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Summary  

The cold-water hydrocoral Errina antarctica provides habitat for numerous macroepibenthic 

species and plays an important role for biodiversity in the Chilean fjord region. Gaining 

knowledge about the assumedly highly diverse benthic communities associated with cold-water 

corals such as E. antarctica is crucial for an efficient management programme for the 

ecosystems, which are strongly threatened by aquaculture and other human activities. 

In this investigation, the epizoobenthic community associated with E. antarctica in 

three bathymetric zones (Zone 1: 10-20 m; Zone 2: 20-30 m; Zone 3: 30-40 m) in the Chilean 

fjord region is described quantitatively by analysing videos recorded via remotely operated 

vehicle (ROV). To be able to compare communities from different diving sites, pH, salinity, 

temperature, depth, oxygen saturation, and oxygen concentration were measured. Videos and 

abiotic parameters were recorded during dives at four stations. A total of 260 images were 

extracted from the videos, and abundance of macroepibenthic organisms was calculated. 

Community composition of different bathymetric zones and stations were investigated by 

means of multivariate statistical methods (SIMPER, ANOSIM 1) and similarities between 

samples visualised by Cluster analysis and MDS-plots. Ecological indices (S, H´, d, and J´) 

were calculated. Distribution of differently sized E. antarctica-colonies (small [diameter < 10 

cm], medium [10 cm < diameter < 20 cm], large [20 cm < diameter]) was investigated. 

At the southernmost station (station Is_Solar) oxygen saturation and concentration 

were lower than at the other stations. Other abiotic parameters measured showed no clear 

differences between stations. Abundances of E. antarctica-colonies of all sizes decreased with 

depth, the portion of small colonies was highest in Zone 1. Based on abundances, annelids 

dominated all bathymetric zones, followed by cnidarians, sponges, and chordates. Ecological 

indices were lowest in Zone 1. SIMPER identified genus spirorbis as dominant in all 

bathymetric zones and stations. R-values of ANOSIM 1 indicated poor distinctness between 

bathymetric zones (GR=0.062). Investigating each station separately provided higher 

distinctness between bathymetric zones 1 and 2 (R-values between 0.234 and 0.568). Neither 

Cluster-analysis nor MDS-plots showed clear grouping of bathymetric zones. Zone 1 was less 

heterogeneous than the other zones. Grouping of stations was visible on MDS-plot. 

No significant influence of depth on the investigated community was detected. 

Differences in the characteristics of the four stations overlay bathymetric effects. The observed 

community composition agrees with results from former investigations, especially the 

dominance of polychaetes. Differences in diversity between samples from different bathymetric 

zones are explained by distribution of differently sized E. antarctica-colonies. Alternative 

sampling methods are discussed. 

This investigation for the first time provides information on quantitative composition 

of benthic communities associated with E. antarctica, and it is desirable its results will help to 

provide efficient protection of these threatened systems. 



1    Introduction 

2 

1    Introduction 

Benthos comprises the entity of organisms living in and on the sea bed. It includes pelagic (in 

the water column) and sympagic (“with ice”; Marquardt et al, 2011) organisms (Herrmann, 

2006). Further differentiation groups benthic organisms by overall size (macro-, meio-, 

microbenthos; Levinton, 1995), and habitat (endo-, meso-, epibenthos; Nybakken, 1997). 

Classic marine biology states, that benthic communities are highly influenced by the factor 

depth (e.g. Levinton, 1995; Nybakken, 1997). This applies to greater scales, such as the 

comparison between shelf and deep sea, as well as for smaller scales, such as vertical 

zonations of the intertidal zone. One reason is the adaption of many species to environmental 

conditions of a certain depth (Levinton, 1995; Nybakken, 1997). An interesting exception is 

an effect called deep-water emergence: Some species usually occurring in the deep sea can be 

found in relatively shallow waters in fjord regions (Häussermann and Försterra, 2009). 

 

1.1 The Chilean fjord region 

One of the regions in which deep-water emergence seems to be frequent is the Chilean fjord 

region (Häussermann and Försterra, 2009). This region extends for approximately 1,600 km 

from  Puerto Montt to Cape Horn at Chile´s western shore (41.47° S – 56° S, 76° W – 66° W), 

and is one of the world´s largest fjord systems. The region is characterized by hundreds of 

islands and a complex net of channels and fjords. Its 84,000 km of fragmented coastline 

provide heterogeneous structures and habitats. Its water masses are highly influenced by 

subantarctic water as well as continental water deriving from rivers, melting ice and 

precipitation, which results in a relatively low salinity (Häussermann and Försterra, 2009). 

Estuarine waters (EW) tend to form a superficial outflow layer, while subantarctic waters flow 

inwards subsurface (Wichmann et al., 2012). Mixing of the two layers forms subantarctic 

modified water (SAMW; Häussermann and Försterra, 2009).  

 A transverse section of a typical fjord is U-shaped, with steep rocky slopes on the one 

hand, on which both diversity and abundances are highest, and sediment covered bottoms on 

the other hand, with lower diversity and abundances. The slopes provide habitat to numerous 

species, including cold-water corals (Häussermann and Försterra, 2009). 
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1.2 Previous research 

In the past, benthic communities were mainly sampled by use of bottom trawls, grabs and 

dredges. Non-destructive underwater imagery-approaches by SCUBA-diving (see e.g. Dumas 

et al., 2009; Barrett and Edgar, 2010; van Rein et al., 2011) and remotely operated vehicles 

(ROV; see e.g. Lirman et al., 2007; Bo et al, 2012; Laudien and Orchard, 2012) have been 

used increasingly, but have only recently been applied in the Chilean fjord region. They are 

the most appropriate methods for investigating the highly diverse benthic communities on the 

slopes of the Chilean fjords. Numerous new species, including cold-water corals, have 

recently been described while systematically sampling the fjords, and probably many more 

are still to be discovered. To date, the Western Patagonian coast is one of the least studied 

areas in marine sciences (Arntz, 1999; Escribano et al., 2003; Häussermann and Försterra, 

2009).  

 

1.3 Cold-water corals in the Chilean fjord region 

In the past, the coral fauna of the Chilean fjord region was considered rather poor, since 

sampling was mainly carried out at the soft-bottom grounds of the fjords (Häussermann and 

Försterra, 2007a). Recent investigations sampling the steep slopes of fjords and channels 

using alternative methods, e.g. SCUBA- and ROV-diving, showed a greater variety and 

expansion of cold-water coral communities than expected. As benthic systems on the shelf of 

the Chilean fjord region had not been studied for a long time, these investigations led to 

interesting findings including the discovery of reef-like structures of Errina antarctica and 

gorgonians in shallow water (Häussermann and Försterra, 2007a). These observations are 

evidence for deep-water emergence. During the investigations, 37 species of corals were 

observed, 4 of which (including E. antarctica) are hydrozoans, the others anthozoans 

(Häussermann and Försterra, 2007a).  

 

1.4 Errina antarctica (Gray, 1872) 

The cold-water coral E. antarctica (family Stylasteridae, class Hydrozoa, phylum Cnidaria; 

Fig. 1) is distributed in the south western Atlantic (Falkland Islands), south eastern Pacific 

(Patagonia) and Subantarctic Islands (Burdwood Bank). It mainly occurs in depths of 18-300 

m, but has also been recorded from as shallow as 10 m and as deep as 771 m (Häussermann 

and Försterra, 2009). In the southern Chilean fjord region it is found from 10-119 m 
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(Häussermann and Försterra, 2007a; 2007b; 2009).    

E. antarctica forms calcified colonies of up to 40 cm diameter. The coenosteum is red 

to orange with white branch tips, inner branch cores and sometimes ampullae. Little is known 

about the biology of E. antarctica (Häussermann and Försterra, 2009). Growth rates of the 

closely related E. novaezelandiae are 1–7 mm/year. Abundances of small E. novaezelandiae-

colonies are higher than that of large ones (Miller et al., 2004). 

For E. antarctica two different growth forms have been described by Häussermann 

and Försterra (2007b). On vertical walls, the colonies occur as fan-like, uniplanar structures, 

which are orientated perpendicularly to horizontal currents. This growth form thereby 

minimizes the surface affected by sediment runoff and maximizes the surface facing the 

current. Abundances of this growth form vary from a few scattered small colonies to 20 

colonies/m².   

A second growth form was found on horizontal habitats. Here, the colonies are bushy, 

with branches orientated and distributed more or less equally in all directions. This form 

shows higher abundances than the former, with a maximum coverage exceeding 80% 

(Häussermann and Försterra, 2007b). Häussermann and Försterra (2009) suggest this growth 

Figure 1: Errina antarctica, Picture and © Matthias Hüne (Escuela de Biología Marina, Universidad Austral de 

Chile). 
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form to be related to the limestone substrate, which, within the Chilean fjord region, is 

exclusively found in the Madre de Dios Archipelago.  

 E. antarctica is considered habitat forming by providing habitat for numerous species, 

thereby playing an important role for biodiversity in the Chilean fjord region (Häussermann 

and Försterra, 2009). Häussermann and Försterra (2007b) qualitatively recorded the fauna 

associated with E. antarctica. They stated that both living and dead parts of colonies are of 

great importance for numerous species. The crinoid Antedon rosacea, the ophiurids 

Gorgonocephalus chilensis and Ophiacantha rosea use living portions as substrate, while 

among others the polychaet Chaetopterus sp., the crustacean Pagurus comptus, the sea urchin 

Arbacia dufresnii were found on dead portions. Furthermore, several sponges and bryozoans 

not yet identified were surveyed in the surrounding of E. antarctica (Häussermann and 

Försterra, 2007b). Thus, representatives of numerous phyla (Porifera, Annelida, Arthropoda, 

Ectoprocta, and Echinodermata) and both sessile, sedentary, mobile, and boring species are 

associated with E. antarctica colonies.  

 

1.5 Threats 

As the economic interest in the Chilean fjord region is growing rapidly, there are numerous 

threats to the still relatively unknown cold-water coral systems (Häussermann and Försterra, 

2007a). Bottom trawling as practised in cold-water habitats can cause a lot of damage to any 

cold-water coral (e.g. Fosså et al., 2002; Freiwald et al., 2004, p. 41). Long line fishery can 

harm cold-water corals, since organisms may get entangled in the lines. To corals in the 

Chilean fjord region, these are minor threads, which, nonetheless, should be kept in mind.  

