.2.3 Nonlinear coherence (Rayleigh’s R)

In this section a statistic is introduced under the name of nonlinear coherence. It has

recently come to the author’s attention that this statistic is known as Rayleigh’s R

[see Upton and Fingleton, 1989]. In the following, the term nonlinear coherence is

synonymous with Rayleigh’s R.

An accurate measure of the phase relationship between terminations and orbital

variations should account for the periodic nature of phase measurements. For exam-

ple, the standard deviation is a poor candidate because a φ which hovered near ±180◦
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Figure 4-3: Similar to Table 4.1, the timing of terminations relative to local maxima
in precession (top, ∆p), obliquity (middle, ∆θ), and eccentricity (bottom, ∆e) in KY.
Positive values indicate the maximum in the orbital parameter lags the termination.
Termination numbers are listed for each estimate along with vertical bars indicating
the one standard deviation age-model uncertainty. Note that the scaling of the y-
axis is plus and minus roughly half the period of each orbital parameter and that
uncertainty bars wrap around. A least-squares fit of the trend in ∆e is indicated by
the dashed line; it has a slope of -6KY/100KY.
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could have nearly constant phasing, but nonetheless a large standard deviation. An-

other statistic, the root mean square deviation of φ, is also a poor choice because it

requires one to select a reference phase from which to measure the deviation, thus

biasing the test towards a single orbital configuration. Furthermore, standard coher-

ence tests, which do account for periodic phases, are only applicable between identical

frequency bands. To test for a nonlinear coupling, it will be necessary to compare

the relative phasing between processes which have energy concentrated at different

frequency bands.

Tass et al. [1998] introduced a measure of nonlinear phase coupling based on the

normalized Shannon entropy of the phase distribution. While useful in some contexts,

this test requires a large number of measurements for the results to be accurate, and

thus cannot be applied in this case where only eight measurements are available.

Another drawback is the lack of analytical methods for evaluating the significance of

the Shannon entropy, making Monte Carlo techniques necessary. This state of affairs

motivates the introduction of a statistic, termed the nonlinear coherence,

c =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

cosφn + i sinφn

∣

∣

∣

∣

∣

. (4.2)

Here φn is the phase of the orbital variability relative to the nth termination, N is

the total number of phase estimates, and |.| indicates the magnitude of a complex

quantity. Eq 4.2 provides a measure of the phase clustering between a quasi-periodic

process and some other series of events which are localized in time but are not neces-

sarily periodic or even quasi-periodic. As written, the nonlinear coherence estimate

weights each phase equally, but were it decided that some events are more important

than others, the estimate could be modified to include a set of weights. An more de-

tailed discussion of the nonlinear coherence, its relationship with the linear coherence,

and its probability distribution is given in Appendix 4.6.1.

4.3 Lessons from the Titius-Bode “Law”

Before discussing the significance of the observed phasing between orbital variations

and the terminations, it is useful to consider the case of the Titius-Bode law. This

empirical relationship describes the approximate regularity in the distance of the

planets of our solar system from the sun and has been the subject of much attention
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in the statistical [e.g. Good, 1969; Efron, 1971] and astrophysical communities [e.g.

Murray and Dermott, 1999; Lynch, 2003]. Lynch [2003] wrote the law as,

rη = 0.4 + 0.3η η = −∞, 0, 1, 2, 3....,

where r is the distance from the sun (measured using the semi-major axis), η is an

index referring to the planets, and the constants (0.4 and 0.3) were chosen to minimize

the least squares differences between r and the planets’ semi-major axis. The choice

of indexing and the associated least squares best fit changes slightly from author

to author. The law played an important role in the discovery of Uranus (η=6) by

Herschel in 1781, and the largest asteroid, Ceres (η=3), by Piazzi in 1801. However,

for Neptune (η=7) there is a poor fit, and for Pluto (η=8) the law breaks down

completely. The use of −∞ in the sequence for η and the inclusion of an asteroid,

albeit a big one, also seems arbitrary. As put by Efron [1971], “For a statistician,

fitting a three-parameter curve of uncertain form to ten points with three exceptions

certainly brings one to the far edge of the known world.”.

In terms of hypothesis testing, the Titius-Bode law and the orbital theory of the

ice-ages share much in common. 1) The hypothesized relationships are largely em-

pirical1. 2) Neither result has been shown to arise solely as a consequence of the

governing dynamical laws. Because of (1) and (2), the significance of the relationship

depends on the aesthetic judgment of what constitutes a simple explanation of the

observations. 3) Both hypotheses have a small sample number – seven or eight termi-

nations and ten planets – making judgment regarding significance difficult. The small

sample size makes the power of the test small, as later discussed in further detail.

Finally (4), both have made predictions which were subsequently confirmed. That is,

the accurate prediction of the Brunhes-Matuyama magnetic reversal date [Johnson,

1982; Shackleton et al., 1990] and the accord between depth-derived and orbitally-

derived ages gives partial confirmation of the orbital theory of climate change. Note,

however, that the obliquity and precession bands of variability are used for orbital age

estimates, and the orbital age estimates are largely independent of the quasi-100KY

variability2. It appears no predications for the origins of the quasi-100KY variability

1Milankovitch predicted orbital control of ice-ages, but at the period of obliquity. Recognition
of the quasi-100KY timescale of the ice-ages came with observations made in marine cores and
radiometric dating of coral high-stands.

2In orbitally-tuning ODP677 and predicting the age of the Brunhes-Matuyama magnetic reversal,
Shackleton et al. [1990] used the results of Imbrie and Imbrie’s [1980] model which has energy
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have been subsequently confirmed.

Statistical tests of the significance of the Titius-Bode laws have widely varying

results. Good [1969] finds a probability of about 130 to 1 that the law is not a mere

accident, while Efron [1971], replying to Good ’s article, finds a probability of about

one to one. The large difference in probability is mostly due to differences in the null-

hypotheses. Debate over a suitable null-hypothesis for the Titius-Bode law continues

[e.g. Hayes and Tremaine, 1998; Lynch, 2003]. The lesson appears to be that, in

seeking a test of the orbital theory of glaciation, one needs to account for the range

of plausible formulations of the hypothesis test.

4.4 Testing the orbital hypotheses

Prior to discussing the hypothesis tests themselves, it is useful to review the termi-

nology which will be used in articulating the design and results of the hypothesis

test [see e.g. Devore, 2000]. The significance level of a statistical hypothesis test is

the probability of wrongly rejecting the null hypothesis (H0) when it is true and is

denoted as α. The critical value for a hypothesis test is the value of the observed

test statistic at which H0 is rejected. In this case, the test statistic is the nonlinear

coherence between the glacial terminations and an orbital parameter. The set of test

statistic values for which H0 is rejected is called the rejection region.

The ability to reject H0 is not sufficient for establishing the credibility of the

alternate hypothesis (H1). One also needs to know the likelihood of rejecting H0

when it is in fact false, and this is termed the power, as denoted by 1 − β. An

optimal statistical test will minimize α and β. If α plus β equal one, the test is

insensitive to whether H0 is true or false, and the results are meaningless. As one is

usually more concerned with falsely accepting a hypothesis (H0), the significance level

is typically prescribed and the associated β is computed. Here a significance level of

α = 0.05 is used, and the β depends on the probability density functions (PDFs) of

the alternate hypothesis. The power of the test will be considered in detail only when

the null-hypothesis can be rejected.

concentrated near 1/100KY frequencies. This 1/100KY variability is seen to be incidental in that
Johnsen [1982] had previously predicted the age of the Brunhes-Matuyama magnetic reversal without
using a model with 1/100KY variability.
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4.4.1 The null-hypotheses

A hypothesis test is conducted for each of the three orbital parameters where the

null-hypotheses are

Hp
0, glacial terminations are independent of the phase of precession

He
0, glacial terminations are independent of the phase of eccentricity

Hθ
0, glacial terminations are independent of the phase of obliquity

To proceed it is necessary to translate the Hp,e,θ
0 into PDFs of nonlinear coherence. In

estimating these PDFs, one could assume that the phase between orbital variations

and the terminations is uniformly distributed. Although this uniform assumption

would be simple, it is also most likely incorrect in that it requires the interval be-

tween consecutive terminations to be uniformly distributed between zero and infinity.

Instead, it appears that ice-sheets have an intrinsic timescale associated with growth

and collapse [e.g. Imbrie et al., 1993; Marshall and Clark, 2002], and a null-hypothesis

is developed with incorporates a plausible timescale for glacial variability.

The simple stochastic glacial model introduced by Wunsch [2003b] is used as the

basis for estimating the PDF associated with the H0. The stochastic model postulates

a random walk in ice-volume,

Vt = Vt−1 + aηt + b, (4.3)

if Vt < 0, Vt = 0,

if Vt > ξ, Vt = 0,

where V is ice-volume, t is a discrete time measured in one KY intervals, ηt is a

zero-mean white noise process, and a, b, and ξ are constants. The noise term, η, is

independent and normally distributed so that the expected variance, < (aη)2 >, is

a2 where a is chosen as two. So that no particular sequence of termination times is

made more likely, the initial ice-volume is set to a random value between 0 and ξ with

uniform probability.

For a simple random walk, the variance of the timeseries is expected to grow

linearly in time at a rate controlled by a. However, Eq. 4.4 incorporates two threshold

conditions which modify the behavior of this random walk. First, a barrier is imposed

at zero ice-volume so that values of Vt which are less than zero are reset to zero.
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Figure 4-4: A realization of the random walk model of ice-volume (Eq. 4.4). The
selected parameterizations are a noise amplitude of a=2, a drift of b=1, and an ice-
volume threshold of ξ=100. Terminations are triggered once the threshold (indicated
by the horizontal red line) is crossed. All units are normalized.

Second, a collapse threshold is imposed at ξ above which ice-volume is also reset to

zero. The nth crossing of this threshold is identified with the triggering time, Tn.

Wunsch [2003b] added an additional stochastic term to the collapse threshold, but

here ξ is simply taken to be constant at a value of 100. A drift term, not in the

original model, of b = 1 is included to provide a bias toward accumulation. A similar

bias is observed in the histogram of the rates of change of EOF1 shown in Figure 4-

3. Without this bias the distribution of termination intervals is similar to a Poisson

process where long intervals of more than 200KY are common. The positive bias

towards accumulation makes terminations occur at a more regular rate; if there was

no noise, the terminations would be periodic at 100KY. A realization of the model

output is shown in Figure 4-4.

The threshold crossing statistics of Vt could be computed analytically using the

theory of Brownian motion with reflecting and absorbing barriers [e.g. Feller, 1957],

but such an approach is not pursued here. Rather, it suffices to derive the pertinent

statistics associated with Vt using a Monte Carlo approach. To obtain a single real-

ization of the nonlinear coherence associated with H0, first a sequence of eight glacial

termination are generated using the stochastic glacial model, in analogy with the

values listed in Table 4.1. Next, the relative phasing between the terminations and

each orbital parameter is calculated using Eq. 4.1. Finally, the nonlinear coherence

is computed from each set of eight phases using Eq. 4.2. Fifty-thousand Monte Carlo
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Figure 4-5: From left to right are the null-hypothesis PDFs associated with preces-
sion, obliquity, and eccentricity. The vertical bar indicates the estimated nonlinear
coherence, and shading indicates the α = 0.05 rejection region for the null-hypothesis
of no connection between the parameter and the timing of the terminations. The
critical value (v) and nonlinear coherence (c) with EOF1 are (v = 0.6,c = 0.43) for
precession, (v = 0.6,c = 0.7) for obliquity, and (v = 0.84, c = 0.66) for eccentricity.
Only obliquity has a nonlinear coherence greater than its critical value so that the
obliquity null-hypothesis alone is rejected.

realizations of nonlinear coherence are used.

The PDFs associated with the Hp,e,θ
0 are estimated by sorting fifty-thousand Monte

Carlo realizations of the nonlinear coherence for each orbital parameter into twenty

bins centered on {0.025, 0.05...0.975} and then normalizing the histogram area to

one. Critical values are estimated by finding the nonlinear coherence above which 5%

of the Monte Carlo realizations reside. The resulting PDFs and critical values are

shown in Figure 4-5 and tabulated in Table 4.2. Only the obliquity null-hypothesis,

Hθ
0, can be rejected as the obliquity nonlinear coherence (0.70) is greater than the

obliquity critical value (0.60). Thus a significant coupling exists between obliquity

and the glacial terminations at the 5% level. In fact, the likelihood of obtaining such

an obliquity nonlinear coherence by chance alone is one in a hundred. Furthermore,

it is estimated that the power of the obliquity test is 0.58; see Appendix 4.6.2 for

further discussion of how the power of the test was calculated and how it should be

interpreted.
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c v β
precession, 0.43 0.60 —
obliquity, 0.70 0.60 0.42
eccentricity, 0.66 0.84 —

Table 4.2: Summary results of the hypothesis test. From left to right, columns refer
to the nonlinear coherence between orbital variations and the terminations (c); the
nonlinear coherence critical values (v) for an α = 0.05 significance level; and the
probability of making a Type II error, β.

4.4.2 Discussion

A natural question is why Hθ
0 (that glacial cycles are independent of obliquity) is

rejected, while Hp
0 and He

0 are not rejected. The first and simplest reason is that

the obliquity nonlinear coherence with the terminations (0.70) is higher than that

of precession (0.43) or eccentricity (0.66). The second reason is that the obliquity

critical value (0.60) is lower than that of eccentricity (0.84). To address why there is

a difference in the critical values, one must consider the glacial timescale built into

the random walk glacial model.

Figure 4-6 shows a histogram of the duration between threshold crossings derived

from a long run of the stochastic ice-volume model. The mean time between consec-

utive terminations is 100KY with an approximately normal distribution and ±20KY

standard deviation, whose spread agrees with other estimates of the deviation in

glacial cycle length [Raymo, 1997]. Note if the bias term, b = 1, were not included in

Eq 4.3 the distribution would more resemble a Poisson distribution. The magnitude

of this standard deviation suggests that the relative phasing between terminations

and obliquity will be nearly uniform, while the relative phasing between terminations

and eccentricity will be more structured. In general, the more structured the phase

distribution, the higher the expected nonlinear coherence. Thus, the requirements for

establishing a significant phase coupling between eccentricity and the terminations

(i.e. the critical value) is higher because eccentricity has a timescale similar to the

terminations.

The above discussion may seem to turn the argument on its head: typically,

a similarity between timescales is cited as evidence for a relationship between two

phenomena. But consider a counter example in which two unrelated signals are

both periodic at 100KY. Then, the relative phasing at the first event must also be

the relative phasing at all subsequent events. In this case, even though the signals
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are unrelated, there is only one degree of freedom in the system and a nonlinear

coherence of one is assured. Oppositely, when two signals have differing periods and

are unrelated (barring the case of one signal being a harmonic of the other) one

expects the phase to be more uniformly distributed and the nonlinear coherence to

be lower. The average duration between eccentricity maxima is similar to average

duration between terminations resulting in fewer DOF and a higher critical value

relative the obliquity test.

There are also some qualitative observations which argue against a coupling be-

tween eccentricity and the glacial cycles. First, the most significant band of variability

in eccentricity is near 1/400KY, but a concentration of 1/400KY variability is absent

from Pleistocene climate variability [e.g. Imbrie et al., 1993]. Second, terminations

lead eccentricity maxima by an average of 20KY, or 68◦. This indicates that termi-

nations would have to be triggered by moderate values of eccentricity. It would seem

more physical for glacial termination to be triggered during maximum rather than

intermediate values of the eccentricity. That the lead is equivalent to a full preces-

sion cycle is also important, as this argues against glacial pacing by the eccentricity

amplitude modulation of the climatic precession. Third, there is a trend whereby ec-

centricity maxima lag terminations by smaller values as time progresses. The change

in lag averages 6KY per 100KY (see Figure 4-3), and it is difficult to conceive of

physical mechanisms which would drift in this way. Finally, the eccentricity varia-

tions only cause weak changes in insolation forcing. Taken together with the inability

to reject He
0, these observations make eccentricity appear an unlikely candidate for

pacing the ice-ages.

A second question is whether excluding either of the termination 3 events would

change the obliquity test results? Figure 4-2 and Table 4.1 shows that termination

3a contributes to obliquity’s high nonlinear coherence; if it is excluded, the nonlinear

coherence decreases from 0.70 to 0.66. Decreasing the number of terminations from

seven to eight also increases the critical value from 0.60 to 0.64. Thus the nonlinear

coherence remains greater than the critical values so that the null hypothesis would

still be rejected and the results unchanged.