As many corals have calcified skeletons, the decreasing pH following global warming 

can cause a lot of damage to organisms and ecosystems containing corals (Bosch et al., 2010; 

Miller et al., 2011; McCulloch et al., 2012). Thus, anthropogenic climate change is a threat to 

cold-water corals in the Chilean fjord region (Jantzen et al., 2013). Probably the most 

important factor threatening any ecosystem in the region is aquaculture (Häussermann and 

Försterra, 2007a, 2009). Salmon-farming has increased dramatically since the 1980´s. While 

in 1987 Chile´s contribution to worldwide salmon-production was only 2%, the country is 

now among the three major salmon-farming countries, together with Scotland and Norway 

(Katz, 2006). The input of particulate waste, e.g. faeces or dead fish, pharmaceuticals, is 

likely to have a huge impact on benthic communities (Häussermann and Försterra, 2009). 
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Another threat affecting E. antarctica is the collecting of colonies for local markets. Some of 

the corals occurring in the Chilean fjord region are sold there as souvenirs (Häussermann and 

Försterra, 2007b). As mentioned above, E. antarctica occurs in shallow water, easily being 

harvested by divers. Due to the assumedly slow growth rate, this harvesting of corals appears 

to be quite harmful to both E. antarctica and the associated community (Häussermann and 

Försterra, 2007a).  

 These threats are heightened by the little protection provided for marine environments 

in Chile. In the entire fjord region, there are only three marine protected areas, and those 

allow multiple use. Management plans, administration and control are ineffective, so the great 

diversity assumed for the region is hardly protected at all (Häussermann and Försterra, 2009).  

 

1.6 Study aims 

The ongoing threats and the low number of marine protection areas may lead to severe 

destruction of the cold-water systems of the Chilean fjord region. Since research activities 

have been rare in the past, there is a need for investigations in order to learn about the 

relatively unknown systems and install protection. Häussermann and Försterra (2007a) 

suggest concentrating the protection on hotspots of diversity. As stated above, E. antarctica is 

of great importance for diversity, and the community associated with it should therefore be 

investigated.  

This study aims to reveal for the first time the quantitative composition of the 

macroepibenthic faunal community associated with E. antarctica in the Chilean fjord region 

and the influence of depth on the community. Macroepibenthic organisms in the surrounding 

of E. antarctica were identified from images extracted from ROV-recorded videos, and 

abundances were estimated. Communitiy composition of three bathymetric Zones (Zone 1: 

10–20 m; Zone 2: 20–30 m; Zone 3: 30– 40 m) was compared by means of multivariate 

statistical methods to find out characteristics of and differences between the community 

compositions of each zone, thereby investigating the influence of bathymetry on the 

communities. Communities of the three zones were expected to be distinguishable from each 

other. Furthermore, the distribution of small (diameter < 10 cm), medium-sized (10 cm < 

diameter < 20 cm) and large (20 cm < diameter) E. antarctica-colonies was investigated and 

set into context with results deriving from the investigation of communities. It was 

investigated wether or not the distribution pattern of the closely related E. novaezelandiae 



1    Introduction 

7 

applies to E. antarctica, too. Additionally, abiotic parameters (pH, conductivity, temperature, 

oxygen saturation and oxygen concentration) were recorded during the dives to provide 

information on the habitat and explain differences between sampling sites and bathymetric 

zones, respectively.  
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2    Materials and methods 

2.1 Study area 

Study area was the Southern Patagonian Madre de Dios Archipelago (50°–52° S; 74°–75.5° 

W) in the Chilean fjord region (Fig. 2). Sampling sites were Copihue at a fjord on the west 

coast of Isla Madre de Dios (station MDD;  50.34° S; 75.38° W); a channel between Isla 

Solar and Isla Hanover on the western side of Isla Hanover (station Is_Solar; 50.96° S; 74.95° 

W); Angostura at a channel in the centre of Isla Hanover (station AG; 51.16° S; 74.78° W); 

and the southern end of Canal 

Corrientes in the centre of Isla 

Hanover (station CS; 51.23° S; 

74.38° W). No information was 

available on abiotic parameters, 

currents or other characteristics 

of the stations. Substratum at 

station MDD is limestone, while 

at the other stations granite is 

predominant. The limestone is 

being mined at a nearby site. 

Miners observed a lot of natural 

washout of limestone into the 

sea, especially during rainfall 

(pers. com. expedition logbook, 

Carin Jantzen, AWI). For MDD, 

strong currents were reported, 

especially around tidal change 

(pers. com. Laura Fillinger, 

AWI). The same applies for 

sation AG, which is located at a 

fairly narrow channel (pers. com. 

expedition logbook, Carin 

Jantzen, AWI). 

 

 

Figure 2:  Study site in southwestern Chile. Red dots mark the 

sampling sites (“stations”): Copihue on Isla Madre de Dios (station 

MDD); a channel between Isla Hanover and Isla Solar (station 

Is_Solar); Angostura (station AG); and Canal Corrientes South 

(station CS). 
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2.2 Sampling procedure  

Macroepibenthic community and abiotic parameters (pH, conductivity, temperature, depth, 

oxygen saturation and oxygen concentration) were recorded from aboard the tourist-boat 

Explorador in February and March 2012 (Tab. 1), using the AWI-ROV (Fig. 3), which is a 

modified V8 Sii ROV developed in cooperation with Ocean Modules (Åtvidaberg, Sweden). 

Three dives were conducted at stations MDD and Is_Solar, respectively (Tab. 1). At stations 

AG and CS, one dive was conducted, respectively. 

Table 1 ROV-dives of this investigation. Linked date, latitude, longitude, maximum depth of images extracted 

from videos (max. depth), and number of analysed images. 

 

Sensors outside the ROV recorded pH (SeaBird SBE 18 [Sea-Bird Electronics, Inc., 

Bellevue, Washington 98005, USA]), conductivity (as salinity), temperature and depth (CTD; 

SeaBird SBE19 plus [Sea-Bird Electronics, Inc., Bellevue, Washington 98005, USA]), oxygen 

saturation and oxygen concentration (SeaBird SBE 43 [Sea-Bird Electronics, Inc., Bellevue, 

Washington 98005, USA]). 

Two Kongsberg oe14-502 

high definition cameras (Kongsberg 

Maritime, Kongsberg, Norway) 

recorded videos during the dives. 

One camera pointed straight ahead, 

the second pointed downwards. The 

cameras´ angle was set to 45° in 

horizontal and 29° in vertical 

direction (maximum range). For 

scaling, a Tritech Micron 

EchoSounder DST (Tritech 

Dive Date Latitude Longitude max. Depth [m] Images 

MDD1 02/23/2012 50.34° S 75.38° W 32 m 12 

MDD2 02/23/2012 50.34° S 75.38° W 30 m 38 

MDD3 02/25/2012 50.34° S 75.38° W 37 m 20 

Is_Solar1 02/26/2012 50.96° S 74.95° W 37 m 103 

Is_Solar2 02/26/2012 50.96° S 74.95° W 50 m 38 

Is_Solar3 02/26/2012 50.98° S 74.95° W 73 m 17 

AG 03/02/2012 51.16° S 74.78° W 43 m 27 

CS 03/02/2012 51.23° S 74.83° W 37 m 5 

Total - - - - 260 
 

 

Figure 3:  AWI-ROV during sampling. Note E. antarctica-

colonies on the rocks. Picture and © Matthias Hüne (Escuela de 

Biología Marina, Universidad Austral de Chile). 
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International Ltd., Aberdeen, United Kingdom) altimeter was attached to one of the cameras, 

measuring the distance between camera lense and recorded surface.  

Four Bowtech Aqua Vision LED-2400 (Bowtech Products Ltd., Aberdeen, United 

Kingdom) provided light for the recordings.Videos were saved on two nanoFlash HD/SD 

Portable Recorder/Players (Convergent Design, Collorado Springs, CO 80907, USA) on 

board the vessel.  

Time codes linked the video data to the simultaneous measurements of abiotic 

parameters and altimeter.  

 

2.3 Quantitative analysis 

2.3.1 Selection and preparation of images 

Videos of the camera respectively furnished with the altimeter (to later be able to scale 

extracted images) were browsed for E. antarctica in VLC Media Player 2.0.3. Frames 

containing E. antarctica and complying with requirements defined below were extracted 

using the Snapshot-function of the program. These requirements refer to quality and angle of 

a frame: Only high quality images were extracted, which allow for taxonomic identification of 

macroepibenthic organisms in the image. Thus, frames showing E. antarctica but being too 

blurry due to a fast movement of the ROV or a distance from recorded surface greater than 

approximately 2.5 m were not taken into account. Furthermore, only images showing the 

surface at an angle of approximately 90° were extracted, because only then is the scaling of 

the entire picture possible.  

A total of 260 images from 8 dives at 4 stations were extracted: 70 from 3 dives at 

station MDD; 158 from 3 dives at station Is_Solar; 27 from 1 dive at station AG; and 5 from 1 

dive at station CS (Tab. 1). Via timecodes, each image was matched with the appropriate data 

on abiotic parameters. Knowing camera-angle, distance between camera and ground, and 

number and size of pixels in the image, the area displayed in the image was calculated in 

Microsoft Excel 2010 (for formulas, see Appendix).  

In some cases, light conditions or surface structures only allowed analysis of a certain 

area of an image. These images were opened in an ArcGIS 10 document to mark the area to 

be analysed as a polygon. The polygon´s area was calculated and used for further analysis.    
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2.3.2 Identification and quantification of macroepibenthic organisms   

For analysis, each image was opened on a HP Compaq 8200 Elite Convertible Minitower PC 

(Hewlett-Packard Company, Palo Alto, CA 94304-1185, USA) and a Dell 2007FPb screen 

(Dell Inc., Round Rock, Texas 78682, USA). E. antarctica-colonies were measured in 

ArcGIS, using the program´s measuring-tool, and grouped into small (diameter < 10 cm), 

medium (10 cm < diameter < 20 cm in diameter) and large (20 cm < diameter) colonies. Data 

on E. antarctica was not included in the statistical analysis described below, as the focus of 

the work is on the community associated with this species. The distribution of differently 

sized colonies at different stations and in different depths was investigated and related to the 

community compositions observed.   

Macroepibenthic organisms were identified to the lowest level possible, mainly based 

on Häussermann and Försterra (2009) and counted. If organisms occurred in large numbers 

(e.g. the actinarians Phellia exlex and Metridium senile), they were counted using the software 

Inkscape Version 0.48.4.1. Within the program, each individual was marked with a dot. Then, 

by hitting ctrl+A, the number of objects is shown by the program. As the image itself is 

counted as an object, the shown number minus one was used as a count for the taxon. 

In order to estimate large numbers of individuals of polychaets of genus spirorbis, 

each image was divided into a grid of 100 numbered rectangles in Microsoft Word 2010. 

Using Microsoft Excel 2010, ten rectangles were randomly picked (for formulas, see 

Appendix). In images that could only be analysed in parts, rectangles with more than 

approximately 75% of their area outside the analysed part of the image were discarded. The 

spirorbis in the rectangles were counted and the result extrapolated to the analysed area.   

The octocorallians Convexella magellanica and Primnoella chilensis were pooled, 

because they could not be distinguished visually. The same applies for hydrozoans, most 

bryozoans and other unidentified orgsnisms. Abundances for each taxon were standardized to 

1 m². Following Laudien and Orchard (2012), colonial species (e.g. hydrozoans, bryozoans) 

were counted as individuals per square meter, since a colony emanates from one individual.  

 All images, abundances and metadata linked to the images are available at Winkler et 

al. (2013).   
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2.3.3 Statistical data analysis 

Macroepibenthic community compositions were analysed using PRIMER 6 (Clarke and 

Gorley, 2006). The samples were grouped into three bathymetric zones: 10–20 m (Zone 1); 

20–30 m (Zone 2); and 30–40 m (Zone 3). Compositions of the macroepibenthic community 

of these zones were compared with each other. Five datasets were generated: The first 

contained all samples of all zones, allowing an overall comparison of communities in the 

bathymetric zones. The results of this dataset are effected by differences between bathymetric 

zones as well as differences between the stations. To erase the effect of differences between 

stations and to obtain a more specific comparison, one dataset was generated and analysed for 

each station. The analystic methods described below were thus carried out on five datasets: 

one for overall comparison, and one for each station. 

2.3.3.1 Ecological indices 

In order to characterize the investigated community, three ecological indices were calculated 

for each sample: 

Number of taxa (S) 

The total number of taxa S is an important index to characterize a community. All taxa present 

in one sample are summed up. 

Shannon-Wiener diversity index (H´, Log e) 

        (1) 

Here ni  is the number of individuals of taxon i, while k is the number of taxa and N the total 

number of individuals.  

Margalef´s index (d) 

               (2) 

Again S is the number of taxa, N the number of individuals. Margalef´s index quantifies the 

number of taxa at a given number of individuals. 

Piellou´s evenness index (J´) 

             (3) 

Again, S is the number of taxa, while H´max is the maximum possible value of the Shannon-

Wiener diversity index. 

 Arithmetic average values were calculated from the results of the samples for each 
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station and each bathymetric zone. 

2.3.3.2 Similarity percentage (SIMPER) analysis 

SIMPER identifies the species contributing to the dissimilarities between groups of samples 

and quantifies each species´ contribution. Species characterizing each group are also  

identified and the contribution quantified (Clarke and Warwick, 2001).  

2.3.3.3 Pre-treatment and resemblance-matrix 

Each dataset was fourth-root-transformed. This transformation diminishes the influence of 

taxa with high abundance values stronger than the more common square-root-transformation 

and was used here to even the high abundances of spirorbis. 

A resemblance-matrix was created based on Bray-Curtis similarity (Bray and Curtis, 

1957), providing the distance between two samples by dividing the maximum similarity of 

two samples j and k by the actual similarity of j and k: 

        (4) 

Sjk is the similarity between j and k, while yij and yik are the abundance values of taxon i in the 

samples compared; min represents the minimum of the two counts. As the Bray-Curtis 

similarity does not take zero values appearing in both samples as a similarity, it is most 

suitable for the datasets on hand, which contain numerous zero values (Faith et al., 1987; 

Clarke and Warwick, 2001). 

2.3.3.4 One-way analysis of similarity (ANOSIM 1)  

ANOSIM 1 provides an R-value quantifying the possibility to distinguish between two groups 

of samples. To achieve this, rank-similarities for each group are calculated and compared with 

one another (original R). Samples are randomly mixed and rank-similarities re-calculated. 

Based on the results of 999 permutations, a distribution for R-values is created. The 

probability of the original R fitting this random distribution displays the possibility to 

distinguish between groups. R = 0 indicate no difference between groups, meaning that 

similarities between two groups are the same as similarities in one group. If all samples of one 

group are closer to one another than to any sample of another group, R is = 1. R > 0.75 point 

towards clear distinctness between groups; R ≈ 0.5 identifies good distinctness despite some 

accordance; and R < 0.25 shows a rather small possibility to distinguish between groups 

(Clarke and Warwick, 2001). R-values are calculated for comparison each group with each 

other as well as for overall comparison (global R; GR). Since the low number of samples 
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(five) of station CS is not sufficient for receiving valid R-values, this station was not 

investigated separately by means of ANOSIM. 

2.3.3.5 Cluster analysis 

A cluster analysis was carried out based on the Bray-Curtis resemblance-matrix. The samples 

of the dataset were displayed as a dendrogram based on group average linkage, allowing 

grouping similar samples into clusters (Clarke and Warwick, 2001). As station CS consists of 

only five samples it was not investigated separately by means of Cluster analysis.  

2.3.3.6 MDS analysis 

MDS is also based on the Bray-Curtis resemblance-matrix. The dissimilarities between 

samples are displayed as the distance between dots representing these samples. As the 

dissimilarities between all samples are taken into account, the graph shows the relation of any 

sample to any other sample, allowing for verification of grouping of cluster analysis (Kruskal 

and Wish, 1978; Clarke and Goyle, 2006). The statistical power of the analysis is expressed 

through a stress-value. Stress-values < 0.1 show good ordination, while values < 0.2 can still 

be interpreted with a relatively small chance of misinterpretation. Values ≥ 0.2 indicate poor 

quality, and corresponding graphs are easily misinterpreted (Clarke and Warwick, 2001). As 

station CS consists of only five samples it was not investigated separately by means of MDS. 
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3    Results 

A total of 260 samples were analysed, the most (158) at station Is_Solar, the least (5) at 

station CS (Tab. 2). Most samples (178) were collected in Zone 2. Samples of station AG 

account for 73% of samples of Zone 1, while samples of Is_Solar account for 60% (89%) of 

samples of Zone 2 (Zone 3).  

 

 

 

 

 

3.1 Abiotic parameters 

Ranges of values for temperature, oxygen saturation and concentration were highest at station 

MDD (Tab. 3). pH was highest at stations AG and CS, while the highest salinity was 

measured at Is_Solar. Oxygen saturation and concentration were considerably lower at station 

Is_Solar than at the other stations. Samples were collected in depths between 14.13 m and 

39.40 m, the shallowest at AG, the deepest at Is_Solar. For a list of data on abiotic parameters 

at each sample, see appendix, table A7. 

Table 3 Ranges (min-max) of abiotic parameters pH, salinity (Sal.), temperature (Temp.) [°C], depth [m], 

oxygen saturation (Ox. sat.) [%], and oxygen concentration (Ox. conc.) [μmol/l] linked to samples of stations. 

Station pH Sal. Temp. [°C] Depth [m] Ox. sat. [%] Ox. conc. [μmol/l] 

MDD 8.19–8.27 31.20–31.60 11.03–11.44 18.01–36.22 74.17–79.47 207.99–223.21 

Is_Solar 8.13–8.18 31.71–32.81 10.65–10.80 19.74–39.40 64.92–67.72 183.63–191.79 

AG 8.25–8.30 28.72–29.64 10.90–11.00 14.13–29.19 72.19–74.51 206.90–213.57 

CS 8.23–8.30 28.91–30.15 10.83–10.97 17.63–36.23 69.72–75.54 199.19–216.89 

All stations  

pooled 
8.13–8.30 28.72–32.81 10.65–11.44 14.13–39.4 64.92–79.47 183.63–223.21 

 

3.2 Distribution of differently sized E. antarctica-colonies 

Abundances of E. antarctica-colonies decreased with increasing colony-size (Fig. 4; note that 

all values are mean values). In overall comparison, most small colonies/m² (11.4 ± 11.8) 

occured in Zone 1, followed by Zone 3 (7.4 ± 2.0) and Zone 2 (5.5 ± 1.0). Medium sized 

colonies were most frequent in Zone 3 (1.9 ± 0.6), less in Zone 2 (1.4 ± 0.3), less yet in Zone 

Table 2 Distribution of samples (percentage to total) within bathymetric zones and 

stations.  

  MDD Is_Solar AG CS Sum  

Zone 1 6 (23%) 1 (4%) 19 (73%) 0 (0%) 26 (100%)  

Zone 2 61 (34%) 107 (60%) 8 (4.5%) 2 (1.5%) 178 (100%)  

Zone 3 3 (5.5%) 50 (89%) 0 (0%) 3 (5.5%) 56 (100%)  

Sum 70 (27%) 158 (61%) 27 (10%) 5 (2%) 260 (100%)  
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1 (0.6 ± 0.3). Large colonies follow the same pattern: 0.4 ± 0.1 in Zone 3, 0.3 ± 0.1 in Zone 2, 

and 0.2 ± 0.2 in Zone 1.  

 Most small colonies/m² (15.5 ± 1.1) were found at station Is_Solar, followed by 

stations AG (8.8 ± 11.3), CS (7.5 ± 5.4), and MDD (0.5 ± 0.8). Medium sized colonies/m² 

were most frequent at station Is_Solar (2.7 ± 0.3), followed by stations CS (1.0 ± 1.5), MDD 

(0.8 ± 0.2), and AG (0.5 ± 0.3). There were 0.3 ± 0.2 large colonies/m² at station AG, 0.3 ± 0.7 

at station CS, 0.3 ± 0.1 at station Is_Solar, and 0.2 ± 0.1 at station MDD.  

 

3.3 Macroepibenthic community  

 
Figure 5: Contribution to total abundance [%] of phyla in different bathymetric zones (10 m < Zone 1 < 20 m; 

20 m < Zone 2 < 30 m; 30 m < Zone 3 < 40 m). 

  

Figure 4: Distribution of small (diameter < 10 cm), medium (10 cm < diameter < 20 cm), and large (20 cm < 

diameter) E. antarctica-colonies [colonies/m²; mean values] in different bathymetric zones (10 m < Zone 1 < 20 

m; 20 m < Zone 2 < 30 m; 30m < Zone 3 < 40 m; left) and at each station (left). Bars indicate standard errors.  
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A total of 59 taxa (including E. antarctica) was found during the investigation, 14 of which 

are pooled taxa (e.g. “other Porifera indet. sp.”, “Hydrozoa indet. sp.”, “other Cnidaria indet. 

sp.”). Individuals of 27 species could be identified. Other taxa are unidentified sponges 

(seven), holothuroideans (two), ascidians (four), cnidarians (two), spirorbis (one) plus the 

pooled Convexella magellanica/Primnoella chilensis (for the complete list of taxa, see table 

A1). For comparing community compositions, the focus was set on phyla, since most 

organisms could not be identified to lower taxonomic levels.  