In Section 4.3 the difficulty of testing the significance of the Titius-Bode “Law”

was discussed. In particular, it appeared that test results were sensitive to the null-

hypothesis used in testing the Titius-Bode “Law”. This raises the final question

considered here; how robust are the obliquity test results to modifications of the
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Figure 4-6: A histogram of the time between consecutive terminations derived from
the random walk ice-volume model (Eq. 4.4). The selected parameterizations are a
noise amplitude a=2, a drift b=1, and an ice-volume threshold ξ=100. The mean
interval between terminations is 100KY with a ±20KY standard deviation. The
distribution is close to Gaussian but with a slightly elongated tail towards longer
intervals.

null-hypothesis? To answer this question, it is useful to investigate whether some

other plausible formulation of Hθ
0 would increase the critical value above 0.70. One

approach (Hθ′
0 ) is to phase randomize EOF1, identify terminations in the phase ran-

domized record, and compute the newly realized nonlinear coherence. A more so-

phisticated approach, which accounts for the non-Gaussian distribution of EOF1, is

to use the phase shuffling algorithm of Schreiber and Schmitz [2000]. Experiments

were also performed in which the non-Gaussian distribution of the rates of change of

EOF1 was preserved. In all cases, the PDF resulting from these phase randomized

approaches was qualitatively very similar to the PDF associated with the random

walk accumulation mode (Hθ
0) and the obliquity null-hypothesis was invariably re-

jected. Assuming a uniform phase distribution between obliquity and terminations

also leads to rejection of the null-hypothesis.

Another approach to exploring whether the obliquity null-hypothesis can be re-

jected is to build other simple models, akin to the random walk ice-volume model

presented earlier. A simple model was formulated (Hθ′′
0 ) which requires terminations

to follow a Poisson distribution. Pursuing the idea that termination identification
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times could be biased by the existence of a linear response to orbital forcing, obliquity

variability was superimposed on the results of the Poisson model prior to identifying

termination initiation times. It is found that Hθ′′
0 can be rejected at the 5% signifi-

cance level even when the obliquity variability is made to account for an unreasonably

large 40% of the total record variance. On the basis of three separate formulations,

it is concluded that the null-hypothesis of no coupling between terminations and the

obliquity variability can be safely rejected. It should, however, be noted that this

result does not constitute proof of the obliquity pacing theory. For proof, one wants

an ironclad physical mechanism, a much stronger statistical test, or preferably both.

4.5 Obliquity pacing of the glacial cycles

Having identified obliquity as significantly associated with the glacial terminations,

it remains to identify a physical mechanism by which changes in obliquity could pace

the glacial cycles. There are some clues. The mean phase of obliquity during termi-

nation initiation is 6±53◦. From this phasing it can be inferred that terminations are

triggered by an insolation forcing related to a high obliquity orbital state. Candidate

modes of insolation forcing are increased annual average high-latitude insolation, in-

creased seasonality, a reduced summer hemispheric gradient, or an increased winter

hemispheric gradient. Note that the hypothesis test did not presuppose a particular

orbital configuration. That the sense of obliquity phasing during the glacial termi-

nations lends itself to a simple physical interpretation (it would be more difficult to

rationalize low obliquity causing glacial termination) provides additional, independent

support to the inference of obliquity pacing of the glacial cycles.

The obliquity pacing of the glacial cycles implies that terminations only occur

every second or third obliquity cycle, where the average of the 2 × 40 and 3 × 40KY

cycles gives the 100KY variability. This is similar to the suggestion of Imbrie et

al. [1991] and Ridgwell et al. [1999] that terminations occur every fourth or fifth

precession cycle. Figure 4-7 shows a histogram of the elapsed time between multi-

ples of orbital maxima over the last 650KY: the duration between every fourth or

fifth precession cycle has a broad distribution with a peak near 90KY, eccentricity

maxima are spaced at a nearly constant 100KY interval, and every second or third

obliquity cycles have a bimodal distribution. The distribution of the terminations

is also bimodal, in keeping with the hypothesis test results that obliquity paces the
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Figure 4-7: Histograms of the elapsed time between the orbital parameter maxima
and terminations for the period -650 to 0 KY. Histograms are of the time between
every fourth or fifth precession maxima (top left), each successive eccentricity maxima
(top right), every second or third obliquity cycle (bottom left), and each successive
termination where event 3b has been excluded (bottom right). Both obliquity and
the intervals between terminations show a distinct bimodal pattern. As discussed
in the text, the termination bimodality is somewhat less evident when event 3b is
included. Note the scaling of the y-axis changes between plots.

glacial cycles. Termination intervals are calculated excluding termination 3b (see Fig-

ure 4-2) on the basis that termination 3 is a split event which should only be counted

once. If termination 3a is instead excluded, the bimodal structure of the termination

intervals is less obvious but still present. Although these histograms provide a simple

argument for obliquity pacing of the glacial cycles, the distribution of termination

intervals is estimated from only six realizations, and is thus only a rough indicator of

the true probability distribution. From the histograms one can only conclude that the

apparent bimodal structure of the glacial cycle durations is consistent with obliquity

pacing — the nonlinear coherence results are stronger.

Ridgwell et al. [1999] also considered the obliquity pacing of glacial cycles, but
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rejected this mechanism on the basis that obliquity paced glacial cycles would have a

spectrum inconsistent with that of the SPECMAP δ18O stack [Imbrie, 1984]. Their

obliquity paced spectrum does, however, agree with the periodogram of EOF1 (see

Chapter 3), further supporting the hypothesis of obliquity pacing of the glacial cycles.

As discussed in Chapter 3, orbital-tuning tends to mask the coupling between obliq-

uity and the glacial cycles, potentially explaining why the spectrum of the SPECMAP

δ18O stack does not show signs of obliquity pacing. In Chapter 5 obliquity pacing of

the glacial cycles is further investigated using a variety of simple models.

Summarizing the results of the orbital pacing hypothesis test, it is found that the

precession and eccentricity nonlinear coherencies cannot be distinguished from chance.

Only the obliquity nonlinear coherence is found to have a significant relationship with

glacial terminations, and this under a range of plausible formulations of the test. The

simplest supposition supported by the observations appears to be that terminations

are triggered by high obliquity states, and that obliquity is the pacemaker of the ice

ages.

These results are an initial attempt at making a rigorous test of the orbital theory

of climate change. Given the continuing proliferation of theories involving the glacial

cycles, it is foreseen that further work will be undertaken in differentiating between

the various proposed mechanism for the glacial cycles. Further efforts might employ

further radiometric age-control, other climate proxies, longer records, or different

measures of the coupling between orbital variations and the glacial cycles. Differing

results would suggest that the hypotheses presented here do not span the set of

plausible formulations, while concurrence would support the notion of obliquity pacing

of the glacial cycles.

4.6 Appendix

4.6.1 Linear and nonlinear coherence

As defined within the main text of the chapter [see Eq 4.2], the nonlinear coherence

is

c =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

cosφn + i sinφn

∣

∣

∣

∣

∣

, (4.4)

where φn is the phase of a periodic or quasi-periodic signal relative the nth event

identified in another signal. N is the total number of phase estimates, and |.| indicates
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the magnitude of a complex quantity. Eq 4.2 has a form similar to standard linear

coherence estimates [e.g. Priestley, 1984]. For comparison purposes, consider the

linear coherence estimate,

c′ =

(

N
∑

n=1

a2
n

N
∑

n=1

b2n

)− 1
2

×
∣

∣

∣

∣

∣

N
∑

n=1

anbn(cosφn + i sinφn)

∣

∣

∣

∣

∣

. (4.5)

Here φn is the phase between nth set of harmonics, where the harmonics must be

of equal frequency. Note that unlike the nonlinear coherence, the linear coherence

weights each φn term according to the amplitude associated with each of the harmon-

ics, here denoted as an and bn. In the case that both an and bn are constant (a and

b need not be equal), the linear coherence estimate reduces to the same form as the

nonlinear coherence estimate.

The maximum value of both c and c′ is one, occurring when φ is a constant; the

minimum value is zero, occurring when the sum of the vectors exactly cancel. Even

when the true coherence is zero, however, it is unlikely for the estimated coherence to

be zero, given a finite number of observations. While it is possible to correct for this

bias, it is easier to account for this effect when determining significance levels, and

the latter approach is adopted here. Table 4.2 lists the estimated nonlinear coherence

of each orbital parameter with the glacial terminations.

The similarity between the nonlinear and linear coherence estimates suggests that

they will have similar distributions. Amos and Koopman [1963] have derived an ex-

pression for the probability density function (PDF) associated the linear coherence

estimates under the assumptions that the phase estimates are independent and uni-

formly distributed. Figure 4-8 shows how the cumulative density functions (CDFs)

for linear coherence varies with increasing degrees of freedom (DOF), i.e. increas-

ing independent phase estimates. The CDF of the nonlinear coherence is estimated

using a Monte Carlo approach. A single Monte Carlo realization is made by com-

puting the nonlinear coherence of N randomly selected phases distributed uniformly

on the interval −180◦ to 180◦. A histogram of nonlinear coherence is generated from

105 Monte Carlo realizations whose area is normalized to one. The cumulative sum

of this histogram of nonlinear coherence the provides an estimate of the nonlinear

coherence CDF and results are shown in Figure 4-8 along with the linear CDFs.

A small systematic offset exists between the linear and nonlinear coherence CDFs

but which diminishes with increasing DOF. This discrepancy presumably arises be-

166



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

coherence

cu
m

u
la

tiv
e
 d

is
tr

ib
u
tio

n

Figure 4-8: The cumulative density function (CDF) for linear coherence (black) from
the analytical results of Amos and Koopman [1963] and nonlinear coherence (red)
estimated using a Monte Carlo method as described in the text. From left to right
the pairs of linear and nonlinear CDFs are for 32, 16, 8, 4, and 2 degrees of freedom.
Results assume the phase is uniformly distributed. The nonlinear coherence CDFs
tend to be shifted toward lower values, but for greater degrees of freedom this dif-
ference becomes small. The vertical dashed line indicates the 95% confidence level
above which the null-hypothesis of a uniform phase distribution can be rejected.
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Figure 4-9: The 95% confidence level for linear coherence (black) and nonlinear coher-
ence (red) as a function of the degrees of freedom (DOF). For large DOF the difference
between the difference between linear and nonlinear coherence becomes negligible.
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cause of the weighting terms included in estimating c′ (Eq 4.5) but which are not

present in the expression for c (Eq. 4.2). Figure 4-9 shows the 95% confidence level

plotted as a function of DOF for the linear and nonlinear coherence where the nonlin-

ear coherence confidence level is estimated using the Monte Carlo approach previously

described. At eight DOF there is only a 0.01 difference between the linear and non-

linear 95% confidence levels. At sixteen DOF this difference is less than 0.005. This

results suggests that for sufficiently large DOF, the analytical results of Amos and

Koopman [1963] can be used to judge the significance of nonlinear coherence esti-

mates, assuming uniformly distributed and independent phases. However, because

the nonlinear coherence estimates made here have only eight degrees of freedom,

Monte Carlo techniques are used to estimate the PDF of nonlinear coherence.

The linear coherence is typically computed over a range of frequencies. One of the

useful features of such a calculation is that one obtains a sense of the behavior of the

coherence statistic. For instance, one would generally be hesitant to conclude much

from a coherence which has a large variance and shows little structure. As another

example, if one thought two records were unrelated and yet found what appeared

to be significant coherence, it would be prudent to perhaps explore the coherence

estimate using more or less DOF, perhaps a different record interval, or data from

other sources. Similarly, to get a sense for the behavior of the nonlinear coherence

estimate it is useful to calculate the nonlinear coherence of the glacial terminations

with a range of periodic signals with differing frequencies.

The timing of the glacial terminations are listed in Table 4.1, and the timing of

the nth termination will be designated as Tn. The periodic signal can be written as

x(t) = cos(wt+ α),

where w is the circular frequency and α is a phase constant. It is possible to compute

the nonlinear coherence by calculating the phase at the terminations times,

φn = wTn + α,

and substituting into Eq. 4.2.

Figure 4-10 shows the spectrum of 400 nonlinear coherence estimates computed

between Tn and a periodic signals with frequencies ranging from 1/10KY to 1/2KY

with a 1/1000KY bandwidth spacing. This range of frequencies is selected because
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at frequencies above 1/10KY there is no known orbital pacing of the glacial cycles

and 1/2KY is the Nyquist frequency associated with a one KY sampling interval.

The level below which 95% of the nonlinear coherence estimates fall is 0.58, in good

agreement with the Monte Carlo and analytically derived 95% confidence levels. This

correspondence between multiple estimates supports the accuracy of the confidence

level estimates and indicates that the Tn are not an unusual case.

The distribution of the spectrum of nonlinear coherence estimates provides a basis

for judging the significance of the orbital nonlinear coherence estimates. The orbital

nonlinear coherence between the Tn and precession is 0.43, 0.66 for eccentricity, and

0.70 for obliquity. Figure 4-10 shows that 100 out of 400 nonlinear coherence esti-

mates exceed 0.43, 10 out of 400 exceed 0.66, and only 3 out of 400 exceed 0.70.

Thus precession appears to be unrelated to the terminations, the significance of the

eccentricity nonlinear coherence is somewhat ambiguous, and obliquity appears to be

highly coherent. The significance of each of these nonlinear coherence results is more

formally considered in section 4.5.

There are some similarities between the assessment of phase coupling presented

here, and the paper by Rahmstorf [2003] which calls attention to how the Dansgaard-

Oeschger events are spaced by roughly integer multiples of 1500 years. At some level

both studies seek to quantify the regularity in reoccurrence times of events. There

are, however, two important differences. First, Rahmstorf [2003] never quantitatively

assesses the likelihood of finding the regularity in the Dansgaard-Oeschger events as

a function of chance. Second, the regularity of the glacial cycles are compared with

the long-term variations in modes of insolation forcing, while the regularity in the

Dansgaard-Oeschger events are not associated with any known forcing. The latter

situation is not unlike finding a very large nonlinear coherence between terminations

and some arbitrary periodic signal and attempting to ascertain its physical significance

— a much more demanding task.

4.6.2 The power of the obliquity test

The ability to reject Hθ
0 is not sufficient for establishing the credibility of an obliquity

pacing of the glacial cycles. One also requires some knowledge of the probability of

making a Type II error; that is, the probability of not rejecting Hθ
0 when Hθ

0 is false.

To illustrate this point, consider the case when the probability of making a Type I

error is α = 0.05, and the probability of making a Type II error is β = 0.95. Then
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Figure 4-10: The nonlinear coherence between the glacial terminations and a periodic
signal as a function of frequency (dots). The solid horizontal lines from top to bottom
are the nonlinear coherence between the glacial terminations and obliquity (0.70),
eccentricity (0.66), and precession (0.43). The horizontal dashed line indicates the
level above which 5% of the nonlinear coherence estimates happen to fall (0.58),
in close agreement with the Monte Carlo and analytically derived confidence level
estimates for eight degrees of freedom.

there is a 95% chance of accepting the null-hypothesis when it is either true or false,

and the test is wholly insensitivity to the truth. Thus, in determining whether the

glacial cycles are paced by obliquity, it is necessary to estimate how unlikely it is to

have made a Type II error; that is, the power of the test, P = 1 − β. Consult any

standard statistical text book for more detail regarding hypothesis testing and power

[e.g. Devore, 2000].

The alternate hypothesis used to estimate the power of the obliquity test is

Hθ
1, glacial terminations occur near a fixed phase of obliquity.

The fixed phase condition in Hp
1 includes any climate response to insolation forcing

which results in the timing of glacial terminations being tied to a particular tile of the

Earth’s axis. This phenomenon is referred to as orbital pacing [e.g. Hays et al, 1976],

and includes both the case of glacial cycles resulting from the orbital forcing and the

case of glacial cycles existing as a free oscillation within the climate system but which

170



are phase-locked with the orbital forcing. This obliquity pacing hypothesis is a subset

of the fourth Milankovitch hypothesis listed by Wunsch [2004, submitted]. The exact

phasing of the Earth’s precession in Hθ
1 is left intentionally vague as there could be

natural variability in the obliquity phase which triggers a glacial termination.