In each zone, abundances were highest for annelida (Fig. 5), mainly due to genus 

spirorbis (class polychaeta). Cnidarians showed second highest values, followed by sponges 

in Zones 2 and 3 (chordates and sponges in Zone 1). All other phyla constitute less than 1% to 

total. 

  

3.4 Ecological indices 

Overall comparison between different bathymetric zones showed the highest S-value (9.07 ± 

0.24; Fig. 6) at Zone 2, followed by Zone 3 (8.58 ± 0.40) and Zone 1 (6.42 ± 0.47). H´-values 

were 2.04 ± 0.03 (Zone 2), 2.00 ± 0.05 (Zone 3), and 1.69 ± 0.08 (Zone 1). The highest d-

value (2.94 ± 0.07) was calculated for Zone 2, followed by Zone 3 (2.84 ± 0.11) and Zone 1 

(2.20 ± 0.14). J´-values were 0.96 ± 0 (Zone 3), 0.95 ± 0.01 (Zone 2) and 0.94 ± 0 (Zone 1). 

The total number of taxa (S) ranged between 2.23 ± 0 (Is_Solar, Zone 1) and 9.28 ± 

1.00 (CS, Zone 2). It was 9.04 ± 0.27 at station MDD, 8.90 ± 0.28 at station Is_Solar, 7.25 ± 

1.65 at station CS, and 6.85 ± 0.89 at station AG. Shannon-Wiener-diversity (H´) was 2.05 ± 

0.03 at station MDD, 2.01 ± 0.04 at station Is_Solar, 1.82 ± 0.23 at station CS, and 1.75 ± 

0.01 at station AG. Margalef´s index (d) was highest (2.96 ± 0.08) at station Is_Solar, less at 

stations MDD (2.82 ± 0.07), AG (2.31 ± 0.50) and CS (2.30 ± 0.34). No relevant differences 

between the stations (CS: 0.96 ± 0.18; MDD: 0.95 ± 0; Is_Solar: 0.95 ± 0.01; AG: 0.94 ± 

0.14) were derived for Piellou´s evenness index (J´). 

 

3.5 SIMPER analysis 

Taxa characterizing the macroepibenthic community associated with E. antarctica in a 

bathymetric zone or at a station are indicated by the result of SIMPER analysis. In each 

bathymetric zone genus spirorbis is the taxon contributing the most to total abundance, with 

up to 42.31% in Zone 1 (Tab. 4). Also the octocorallian Convexella magelhaenica/Primnoella  



3    Results 

18 

 

Figure 6: Mean values of S, H´, d, and J´ in different bathymetric zones (10 m < 

Zone 1 < 20 m; 20 m < Zone 2 < 30 m; 30 m < Zone 3 < 40 m). Left: overall 

comparison; right: stations separately. Bars indicate standard errors. 
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chilensis, two unidentified sponges (Porifera indet. sp. 02 and 04), and hydrozoans are among 

the most important taxa in each zone.  

In Zone 1, > 90% of the average similarity between the samples is made up by the five 

taxa named above plus an unidentified ascidian (ascidia indet. sp. 01). In this zone the average 

similarity between the samples is 48.06%.    

Additional to the five taxa named above there are seven more contributing to > 90% of 

similarity in Zone 2. These are the actinarian Phellia exlex; the sea urchin Arbacia dufresnii; 

an unidentified taxon (other indet. sp. 04); an unidentified ascidian (Ascidia indet. sp. 01); 

two more unidentified sponges (Porifera indet. sp. 05 and the pooled group of other Porifera 

indet. sp.); and the pooled group of unidentified starfishes (Asteroidae indet. sp.). In Zone 2 

the average similarity between the samples is 36.24%.    

In Zone 3, the average similarity between the samples is 35.68%. The five taxa named 

above plus five more make up > 90% of this similarity: A. dufresnii, an unidentified faunal 

organism, possibly a sponge (other indet. sp. 04); P. exlex; the pooled group of unidentified 

sponges (other Porifera indet. sp.); and the polychaet Chaetopterus variopedatus.    

At all stations spirorbis is among the taxa contributing most to total abundace, with a 

contribution of up to 42.15% at station AG (Tab. 5). An unidentified ascidian (Ascidia indet. 

sp. 01) is characteristic for MDD, AG, and CS, contributing up to 22.83% to total similarity at 

station AG. Also an unidentified sponge (Porifera indet. sp. 02) is characteristic for three 

stations (MDD, Is_Solar, AG), as well as C. magelhaenica/P. chilensis (Is_Solar, AG, CS). 

Hydrozoans (Hydrozoa indet. sp.) characterize stations Is_Solar (16.00%), AG (4.66%) and 

CS (38.56%), being the most contributing taxa at the latter.  

 The average similarity between samples of station MDD is 57.75%, 90.95% of which 

is made up by seven taxa. Of these taxa three are unidentified sponges (Porifera indet. sp. 02, 

04, and 05). 24.05% is contributed by Spirorbis. An unidentified ascidian (Ascidia indet. sp. 

01) and the actinarians P. exlex and Metridium senile are the other characterizing taxa of 

station MDD. 

 At station Is_Solar, 90% of the average similarity between samples (36.70%) is due to 

11 taxa: Four unidentified sponges (Porifera indet. sp. 02, 03, 04, and the pooled group of 

other Porifera indet. sp.) the cnidarians C. magelhaenica/P. chilensis and P. exlex, hydrozoans, 

A. dufresnii, C. variopedatus and an unidentified faunal organism, possibly a sponge (other 

indet. sp. 04), characterize the station, together with the most contributing spirorbis (19.59%). 
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Table 4 Results of SIMPER-analysis for similarities in bathymetric zones. Average similarity between samples 

within one zone of depth (10 m < Zone 1 < 20 m; 20 m < Zone 2 < 30 m; 30m < Zone 3 < 40 m), taxa 

cumulatively contributing > 90% (> 10%; > 5%) and their average abundance (Av.Abund), average similarity 

between stations (Av.Sim), standard deviation of similarity (Sim/SD), contribution to similarity [%] (Contrib%) 

and cumulated contribution to similarity (Cum.%). 

Zone 1           

Average similarity: 48.06      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Spirorbis indet. sp.  3.30 20.33 1.68 42.31 42.31 

Ascidia indet. sp. 01  1.47 11.04 2.16 22.97 65.27 

Convexella magelhaenica (Studer, 1878) or 

Primnoella chilensis (Philippi, 1894)  1.03 5.77 0.88 12.00 77.27 

Porifera indet. sp. 02  0.80 2.77 0.61 5.76 83.03 

Porifera indet. sp. 04   0.67 1.78 0.50 3.71 86.74 

Hydrozoa indet. sp.  0.61 1.68 0.44 3.50 90.24 

      

Zone 2      

Average similarity: 36.24      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Spirorbis indet. sp.  3.03 9.14 0.84 25.22 25.22 

Porifera indet. sp. 02 1.34 4.57 0.91 12.61 37.82 

Hydrozoa indet. sp.  0.99 3.86 0.76 10.64 48.47 

Phellia exlex (McMurrich, 1904)  1.22 3.07 0.60 8.47 56.94 

other indet. sp. 04 0.83 2.55 0.63 7.05 63.98 

Porifera indet. sp. 04 0.92 2.30 0.63 6.34 70.32 

C. magelhaenica/P. chilensis  0.70 2.23 0.53 6.15 76.47 

Ascidia indet. sp. 01 0.79 2.05 0.55 5.67 82.14 

Arbacia dufresnii (Blainville, 1825)  0.45 1.01 0.37 2.79 84.92 

other Porifera indet. sp. 0.45 0.84 0.38 2.32 87.24 

Porifera indet. sp. 05  0.48 0.75 0.34 2.06 89.30 

Asteroidae indet. sp.  0.36 0.60 0.32 1.65 90.95 

      

Zone 3      

Average similarity: 35.68      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Spirorbis indet. sp.  2.92 9.74 0.88 27.29 27.29 

C. magelhaenica/P. chilensis  1.03 4.35 0.85 12.18 39.48 

A. dufresnii 0.83 3.74 0.74 10.49 49.97 

Hydrozoa indet. sp.  0.83 2.86 0.65 8.02 57.99 

other indet. sp. 04  0.89 2.80 0.66 7.86 65.84 

Porifera indet. sp. 02  0.94 2.57 0.62 7.20 73.04 

P. exlex  1.36 2.34 0.47 6.55 79.59 

Porifera indet. sp. 04  0.67 1.43 0.48 4.00 83.59 

other Porifera indet. sp. 0.55 1.36 0.42 3.82 87.41 

Chaetopterus variopedatus (Renier, 1804)  0.45 1.02 0.35 2.87 90.28 
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Table 5 Results of SIMPER-analysis for similarities at stations. Average similarity between samples within one 

station, taxa cumulatively contributing > 90% (> 10%; > 5%) and their average abundance (Av.Abund), average 

similarity between stations (Av.Sim), standard deviation of similarity (Sim/SD), contribution to similarity [%] 

(Contrib%) and cumulated contribution to similarity (Cum.%). 

Station MDD           

Average similarity: 57.75      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Spirorbis indet. sp.  3.82 13.89 1.43 24.05 24.05 

Porifera indet. sp. 02  2.16 10.82 3.73 18.73 42.79 

Porifera indet. sp. 04  1.62 7.08 1.98 12.25 55.04 

Ascidia indet. sp. 01 1.42 6.53 1.63 11.31 66.35 

Phellia exlex (McMurrich, 1904) 1.8 5.67 0.94 9.81 76.16 

Metridium senile (Linnaeus, 1761) 1.58 5.42 0.84 9.39 85.55 

Porifera indet. sp. 05  1.00 3.12 0.87 5.40 90.95 

      

Station Is_Solar      

Average similarity: 36.70      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Spirorbis indet. sp.  2.55 7.19 0.68 19.59 19.59 

Hydrozoa indet. sp. 1.20 5.87 1.07 16.00 35.59 

Convexella magelhaenica (Studer, 1878)/ 

Primnoella chilensis (Philippi, 1894)  1.03 4.68 0.90 12.75 48.34 

other indet. sp. 04  1.06 4.26 0.88 11.60 59.94 

Arbacia dufresnii (Blainville, 1825) 0.74 2.96 0.66 8.07 68.01 

Porifera indet. sp. 02  0.86 2.35 0.59 6.39 74.40 

P. exlex  1.05 2.11 0.47 5.76 80.16 

Chaetopterus variopedatus (Renier, 1804)  0.51 1.24 0.38 3.39 83.55 

other Porifera indet. sp. 0.50 1.08 0.39 2.93 86.49 

Porifera indet. sp. 03 0.53 1.05 0.41 2.87 89.35 

Porifera indet. sp. 04 0.55 0.96 0.39 2.62 91.98 

      

Station AG      

Average similarity: 52.22      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Spirorbis indet. sp. 3.69 22.01 1.96 42.15 42.15 

Ascidia indet. sp. 01  1.61 11.92 2.09 22.83 64.98 

C. magelhaenica/P. chilensis 1.16 7.11 1.11 13.61 78.58 

Hydrozoa indet. sp.  0.74 2.43 0.58 4.66 83.24 

Porifera indet. sp. 02  0.73 2.10 0.52 4.02 87.26 

Porifera indet. sp. 03 0.70 1.99 0.51 3.82 91.08 

      

Station CS      

Average similarity: 29.15      

Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Hydrozoa indet. sp.  1.79 11.24 2.42 38.56 38.56 

Spirorbis indet. sp. 3.87 9.98 0.87 34.23 72.78 

Ascidia indet. sp. 01  1.43 4.37 0.87 15.00 87.78 

C. magelhaenica/P. chilensis  1.00 1.44 0.41 4.93 92.71 
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 Six taxa contribute 91.08% of the 52.22% average similarity of the samples at station 

AG. These are two unidentified sponges (Porifera indet. sp. 02 and 03), an unidentified 

ascidian (Ascidia indet. sp. 01), hydrozoans, C. magelhaenica/P. chilensis and spirorbis, the 

latter being the most contributing taxon (42.15%).   