It is necessary to translate Hθ
1 into a PDF of nonlinear coherence. Absent age-

model errors and natural variability in the phase at which terminations are triggered,

the nonlinear coherence associated with Hθ
1 would be constant at one. Accounting for

this triggering uncertainty and age-model error, a realization of the nth termination

time is

Tn = Mn + εn + σn n = {1, 2...8}. (4.6)

Here Mm is the time associated with the obliquity maximum closest to the estimated

age of Tn. For example, Table 4.1 for the Tn and time between each termination

and the nearest obliquity maximum gives M1 = −10KY and M2 = −129KY . That

the Mn are taken as maxima in obliquity, rather than some other fixed phase, does

not affect the hypothesis results because nonlinear coherence is insensitive to the

reference phase. That is, the nonlinear coherence associated with {φ1, φ2...φN} and

{φ1 + α, φ2 + α...φN + α} is the same. Only the scatter associated with the phase

decreases the nonlinear coherence.

The next term on the right hand side of Eq. 4.6, εn, represents the age-model

uncertainty. Termination age uncertainty translates into uncertainty in the timing

between terminations and orbital variations. To simulate the εn, age-model perturba-

tions are made according to the red-noise algorithm discussed in Chapter 3. The one

standard deviation age uncertainty estimates are listed in Table 4.1 for each termina-

tion. A further source of uncertainty arises in the identification of when a termination

first begins, and this is accounted for by additional ±1KY uncertainty added to the εn

realizations. The final term in Eq. 4.6, σn, owes to natural variability in the initiation

time of each termination and is termed the triggering uncertainty. For simplicity, it

is initially assumed that the σn are zero.

Because there is the possibility that the εn plus σn terms are larger than half an

obliquity cycle, the obliquity maximum closest to Tn need not be Mn. To account

for this effect, M1n is defined as the obliquity maximum closest to Tn and M2n as

the next closest, and the phase, φn, is estimated using Eq. 4.1. Substituting sets

of φn for n = {1, 2, 3...8} into Eq. 4.2 gives a single realization of the nonlinear

coherence, c. Fifty thousand Monte Carlo realizations of c are used to estimate the
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Figure 4-11: The PDFs associated with Hθ
0 (red) and Hθ

1 (brown). The probability of
committing a Type I error is α = 0.05 (red shading). The probability of committing a
Type II error is β = 0.42 (brown shading), and thus the power of the test is P = 058.

PDF associated with Hθ
1, and results are shown in Figure 4-11. Having fixed the

probability of committing a Type I error at α = 0.05, it is found the probability of

committing a Type II error is β = 0.42. Thus the power of the test is P = 0.58.

This result can be interpreted as indicating that, given Hθ
1 is true, the odds are better

than half that Hθ
0 will be rejected at the 95% confidence level using the available

data. The power of the test can be increased if more glacial terminations events are

identified (perhaps at times prior to the Mid-Pleistocene Transition) or by decreasing

the uncertainty in the timing of the glacial terminations.
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Chapter 5

A Simple Deterministic Model of

the Glacial Cycles

From the hypothesis tests conducted in Chapter 4, it was concluded that glacial

terminations are triggered by obliquity forcing of the climate system at above the

95% confidence level. These statistical results show that obliquity probably paces

the glacial cycles, but this raises numerous other more physical questions. Some of

the most important questions are why glacial terminations are only triggered every

second or third obliquity cycle? Is precession variability also necessary to explain the

glacial cycles? And what causes the onset of strong, roughly 100KY variability around

650KY ago? This chapter explores these questions using simple deterministic climate

models. As noted in discussing the continuum of climate variability in Chapter 2,

one would also do well to approach the climate question assuming a purely stochastic

behavior. There is an adage that if a physical phenomena is possible, somewhere

and to some extent, it probably occurs so that the climate system is probably partly

deterministic and partly stochastic. It is anticipated that eventually the question will

turn from whether the climate is deterministic or stochastic to one of quantifying how

much and when.

Regardless of whether the simple models used to describe glacial variability are

deterministic or stochastic, it should be noted that they are only descriptions of the

climate variability, not theories of climate variability. A theory of climate would

explain the descriptions codified in these simple models. Nonetheless, it is an inter-

esting game to see how well one can describe climate variability using as simple a

model as possible. At the least, remembering a simple model is easier than remem-
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bering a sequence of unrelated events. There is the further hope that a simple climate

description will ultimately lead to a deeper understanding of the climate itself; for

example, that the dynamics embodied in a simple climate model will correspond with

the dynamics governing the climate. There is little reassurance, however, that the

dynamics of a low order system will correspond with the diffusive, turbulent, and

highly complex climate system. With these caveats in mind, the thesis now turns

towards describing the Pleistocene glacial variability using simple models.

5.1 Introduction

A complete theory of paleoclimate variability should be three dimensional, time de-

pendent, and explicitly represent the oceans, atmospheres, cryosphere, lithosphere,

biosphere, and chemosphere. An economic and political model might even be in-

cluded for anthropogenic influences on climate. In principle, such a climate system

model could account for all the features of the past geologic record and might predict

the future climate state. Apart from the practical considerations involved in the run-

ning of such an enormous model, there are also more fundamental problems. These

include poorly constrained external forcing variability due to solar luminosity varia-

tions, volcanic activity, mountain building, and the opening and closing of seaways.

Even the Milankovitch forcing has important uncertainties due to the influence of

earth’s climate state on the obliquity [e.g. Bills, 1994] as well as the limitations in

calculating past and future orbits imposed by the chaotic nature of the solar system

[Laskar, 1989]. Another class of uncertainties arises from small-scale processes which,

at some level, must be parameterized. Such processes include cloud micro-physics

and ocean mixing, and whose aggregate affects can have a strong influence on the

climate state. There is a further possibility that the basic evolution of the climate

state is sensitive to perturbations ranging from slight changes in external forcing to

fluctuations in small-scale processes [e.g. Lorenz, 1963].

Saltzman [2002] pointed out that in paleoclimate studies the rates of change of

ice volume, deep ocean state, and geochemical inventories are of the same order as

the dissipative rates, thus requiring the consideration of nonequilibrium dynamics. A

major obstacle is that these rates of changes are too small to be measured or calculated

using current physical models because of uncertainties in flux parameterizations. For

instance, the last glacial termination involved approximately 5×1015kg of ice melting
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per year, with an associated sea-level rise of less than 5cm per year [Fairbanks, 1989].

To account for this small rise in sea-level requires accounting for the residual difference

between evaporation, precipitation, melt, and freezing — and is a truly difficult task.

Similar considerations hold if one seeks to account for the flux of energy into and out

of the oceans or ice-sheets during terminations which amount to roughly 10 W/m2

[Saltzman, 1983]. Furthermore there is a significantdrift associated with many climate

models [e.g. Shackley et al., 1999] which is also on the same order as many of the

paleoclimate variations.

The uncertainties owing to model drift and the physical parameterizations are

major hindrances in accurately calculating the slow evolution of the climate state,

suggesting that we are far from being able to deduce climate variability from first

principles. Another approach is to infer the behavior of the climate system through

a combination of observational analysis, physical reasoning, and simplified numerical

modeling. In this case, the numerical models are not deduced from first principles,

but rather incorporate plausible assumptions regarding the behavior of the climate

system. Simple models are useful for demonstrating how the interaction of various

mechanisms could give rise to the observed phenomena. While one does not expect

any simple model to provide definitive proof for the origins of the ice-ages, they can

demonstrate the likelihood of a given set of mechanisms. Saltzman [2002] outlined

three rules by which such simple models should be developed and assessed. (1.) The

model results should be robust in that they can survive small changes in parameters

and acceptable levels of noise. (2.) A maximum amount of the structure in the

observations should be deducible from the model using a minimum number of free

parameters and a minimum level of prescribed noise. Finally (3), the model should

make predictions which can be tested.

The second rule Saltzman [2002] outlined for assessing simple models implies that

it is desirable to minimize the stochastic elements of a model. Whether the absence of

prescribed noise is in fact desirable is debatable; for example, the simple stochastic sea

surface temperature model of Hasselmann [1976] provides insight into many features

of SST variability that a deterministic model would be hard pressed to reproduce.

Each of the models considered in this chapter have a deterministic response to insola-

tion forcing, but it is important to point out that exploring stochastic models would

provide a complementary approach. One could add a deterministic orbital forcing to

an otherwise stochastic model and find what level of orbital control is necessary to
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make the model consistent with the observations. As an example, the threshold in

the random walk model presented in Chapter 4 could be varied according to Earth’s

obliquity. This approach would probably prove useful in distinguishing the degree to

which the long-term evolution of the climate is deterministic or stochastic, but such

a stochastic approach is not further pursued at this time.

The strategy pursued here in developing a simple deterministic models of the

glacial cycles is to analyze the ways in which some other models successfully repro-

duce elements of the glacial climate variability. I focus on the model by Imbrie and

Imbrie [1980] because of its simplicity, and the model by Paillard [1998] because of

the excellent fit it achieves with late Pleistocene δ18O observations. Some common

features are found between both of these models which do not appear to have been

previously discussed. These features, along with the earlier tests of the coupling

between orbital variations and ice-volume changes (see Chapters 3 and 4) suggest

some important characteristics which a qualitative model of the glacial cycles should

incorporate. A simple nonlinear system is presented which, using only a small num-

ber of degrees of freedom, reproduces many of the salient features of the ice-ages

to include the timing and amplitude of the terminations as well as the spectral and

auto-bicoherence patterns similar to those observed for the δ18O EOF1 record. Recall

that in Chapter 4 terminations were found to be triggered by high obliquity states.

This nonlinear coupling will, in part, guide the discussion of the simple models.

5.2 The Imbrie model

One of the first simple models of orbital control of the ice-ages was presented by

Imbrie and Imbrie [1980]. They argued that the geologic proxies for ice-volume clearly

indicate the presence of an orbital influence on climate [e.g. Hays et al., 1976], and

that a major opportunity was at hand to begin researching the physical mechanisms

by which the climate responds to orbital forcing. Several prior studies had investigated

the link between climate and orbital forcing using radiation balance models [Pollard,

1976; Weertman, 1976; Suarez and Held, 1979] or time-dependent models [Calder,

1979] but here the model of Imbrie and Imbrie [1980] is focused on because of its

simplicity, skill, and influence on subsequent work. The model of Imbrie and Imbrie

[1980] will be referred to simply as the Imbrie model.

The Imbrie model states that changes in ice-volume are negatively proportional
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to the total ice-volume, V , and the solar forcing, F . Written here in discrete form

the Imbrie model is,

Vt = Vt−1 −
F + Vt

T
T =







T1 if F + V ≤ 0

T2 if F + V > 0.
(5.1)

where T is a time-constant which switches between T1 and T2 depending on F . F is

nondimensionalized orbital forcing so that the units of the right hand side term are

in ice-volume per KY. When F + V is greater than zero the time-constant will be

T2, otherwise it is T1. By choosing T2 < T1, the system will tend to undergo rapid

deglaciations followed by slow reglaciation. When the time-constants are appropri-

ately tuned, this asymmetry causes variability at periods lower than those present in

F , specifically with a concentration of energy at 100KY periods.

Imbrie and Imbrie [1980] develop their model in analogy to heating a fluid, and

write Eq 5-1 using temperature rather than ice-volume. A problem with this analogy

is that when Imbrie and Imbrie [1980] discuss the results in terms of ice-volume,

it requires the implicit assumption that temperature and ice-volume are perfectly

anti-correlated. Lea et al. [2000] have provided evidence that tropical sea surface

temperatures leads ice-volume variability by more than 3KY, making it important to

specify which climate variable one is dealing with. This raises a further important

point in the interpretation of EOF1, which is sensitive to both temperature and ice-

volume. Here, for simplicity, EOF1 is interpreted as indicating changes in ice-volume

with the understanding that there is also a temperature influence. This short-coming

in interpretation could be addressed in future work by developing a simple model

which predicts both temperature and ice-volume, thus providing a forward model of

δ18O variations. Another possibility is to work with estimates of the δ18O of sea-water,

but these measurements are much more sparse and currently have large uncertainties

relative the δ18O of calcite measurements [D. Lea personal communication] making

it seem more prudent to use EOF1.

In Chapter 2 it was shown that the spatial and temporal variability in insolation

can be expressed in terms of Legendre polynomials, annual and biannual periodic

functions, obliquity, climatic precession, and eccentricity. The long-term shifts and

modulations in insolation are primarily a function of obliquity and precession. Fol-

lowing Imbrie and Imbrie [1980], a simplified forcing for the climate models can be

177



generated as the linear sum of obliquity and a given phase of precession,

F =< θ > +(1 + α) < e sin ($ − φ) >, (5.2)

where < . > indicates that the obliquity, θ, and precession, e sin($), signals are

normalized to zero mean and unit variance. The ratio of the variances between

obliquity and precession is controlled by α, while the phase of precession is controlled

by φ. The obliquity contribution in Eq. 5.2 is identified with changes in seasonality

as well as lower frequency shifts in hemispheric insolation gradients. The precession

variability is exclusively associated with changes in seasonality. Eq. 5.2 should be

thought of as representing a combination of spatial and seasonal modes of insolation

forcing. The primary virtue of Eq. 5.2 is that it has only two adjustable parameters. A

drawback is that the direct inclusion of precessional variability assumes the presence

of some nonlinear seasonal response in the climate system (see Chapter 2), and this

blurs the distinction between climate model and forcing. Furthermore, in forcing a

model with Eq 5.2 the assumption is being made that the stochastic variability is

not important. In subsequent sections the influence of stochastic elements on simple

climate models is discussed further.

5.2.1 Fitting to EOF1

The Imbrie model has four degrees of freedom: two for the timescales and two for

insolation forcing. Imbrie and Imbrie [1980] searched for a best fit between their

model output and a set of radiometrically dated δ18O records extending between zero

to 130KY BP using a coarse grid search technique. They found optimal output for

an ablation time-constant T2 = 10.6KY , accumulation time-constant T1 = 42.5KY ,

precessional phase φ = 16◦, and insolation ratio of α = −2. It appears Imbrie and

Imbrie [1980] define $ as the angle between vernal equinox and aphelion, rather

than the more standard definition employing perihelion [e.g. Vernekar, 1972; Berger

and Loutre, 1992], so that negative α and φ = 16◦ indicates a July perihelion. This

inference was checked by simulating Figure 3 in Imbrie and Imbrie [1980]. In this

thesis, $ is always defined relative perihelion.

As the Imbrie model was originally tuned using data only over approximately the

last 250KY, it is useful to repeat the exercise using the longer and better resolved

EOF1 record. An exhaustive search of all combinations of plausible parameters can
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easily be made because the Imbrie model has a small number of adjustable parame-

ters. However, in anticipation of discussing models with more adjustable parameters,

a simulated annealing search algorithm [e.g. Press et al., 1999] is instead used. Sim-

ulated annealing is a Monte Carlo method which works in analogy with the slow

cooling of a liquid from a hot and disordered state to a cool, crystallized state. If the

adjustable parameters are considered molecules, and the misfit between model output

and observations interpreted as energy, the cooled crystallized state corresponds to a

minima in molecular energy or a local minima in the cost function.

The search domain for parameter values is restricted to one significant figure.

This gives a dramatic reduction in the number of possible values — if the search

is restricted to values between one and a hundred, there are only nineteen possible

values, {1, 2...9, 10, 20...100}. Note, however, there are still an infinity of numbers with

one significant figure between zero and one. Apart from making the parameter space

easier to search, there are other advantages to restricting the search domain to one

significant figure. The Imbrie model, and other models considered later, all represent

drastic simplifications of the dynamics governing climate variability. If the behavior

of the model is sensitive to the second or higher significant figures in a parameter

value, it is less likely to represent a physically meaningful solution. One hopes to find

a model which is robust to minor perturbations as this aids in identifying mechanisms

likely to control climate. It should be kept in mind, however, that parameterizations

with only one significant figure can still lead to results sensitive to minor perturbations

— they are only less likely to be sensitive. Furthermore, the climate system could

itself be sensitive to minor perturbations; for instance, the glacial cycles could be

chaotic in nature. The development and fitting of a simple model to observations is

as much an art as a science, and there is no foolproof method for determining the

adequacy of a given model or the accuracy of the parameterizations. Rather, insight

into the adequacy of a given model requires careful consideration of the assumption,

comparison of the results against independent observations as well as the results of

other competing models.

The Imbrie model is initially fit to EOF1 over a search range with timescales T1

and T2 ranging from 1 to 120KY, a precessional phase φ between 10◦ and 360◦, and an

obliquity to precession ratio α of -1 to 5. Values of α < −1 are not permitted as these

are redundant for values of φ differing by ±180◦. As discussed in Chapter 4, only the

last 650KY of EOF1 are used for fitting the models, as this is the portion which clearly
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Figure 5-1: Results from the Imbrie model (red) after adjusting the free parameters
to maximize the cross-correlations with EOF1 (black) over the last 650KY. EOF1
is scaled to the model output. a shows the best fit achieved when both obliquity
and precession are included in the forcing, but requiring the ablation timescale to
be longer than 1KY. b is the best fit when ablation timescales are permitted to be
arbitrarily small, here a best fit is achieved for T2=0.05KY. c shows the best fit when
the model is forced only by obliquity variability, again using very rapid ablation.
The squared-cross-correlations between model results and EOF1 are shown at left.
Although difficult to see on this plot, the terminations in EOF1 occur over a period
of roughly 10KY. At right are periodograms of the model results with vertical dashed
lines indicates bands centered on 1/100, 1/70, 1/41, 1/29, and 1/23KY —- the bands
of energy which exceed the 95% confidence level in EOF1.
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shows 100KY variability; prior to 650KY BP, the glacial cycles have less low-frequency

variability [e.g. Raymo and Nisancioglu, 2003]. To help ensure that the estimated

parameters are the best global fit, rather than a localized feature in parameter space,

the annealing algorithm is initiated at random locations in parameter space. For

the Imbrie model, regardless of where the search is initialized, the same solution is

consistently arrived at, suggesting it is globally the best fit for a one significant figure

set of parameterizations.

The values which maximize the cross-correlation between EOF1 and the model

results are T1 = 90KY , T2 = 10KY , φ = 60◦, and α = −0.09 yielding a square-

cross-correlation of 0.24. Relative to the original fit by Imbrie and Imbrie [1980],

the reglaciation timescale derived from the fit to EOF1 is closer to observations, the

obliquity variability is seen to be more important, but the squared-cross-correlation

is nearly the same. The squared-cross-correlation between model and output will also

be referred to as the fraction of variance described by the model. The significance

of the variance described and robustness of the parameterization should be greater

because the duration of EOF1 is three times that of the observations used by Imbrie

and Imbrie [1980]. The new fit is shown in Figure 5-1.

To gauge how sensitive the results of the Imbrie model are to the exact parame-

terizations, a series of perturbation experiments are carried out. The squared-cross-

correlation between model results and EOF1 is computed as a function of a single

varying parameter while holding the others fixed at the optimal values determined

using the simulated annealing method. Results are shown in Figure 5-2. As expected

for a successful optimal fit of the model to observations, the largest cross-correlation is

achieved when no perturbations are made to the model. The timescales are adjusted

over a range of 10 and 200KY for T1, and 1 and 20KY for T2. The Imbrie model

is most sensitive to making the accumulation timescale short (small values of T1),

dropping the squared-cross-correlation by a factor of four. The precessional phase of

the insolation forcing was varied from 10◦ to 360◦ and the ratio of precession to obliq-

uity energy was varied from zero (α = −1) to three (α = 2). Smallest correlations

occur when the precession phase is changed by 180◦, giving the equivalent of anoma-

lously large Southern Hemisphere summer insolation. Overall, the cross-correlation

between the Imbrie model results and EOF1 vary smoothly with changes in its pa-

rameterization. Even for large changes, the Imbrie model retains some correlation

with EOF1 showing that the Imbrie model is fairly robust to perturbations in the
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parameterizations.
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Figure 5-2: Model sensitivity to parameter perturbations. Starting from the best fit,
the squared-cross-correlation between model results and EOF1 are computed over the
last 650KY as a function of one of the parameters while holding the others fixed. From
left to right are the T1 and T2 measured in KY, φ the precessional phase measured
in degrees, and α which controls the ratio of obliquity to precession energy; minus
one is no precession, zero is equal parts precession and obliquity.

5.2.2 A new source of low-frequency variability

A second fitting exercise was also conducted, this time allowing the ablation time-

constant to become arbitrarily small. The variance described by the model now

increases from 0.25 to 0.33 for a fit of T1 = 70KY , T2 = 0.05KY , φ = 90◦, and

α = 1. This result suggests that very rapid terminations are better able to describe

the timing and amplitude of the climate events recorded in EOF1. Taken literally,

an ablation timescale on the order of 50 years is unphysical, but there is a lesson to

be learned from this fit. Imbrie and Imbrie [1980] interpret the difference between

time-constants as indicating the degree of nonlinearity in the system — were the time-

constants equal, the system would be linear. The very rapid terminations required

by the small values of T2 suggest the presence of some strongly nonlinear mechanism

operating during glacial terminations. While the simplicity of the Imbrie model is

appealing, it appears that capturing such strongly nonlinear behavior requires pushing

the ablation timescale to an extreme case. Glacial terminations typically occur over

a period 10KY [e.g. Imbrie et al, 1992], the 50 year timescale parameterized for T2

is interpreted as the attempt of a weakly nonlinear model to capture processes which

are in fact strongly nonlinear.
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A final fitting exercise was conducted to see how much of the variability in EOF1

can be described as the response of the Imbrie model to obliquity forcing alone, i.e.

setting α = −1 in Eq. 5.2. Such a simplified insolation function has a number of

advantages. First, it eliminates two degrees of freedom associated with α and φ, so

that model results are less dependent on tuning. Second, as discussed in Chapters 2

and 3, there are a large number of uncertainties associated with interpreting the

response of the climate system to the precessional modulation of the insolation forcing.

Obliquity variability is more straight-forward in that its phase is fixed and obliquity

period variability is directly present in the insolation forcing. Finally, as shown in

Chapter 4, there is a significant phase coupling between glacial terminations and

obliquity, making it interesting to explore how much of the glacial variability can be

described as a response to obliquity forcing alone.

To distinguish the various forcing scenarios, parameterizations corresponding to

combined obliquity and precession forcing are referred to as Fop, while those corre-

sponding to obliquity forcing only are referred to as Fo. The best Fo fit of the Imbrie

model to EOF1 occurs for T1 = 90KY and T2 = 0.1KY , and describes 0.12 of the

variance in EOF1. For these parameterization, the Imbrie model behaves in a manner

qualitatively similar to the random walk model introduced in Chapter 4. Both slowly

accumulate ice and then, once a threshold is crossed, rapidly terminate; differences

are that the Imbrie model threshold varies according to obliquity and is completely

deterministic.

Figure 5-1 shows that the Fop parameterizations result in model output which

has a deficit of 100KY variability and too much energy at 400KY periods. In this

parameter range, as explained by Imbrie and Imbrie [1980], the 100KY variability is

attributed to the demodulation of the eccentricity envelope of the precession param-

eter, which itself has weak 100KY variability and much stronger 400KY variability

(see Chapter 2). When rapid and strongly nonlinear glacial terminations are permit-

ted, a new source of low-frequency variability is found in the model. The timescale

of reglaciation now itself generates low-frequency variations. That is, in the Imbrie

model with very rapid terminations, it takes more than 40KY to regrow ice-sheets

large enough that the threshold criterion for melting is again crossed. In this view,

the basic 100KY period is set by the growth timescale of large ice-sheets while the

triggering of the terminations is controlled by the local maxima in the insolation

forcing. This mechanism is highlighted by completely removing the precession pe-
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riod variability from the forcing function of the Imbrie model. If permitted to have

abrupt terminations, the Imbrie model can generate low-frequency variability when

forced by obliquity alone. This slow regrowth mechanism will be incorporated into

a new model, inspired by the Imbrie model, but better suited to generating glacial

cycles using a slow increase in ice-volume followed by a rapid and strongly nonlinear

termination.

5.3 The Paillard model

Paillard ’s [1998] model is interesting to study on two accounts: first it is able to

reproduce the glacial cycles in striking detail, second it posits a series of rules by

which the climate system might behave. Insomuch as the rules appear to work, it is

useful to see if some further physical meaning can be derived from them. Paillard

states that the threshold model was inspired by a simple ocean circulation model

and that the climate system generally appears to have thresholds, but the connection

between this model, ocean circulation, and the ice-ages is not discussed in further

detail. Building from the results in the previous section, this section explores the

question of why the Paillard model works as well as it does.

The Paillard model can be written in discrete from as

Vt+1 = Vt +
VR − Vt

TR

− F ′

TF
, (5.3)

R =



















i if F ′ > F1 and R′ = G,

g if F ′ < F0 and R′ = i,

G if V > 1,

VR =



















0 if R = i,

1 if R = g,

1 if R = G,

TR =



















Ti if R = i,

Tg if R = g,

TG if R = G,

F ′ =
〈

F +
√

4a2 + F2
〉

. (5.4)
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The model states that changes in ice-volume are proportional to the difference between

a reference ice-volume (VR) and current ice-volume (Vt) minus a forcing proportional

to a rectified insolation function (F ′). F ′ is normalized so that the right hand term

in Eq. 5.4 is in units of ice-volume per KY. The reference ice-volume and timescale

(TR) change depending on the glacial state (R) which can be: interglacial (R = i),

mild glacial (R = g), or full glacial (R = G). Transitions from states G to i occur

when the rectified insolation (F ′) is greater than the threshold value F1, from i to g

when F ′ is less than the threshold value F0, and from g to G when the normalized

ice-volume exceeds one. No other state transitions are permitted, so that the model

cycles through the i-g-G sequence at a rate determined by the intervals between

which F ′ crosses the insolation thresholds and by the time-constants which regulate

how quickly ice-volume increases. The requirement for a sufficient amount of ice-

volume to accumulate prior to a terminations is reminiscent of the Imbrie model

behavior when parameterized to have very rapid ablation events. That is, the rate of

ice accumulation is again regulating the duration of the glacial cycles.

Paillard [1998] presents model results with respect to insolation at 65◦N, but also

notes that the use of different high-latitude summer insolation curves give similar

results. The choice of the insolation forcing function lends additional degrees of

freedom in the model, and to make these specific the insolation forcing function

presented by Imbrie and Imbrie [1980] (Eq 5.2) is used. The Paillard model also

employs a rectification of the insolation forcing which is rationalized on the basis that,

empirically, ice-volume is less sensitive to insolation forcing during colder periods.

Such rectifications of the low-frequency variability associated with orbital variations

should, ideally, be included directly in the model as this would aid in distinguishing

between the forcing and climatic response, and this representation is easily achieved

by substituting Eq. 5.5 into Eq. 5.4. This additional nonlinear transformation of

the forcing function is important for obtaining a good fit between model output and

observations. Without such rectification, the best fit obtained between the model

results and EOF1, estimated from numerous simulated annealing runs, was a squared-

cross-correlation of 0.55. Conversely, using this additional degrees of freedom in the

forcing function consistently yielded squared-cross-correlations above 0.7.

It is useful to consider the influence of the insolation rectification on the behavior

of the Paillard model in some more detail. The form of the rectification function in

Eq 5.4 shows that as a approaches infinity there is no rectification effect. Conversely,

185



when a is zero the insolation signal would be fully rectified, except that subsequently

the insolation is then normalized to zero-mean and unit variance. This last nor-

malization operation is important. Setting the forcing function to zero-mean after

rectification generates a forcing distribution which is usually weakly negative, but

with bursts towards strongly positive values. Thus the rectified forcing distribution is

qualitatively similar to the histogram of the rate of change of EOF1 (see Figure 4-1).

Apparently, the nonlinear transformation of the insolation conditions the distribution

of the forcing to be similar to the distribution of the rate of change of ice volume. In

particular, the rectified insolation will contribute to slow accumulation in ice-volume

and rapid ablation.
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Figure 5-3: Results of the Paillard model (red) after adjusting the free parameters to
maximize the cross-correlations with EOF1 (black) over the last 650KY. a shows the
fit achieved when both obliquity and precession are included in the forcing, while b
uses only obliquity forcing. At left the squared-cross-correlation is listed. Also shown
at right are the periodograms of the model results. The vertical dashed lines are
at frequencies of 1/100, 1/70, 1/41, 1/29, and 1/23KY and indicate the significant
bands of energy found in EOF1. For the obliquity forcing only results, the Paillard
model shows excesses of energy near each of these bands.
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There are twelve degrees of freedom in the Paillard model: three for insolation,

four time-constants, three rules for switching between climate states, and two refer-

ence ice-volume states (one reference state is not counted because the normalization

of the model output is arbitrary). Using the simulated annealing technique previ-

ously discussed, a search was made for the parameterizations which maximize the

correlation with EOF1. A maximum squared-cross-correlation of 0.73 was achieved

for F0 = −0.8, F1 = −0.006, Ti = 80KY, Tg = 30KY, TG = 60KY, TF ′ = 200KY,

a = 4, φ = 100◦, and α = 3. The fit with the observations is shown in Figure 5-3

along with the periodogram of the model results. The Paillard model’s success at

fitting EOF1 lies in reproducing the timing and amplitude of each glacial cycle as

well as some of the fine scale structure. Similar to the Imbrie model, the periodogram

shows a red-noise background with concentrations of variability near 1/100KY, the

obliquity (1/41), and precession bands (1/23, 1/19). There are no concentrations of

variability at the 1/70 or 1/29KY periods, as were observed for EOF1 and discussed

in detail in Chapter 3.

The Paillard model achieves an excellent fit with EOF1, but given the relatively

large number of degrees of freedom, it is difficult to distinguish whether the model

is skillful or simply a clever match between two signals. One measure of skill is to

compare the degrees of freedom in the model to the degrees of freedom in the record

it seeks to fit. Counting the degrees of freedom in EOF1 is somewhat subjective.

As a lower limit one might count each glacial cycle and conclude there are seven

degrees of freedom. Reproducing seven events hardly seems skillful given the twelve

degrees of freedom in the model. Another count, however, might include both the

amplitude and timing of each termination as well as more detailed structure such as

plateaus during stage five and local maxima during stage seven, giving roughly four

degrees of freedom per glacial cycle and over twenty in total. In this view, roughly

twenty degrees of freedom are accurately rendered using a model with twelve degrees

of freedom. Such an arbitrary count is not conclusive, but for the time being I proceed

under the assumption that the Paillard model has some real skill.

The sensitivity of the model results to changes in parameterizations can be esti-

mated by perturbing each parameter while keeping the others fixed. The squared-

cross-correlation between the Paillard model and EOF1 is shown as a function of

parameter perturbation in Figure 5-4. Unlike the smoothly varying cross-correlations

found for the Imbrie model, the Paillard model exhibits rapid transitions in cross-
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correlation, probably related to changes in the crossing of one or more the thresholds

prescribed by the model. The Paillard model shows strong sensitivity to adjustments

in most parameters, with the notable exception of TG which can apparently take on

nearly any value without affecting the results. Thus the number of degrees of freedom

counted for the Paillard model is decreased by one to eleven.
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Figure 5-4: Similar to Figure 5-2, but now for the Paillard model’s sensitivity to
parameter perturbations. Starting from the best fit, the cross-correlation between
model results and EOF1 is computed over the last 650KY after varying one of the
parameters over a range of plausible values while holding the other fixed. From left
to right are Fo and Fop which are threshold for the insolation forcing, T i, Tg, TG and
Tf , which are time constants measured in KY, a which is a rectification parameters,
and φ and α which control precessional phase and amplitude. Apparently there is no
model sensitivity to TG, thus the degrees of freedom in the Paillard model should be
reduced by one.

That the Paillard model has an intrinsic timescale, set by the thresholds and time-

constants, suggests that it can generate 100KY variability when forced by a variety of
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quasi-periodic signals. It is interesting to see whether the Paillard model can generate

a credible fit with EOF1 when forced by obliquity alone. The Imbrie model was able

to generate a low-frequency climate response when forced by obliquity alone, but the

overall fit with the observations was poor. Now, a simulated annealing fit of the Pail-

lard model with EOF1 yields a squared-cross-correlation of 0.4 for parameter values of

F0 = 0.3, F1 = −0.2, Ti = 70KY, Tg = 40KY, TG = 20KY, Tf = 200KY, and a = 20,

where there are two less degrees of freedom because precession is excluded. Judging

the significance of the 0.4 squared-cross-correlation is nontrivial because it involves

estimating the probability distribution associated with all models which might have

been built using ten degrees of freedom [see e.g. Efron, 1971]. It is later shown

[see Table 5.1] that this correlation appears to be insignificant when compared with

correlations achieved by other simple models.