 The average similarity between the five samples of station CS is 29.15%. > 90% of it 

is made up by four taxa: Hydrozoans, spirorbis, an unidentified ascidian (Ascidia indet. sp. 

01) and C. magelhaenica/P. chilensis.   

For further results containing information about the taxa responsible for the 

dissimilarities between bathymetric zones, stations, and similarities between bathymetric 

zones at each station, see appendix, tables A2, A3, and A4. 

 

3.6 ANOSIM 1 

GR is 0.062 for overall comparison between bathymetric zones, indicating poor distinctness 

between the zones (Tab. 6). All other R-values for overall comparison of bathymetric zones 

indicate the same. The highest R-value is 0.196, comparing Zones 1 and 3. 

At stations MDD and Is_Solar, R-values for distinctness between Zone 1 and the other 

zones indicate good distinctness despite some accordance. Poor distinctness is indicated for 

the comparison of Zones 2 and 3 as well as at station AG, where Zones 1 and 2 were 

compared. 

For more results containing information about the distinctness between stations see 

appendix, Table A5.  

 

Table 6 R-values of ANOSIM 1 for bathymetric 

zones (10 m < Zone 1 < 20 m; 20 m < Zone 2 < 30 m; 

30 m < Zone 3 < 40 m). Clear (R > 0.75), good (0.25 

< R < 0.75) and poor distinctness (R < 0.25); 

GR=Global R. 

Table 7 R-values of ANOSIM 1 for bathymetric 

zones (10 m < Zone 1 < 20 m; 20 m < Zone 2 < 30 m; 

30 m < Zone 3 < 40 m) at stations. Clear distinctness 

(R > 0.75), good distinctness (0.25 < R < 0.75) and 

poor distinctness (R < 0.25). 

GR: 0.062 Zone 1 Zone 2 

Zone 2 0.055 - 

Zone 3 0.196 0.047 
 

MDD Zone 1 Zone 2 

Zone 2 0.341  

Zone 3 0.568 0.095 

   

Is_Solar Zone 1 Zone 2 

Zone 2 0.537  

Zone 3 0.451 0.044 

   

AG Zone 1  

Zone 2 0.234   
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3.7 Cluster and MDS analysis 

Due to the huge amount of samples, dendrograms of the Cluster-analysis of overall 

comparison (available at Winkler et al., 2013) and that of station Is_Solar (see appendix, Fig. 

A2) are very unclear and therefore nearly impossible to interpret. At stations MDD and AG 

(see appendix, Fig. A1 and A3) no grouping among bathymetric zones was detected either. 

MDS-plot of bathymetric zones shows no clear distinctness between zones (Fig. 7). 

All but one sample of Zone 1 have a similarity of > 30%. Samples of the other bathymetric 

zones are widely spread in the plot. The stress-value of 0.23 points towards easy 

misinterpretation (Clarke and Warwick, 2001), thus the analysis of the plot should be treated 

with care.   

Stations are distinguishable, as the samples of each station are being grouped together 

(Fig. 8). Samples of station CS are an exception. Again, the stress-value is 0.23. 

 

 

Figure 7: MDS-plot visualizing distinctness between samples of bathymetric zones (10 m < Zone 1 < 20 m;  

20 m < Zone 2 < 30 m; 30m < Zone 3 < 40 m). The green line indicates a similarity of 30%. 
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Figure 8: MDS-plot visualizing distinctness between samples of the stations MDD, Is_Solar, a, and CS. 
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4    Discussion 

4.1 Methods 

Extracting images from ROV-recorded videos seems to be a good method for providing a 

great amount of samples in relatively good quality. Nonetheless, certain aspects of the 

methods used in this investigation are to be discussed. 

Grouping of samples into zones bordering each other is problematic, as two samples 

of one zone can bathymetrically be further apart (in this study, up to 10 m) than two samples 

of different zones, which can be taken from almost the same depth. This may result in low 

distinctness between groups of samples. It is possibly a major reason for the results of this 

study. Collecting samples along transects of defined depths as described by Laudien and 

Orchard (2012) avoids this effect. The greater distinctness between Zones 1 and 3 (compared 

to that between Zones 1 and 2, 2 and 3, respectively) possibly illustrates this effect and 

indicates that zones not bordering each other are more suitable for investigating differences 

between zones. 

Possibly the biggest source of errors was the problematic taxonomic identification of 

macroepibenthic organisms from ROV-videos. Even though exclusively images of good 

quality were used, it was not always possible to identify every organism in the images, and 

sometimes structures could not even be doubtlessly identified as faunal organisms. For this 

reason, there are many unidentified species, especially in the taxa of porifera and ascidians. 

On the other hand, some larger organisms, e.g. echinodermata, could often be identified to 

species level.   

 Another problem of the underwater imagery approach is that of the varying distance 

between ground and camera. Usually, the closer the camera gets, the more detailed the image 

appears, providing a bigger chance to notice and identify small faunal organisms. The method 

of extracting images from ROV-videos is applicable only for organisms larger than 0.5 cm 

(Laudien and Orchard, 2012). It is very likely that many small organisms were not noticed 

during the analysis of the images. The low impact of molluscs and bryozoans to the overall 

distribution of phyla in the macroepibenthic community (Fig. 5) can probably be explained by 

the fact that small organisms could hardly be noticed in the samples. It was tried to define a 

maximum distance between camera and ground applicable for a sufficient chance of 

identification of macroepbenthic organisms. Distance is not the only factor influencing the 

quality of an image. The factor of blurriness due to ROV-movement or underwater sight 
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contributes to the problem of not being able to identify macroepibenthic organisms. Thus, a 

picture taken from a relatively great distance can still provide better possibility for 

identification of the organisms in it than a blurry picture taken from a relatively small 

distance. For this reason, it was not possible to define a maximum distance. Instead, the 

usability of an image was decided about by sight. It turned out that images taken from a 

distance greater than approximately 2.5 m were not suited for further use, but this value does 

not apply for all dive sites. In total two images taken from a distance greater than 2.5 m were 

used, one from station AG (distance=2.54 m), and one from station MDD (distance=2.56 m). 

The difficulties with identification of macroepibenthic organisms from ROV-videos 

suggest the use of other methods, which might provide a better possibility for identification of 

macroepibenthic organisms. During some of the dives the ROV was accompanied by a 

SCUBA-diver, who was taking pictures of E. antarctica (one of these pictures is displayed in 

Figure 1). These high quality pictures show numerous species, e.g. the barnacle 

Ornatoscalpellum gibberum (for a list of species identified on these pictures, see appendix, 

Table A6), that were not identified on images extracted from the ROV-videos. It is very likely 

that these species occur on some of the ROV-images as well, but could not be identified or 

even noticed there. Thus, the macroepibenthic community could not be comprised completely 

with the methods used in this investigation.  

Identification of small macroepibenthic organisms might be ensured either by taking 

high quality images during SCUBA-dive, or by collecting of organisms and their 

identification aboard, which is a destructive method. Organisms of down to 0.3 cm can be 

identified using SCUBA-based underwater photography (Beuchel and Gulliksen, 2008). 

SCUBA-diving is only applicable for a maximum depth of 40 m (Häussermann and Försterra, 

2007a). In the german guideline for scientific diving (Deutsche Gesetzliche 

Unfallversicherung, 2001), 50 m is the maximum admissible depth, but costly safety 

equipments and devices are required to dive deeper than approximately 30 m.On the one 

hand, this might not seem sufficient for investigations on communities associated with E. 

antarctica, a species abundant as deep as 771 m (Häussermann and Försterra, 2007b) and in a 

fjord region with a maximum depth of approximately 1,200 m (Häussermann and Försterra, 

2009). On the other hand, the samples used in this investigation were not taken deeper than 

39.40 m, being just within reach of SCUBA-diving. Thus, for a study in a comparable range 

of depth, SCUBA-diving is an appropriate alternative to the ROV. Economic considerations 
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might draw a different picture, of course: Conducting the investigation with SCUBA-divers 

would hardly have provided a comparable amount of samples without enormous financial and 

safety-related efforts, especially in an area as remote as the Chilean fjord region.   

Collecting organisms would probably be the best method in terms of identification of 

macroepibenthic organisms, since each individual can be identified with great care and 

accuracy. However, it is a rather destructive method, and the damage caused should be taken 

into concern, especially in an environment like the cold-water coral systems of Patagonia, 

which is highly threatened by human activities (see chapter 1.5).       

 

4.2 The influence of bathymetry on community composition 

4.2.1 Discussion of statistical results 

The results suggest that bathymetry does not significantly influence the macroepibenthic 

community associated with E. antarctica within the investigated depth of 10–40 m. Neither 

distribution of phyla, nor ecological indices or R-values of ANOSIM 1 indicated significant 

differences between the underlying bathymetric zones of 10–20 m, 20–30 m, and 30–40 m.  

However, in overall comparison the R-value showing distinctness between Zones 1 and 3 is 

the highest (0.196; Tab. 6). The same applies to station MDD. This might point toward a 

slight influence of depth on the community, but the result is far from being significant.  

In contrast to the results of ANOSIM 1 for overall comparison, R-values point towards 

better distinction when looking at stations separately (Tab. 7). This might found in 

dissimilarities of stations. It is possible that e.g. samples of Zone 2 at station Is_Solar are 

similar to such of Zone 1 at station MDD. Pooling these samples would result in a low R-

value for the distinctness between Zones 1 and 2. As each station has its own characteristics 

(see chapter 4.3), such effects are likely to occur.  

Disregarding its high stress-value (0.23), also the MDS-plot (Fig. 7) points to no great 

distinctness between the bathymetric zones.  However, samples of Zone 1 seem to be 

distributed less heterogeneously than those of Zones 2 and 3.  Only one sample of Zone 1 is 

not within 30% similarity. This is the only sample of station Is_Solar contributing to Zone 1, 

so the difference to the other samples of Zone 1 is explicable by differences between stations. 

Samples of the other zones are spread out over the whole graph. Results of SIMPER (highest 

similarity in Zone 1; Tab. 4) and a Cluster-analysis containing the three bathymetric zones  

which was carried out to check the trend found in the MDS-plot (Zones 2 and 3 part at 83.5% 
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similarity, while Zone 1 parts at of 66% similarity; Fig. A4) strengthen the interpretation of 

the MDS-plot. The homogeneity of samples of Zone 1 matches the zones relatively low 

diversity.   

4.2.2 Distribution of phyla 

Distribution of phyla is similar in the zones (Fig. 5). All three are dominated by annelids; 

apart from cnidarians, sponges, and chordates, no phylum contributed more than 1% to the 

characterization of any zone. The greatest differences to be seen between the zones are the 

relatively low contribution of cnidarians in Zone 2, and the relatively high contribution of 

chordates in Zone 1. However, these do not influence the overall impression. The contribution 

of polychaetes increases with depth in a range between 30 and 200 m in Spitsbergen (Laudien 

and Orchard, 2012), and Montiel et al. (2011) found diversity of polychaetes higher in depths 

above 120 m than in deeper waters in the Magellan Strait. A connection of number or 

diversity of polychaetes with depth was not observed during the present study, but cannot be 

negated due to the low maximum sampling-depth of 39.40 m. Since in Montiel et al. (2011) 

only diversity between shallow water (down to 120 m) and deep water (beneath 120 m) were 

compared, no conclusions can be drawn concerning changes on a smaller scale. Diversity of 

polychaetes was not investigated in the present study, and the methods used did not allow for 

identification down to species level for genus spirorbis. In Laudien and Orchard (2012) the 

trend of contribution to total abundance increasing with depth is cognizable between 30 and 

50 m already. These depths are comparable with Zone 3 of the present study, in which 

contribution of annelids is the lowest (76.5 % in Zone 1; 87.0 % in Zone 2; 74.8 % in Zone 3). 

These results do not provide any trend concerning the contribution of annelids to total 

distribution of phyla.     

4.2.3 Ecological indices and distribution of E. antarctica 

The impression of macroepibenthic community strucutre not being influenced by bathymetry 

is strengthened by the results for Piellou's evenness index (J'), which is nearly the same for all 

three zones (Fig. 6). In contrast, S-, H´- and d-values differ between zones: They are lower in 

Zone 1 than in Zones 2 and 3. This applies to each station separately (apart from station CS, 

which contains no samples for Zone 1) as well as to overall comparison (Fig. 6). Bringing 

these results into relation is difficult, because bathymetric effects on macroepibenthic 

communities in shallow waters of Patagonia have not been investigated so far. From other 
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studies, diversity decreasing with depth (Laudien and Orchard, 2012) has been reported as 

well as diversity not being influenced by depth (McClain et al., 2010; Tecchio et al., 2011) or 

increasing with depth (Jones et al., 2007; Tecchio et al., 2011). None of these studies refer to 

the area or range of depth investigated in the present one, though. Hermann (2006) 

investigated macrozoobenthic infauna of shallow waters (5–30 m) at Kongsfjorden (Svalbard, 

Spitsbergen). In his study, diversity was highest in depths of 10-15 m (Zone 1, respectively), 

decreasing with depth. These results are in contrast to the findings of the present study. The 

contradiction can be explained by Intermediate Disturbance Hypothesis (IDH). In 

Kongsfjorden grounded icebergs frequently disturb shallow-water communities, which results 

in a lower diversity. The influence of grounded icebergs decreases with depth, and in depths 

of 10–15 m (Zone 1, respectively) the intermediate disturbance frequency allows greater 

diversity. In deeper water there are still less disturbances, and in line with the IDH diversity is 

lower here (Herrmann, 2006). The Chilean fjord region is strongly influenced by icefields 

(Pantoja et al., 2011), but to the best of our knowledge its benthic communities are not 

affected by grounded icebergs. This is due to the geography of the region, which is 

characterized by the steep slopes of the fjords providing the main habitat for benthic 

communities (see chapter 1.1), rather than by shallow, gently sloped areas, on which grounded 

icebergs can affect benthic communities.  

 The samples of Zone 1 are made up for 73% by samples of station AG (Tab. 2). At 

this station S-, H´- and d-values are lower than at the other stations (apart from d at CS, which 

is 0.01 lower than at AG; Fig. 6). The high influence of samples from station AG in Zone 1  

strengthens the trend of the result in overall comparison (see chapter 4.3). Nonetheless, also 

six samples of station MDD and one sample of station Is_Solar contributing to Zone 1 show 

lower S-, H´- and d-values here than in the other zones. Furthermore, the findings are 

strengthened by the results of SIMPER (Tab. 4): There are the least taxa contributing to 90% 

of similarity within Zone 1 (6 in Zone 1, 12 in Zone 2, 10 in Zone 3). This also suggests a low 

diversity for this Zone. 

 Although the standard error of small colonies in Zone 1 (SE = 11.77) is rather high, 

distribution of E. antarctica-colonies helps to explain the results. As E. antarctica is 

considered habitat forming (Häussermann and Försterra, 2009) and providing substrate for 

numerous species (Häussermann and Försterra, 2007b), it can be assumed that S-, H´- and d-

values increase with abundance of E. antarctica. Relative portions of medium-sized and 
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(minimally) large E. antarctica-colonies increase with depth (Fig. 4). Possibly the impact of 

small colonies on diversity of the associated fauna is smaller than that of medium-sized and 

large ones. This would explain why S-, H´- and d-values are smaller in Zone 1, which is 

characterized by  high abundances of small E. antarctica-colonies, than they are in Zone 2 

and 3, which contain less small but more medium-sized and large colonies.  

The appearance of E. antarctica between 14.13 m and 39.40 m fits in well with what 

has been reported from the Chilean fjord region (Häussermann and Försterra [2007b]: 10–40 

m; Häussermann and Försterra [2007a]: below 10 m). In the region it can be found in depths 

of down to 119 m (Häussermann and Försterra, 2009). Distribution of E. antarctica-colonies 

in the bathymetric zones (Fig. 4) leads to the question why there are more small colonies but 

less medium-sized and large ones in Zone 1. Collecting of bigger colonies by divers as 

described by Häussermann and Försterra (2007a) might be an explanation. Shallow waters are 

well accessible for divers, so in Zone 1 colonies big enough to be sold as souvenirs can easily 

be harvested. Miller et al. (2004) found damage to colonies of Errina novaezelandiae in New 

Zealand´s fjords up to eight times higher in dived than in not-dived areas, large colonies being 

more affected. They also found the distribution pattern examined for E. antarctica in the 

present study, with small colonies being the most abundant (Miller et al., 2004). If it is true 

that medium-sized and big colonies have a greater impact on diversity, the harvesting of large 

colonies would directly lead to a decrease of diversity in Zone 1. 

Another hint of the damaging effects of divers and their collecting of E. antarctica-

colonies is provided by an interesting observation recorded during some of the ROV-dives.  

As stated above, Häussermann 

and Försterra (2007b) found 

reef-like structures with up to 

80% coverage of E. antarctica 

in Madre de Dios archipelago 

near station MDD. No 

comparable structures were 

found during this investigation. 

Instead, at horizontal spots with 

perturbed water a great amount 

of E. antarctica-rubble was 

 

Figure 9: Rubble of E. antarctica and empty shells of bivalvia 

(probably Aulacomya atra) at horizontal, perturbed spots at station 

MDD. 
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observed, which in great portions consisted of parts of colonies recently damaged (identified 

by the still redish colour; Fig. 9).  It possible that this damage was caused by divers collecting 

colonies and breaking some of them while doing so. 

 

4.3 Characterisation of stations by abiotic parameters 

In the MDS-plot visualizing the distinctness between samples of the four stations investigated 

(Fig. 8) a clear grouping of samples can be observed. Only the samples of station CS are not 

being grouped together. The distinctness between the stations, resulting from differences in 

the surveyed benthic community, can probably be explained by the abiotic parameters, which 

were measured during the dives and characterize the respective station. 

One main difference between station MDD and the other stations is substratum. At 

MDD it is limestone, at the other stations Patagonian Batholith (Sepúlveda et al., 2010), 

which is granite (Bartole et al., 2008). Interestingly, pH is highest at AG and CS, but not at 

MDD. The difference (max. at MDD: 8.27; max. at CS and AG: 8.30) is minimal. At station 

Is_Solar the values of pH are in a similar range (8.13–8.18). It is a curious result that 

abundance of small E. antarctica-colonies is approximately 30 times lower at station MDD 

than it is at station Is_Solar (Fig. 4). Abundances of medium-sized and large colonies are in 

similar ranges at MDD and the other stations. As described in chapter 2.1, during rain there is 

a lot of limestone being washed into the sea. For E. antarctica and other calcareous organisms 

this condition should be beneficial on the one hand. On the other hand, large amounts of 

sediment can be a threat to cold-water corals (Freiwald et al., 2004). This might apply to small 

colonies especially, because they can easily be smotherd by sediments, explaining the 

relatively low abundance of small E. antarctica-colonies at station MDD. 

No clear relation between pH and depth is evident. At stations AG and CS pH seems 

to decrease with depth, while at MDD the opposite is cognizable. At Is_Solar no relation with 

depth was detected. Instead, pH increases with time during each dive at this station, which 

might either indicate inaccurate measurement, or be caused by continuous changes in the 

water body due to currents, tides or changing ROV-position.  

 Häussermann and Försterra (2009) provide a general grouping of water masses based 

on salinity values. Following this classification, salinity of stations MDD and Is_Solar can be 

allocated with SAMW (31 < salinity < 33), which is the result of mixing between EW from 

the surface and subantarctic water flowing inwards subsurface (see chapter 1.1). Stations AG 
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and CS are identified as salty-EW (21 < salinity < 31). This applies well for AG and Is_Solar, 

since the samples of AG are from relatively shallow, those of Is_Solar from relatively deep 

water (see Tab. A7). EW forms the upper layer, SAMW a lower layer (Wichmann et al., 

2012). Samples of CS are from relatively deep water, contradicting this model. It should be 

kept in mind that only five samples were taken at CS, which might result in little resilience of 

results taken from this station. In accordance with numerous ivestigations from the Chilean 

fjord region (Galea et al., 2007; Pantoja et al., 2011; Häussermann et al., 2012), salinity 

increases with depth at all four stations. 