As shown in Figure 5-3, the Paillard model still reproduces the basic 100KY

structure observed in EOF1 when forced only by obliquity. The periodogram of the

obliquity Paillard model results shows concentrations of energy near the obliquity and

the 1/100KY bands, although the obliquity band appears too energetic relative to the

100KY band. More interesting is that the model results show energy near the 1/70,

1/29, and 1/23KY bands, consistent with the periodogram of EOF1. While no claim

is made that the fit between EOF1 and the obliquity Paillard model is significant, it

does serve to demonstrate that obliquity forcing alone can yield a good fit with the

glacial cycles and produce the combination tones involving the 1/100 and 1/41KY

bands of variability consistent with EOF1 [see Chapter 3].

5.4 A new model

It is useful to summarize those elements which appear to be important for constructing

a skillful simple model of the glacial cycles. These elements are first qualitatively

discussed, after which a new simple model is constructed.

5.4.1 Qualitative features

1. Coupling of termination with orbital variations: In Chapter 4 it was

found that obliquity and glacial terminations appear to be nonlinearly coupled. In

particular, terminations appear to be triggered by high values of obliquity. In the

Imbrie model terminations tend to occur during a positive phase of the obliquity
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forcing because melting only occurs when insolation forcing is greater than negative

ice-volume. Similarly, in the Paillard model the switch from a full glacial to an inter-

glacial only occurs when insolation surpasses some threshold. Thus it seems that tying

the triggering of a termination to changes in the Earth’s orbit and/or orientation is

an effective means of setting the phase of the glacial cycles.

2. Slow accumulation: Terminations only occur every second or third obliquity

cycle, suggesting the presence a climatic timescale longer than the obliquity period.

Earlier it was shown that the Imbrie model can generate a long timescale response by

slowly reaccumulating sufficient ice-volume for an ablation event to occur. Similarly,

the Paillard model transitions from a glacial to full glacial state only after sufficient

ice-volume has accumulated, and this typically requires a period of two or three

obliquity cycles. Thus one means of generating a long timescale response is to specify

an amount of ice-volume required for a termination to occur and employ a relatively

slow accumulation rate.

3. Episodic reglaciation: Apart from the basic structure of rapid ablation and

slow accumulation, one also observes significant kinks in the reglaciation process.

That is, reglaciation seems to proceed episodically. The reglaciation after termination

two provides a good example where ice-volume appears to plateau during substages

five and four before bottoming out towards the Last Glacial Maximum. The plateaus

are further punctuated by local maxima, but which are smaller features than the

general plateau structure. These plateaus are some of the best constrained aspects

of ice-volume change, being unambiguously recorded in the coral terraces of uplifting

topography [e.g. at Barbados, Broecker, 1968; Gallup, 2002]. The Paillard model goes

further in mimicking the detailed features in the δ18O record than does the Imbrie

model. It achieves this more detailed structure by specifying climatic states so that

the model output tends to re-glaciate in a series of steps. It is thus desirable for a

model not to monotonically reglaciate, but rather to have a sequence of reglaciation

episodes, perhaps paced by either orbital or stochastic variations.

4. Memory: The Paillard model cycles through a fixed sequence of states, requiring

the system to remember its past state. The case of the Imbrie model is more involved.

First, one of the major problems with the parameterization of the Imbrie model shown

in Figure 5-1b and c is that terminations occur in a single timestep. This means that
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the size of the terminations are related to the time-stepping used in integrating the

model. Thus the Imbrie model, as presented here, might better be thought of as

a map which describes how ice-volume at one instant is related to ice-volume 1KY

later. Without very rapid melting, the terminations in the Imbrie model would abort

as soon as the threshold condition is crossed. If the ablation events in the Imbrie

model incorporated a time delayed state dependence, termination could continue

beyond this threshold crossing without resorting to such rapid timescales.

5.4.2 A quantitative expression

Each of the features discussed in the previous section can be incorporated into a

simple, deterministic model using only a handful of adjustable parameters. Written

in discrete form the model is

Vt = Vt−1 − V P
t−L × b−F

T
P =







0 if F < b

p if F > b.
(5.5)

Here V is ice-volume, L is a time-lag, T is a time-constant, b is a threshold which

also gives a bias towards positive accumulation, and P is an exponent whose value

depends on whether the model is accumulating or ablating. When b > F , P = 0,

making accumulation linearly dependent on insolation anomalies. Ablation occurs

when the forcing is greater than the accumulation bias, and now P is some positive

integer (recall, all parameters are chosen to have only one significant figure), making

the rate partially dependent on ice-volume L years ago. If Vt is less than zero, it is reset

to zero on the physical grounds that one cannot have negative ice-volume. F is given

by Eq 5.2, and represents anomalies in modes of insolation forcing. If precessional

effects are included in F , the model has six degrees of freedom; otherwise, if only

obliquity forcing is used, it has four. To distinguish the model given by Eq 5.5 from

the Imbrie and Paillard models, it will be referred to as the new model.

Though the notation is more cumbersome, it is possible to write Eq 5.5 so that

the value of P remains fixed. First define γ = (b − F)/T so that the model may be

written as

Vt = Vt−1 − γV
p(|γ|+γ)/2
t−L ,

where |.| indicates the absolute value. The exponent of Vt−L goes to zero when γ < 0,

and equals p for γ ≥ 0, thus playing the same role as the conditionality, but not
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requiring any rules for switching the exponent.

It proves convenient to define the units of this model to be the ice-volume equiv-

alent of a hundred meters of ice-volume. By this definition, one hectometer (hm)

represents an important threshold in the model system. When lagged ice-volume is

less than one hm, the ablation term, V P
t−L, is small and little melting occurs, while

values greater than one hm can induce rapid ablation. For a glacial termination to

occur in the new model, two conditions must be met: the ice-volume must exceed one

hm and the orbital forcing must induce a melting state. When one hm of ice-volume

accumulates more slowly than the period between orbital melting states, the basic

period of the glacial cycles will be controlled by the accumulation rate.

The formulation of Eq 5.5 bears two important parallels with the much more

sophisticated thermomechanical ice-sheet model of Marshall and Clark [2002]. First,

the results from the thermomechanical ice-sheet model indicate that thermal enabling

of basal flow is an important feedback controlling the deglaciation of North American

ice-sheets, and that this basal warming requires the presence of thick, high-elevation

ice-sheets. As noted, the new simple model also requires sufficient ice-volume for

a deglaciation to occur. A second parallel is that basal temperatures in Marshall

and Clark ’s model lag surface temperatures by 10KY. The parameter L in Eq. 5.5

can thus be thought of as the timescale for heat to penetrate from the surface of an

ice-sheet to its base. There are, however, some unresolved differences. Marshall and

Clark [2002] conclude that at large sizes ice-sheets become independent of the orbital

forcing and affect their own demise. The results of Chapter 4 imply the opposite, that

the initiation of deglaciation are triggered by high obliquity states, but the physical

mechanism which ties obliquity to the triggering of terminations is unclear. One

possibility is that increased high-latitude insolation causes surface melting of the ice-

sheet, and the associated run-off aids in lubricating basal slippage. More work should

be undertaken to determine the extent to which orbital variations could influence the

results of Marshall and Clark ’s model and the extent to which Eq. 5.5 is a faithful

simplification of the model physics, but which is beyond the scope of this thesis.

Using the simulated annealing algorithm, a best fit is achieved between the model

results and observations for a time constant T = 80KY , accumulation bias b =

1, power n = 8, lag L = 9ky, precessional phase φ = 100◦, and insolation ratio

α = 0.04; yielding a squared-cross-correlation of 0.60. If the model is forced only

by obliquity variability, the best fit occurs for t = 90KY , b = 0.9, n = 9, and L =
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9KY ; and achieves a squared cross-correlation between model results and observations

of 0.43. The meaning of this correlation will become more clear when the model

results are compared with one another. Figure 5-5 shows the model results for the

Fop (obliquity and precession) and Fo (obliquity only) forcing cases, as well as the

associated periodograms.
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Figure 5-5: Model results (red, thick line) where parameters are chosen to maxi-
mize the cross-correlation with EOF1 (black, think line) a Model results using an
orbital forcing comprised of obliquity and precessional variations (Fop) along with
the periodogram of the model results. b Results when the model is only forced by
obliquity (Fo). The vertical dashed lines at right indicate frequencies of 1/100, 1/70,
1/41, 1/27, and 1/23KY. Concentrations of variability exist at bands near each of the
indicated frequencies for both model results a and b.

5.5 Robustness

In the introduction of this chapter, one of the guidelines for assessing simple models

was that the results should be robust to small changes in parameters and acceptable
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levels of noise. What constitutes small and acceptable is largely open to interpreta-

tion; but it is useful to draw some comparisons between each models behavior when

the parameters are perturbed.

5.5.1 Initial conditions

Figure 5-6 shows that for the Fop parameterizations (including precession and obliq-

uity) each model becomes phase-locked with the forcing independent of initial condi-

tions. This behavior is important because it indicates the models have finite memory

and are controlled solely by external forcing once the initial transients damp out.

This behavior simplifies the analysis of the records and prevents the initial conditions

from entering as a degree of freedom in model behavior. All model runs shown in this

thesis are started at least 500KY prior to the period analyzed. This is a large enough

lead time to ensure that the initial conditions are unimportant, with the exception of

when the new model is in a chaotic regime, as discussed in a later section.

5.5.2 Parameterizations

The sensitivity of the Imbrie and Paillard model results to changes in parameterization

were discussed earlier (see Figures 5-2 and 5-4). Figure 5-7 shows that the sensitivity

of the new model to perturbations. Changes in the time-constant, the time-lag,

and the forcing function of the new model all strongly influence the cross-correlation

between EOF1 and model results. Generally speaking, the Imbrie model is least

sensitive to perturbation in the parameters, followed by the Paillard model, and

then the new model. According to the rules of the simple model building game

outlined by Saltzman [2002] the new model must be discounted to some degree due

to the sensitivity of the results to small perturbations. Later, the model is shown

to be capable of chaotic behavior, and it is not surprising that small changes in its

parameterization can cause large changes in its behavior.

Just as model robustness to small changes in parameterizations is desirable in

terms of achieving a simple result, so is robustness to perturbations in the forcing func-

tion. It is expected that the external climate forcing contains not only low-frequency

shifts, but also relatively rapid perturbations due to solar variability, cosmic dust, and

high frequency perturbations to the earth’s orbit [e.g. Muller and MacDonald, 2000].

Internal variability should also be expected in the form of changes in albedo (e.g.
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Figure 5-6: Sample trajectories of each model using randomized initial conditions:
a the Imbrie model, b Paillard mode, and c the new model. Each of the models
converge onto a single trajectory. The last realization from each model is plotted in
red.

clouds, sea-ice, and snow cover variability), variations in atmospheric composition

and aerosol loading (e.g. dust, forest fires, and volcanic eruptions), and variations in

the atmospheric and oceanic fluxes of moisture and heat, to name but a few of the

expected sources of variability. Figure 5-8 shows how the squared-cross-correlation

between model results and EOF1 falls off with the addition of increasing amounts of

band-limited white noise to the insolation forcing. Plotted are the average squared-

cross-correlation between EOF1 and a hundred model results obtained from random

realizations of the forcing with the prescribed noise level. The sensitivity to noise
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Figure 5-7: Similar to Figures 5-2 and 5-4, but now the sensitivity of the squared-
cross-correlation between the new model and EOF1 to parameter perturbations.
Starting from the best fit, the cross-correlation between model results and EOF1
is computed over the last 650KY after varying one of the parameters over a range of
plausible values while holding the other fixed. From left to right are the time-constant
T measured in KY, the accumulation bias b, the power-law exponent n, the time-lag
L measured in KY, and the precessional phase φ and amplitude α.

initially appears to scale with the degrees of freedom available to each model. Thus,

while the unperturbed Paillard model results describe the most variance, when the

fraction of noise to orbital forcing variance is 0.1, all three models have an average

squared-cross-correlation with EOF1 of roughly 0.3. By the time the noise variance

equals the insolation forcing variance, all the models describe only a minor fraction

of EOF1 with the new model preforming the worst. The forcing perturbation results

indicate that the skill of these models strongly depends on how important stochastic

variability is at long timescales.

In calculating the response of the simple models to stochastic forcing perturba-

tions, it is assumed the system is discrete and the perturbations are uncorrelated,

thus corresponding to the Ito calculus. For a discussion of Ito versus other forms

of calculus see Penland [2003]. A more detailed investigation would incorporate the

likely time-correlated nature of the stochastic perturbations, the continuous (i.e. not
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Figure 5-8: Model sensitivity to the addition of band-limited white noise to the
forcing. Plotted is the squared-cross-correlation between the model results and EOF1
using the Fop parameterizations. The x-axis indicates the ratio of noise to orbital
forcing variance — a value of one indicates equal noise and insolation variance. Note
the x-axis is logarithmic. Each value is the average of a hundred noisy model runs.
Results assume a discrete system corresponding to the Ito calculus.

discrete) nature of ice-volume variability, and possibly such factors as the integrated

response of the climate system to higher-frequency annual or even diurnal insolation

variability. The more simple stochastic response calculated here suffices to make the

point that the response of these models critically depends on the degree of stochastic

variability. If at timescales of tens of thousands of years, most of the climate sys-

tem is controlled by low-frequency insolation forcing, then the results of these simple

models can be interpreted at face value. Indeed, the coupling of obliquity with the

terminations provides evidence that low-frequency shifts in insolation are important

for controlling the long-term evolution of the climate system. On the other hand, the

presence of precession band variability in a variety of climate indicators indicates the

importance of the annual cycle (see the discussion regarding rectification in Chap-

ter 2), and suggests that high-frequency variability also contributes to long-term cli-
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mate change. Separating the stochastic from the deterministically forced components

of climate variability remains a challenging problem in dynamical paleoclimatology.

5.5.3 Other measures of robustness
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Figure 5-9: Model response to periodic forcing. a The period associated with the
most energetic model response is contoured against the forcing variance and forcing
period. b The variance of the model response contoured against the forcing variance
and period. All model runs have 1KY time-steps for 5000KY.

In interpreting the model’s sensitivity to perturbations, a distinction should be

made between the sensitivity of a particular model realization to perturbations in the

forcing, and the sensitivity of the underlying mechanisms to these same perturbations.

For instance, the incorrect timing of a termination is quite different than the absence

of 100KY variability. In any model with thresholds, one can expect realizations of

the model to markedly differ when changes in parameterizations or the introduction

of noise cause the threshold crossings to change. In the new model it is evident that

threshold crossings are sensitive to the parameterizations. As the cross-correlation

between model results and EOF1 heavily depends on the timing of the terminations,

the incorrect timing of a single event will generally make it appear that the model’s

skill is significantly diminished. For these reasons phase-free statistics, such as the

periodogram, can lend valuable insight into the robustness of the underlying model

behavior.
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Figure 5-10: Model response to stochastic forcing. c Shows an example where the
model is forced by noise with a power-law of 0.3 and variance 15. Shown are the
spectra of the forcing (black) and model response (red). The solid black line is a
fit to the model response between 1/90 and 1/10KY, and has a slope q = 2.5. The
band associated with maximum variability is near 1/90KY. a The power-law of the
response spectrum is contoured against forcing power-law and variance. The response
spectrum is fit between the point with maximum variance and 1/10KY. b Shows the
period associated with the band of maximum variability contoured against forcing
power-law and variance.

Figure 5-9 characterizes the new model output using a periodogram approach.

In this case the Fop parameterizations are used, but the forcing is sinusoidal. The

most energetic band in the model’s response is contoured against the variance and

the period of the forcing. For periods less than 1/20KY the model response is nearly
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linear, having a peak in energy at the same period as the forcing. The same linear re-

sponse holds for forcing periods greater than 1/100KY. More interesting phenomena

are observed when the new model is forced by periods between 1/20 and 1/100KY.

Depending on the amplitude of the forcing and the exact period, the model gen-

erates period-doubling, tripling, and other complicated transitional behaviors. A

qualitatively similar model response is also found when the Fo parameterizations are

employed, from which it is inferred that the basic nonlinear response of the model is

robust to small changes in parameterizations. Another notable feature of the model is

that the variance of the response is primarily controlled by the period of the forcing.

Longer period variability gives more time for ice to accumulate before melting and

thus gives a greater amplitude response.

It is also useful to evaluate the model response to a purely stochastic forcing.

In this case, the forcing is characterized by its variance and power-law behavior.

The response is characterized by its power-law and the period with greatest energy.