 No trend can be derived from temperatures measured. They seem to decrease with 

depth at stations Is_Solar and CS, whereas at station AG no relation is cognizable. The same 

applies for MDD, although a slight increase with depth can be suspected here. In accordance 

with Häussermann and Försterra (2009) temperatures at the station closest to the equator, 

which is station MDD, are higher than at the other stations.  

 Oxygen saturation and concentration follow the same pattern. At stations MDD and 

CS a decrease with depth is cognizable, while no trend is observed at station AG. At station 

Is_Solar values increase with time, which might indicate inaccurate measurement. Here, the 

values are considerably lower than at other stations. For oxygen concentration this is 

contradictory, since mean temperatures are lowest at this station. 

It should be kept in mind that the dives were conducted over a period of eight days 

(Table 1) and in different weather conditions. These factors might affect the results, since 

stronger winds lead to vertical mixing, air temperature affects that of surface water and so 

forth. Nonetheless, it is rather likely that the differences between abiotic parameters measured 

during the dives map the characteristics of the four stations.  

These characteristics are important for the results of comparison between bathymetric 

zones, because portions of stations contributing to each bathymetric zone differ strongly (Tab. 

2). Characteristics of a station contributing more samples than another station to one 

bathymetric zone have a stronger impact on that zone than the latter station. Vice versa, one 

may conclude that characterics of a bathymetric zone, and with it the benthic community 

thriving in it, are highly dependent on what station contributed most samples to that zone. 

Consequently, the influence of the characteristics of a station can be stronger than influence of 

depth on the macroepibenthic community, especially if the bathymetric zone is almost 

exclusively made up by samples of that station. This may complicate the evaluation of 
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bathymetry´s influence on macroepibenthic communities. The MDS-plots illustrate, that 

characteristics of the bathymetric zones investigated differ less than those of the four stations: 

no grouping is observed when samples are allocated to bathymetric zones (Fig.7). In contrast, 

there is a clear clustering of samples when allocated to stations (Fig. 8). Thus, in the present 

study the macroepibenthic community was influenced by sampling site rather than by 

sampling depth.    

 

4.4 Macroepibenthic community  

Community composition of all zones was dominated by annelids (Fig. 5), mainly of genus 

spirorbis (class polychaeta). This agrees with numerous studies describing polychaetes 

contributing essentially to macrobenthic communities in the Chilean fjord region (e.g. Thiel 

and Ullrich, 2002; Montiel et al., 2005; Quiroga et al., 2012). Laudien and Orchard (2012) 

found shallow (30 and 50 m depths, respectively) hard-bottom communities of Kongsfjorden 

(Svalbard, Spitsbergen) dominated by rhodophyta (flora was not included in the present 

study). Other important taxa in Laudien and Orchard (2012) were sponges, anthozoans 

(cnidarians) and, again, polychaetes. All these groups play major roles in the present study, 

too. The benthic community described in an investigation from the fjord-like Bathurst 

Channel in Tasmania (Barrett and Edgar, 2010) also shows similarities to that found during 

the present study: Primnoella spp. and Clavularia sp. are taxa observed in both investigations, 

as are sponges and bryozoans. Algae were dominant in low waters in Barrett and Edgar 

(2010), but were, as stated above, not included in the present study. The great amounts of 

mussels (Mytilus sp.) surveyed in Bathurst Channel are in contrast to the present study, during 

which only five individuals of bivalvia were observed. This might be due to the greater depth 

investigated here. Müller (2012) found M. chilensis occurring exclusively in the intertidal in 

Comau fjord in the Chilean fjord region. Alaucomya atra-abundances were highest in a depth 

of 5 m and decreased drastically with depth. It is therefore likely that also in the present study 

mussels occur in shallower waters in the investigated area, but are not associated with E. 

antarctica, which occurs in greater depths. At station MDD lots of empty mussel-shells, 

probably Aulacomya atra, were observed in perturbed spots were gravel and rubble 

accumulated (Fig. 9). This finding also points towards the presence of bivalvia in the 

investigated area. 
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Other studies (Roux et al., 1995; Newcombe and Cárdenas, 2011) using underwater 

photography found hard bottom substrate in San-Jose Gulf (Argentina) and the Magellan 

Strait, respectively, characterized by ascidians and bryozoans (plus sponges, respectively). In 

the present study, all these taxa were present, and ascidians (chordates; only in Zone 1) and 

sponges added noticeably to the overall composition of phyla (Fig. 5). Neither Roux et al. 

(1995) nor Newcombe and Cárdenas (2011) observed the dominance of polychaetes (12% of 

total abundance in Roux et al., 1995; none in Newcombe and Cárdenas, 2011) surveyed 

during the present study. Differences in the substrate investigated (gravel and sand in Roux et 

al., 1995) and in the methods used (neglect of organisms < 2 cm in Newcombe and Cárdenas 

(2011) explain these differing results.  

 Most of the species reported to live on E. antarctica by Häussermann and Försterra 

(2007b) were encountered in the present study. These are the ophiurid Gorgonocephalus 

chilensis, the sea anemone Metridium senile, the polychaet Chaetopterus sp., the decapod 

Pagurus comptus, the starfish Lophaster stellans and the sea urchin Arbacia dufresnii. 

Furthermore, “various not yet identified sponges and bryozoans” (Häussermann and Försterra, 

2007b) are mentioned to occur near E. antarctica, and it is likely that these match some of the 

unidentified sponges and bryozoans surveyed during the dives of the expedition on hand. The 

ophiurid Ophiacantha rosea, which was also found to live on E. antarctica (Häussermann and 

Försterra, 2007b), has not been identified during the present study, but could be the ophiurid 

present on some of the pictures taken by a SCUBA-diver joining the ROV during some of the 

dives (see Fig. 1; Tab. A6).  

 The high influence of C. maghelaenica/P. chilensis, as found in Zones 1 and 3 (Tab. 

4), is reported for the Chilean fjord region, the latter even being considered habitat-forming 

(Häussermann and Försterra, 2007a; 2009).  

 

4.5 Conclusions and outlook 

In the investigated bathymetric range of 10–40 m, no evidence of depth significantly 

influencing the structure of macroepibenthic communities associated with E. antarctica was 

found. Differences between the three zones were rather small in overall comparison; 

similarities between samples seem to be higher in Zone 1 than in the other zones. It seems that 

bathymetric effects on the communities are overlain by the differences between the diving-
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stations. On a smaller scale, when looking at the four stations separately, distinctness between 

bathymetric zones is more evident.  

Two strategies are suggested for future studies to avoid the effect of locational factors 

overlaying bathymetrical ones: Investigations could 

a) focus on a more specific environment, e.g. on communities occurring exclusively on 

limestone, diminishing differences between characterisitcs of the sampling sites, or 

b) cover a wider range of sampling sites to gain knowledge about the situation in the whole 

fjord region. For this strategy it is advisable to collect an equal number of samples from each 

site and bathymetric zone. The influence of each site on the results would then be equally 

strong. 

 For both strategies it is recommended to compare samples collected in defined depths 

(e.g. 15 m, 25 m, 35 m) rather than in bathymetric zones bordering each other (e.g. (10 m < 

Zone 1 < 20 m; 20 m < Zone 2 < 30 m; 30 m < Zone 3 < 40 m), since in the latter case 

samples of two different zones can be taken from almost exactly the same depth, while 

samples within one zone can be taken from the whole range of depth of that zone. 

 The distribution pattern described by Miller et al. (2004) for E. novaezelandiae seems 

to apply to E. antarctica as well: Abundance of small colonies is clearly higher than that of 

medium-sized and large colonies in Zone 1. It decreases drastically with depth, possibly due 

to divers harvesting large colonies in shallow water. Diversity of macroepibenthic community 

increases with relative abundance of medium-sized and large colonies, leading to the 

conclusion, that harvesting of large colonies is likely to be extremely harmfull to communities 

associated with E. antarctica.   

 The investigation at hand describes the macroepibenthic community associated with 

E. antarctica quantitatively for the first time. It is desirable that it may help to better 

understand one aspect of the diverse ecosystem of the Chilean fjord region and to promote the 

struggle for protection of the area. Considering the threats described in chapter 1.5 and the 

destruction of E. antarctica, which was also evident during this investigation (see Fig. 9), it 

seems crucial to provide efficient protection for the benthic communities of the Chilean fjord 

region. To achieve this goal, knowledge about the endangered ecosystems should be gathered 

rather quickly. Otherwise many of the species and secrets assumed to occur in the region 

might remain unrevealed to science.  
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A    Appendix 

A.1 Formulas used in Microsoft Excel 2010 

Formulas used in Microsoft Excel 2010 to estimate area displayed in each image (by 

Milian Noack): 

Horizontal length of one pixel [m]: =2*(TAN(RADIANS(45/2))*O2)/1920 

45 = camera angle (horizontal) [°] 

O2 = distance (camera-ground [m] 

1920 = number of horizontal pixels in image  

Vertical length of one pixel [m]: =-2*(TAN(RADIANS(29/2))*O2)/1080 

29 = camera angle (vertical) [°] 

O2 = distance (camera-ground [m] 

1080 = number of horizontal pixels in image  

Horizontal length of image [m]: =P2*1920 

P2 = Horizontal length of one pixel [m] 

1920 = number of horizontal pixels in image 

Vertical length of image [m]: =-Q2*1080 

Q2 = Vertical length of one pixel [m] 

1080 = number of horizontal pixels in image 

Area displayed in image [m
2
]: =R2*S2 

R2 = Horizontal length of image [m] 

S2 = Vertical length of image [m] 

 

Formula used in Microsoft Excel 2010 to randomly pick 1 out of 100 rectangles for the 

estimation of abundance of spirorbids: =RUNDEN(ZUFALLSZAHL()*100;0)  

 

A.2 Additional results 

Table A 1 List of taxa found during investigation 

Phylum Porifera 

Porifera indet. sp. 01 (Tedania sp.?) [individuals/m²] 

Porifera indet. sp. 02 (yellow) [individuals/m²] 

Porifera indet. sp. 03 (ocre, encrusting) [individuals/m²] 

Porifera indet. sp. 04 (brownish, mainly encrusting) [individuals/m²] 
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Porifera indet. sp. 05 (redish, encrusting) [individuals/m²] 