For convenience, the system is assumed to behave discretely. Figure 5-10 shows

averaged results for stochastic forcing runs spanning 5000KY. The stochastic forcing

results indicate that the band with the greatest variability tends to shift toward lower

frequencies as the forcing power-law is increased. For power-laws greater than 0.8,

the band with the greatest frequency was indistinguishable from the lowest resolved

frequency, 1/5000KY. Although it may at first appear somewhat counter-intuitive, a

shift to lower frequency forcing (more red) also causes the power-law of the response

to decrease (become more white). That is, the power-law of the forcing and the

response are anti-correlated. Note that when the band associated with the most

energetic response shifts to lower frequencies, the power-law connecting the high-

frequency variability with the most energetic response becomes less steep. Implicit

in this explanation is that the energy in the high-frequency continuum is fixed.

When the new model is forced with a power-law below 0.4 and between variances

of 10 and 20, the model response exhibits a roughly 100KY variability. In Chapter 1

the surface-air-temperature variability was estimated to have a high-frequency power

law relationship of 0.4, suggesting that natural temperature variability could account

for the basic period of the glacial variability. One then requires a mechanism for

having terminations preferably occur during particular phases of obliquity. Such a

model could easily be achieved by, say, the mean of the stochastic forcing being

influenced by the Earth’s tilt. Indeed, such a shift in the mean is suggested by
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the findings of Wunsch [2004]. All told, it is difficult to see how glacial variability

could be exclusively orbitally or stochastically forced. At this point, however, the

juxtaposition of the two forcings is a useful approach in attempting to understand

how much of the observed variability might be described solely by stochastic or orbital

mechanisms. Eventually one seeks a combined understanding that incorporates the

inevitable stochastic variations in insolation and temperature, as well as the orbitally

forced insolation.

The cross-correlation between the results of the new model and EOF1 is found

to be more sensitive to changes in model forcing and parameterizations than either

the Imbrie or Paillard models. The spectral behavior of the new model, however, is

found to yield approximately 100KY variability under a wide range of forcing scenar-

ios from periodic to purely stochastic. Further analysis (not shown) indicates that

the termination features are also produced so that the basic glacial cycle variability

remains intact. Thus is it appears that while the correlation between EOF1 and the

results of the new model are sensitive to perturbations, the underlying mechanisms

which generate 100KY variability are robust features of the new model.

5.6 Comparing model and observational results

A second rule for assessing model results, as put forward by Saltzman [2002], is that

a maximum amount of the structure in the observations should be deducible from

the model using a minimum number of free parameters. In this part the results of

the models are compared with EOF1 using a variety of techniques including cross-

correlation and second and higher order spectral estimates. After accounting for the

degrees of freedom available to each model, the new model seems to best describe the

structure of EOF1.

5.6.1 Correlation and degrees of freedom

Judging the fit between model and observational results requires some objective mea-

sure of a model’s skill. To make fair comparisons, one needs to account for the varying

degrees of freedom (DOF) available to each model. Roe and Allen, [1999] compared

a number of simple models of the glacial cycles by fitting an auto-regressive model

to the residuals between model output and δ18O observations and making an F-test

comparison of the performance of each model accounting for the DOF. The conclu-
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sion of Roe and Allen [1999] was that no distinction could be drawn between the six

simple models they tested, including the Imbrie and Paillard models.

The auto-regressive model fit to the residuals by Roe and Allen [1999] makes

some restrictive assumptions on the distribution of the data and the class of model

error. Here, a simpler approach is adopted for comparing the results of the simple

models. First, the parameters of each model are adjusted to maximize the squared-

cross-correlation between model results and EOF1. Second, the variance described

is divided by the DOF available to each model, and the resulting ratio is used as

a score by which to compare the relative skill of the various models. Results are

shown in Table 5.1. For both the Fop (with precession) and Fo (obliquity only)

parameterizations, the new model has the highest score. The Imbrie model does well

by having few adjustable parameters, but its correlation with the observations is low.

Conversely, the Fop Paillard model obtains an excellent fit with the observations, but

has relatively many DOF.

It is noteworthy that the score associated with each model is similar for both the

Fop and Fo parameterizations (the latter of which have two degrees of freedom less),

suggesting that the score is an invariant measure of these models’ skill relative the

DOF permitted each model. In other versions of the new model, additional DOF were

added, for instance by requiring precession and obliquity values to exceed separate

thresholds. Incorporating such additional rules increased the maximum squared-

cross-correlation with EOF1 and the new model to roughly 0.7, but also the model

complexity and DOF, so that the score was not much affected.

5.6.2 Periodograms

As noted previously with respect to assessing robustness, the squared-cross-correlation

between model results and EOF1 is particularly sensitive to the sequence of events

within a record. Omitting or mistiming an event can easily destroy the correlation

in a model. For this reason, spectral analysis of model output provides a comple-

mentary description of the model behavior. Furthermore, since the spectra were not

directly used as a criterion in selecting the model parameterizations, it provides a

more independent means by which to compare the model results with observations.

As discussed in Chapter 3, EOF1 shows excesses of energy near frequencies given

by the simple relationship s(n) = 1/41KY + n/100KY, where n equals -1, 0, 1, or

2. This pattern suggest a nonlinear coupling between obliquity variations and the
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r2 DOF score
Fop Imbrie 0.24 4 0.06

Paillard 0.73 11 0.07
new 0.60 6 0.10

Fo Imbrie 0.12 2 0.06
Paillard 0.40 9 0.04
new 0.43 4 0.11

Table 5.1: Comparing model fit with the observations for the Fop (top, both obliquity
and precession forcing) and Fo (bottom, only obliquity forcing) parameterizations.
From left to right are the model name, the squared cross-correlation between model
results and EOF1 over the last 650KY, the degrees of freedom available to each
model, and the score. The score is measured as the ratio between the squared-cross-
correlation and the degrees of freedom. One DOF has been subtracted from the
Paillard model because perturbation experiments (Figure 5-4) indicate no sensitivity
to the TG parameter. If the ablation timescale for the Fop Imbrie model is permitted
to be arbitrarily small, the squared-cross-correlation can be increased to 0.33, raising
its score to 0.08.

100KY variability. Each model produces clear excesses of energy near the 1/100 and

1/41KY (n = 0) bands. For the Fop, shown in Figure 5-11, the Imbrie model and

the new model give peaks in energy at each of the s(n) bands identified in EOF1,

while the Paillard model has no identifiable peaks near 1/70 (n = −1) and 1/29KY

(n = 1). For the Fo, both the new model and Paillard model have peaks at the s(n)

frequencies, while the Imbrie model generates a red continuum without noticeable

concentrations of variability.

It is interesting that when the Paillard model is forced only by obliquity the output

has more clearly identifiable spectral peaks. Possibly, when precession forcing terms

are included, the Paillard model produces a more energetic background continuum in

which some of the peaks resulting from the obliquity forcing are no longer identifiable.

This suggests that one mechanism for generating a background continuum is to have

a sufficiently nonlinear response to narrow-band forcing that the resulting variability

has a continuum of energy extending over all resolved frequencies. Beyond these

simple model results and as discussed in Chapter 1, determining the sources of the

background variability in the climate spectrum remains an outstanding question.
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5.6.3 Power-laws

Introducing a threshold into a system provides a strong nonlinearity. Indeed, if the

rapid ablation events are approximated as step functions, one expects energy ex-

tending to the highest resolved frequencies [e.g. Bracewell, 2001]. Furthermore, the

orbital variations are both frequency and amplitude modulated so that the forcing

itself contains energy in numerous bands. It is then not surprising that these simple

glacial models yield energy at all the frequencies resolved in these discrete realizations.

That the models yield distinct power-law relationships is perhaps more surprising. In

Chapter 2 the spectra of frequency and amplitude modulated signals was discussed.

One result was that, for moderate to weak modulations, energy in bands near the

carrier frequency were the strongest. An analogous result may hold here in the re-

sponse of the models to orbital forcing: the background continuum energy near the

orbital and 1/100KY bands is the strongest and diminishes towards higher frequencies

(longer model runs indicate that the energy at lower frequencies also diminishes). If

one thinks of the overtones and combination tones generated by the model as being

more numerous than the resolved bands, the production of a noise-like background

continuum which diminishes toward higher frequencies can at least be qualitatively

understood.

While the production of the background continuum in the model response is poorly

understood, it is none-the-less easy to measure the power-law relationship and this

provides another comparison between the model results and EOF1. EOF1 has a

power-law with energy falling of at a rate proportional to s−q, where q = 2.8. This

power-law is probably more steep than those discussed in Chapter 1 because of the

smoothing effect of averaging together multiple records [see Huybers, 2002]. It is found

that the new model has a power-law most similar to that of EOF1 with q = 2.4. the

Paillard model is too steep at q = 3.4, while the Imbrie model is less steep at q = 2.1.

In view of the less steep δ18O power-laws discussed in Chapter 1 and found elsewhere

[e.g. Wunsch, 2003b], the Imbrie model power-law also seems an acceptable result.

5.6.4 Auto-bicoherence

In Chapter 3 it was argued that concentrations of variability at bands centered on the

s(n) frequencies, coupled with the strong auto-bicoherence at most of the frequency

pairs {s(n1), s(n2)}, demonstrated the presence of a nonlinear climate coupling be-
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Figure 5-11: Periodograms of model results using the Fop parameterizations: a Imbrie
model, b Paillard model, and c new model. d is the periodogram of EOF1. Power-
laws are indicated by the solid lines fit to the spectra between 1/10 and 1/100KY
where the slope is given by q. Vertical dashed lines are centered on the bands in which
EOF1 has significant concentrations of energy: 1/100, 1/70, 1/41, 1/29, and 1/23KY.
The vertical solid line in d indicates the approximate 95% confidence interval. The
Imbrie model and the new model have spectral peaks at each of the vertical lines.
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tween the 100KY variability and the obliquity band response. The simple model

results discussed here indicate that a nonlinear response to obliquity variations can

generate 100KY variability similar to that observed in EOF1. Furthermore, the pres-

ence of the combinations tones at 1/29 and 1/70KY in the Imbrie model and new

model periodograms suggests that the model nonlinearities share some similarity with

the nonlinearities present in EOF1. An important further test of whether the nonlin-

earities in the models reflect those in the climate system is whether the model results

have an auto-bicoherence pattern similar to EOF1.

Figure 5-12 shows the auto-bicoherence computed for the Fop model results over

the last 780KY BP (the same period discussed in Chapter 3). In general, the model

results have weaker auto-bicoherence than those found in EOF1. The new model

auto-bicoherence shows local maxima at each frequency pair, {s(n1), s(n2)}, yielding

a pattern similar to that of EOF1. Differences are that the auto-bicoherence in EOF1

is stronger and that EOF1 displays no auto-bicoherence at {s(2), s(2)}. The Imbrie

model auto-bicoherence also shows a gridded pattern of auto-bicoherence separated

by roughly 1/100KY intervals, but maxima are not centered on the {s(n1), s(n2)}
frequency pairs, suggesting that the Imbrie model only partially describes the nonlin-

earities found in EOF1. The Paillard model shows moderate auto-bicoherence values,

but the pattern is dissimilar to that of EOF1.

5.6.5 Summary of model comparisons

Three measures of how well each model describes the structure of EOF1 were em-

ployed: the periodogram, auto-bicoherence, and a score measured as the squared-

cross-correlation between the tuned model results and EOF1 divided by the DOF in

the model. The score associated with the new model is roughly 50% higher than that

of the Imbrie or Paillard models. The periodogram provides a phase-free means of

comparing model output with EOF1. The output of each model shows concentrations

of energy at the 100KY, obliquity, and precession bands, but the Imbrie model only

shows concentrations of energy at the obliquity-100KY combination tones when using

the Fop parameterizations and the Paillard model only shows combination tones using

the Fo parameterization. The new model is alone in consistently producing concen-

trations of energy at each of the significant peaks identified in EOF1. Furthermore,

the power-law associated with the new model periodogram is most nearly similar to

that associated with EOF1. Finally, the new model results have an auto-bicoherence
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Figure 5-12: Auto-bicoherence estimates for a the Imbrie model, b the Paillard model,
and c the new model using the Fop parameterizations. d is the auto-bicoherence of
EOF1. Horizontal and vertical lines are at frequencies of 1/70, 1/41, 1/29, and
1/23KY. The new model and EOF1 have a similar structure with local maxima in
auto-bicoherence tending to occur at intersections of the horizontal and vertical lines.

pattern most similar with that of EOF1. It is thus concluded that of the three mod-

els considered, the new model provides the best description of the climate variability

recorded in EOF1.

5.7 Dynamical interpretations

In this section the behavior of the new model is interpreted in the context of nonlinear

dynamical systems. It is shown that the new model can be classified as an excitable

system, and that it is capable of chaotic behavior. Features of the model’s behavior are
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qualitatively similar to those found in a variety of other simple and well-understood

systems. By drawing comparisons with these other systems, a context is provided for

understanding how the new model works.

5.7.1 Excitable systems

The quasi-periodic variability and state-dependent sensitivity to external forcing are

hallmarks features of what are broadly referred to as excitable systems [see e.g.

Pikovsky, 2001]. Excitable dynamics have received much attention as models of neu-

ron behavior [e.g. FitzHugh, 1961] and cardiac tissue [e.g. Glass and Shrier, 1991],

but also in chemical reactions [Epstein and Pojman, 1998], electronics [Postnov et al.,

1999], and optics [Barland et al., 2003]. A pioneering study by van der Pol [1927] of

the cardiac pacemaker offers a relevant example in which the heart was modeled as

an excitable system paced by quasi-periodic electrical stimuli. Perhaps Hays et al.

[1976] had such a system in mind when they suggested insolation variability is the

pacemaker of the ice-ages.

Another relevant example of an excitable system is the FitzHugh-Nagumo model

of the neuron [FitzHugh, 1961; Nagumo et al., 1962]. This neuron model has been the

subject of much investigation: its solution has been obtained analytically, physical

models of the process have been built, and it has thorough observational support.

The behavior of the system is characterized by a slow time-constant associated with

recharging the neuron potential, and a fast timescale associated with its discharge

— collectively referred to as an integrate and fire mechanism. The neuron fires

when prompted by an external stimuli, and then enters a refractory state where it

is insensitive to further stimulations. Once sufficient potential builds up, and when

prompted, the neuron again fires. Subject to fast periodic or (band-limited) white

noise forcing, the overall timescale of the neuron is set by the slow integration time.

Furthermore, the firing sequence in an excitable system can become nonlinearly phase

locked with periodic forcing. A direct analogy can be made between this model of

the neuron and with the concept of obliquity pacing of the glacial terminations. In

this view, terminations only occur after the climate system has built up a sufficient

charge of ice-volume and once triggered by the obliquity forcing.

Chapter 4 began by distinguishing between hypotheses which suppose glacial cy-

cles are internally or externally forced. It is tempting to suppose that an externally

forced deterministic system will be wholly predictable, but the further possibility
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arises that the climate response could be chaotic so that small perturbations in the

forcing or initial conditions would make the climate response unpredictable beyond

a certain time horizon. Numerical experiments indicate that excitable systems are

capable of chaotic behavior [Strain and Greenside, 1997; Othmer and Xie, 1999]Oth-

mer99, and for certain parameterizations the new model is also found to behave

chaotically. The model response is always phase-locked with the insolation forcing,

and it is only the amplitude of the glacial cycles which can exhibit chaotic behavior.

That is, the secular changes in Earth’s orbit pace the glacial cycles but the amplitude

of the response is not predictable.
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Figure 5-13: Model response to a 20KY unit variance sine wave using the Fop param-
eterizations. bottom, the forcing (red) in normalized units and the model response
(black) in hectometers of sea-level plotted for 300KY after the initial transients have
become negligible. top The state of the model at any time is defined by the forcing
(x-axis), ice-volume 10KY prior (y-axis), and the present ice-volume (z-axis). Both
the forcing and response are periodic at 20KY. Notable features are the slow trend
toward greater ice-volume followed by an abrupt transition to a low ice-volume state.
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Figure 5-14: Similar to Figure 5-13, but now the model response to a combined 20KY
and 40KY periodic forcing. bottom, The forcing (red) is periodic at 40 KY while
the model response (black) is periodic at 120KY. top Model state as determined by
ice-volume (z-axis), ice-volume 10KY prior (y-axis), and forcing (x-axis). While more
complicated than the response for 20KY forcing alone, the basic pattern is similar:
slowly increasing ice-volume followed by a rapid collapse. Observe now that there is
a spiraling increase until ice-volume exceeds the level of one hectometer.

5.7.2 Trajectories

To better understand the chaotic and non-chaotic regimes of the new model, it is

useful to consider the response of the new model to an idealized forcing function.

Figure 5-13 shows model output using the Fop parameterizations, but forced by a

unit variance 20KY period sine wave. There are just over two active dimensions

in the new model — time, ice-volume, and prior ice-volume — where the last is

a mixture of the first two. Plotting the model trajectory in this three-dimensional

framework permits viewing the entire state of the model at once. The model response

has a one to one relationship with the forcing (i.e. it is periodic at 20KY) and shows

asymmetric slow growth in ice-volume alternating with rapid ablation. Because ice-

volume is always greater than one hectometer, a termination-like event occurs each
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Figure 5-15: Similar to Figures 5-13, but now the new model response to a unit
variance 40KY sine wave. The response is much more complicated than for the unit
variance 20KY sine wave case. The general behavior is for a small ablation event to
be following by a large ablation event. Ablation events occur every time the forcing
is greater than the accumulation bias — in this case one. However, from long runs
of this model, it appears that the magnitudes of the melting events does not repeat.
Thus the model response is phase-locked to the forcing, but the amplitude of the
response appears to be chaotic.

time the forcing exceeds the orbital threshold value.

The model exhibits a more complicated periodic response when forced by the sum

of two unit variance sine waves with periods of 20 and 40KYs (see Figure 5-14). Now

ice slowly spirals upward over three 40KY cycles, or six 20KY cycles, after which a

large amplitude termination occurs. Note that the model response and forcing are

phase locked: there is still a one to one correspondence between every maximum and

minimum in both curves. The difference is in the amplitude of the response which

critically depends on the prior ice-volume state.

Figure 5-15 shows model output when forced by a unit variance 40KY sine wave.

The response is fundamentally different than that discussed in the previous two ex-
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amples. The model accumulates equal amounts every 40KY cycle, but the degree of

ablation is variable. Even in long runs, the model is never seen to repeat, suggest-

ing the presence of a chaotic regime. The overall pattern observed in Figures 5-13

through 5-15 is a looping structure comprised of a general trend toward increasing

ice-volume followed by a rapid decrease. Note that when the forcing becomes large

some melting always occurs, so that the phase of the model response is locked with

the forcing —- a chaotic regime referred to as phase synchronization by Rosenblum

and Pikovsky [2003]. To manifest chaotic behavior, trajectories cannot overlap in

phase space, thus requiring more than two dimensions. The new model effectively

has just over two dimensions: time, ice-volume, and time-lagged ice-volume and so

is just capable of chaotic behavior. Also note that the pattern of slow growth and

a rapid chaotic decrease is qualitatively similar to the behavior of the very simple

chaotic system presented by Rossler [1976].

500 1000 1500

0.1

0.3

time

|δ t|

λ=0.003

Figure 5-16: Average absolute distance between sets of model runs after applying a
small perturbation to the initial conditions for one of the runs. These results indicate
the model has a Lyapunov coefficient of 0.003 units/KY, or that perturbations ex-
ponentially grow with a timescale of roughly 300KY. Note the y-axis is logarithmic.
Eventually the distance between model runs saturates at a value of 0.3. The model
was forced using a unit variance sine wave of period 40KY. In general, the value of
the Lyapunov coefficient depends on the forcing and parameterizations of the model.
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Figure 5-17: An orbit diagram for the model where the variance of each local max-
imum in ice-volume is plotted against forcing variance. The forcing is a 40KY sine
wave, and a local maximum in ice-volume occurs exactly once for each forcing cycle.
Thus the number of distinct dots in a vertical row indicates the period of the model
response. top As the forcing variance increases from 0.5 a period doubling route to
chaos is observed, but at values above 1.1, the model response again becomes peri-
odic. For forcings above 3, the response simplifies and is periodic at 80KY. bottom
Zooming in on the interval between 1.2 and 1.4 shows the period doubling route to
chaos more clearly.

5.7.3 Chaos

One hallmark feature of chaos is the exponential divergence of model trajectories

subject to a small perturbation. Figure 5-16 shows the average distance between

a reference run of the new model and a perturbed model run as a function of time.

After allowing the model to run for 2000KY, both ice-volume and prior ice-volume are
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rescaled to be within 0.01 hm of the reference model, the time is reset to zero, and the

models are run forward again. The divergence is exponential with a rate set by what

is termed the Lyapunov exponent [see e.g. Strogatz, 2000]. The Lyapunov exponent

for this model is estimated from thousands of model runs to be approximately 0.003

KY−1. The small value of the Lyapunov exponent suggests that even when the new

model is in a chaotic state, it will be possible to predict its behavior for numerous

glacial cycles. The average distance between the reference and perturbed model

runs saturates at 0.3. Thus, for small perturbations the model trajectories initially

diverge, but because all trajectories are contained within a finite volume, the average

separation only grows so far.

Figure 5-17 shows another hallmark feature of chaotic behavior using an orbit

diagram. The values of the local maxima in ice-volume are plotted against the forc-

ing variance for a sine wave with a period of 40KY. For forcing variances near 0.5

each successive maximum in ice-volume has the same amplitude and thus the model

response has a period which is the same as the forcing. This is analogous to the case

presented in Figure 5-13, only that the amplitude is smaller and the frequency of the

forcing is lower. As the forcing variance increases, the model undergoes bifurcations

until, near 0.78, the model no longer appears to repeat, a phenomenon referred to as

a period doubling route to chaos. At unit variance Figure 5-17 shows the same model

results plotted in Figure 5-15, but now only plotting the local maximum values. There

are also windows of periodic behavior, for instance near a forcing variance of 0.788.

At values above 1.2, the model response remains periodic, typically having a period

doubling or tripling response. The Rossler system shows a very similar structure in

its period doubling route to chaos [Olsen and Deign, 1985]. Physical systems have

also been shown to manifest similar period doubling phenomena; for instance, Libch-

aber et al. [1982] for convection experiments where the Rayleigh number is slowly

increased. Extremely simple chaotic systems such as the logistic map and the sine

map also show a simple period doubling route to chaos. See Strogatz [2000] for a

good introductory review of these phenomena.

The behavior of the new model bears much in common with the simple chaotic El

Nino model of Tziperman et al. [1994]. Both models are driven by periodic forcing,

incorporate a time delay, and exhibit a period doubling route to chaos. The applica-

bility of such simple models to both the glacial cycles and the El Nino variability hints

at a physical linkage between the two phenomena. Indeed, it has been speculated that
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the dynamical response of the Tropical Pacific to obliquity forcing is responsible for

the glacial cycles [Philander and Fedorov, 2003]. While this is an interesting notion,

establishing such a connection would require much more theoretical and observational

study.

The results of the new model suggests that the glacial cycles could be chaotic. It

should be pointed, however, that the forcing which gives the best fit between EOF1

and model results is near a chaotic regime, but is not itself chaotic. Furthermore, it is

probably not possible to prove whether the climate is or is not chaotic given the finite

and noisy observations which are available. To give an example of this difficulty,

a new method of detecting chaos in a system was recently presented by Gottwald

and Melbourne [2004] which requires on the order of 50,000 data points even when

the system is very simple and there is no noise. Distinguishing between a chaotic

deterministic system and a stochastic system, particularly given noisy data, would

likely require many more observations. Note that Tziperman et al. [1994] also state

that the observational record is insufficient to establish whether El Nino is chaotic.

Feigenbaum [1979] provides a renormalization theory which shows why the orbit

diagrams of the iterated maps, the Rossler system, and probably the convective ex-

periments of Libchaber et al. [1982] and El Nino model of Tziperman et al. [1994]

should all appear so similar. A detailed discussion of renormalization theory is be-

yond the scope of this thesis, but one of its implications is that each of these systems

should have trajectories which are only slightly more than two dimensional. That is,

only two or three dimensions are active while the others, if they exist, follow along

slavishly. The new ice-volume model has barely more than two dimensions: time,

ice-volume, and time-lagged ice-volume (a truly slaved third dimension). One mani-

festation of this low-order chaos is a Lorenz map which is nearly one-dimensional. For

continuous systems, this map is made by plotting each local maximum, zn, against

the next one, zn+1, for a long run of the model output [Lorenz, 1963].

5.7.4 Multiple climate states

One typical manifestation of low-order chaos is a Lorenz map which is nearly one-

dimensional. For continuous systems, this map is made by plotting each local max-

imum, zn, against the next one, zn+1, for a long run of the model output [Lorenz,

1963]. The Lorenz map for the new ice-volume model is shown in Figure 5-18. In

this case, model results are from a 40KY periodic forcing with unit amplitude and,
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Figure 5-18: Lorenz map of the model’s chaotic response to a unit variance, 40KY
sine wave. top the magnitude of a maximum in ice-volume (zn) is plotted against the
subsequent maximum (zn+1) for a 20,000KY long record, after the initial transients
have died down. A simple function-like relationship emerges which is unimodal and
concave down. The intersection between this relationship and the solid diagonal
indicates an (unstable) fixed point in the system. Reminiscent of the Paillard model,
the extent of glaciation can be divided into three categories: i (inter-glacial, zn <
.915), g (mild glacial, .915 > zn > 1.34), and G (full glacial, zn > 1.34). When the
model is in state i it next transitions to states g and then G. State G is subdivided
into Gg (1.34 < zn < 1.46)and Gi (zn > 1.46). State Gi leads to state i and the full 3
period cycle begins again. Alternately, state Gg leads to state g, giving rise to a two
period cycle. When the trajectory is far from the unstable fixed point, both sequences
{G− i− g} and {G− g} are approximately equally likely, and because the transition
time between states is always 40KY, the average re-occurrence time of state G will
be 100KY. If the model lands near the fixed point, a train of G− g transitions with
nearly equal amplitude ensues. bottom A portion of the model output is shown with
maxima in ice-volume labeled according to their state. The horizontal line indicates
the fixed point. Initially, the trajectory is near the fixed point and the G and g states
have nearly equal magnitudes. The model then spontaneously transitions to larger
and more unequal ice-volume variations with both 120 and 80KY re-occurrence times.
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for variety, the Fo parameterizations. As long as the model is in a chaotic regime

and the selected parameterizations yield a good fit between model results and EOF1,

the qualitative structure of the Lorenz map appears insensitive to which forcing is

used. The model’s Lorenz map has a broad maximum centered at approximately

zn = 1.15. This maximum lies above the diagonal so that the subsequent maximum

in ice-volume, zn+1, will be larger; that is the ablation between zn and zn+1 is smaller

than the accumulation. Toward higher values of zn the downward slope of the Lorenz

map increases, crossing the diagonal with a slope less than minus one. The slope in

the vicinity of the diagonal crossing is important because the intersection is a fixed

point (i.e. periodic with zn = zn+1), and slopes with an absolute value greater than

one indicate that the fixed point is unstable [Lorenz, 1963]. The steeper slope toward

higher values of zn also indicates that the model is more sensitive to perturbations

during periods of large ice-volume. This is in qualitative agreement with the previous

discussion of high-latitude surface air temperature variability during glacial and inter-

glacial periods (see Chapter 1, figures 1-2). The Rossler system’s Lorenz map [e.g.

Strogatz, 2000] has a structure nearly identical to that of the new model, suggesting

that such behavior is a robust feature of many simple chaotic systems.

It is useful to divide the Lorenz map associated with the new model into three

states: inter-glacial (i), mild glacial (g), and full glacial (G). State i is defined as

values of zn for which zn+1 is less than the value of the fixed point. State g is defined

as values of zn for which zn+1 is greater than the value of the fixed point. Finally, state

G comprises all values of zn greater than the fixed point. Thus, if the model begins in

state i it must subsequently enter state g and then state G. The specific ice-volume

values which delineate each state are given in the caption to Figure 5-18 for the case

of Fo model parameterizations and a unit variance 40KY sinusoidal forcing. The

requirement for the model to cycle through a fixed set of states implies that knowing

the current model state permits some predictive skill. A similar rule based approach

has been developed for predicting the trajectory of the chaotic Lorenz system [Evans

et al., 2003].

So far the model’s trajectory has been discussed as if it were a fixed sequence,

but consider that state G can lead to either state i or state g. As noted earlier, local

maxima in ice-volume are spaced by 40KY intervals in a one to one relationship with

the period of the forcing so that the {i − g − G} sequence takes 120KY while the

{g − G} sequence takes only 80KY. For either sequence, the transition out of the G
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state is identified with a glacial termination so that the duration of a glacial cycles

will be either 80 or 120KY. If the {i − g − G} and {g − G} sequences are realized

an equal number of times, the average glacial cycle will be 100KY, as is observed for

late Pleistocene climate variability.

The state transitioning rules for the behavior of the new model are not specified,

but rather emerge as intrinsic features of the model’s dynamics. In this respect,

the new model provides an explanation for the multiple climate states which were

explicitly specified in the Paillard model. According to the new model, the multiple

climate states are generated by the dependence of the rate of change of ice-volume

on the amount of ice present 10KY prior. It is useful to note a difference between the

Paillard and new model in that the Paillard model also cycles through the full i− gG

sequence, while the new model switches between short g−G and long i−g−G cycles.

In some instances, however, the Paillard model is able to pass quickly from the i to

g state, and it appears these more rapid cycles correspond to the g − G cycles in

the new model. Thus the state dependent behaviors of both the new model and the

Paillard model appear to be very similar. That state dependence emerges from the

simple dynamical formulation of the new model supports the notion that the climate

exhibits similar state dependent variability.

5.8 Are we still in the 40KY world?

The chaotic behavior exhibited by the new model lends itself to some speculation

regarding the long-term evolution of the climate system. In particular, the presence

of a fixed point in the Lorenz map of the new model suggests a novel way of explaining

the transition the Mid-Pleistocene Transition [e.g.Schmieder et al., 2000]. Figure 5-18

shows a model realization where a series of nearly equally sized and relatively small

oscillations in glacial extent transition to larger glacial anomalies with a seemingly

longer period. Note that local maxima in glacial extent still occur every 40KY,

and it is only that the magnitude of the glaciations vary. This suggests that the

period commonly referred to as the 40KY world [e.g. Raymo and Nisancioglu, 2003]

could have the same dynamics associated with it as the more recent period which is

characterized by a dominant 1/100KY band of variability.

The presence of a train of nearly equal amplitude glaciations is a common event

for the new model when in a chaotic regime. The reason is that if a local maximum in

218



0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.5

1

1.5

ic
e
 v

o
lu

m
e

time (KY)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.01

0.02

0.03

0.04

0.05

0.06

fr
e
q
u
e
n
cy

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

Figure 5-19: Spontaneous switching between 41KY and 100KY regimes. top A
realization of the new model using the Fop parameterizations but where the forcing
is a 41KY periodic signal with an amplitude of 1.3. Ice-volume is plotted in units of
hectometers and time is in kiloyears. bottom Spectrogram of the model results using
a 400KY sliding window. The color scaling is in logarithmic units and the horizontal
dashed lines are at frequencies of 1/20, 1/40, and 1/100KY. The x-axis is time in KY
and the y-axis is frequency in 1/KY.

glacial ice-volume lands near the fixed point, the next glaciation will also lie near this

(weakly unstable) fixed point. For trajectories which land very near the fixed point, it

requires a great many cycles to escape. Figure 5-19 shows another model realization

where the model spends a significant portion of its time near the unstable fixed point

before transitioning to cycles with large differences between successive glaciations. A

spectrogram of the model realizations is also shown in Figure 5-19. While the model

is near the fixed point, most of the variability is concentrated near the 1/40KY band,
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but once it escapes the fixed point variability becomes concentrated in and around

the 1/100KY band.

Obliquity had a strong influence on early Pleistocene climate variability. Existing

explanations of why 100KY variability appears near 650KY BP have had to postulate

a change in the governing dynamics of the system [e.g. Raymo, 1997; Paillard, 1998].

Here, an alternate explanation is given that the system spontaneously transitioned

from obliquity forced glacial cycles in the vicinity of a fixed point to a more variable

amplitude response. The best fit for the new model yields a parameterization which is

not in a chaotic regime. At first this may seem to argue against a spontaneous onset of

100KY variability. However, the sensitivity of the model solution shown in Figure 5-7

suggests that a small changes in parameterizations or a subtle shift in the forcing,

perhaps owing to any of the myriad stochastic influences on climate, could cause a

nearly spontaneous transition. Whether the climate system is in fact chaotic or simply

sensitive, the point is that the transitions to more energetic 100KY variability in the

climate system need not be related to large scale shifts in the boundary conditions.

The onset of 100KY variability could arise as a mode shift between glacial cycle

trajectories involving nearly equal amplitude obliquity responses to a trajectory with

terminations occurring only every second or third obliquity cycle.

It is argued that the explanation of the Pleistocene glacial record best in keeping

with the observations is as a response to obliquity variations. In this view, precessional

and eccentricity variations, to the extent they play a role, act as perturbations to the

system. If the climate system is as sensitive during glacial climates as indicated by

the new model, then these non-obliquity perturbations as well as a host of stochastic

processes could have significant effects on subsequent climate states. Nonetheless,

there appears to be good evidence that the basic timescale of the glacial cycles is

paced by changes in obliquity. If this view is correct, then we are still in the 40KY

world and only the amplitude of the response changed during the Mid-Pleistocene

Transition.

5.9 Predictions and closing remarks

On the basis of the model results several predictions can be made regarding glacial

variability. Spontaneous switching between 40 and 100KY regimes implies that the

most recent shift at 650KY BP does not need to be a singular event. Indeed, there
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is some evidence that 100KY variations are present in early Pleistocene records [e.g.

Beaufort, 1994]. The further possibility exists that distinct 80 and 120KY regimes

could occur in parts of the climate record. Identification of multiple transitions be-

tween glacial cycles dominated by 40, 80, or 120KY variations would provide support

for the new model. An important caveat is that the age-model must be sufficiently

accurate and not make assumptions regarding the astronomical origins of the 80 or

120KY variability. Using the depth-derived age-model approach, perhaps coupled

with a minimal tuning strategy, it may be possible to test whether the climate sys-

tem experienced multiple episodes of glacial variability on 80 and 120KY timescales.

It may also prove useful to adopt a wavelet based approach to localize 80 or 120KY

features in the climate record.

Second, the model suggests that melting events are a highly nonlinear process

regardless of the extent of the ice-sheets. Thus, even in the 40KY world, there should

be evidence of a nonlinear response to insolation forcing. Observational analysis indi-

cates that such nonlinearities are present [e.g. Hagelberg et al., 1991; Ashkenazy and

Tziperman, submitted] and suggests that ablation occurs more quickly than accumu-

lation in both the 40KY and 100KY worlds. There are again age-model considerations

in that the observed rate of ice-volume change could be distorted by, for example, by

squeezing the record during ablation events.

Furthermore, the model results indicate that during the 40KY regime, there should

concentrations of variability at 1/20KY owing to the first over-tone of the obliquity

forcing. If instead the energy in the 1/20 and 1/100KY bands were attributable to

precessional forcing, one might expect that their relative strengths would be positively

correlated, but Pisias and Moore, [1981] have found that the 100KY and precession

energy do not covary. The new model instead suggests that the energy in the 1/20KY

precession band is related to the strength of the 40KY variability. Optimally, a depth-

derived age-model approach can be used to assess the climate variability during the

40KY world. Otherwise, the energy in any band which has been used for orbital-

tuning of the age-model will be suspect and probably biased toward too much energy.

To summarize, this chapter employed simple deterministic models to describe the

variability observed in EOF1. The models of Imbrie and Imbrie [1980] and Paillard

[1998] were discussed and compared with a new model of glacial variability. When

tuned, the new model produces the correct timing of the glacial cycles and reproduces

much of the detailed structure recorded in EOF1. In addition, the periodogram and
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auto-bicoherence of the new model results are in close agreement with that of EOF1.

When compared to the Imbrie and Paillard models, the new model is considered the

better description of EOF1.

Intrinsic to the new model are three distinct states of glaciation, {i, g, G}. For

many parameterizations, the model chaotically cycles through these states and spon-

taneously switches between 40 and 100KY modes. In the 40KY mode, the model

repetitively cycles through g−G states and has nearly equal accumulation and abla-

tion during each obliquity cycle. In the 100KY mode, there is a variable amplitude

response involving 80KY g − G or 120KY i − g − G cycles which, on average, give

the quasi-100KY glacial variability. Thus, the model offers an explanation of the

Mid-Pleistocene transition as a spontaneous mode shift of a chaotic system.

The success of the new model in reproducing the timing of the glacial cycles, spec-

tral and higher order features of EOF1, and shifts between 40 and 100KY modes of

glacial variability suggests that its simple dynamics may have some qualitative agree-

ment with the real climate system. Such a relationship, however, remains highly

speculative and further research is required to establish the relationship (if any) be-

tween this (and other) very simple models and the diffusive, turbulent, and highly

complex climate system.
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Chapter 6

Summary and Conclusions

The first chapter of this thesis provides an overview of the spectrum of climate vari-

ability on timescales ranging from months to millions of years, the second explores

modes of insolation forcing over these same timescales. The linchpin required to con-

nect insolation forcing with a climate response is an accurate age-model, and chapter 3

is devoted to developing a chronology for marine sediment cores which is indepen-

dent of orbital assumptions. Chapter 4 uses this chronology with a composite δ18O

record to test whether the glacial cycles are paced by orbital variations. A significant

coupling is found between obliquity and the glacial terminations which is further ex-

plored in Chapter 5 through the use of very simple climate models. The conclusions

which can be drawn from each of these chapters are summarized below.

Chapter 1 provides an overview of tropical sea surface temperature (SST) and

high latitude surface air temperature variability (SAT) by piecing together spectra

which resolve bands extending from frequencies of 1/month to 1/800KY (KY = kilo-

year). The background continuum of temperature becomes more energetic towards

lower frequencies. In the bands between 1/year and 1/800KY, tropical SST energy

increases at a rate inversely proportional to frequency; i.e. a power law with q = 1.

High-latitude SAT energy increases more slowly between bands of 1/2month and

1/100year with q = 0.4, and then more rapidly between 1/100year and 1/100KY

with q = 1.8. The change in slope in the SAT spectrum, which is also weakly present

in the SST spectrum, suggests that there is a qualitative change in the mechanisms

responsible for climate variability near centennial timescales.

There exist concentrations of energy at the 1/100KY, 1/41KY, and 1/21KY bands

in the SST spectrum. A one to one relationship exists between concentrations of SST
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and insolation forcing energy at the obliquity (1/41KY), annual, and semi-annual

bands. Conspicuously absent are insolation forcing at the 1/100KY and 1/21KY

bands, indicating that either a nonlinear response to the insolation forcing or internal

variability are required to explain the associated concentrations of SAT energy. In

a subsequent chapter, significant concentrations of variability are also identified near

1/70 and 1/29KY, further suggesting the presence of a nonlinearity in the climate

system.

There are numerous challenges in accurately estimating the climate spectrum. The

net spectral energy at frequencies below 1/15KY is less than a third of the energy

in the annual and semi-annual bands. This fact calls attention to the importance

of the annual cycle, and the strong potential for non-seasonally resolved records to

alias energy into the lower frequencies. When multiple spectra are pieced together

to resolve high and low-frequency processes, this aliasing effect tends to bias the

composite spectra towards appearing too red; in extreme cases aliasing can make

white noise appear to obey a spectral power-law of one. Another complication in

interpreting temperature variability is nonstationarity; for example, it is shown that

Holocene temperatures in Greenland are much less energetic than during the last

glacial.

So far the summary has focused on temporal variability, but there is also a rich

spatial structure associated with temperature variability. To highlight the complexity

of the temperature variability signal, the one point cross-correlation was computed

between temperatures at the GISP2 site with the rest of the world using the NCEP

reanalysis SATs after filtering out annual and higher frequencies. There is a strong

positive correlation between GISP2 site temperatures and Greenland, weak correla-

tion with the Arctic, and a complex pattern of positive and negative correlations over

the rest of the world. A similarly complex pattern emerges if one computes the one

point cross-correlation with reanalysis SATs at the Devils Hole site. Contrary to the

arguments of Mitchell [1976], there does not appear to be a trend towards larger

spatial scales with longer timescales, at least between the frequencies of 1/2month

and 1/50year resolved by the NCEP reanalysis. The spatial scales of temperature

variability at centennial and longer timescales remains an active topic of research.

Note that the permanence of many geographical features of climatic relevance (e.g.

mountains, oceans, the jet stream, polar night, etc.) ensures that climate will have

at least some spatial variability extending out to time-scales approaching the Earth’s
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age.

Chapter 2 considers Earth’s insolation forcing and highlights a few of the subtleties

involved in interpreting its effects. Insolation forcing varies on timescales ranging

from diurnal to hundreds of thousands of years, making it challenging to account for

long-term variations while still resolving the highest frequency variability. A common

technique used to simplify the insolation forcing signal into a slowly varying function

is to consider only a day of the year or some portion of the year. Various methods

include the calendar half-year, solar half-year, and caloric half-year. For most pur-

poses, however, these quantities are an over-simplification of the insolation signal, for

instance making it appear as if there is precession period variability directly present

in the insolation forcing when, in fact, it is an alias of the seasonal cycle. To facilitate

a more physical interpretation of the insolation forcing, a compact representation is

put forward which uses a small number of spatial modes (the Legendre polynomials)

and time-variable loadings. The time variable loadings are expressed using pairs of

singular vectors, one of which represents the seasonal variability and the other the

orbital timescale variability. This representation can express over 99% of the variance

in the full spatial and temporal variability of insolation using the four leading Legen-

dre polynomials (spatial modes) and four leading sets of singular vectors (temporal

modes). It is suggested that insolation forcing should be thought of as a set of time-

variable spatial modes whose amplitudes are modulated by changes in the Earth’s

orbit and orientation. That is, rather than discussing insolation on a given day of

the year or at a particular latitude, as is common in the paleoclimate literature, it is

more physical to consider modes of insolation forcing.

Only variations in obliquity and, to a much lesser extent, eccentricity cause low-

frequency shifts in Earth’s insolation forcing. Precession of the equinoxes has no

effect on the mean annual insolation, but does modulate the amplitude of the seasonal

cycle when eccentricity is non-zero. It is only when a nonlinear mechanism rectifies

the seasonal modulation that precession-period variability appears. It is shown that

such rectification can arise from physical processes within the climate system, but

that the seasonality inherent to many climate proxies will also produce precession-

period variability in the records. One should distinguish this instrumental effect

from true climate responses. Careful examination of regions without seasonal cycles,

for example the abyssal non-equatorial ocean, and the use of proxies with different

seasonal responses, might permit separation of physical from instrumental effects.
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When the age-model of a record is orbitally-tuned, there are further complications

associated with the interpretation of orbital features in the climate record. In this

context, tuning refers to the practice of stretching and squeezing the age-model of a

paleo-climate record so as to sharpen and enhance features of its orbital variability.

Obviously, tuning can affect the frequency and energy distribution within a record. In

the case of pass-band-filtered records, it is shown that orbital-tuning can also build-in

eccentricity amplitude modulation of the precession variability, consistent with the

results of Neeman [1993]. This is because the precession parameter is both amplitude

and frequency modulated by changes in precession. To prevent circular reasoning

when assessing the relationship between climate and insolation forcing, one should

use an age-model which makes no orbital assumptions.

Chapter 3 develops a new chronology of glaciation, spanning the last 780KY, from

21 marine sediment cores using depth as a proxy for time. To avoid biasing this

depth-derived age estimate, the depth-scale is first corrected for the effects of sedi-

ment compaction. To provide age uncertainty estimates, the spatial and temporal

variability of marine sediment accumulation rates are estimated and modeled as an

autocorrelated stochastic process. Depth-derived ages are estimated to be accurate to

within ±9KY and within this uncertainty are consistent with the orbitally-tuned age

estimates. Nonetheless, the remaining differences between the depth and orbitally-

tuned chronologies produce important differences in the spectral domain. It appears

orbital tuning suppresses the presence of nonlinearities in the δ18O record involving

the 100KY and obliquity frequency bands.

Because the depth-derived chronology makes no assumptions concerning the cli-

mate response to insolation forcing, it provides an unbiased chronology by which to

analyze the relationship between climate variability and insolation forcing. Analy-

sis of the δ18O record, using the depth-derived age-model, indicates the presence of

nonlinear interactions in the climate record. These interactions involve combination

tones of the 1/100KY and 1/41KY variability and are significant features of both the

periodogram of δ18O and higher order statistics such as the auto-bicoherence. Using

Fourier based methods, however, it is not possible to distinguish between obliquity

control of the 100KY variability and a weak nonlinear coupling between obliquity and

an independent 100KY variability.
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Chapter 4 further investigates the nonlinear coupling between orbital variations

and the quasi-100KY glacial cycles. Rayleigh’s R is used to quantify phase coupling

between the orbital parameters and the Pleistocene glacial terminations. Standard

hypothesis testing procedures are used to decide whether the R between glacial ter-

minations and each orbital parameters is significant. Key to determining whether

a coupling is significant is the development of an adequate null-hypothesis, and a

random-walk glacial model is used to estimate the probability distribution associated

with the null-hypothesis of no coupling between orbital variability and the glacial

terminations. The null-hypothesis cannot be rejected for precession or eccentricity,

but for obliquity the null-hypothesis is rejected at the 95% confidence level.

To investigate the robustness of the obliquity test, the probability distribution

of the null-hypothesis was also estimated using other simple models and surrogate

data techniques. In all cases, the obliquity null-hypothesis is rejected, indicating that

the results are robust. Furthermore, the obliquity nonlinear coherence is consistent

with the alternate hypothesis that glacial terminations occur when obliquity is near a

fixed phase, and the power of the obliquity test is P = 0.58. It is thus concluded that

terminations are triggered near maxima in obliquity. Such an obliquity pacing of the

glacial cycles implies that terminations occur every second or third obliquity cycle,

where the average of the 2× 40 and 3 × 40KY cycles gives the 100KY variability. In

agreement with this implication, a histogram of the duration between glacial cycles

shows a bimodal distribution with peaks near 80 and 120KY.

Chapter 5 further explores the relationship between orbital variations and glacial

variability using simple deterministic climate models. Three simple models of the

relationship between climate and orbital forcing are considered. The model of Imbrie

and Imbrie [1980] is used to argue for the importance of slow ice-volume accumulation

in setting the timescale of the glacial cycles, while the model by Paillard [1998]

highlights the roll of thresholds and state dependence in the climate system. The

identified features of the climate variability are incorporated into a new model which

has a simple form and a small number of adjustable parameters. When tuned, the

new model gives the correct timing for each termination and reproduces the linear

and nonlinear spectral features earlier identified in the δ18O EOF1 record.

Under a broad variety of conditions the model exhibits a chaotic amplitude re-

sponse to insolation forcing. In this chaotic regime two modes of behavior are distin-

guished: one where successive ablation events are relatively small and of nearly the
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same magnitude, and another where ice accumulates over two or three forcing cycles

before rapidly ablating. Thus, when the model is forced by obliquity variations, the

former mode is identified with the 40KY world, and the latter with the onset of large

quasi-100KY variability roughly 650K ago. Both the 40KY and 100KY modes of

glacial variability are intrinsic to the behavior of the chaotic simple model, and sug-

gests that the Mid-Pleistocene Transition may be a spontaneous event independent

of any major shifts in the background state of the climate system.

Two predictions can be made on the basis of the simple chaotic model result.

First, the major ablation events are expected to be nonlinear and abrupt even during

the 40KY world. This form of nonlinearity is expected to generate over-tones so that

some part of the energy in the 1/20KY band arises because of obliquity, rather than

precession forcing. Second, spontaneous switching between 40 and 100KY modes of

variability imply that the Mid-Pleistocene transitions need not be a singular event,

and periods of 100KY variability may be discernible prior to the Mid-Pleistocene

Transition.

Overall, the origins of the ice-ages can be rationalized from two rather different

starting points: the Milankovitch thesis of glacial climate variability as being con-

trolled by deterministic, periodic changes in the distribution and intensity of insola-

tion; or the stochastic antithesis that climate is random, broad-band, and controlled

by processes internal to the system. Here it was argued that obliquity paces the

glacial cycles, making climate partly deterministic, but also that much of the climate

variability is consistent with a stochastic process, identifiable with the broad-band

spectral continuum, and which is quantified using spatial and temporal scaling re-

lationships. It is anticipated that future research will turn from debating whether

climate is controlled by Milankovitch or stochastic processes towards synthesizing

these forcing mechanisms into a more general theory of climate variability.
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