Porifera indet. sp. 06 (pinkish, encrusting) [individuals/m²] 

Porifera indet. sp. 07 (Cliona sp.?) [individuals/m²] 

other Porifera indet. sp.[individuals/m²] 

Phyllum Cnidaria 

Convexella magelhaenica (Studer, 1878) or Primonella chilensis (Philippi, 1894) 

[colonies/m²] 

Actinostola chilensis (McMurrich, 1904) [individuals/m²] 

Thouarella sp. [colonies/m²] 

Hormathia pectinata (Hertwig, 1882) [individuals/m²] 

Dactylanthus antarcticus (Clubb, 1908) [individuals/m²] 

Phellia exlex (McMurrich, 1904) [individuals/m²] 

Metridium senile (Linnaeus, 1761) [individuals/m²] 

Boloceropsis sp. [individuals/m²] 

Gorgonia indet. sp.[colonies/m²] 

Hydrozoa indet. sp. [colonies/m²] 

other Cnidaria indet. sp. [individuals or colonies/m²] 

Phyllum Mollusca 

Opistobranchia indet. sp. [individuals/m²] 

other Gastropoda indet. sp. [individuals/m²] 

Bivalvia indet. sp.[individuals/m²] 

Phyllum Arthropoda 

Chaetopterus variopedatus (Renier, 1804) [individuals/m²] 

Spirorbis indet. sp. [individuals/m²] 

other Polychaeta indet. sp. [individuals/m²] 

Pygnogonida indet. sp. [individuals/m²] 

Pagurus comptus (White, 1847) [individuals/m²] 

Propagurus gaudichaudi (H. Milne Edwards, 1836) [individuals/m²] 

other Decapoda indet.  sp.[individuals/m²] 

Phyllum Ectoprocta 

Microporella hyadesi (Jullien, 1888) [colonies/m²] 

Adeonella sp. [colonies/m²] 

Reteporella magellensis (Busk, 1884)[colonies/m²] 

other Bryozoa indet. sp. [colonies/m²] 

Phyllum Echinodermata 

Henricia sp. [individuals/m²] 

Arbacia dufresnii (Blainville, 1825) [individuals/m²] 

Ophiomyxa vivipara (Studer, 1876) [individuals/m²] 

Cosmasterias lurida (Philippi, 1858) [individuals/m²] 

Solaster regularius (Sladen, 1889) [individuals/m²] 

Odontaster penicillatus (Phillippi, 1870) [individuals/m²] 

Porania antarctica (Smith, 1876) [individuals/m²] 

Lophaster stellans (Sladen, 1889) [individuals/m²] 

Pseudechinus magellanicus (Philippi, 1857) [individuals/m²] 

Ganeria falklandica (Gray, 1847) [individuals/m²] 

Labidiaster radiosus (Lütken, 1871) [individuals/m²] 

Anasterias antarctica (Lütken, 1857) [individuals/m²] 

Gorgonocephalus chilensis (Philippi, 1858) [individuals/m²] 

Asteroidae indet. sp. [individuals/m²] 

Holothuria indet. sp. 01 (Cladodactyla sp.?) [individuals/m²] 

Holothuria indet. sp. 02 (Heterocucumis sp.?) [individuals/m²] 

other Holothuria indet. sp. [individuals/m²] 

Phyllum Chordata 
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Sycozoa sp. [individuals/m²] 

Sebastes oculatus (Cuvier, 1833) [individuals/m²] 

other indet. sp. 01 (white ascidian) [colonies/m²] 

other indet. sp. 02 (grey ascidian) [colonies/m²] 

other indet. sp. 03 (purple ascidian) [colonies/m²] 

other Chordata indet. sp. [individuals/m²] 

Other 

other indet. sp. 01 [individuals or colonies/m²] 

other indet. sp. 02 (yellowish structure) [individuals or colonies/m²] 
 

 

Table A 2 Results of SIMPER-analysis for dissimilarities in bathymetric zones. Average dissimilarity taxa 

cumulatively contributing > 90% (> 10%; > 5%) and their average abundance (Av.Abund). average 

dissimilarity between stations (Av.Sim). standard deviation of dissimilarity (Sim/SD). contribution to 

dissimilarity [%] (Contrib%) and cumulated contribution to dissimilarity (Cum.%). 

Zones 1 & 2           

 Average dissimilarity = 65.68 Zone 2 Zone 1 

    

Taxon 

     

Av.Abund 

   

Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.03 3.30 9.58 1.22 14.59 14.59 

P. exlex 1.22 0.00 4.37 0.88 6.65 21.24 

M. senile 0.44 0.88 4.19 0.70 6.38 27.61 

Porifera indet. sp. 02     1.34 0.80 4.14 1.26 6.30 33.91 

Ascidiaindet. sp. 01     0.79 1.47 4.01 1.19 6.11 40.02 

Hydrozoa indet. sp.   0.99 0.61 3.57 1.09 5.44 45.45 

Porifera indet. sp. 04     0.92 0.67 3.37 1.14 5.14 50.59 

C. magelhaenica/P. chilensis 0.70 1.03 3.37 1.16 5.13 55.72 

other indet. sp. 04     0.83 0.04 3.16 0.97 4.81 60.53 

Porifera indet. sp. 03     0.37 0.47 2.32 0.85 3.53 64.06 

Asteroidae indet. sp.   0.36 0.43 2.08 0.89 3.17 67.23 

other Porifera indet. sp.  0.45 0.23 1.97 0.78 3.00 70.23 

A. dufresnii 0.45 0.05 1.89 0.71 2.87 73.10 

Porifera indet. sp. 05     0.48 0.09 1.79 0.72 2.73 75.83 

Ascidia indet. sp. 02     0.33 0.31 1.79 0.74 2.72 78.56 

C. variopedatus 0.36 0.09 1.68 0.61 2.56 81.11 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)   0.12 0.22 1.06 0.52 1.62 82.73 

other Gastropoda indet. sp.   0.24 0.10 1.05 0.54 1.60 84.34 

C. lurida 0.17 0.12 1.03 0.53 1.57 85.91 

other Chordata indet. sp.   0.07 0.22 1.01 0.52 1.54 87.45 

O. vivipara 0.20 0.00 0.86 0.39 1.31 88.76 

Porifera indet. sp. 07 (Cliona sp.?)   0.13 0.11 0.80 0.44 1.22 89.98 

other Bryozoa indet. sp.   0.16 0.05 0.67 0.41 1.02 91.00 

       Zones 2 & 3 

      Average dissimilarity = 65.72 Zone 2 Zone 3 

    

Taxon 

     

Av.Abund 

     

Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.03 2.92 9.34 1.20 14.22 14.22 

P. exlex 1.22 1.36 5.35 1.11 8.14 22.36 

Porifera indet. sp. 02     1.34 0.94 3.87 1.17 5.89 28.25 

other indet. sp. 04     0.83 0.89 3.17 1.06 4.82 33.07 
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Hydrozoa indet. sp.   0.99 0.83 3.11 1.09 4.73 37.80 

Porifera indet. sp. 04     0.92 0.67 3.09 1.13 4.70 42.49 

C. magelhaenica/P. chilensis 0.70 1.03 3.08 1.15 4.68 47.18 

Ascidiaindet. sp. 01     0.79 0.26 2.72 0.97 4.14 51.32 

A. dufresnii 0.45 0.83 2.71 1.08 4.13 55.44 

other Porifera indet. sp.  0.45 0.55 2.30 0.93 3.50 58.94 

C. variopedatus 0.36 0.45 2.20 0.82 3.35 62.29 

Porifera indet. sp. 03     0.37 0.47 2.04 0.83 3.11 65.40 

M. senile 0.44 0.22 1.98 0.56 3.01 68.41 

Porifera indet. sp. 05     0.48 0.23 1.82 0.77 2.76 71.18 

O. vivipara 0.20 0.32 1.59 0.66 2.42 73.59 

other Gastropoda indet. sp.   0.24 0.32 1.50 0.69 2.29 75.88 

Asteroidae indet. sp.   0.36 0.15 1.40 0.73 2.13 78.01 

Ascidiaindet. sp. 02     0.33 0.19 1.39 0.66 2.12 80.13 

other Cnidaria indet. sp.   0.14 0.28 1.12 0.58 1.71 81.84 

Sycozoa sp.   0.15 0.19 1.00 0.52 1.52 83.36 

Thouarella sp.   0.04 0.22 1.00 0.47 1.52 84.88 

C. lurida 0.17 0.08 0.81 0.49 1.23 86.11 

Adeonella sp.   0.16 0.10 0.77 0.42 1.17 87.28 

Microporella hyadesi (Jullien. 

1888)   0.12 0.12 0.73 0.43 1.11 88.40 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)   0.12 0.09 0.69 0.41 1.06 89.45 

other Bryozoa indet. sp.   0.16 0.08 0.69 0.43 1.04 90.49 

       Groups 10–20  &  30.1–40 

      Average dissimilarity = 68.64 Zone 1 Zone 3 

    

Taxon 

   

Av.Abund 

     

Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.30 2.92 9.20 1.15 13.40 13.40 

Ascidiaindet. sp. 01     1.47 0.26 5.26 1.55 7.67 21.07 

P. exlex 0.00 1.36 4.49 0.81 6.55 27.62 

M. senile 0.88 0.22 3.87 0.59 5.64 33.26 

Porifera indet. sp. 02     0.80 0.94 3.65 1.13 5.32 38.58 

A. dufresnii 0.05 0.83 3.46 1.14 5.04 43.62 

other indet. sp. 04     0.04 0.89 3.40 0.97 4.95 48.57 

C. magelhaenica/P. chilensis 1.03 1.03 3.36 1.12 4.90 53.47 

Hydrozoa indet. sp.   0.61 0.83 3.31 1.07 4.82 58.29 

Porifera indet. sp. 04     0.67 0.67 3.05 1.06 4.45 62.74 

Porifera indet. sp. 03     0.47 0.47 2.55 0.89 3.72 66.45 

other Porifera indet. sp.  0.23 0.55 2.46 0.84 3.58 70.04 

C. variopedatus 0.09 0.45 2.02 0.71 2.94 72.98 

Asteroidae indet. sp.   0.43 0.15 1.88 0.76 2.73 75.72 

Ascidiaindet. sp. 02     0.31 0.19 1.51 0.65 2.20 77.92 

other Gastropoda indet. sp.   0.10 0.32 1.39 0.59 2.03 79.95 

O. vivipara 0.00 0.32 1.31 0.55 1.91 81.86 

Thouarella sp.   0.00 0.22 1.08 0.45 1.57 83.43 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)   0.22 0.09 1.05 0.48 1.54 84.97 

Porifera indet. sp. 05     0.09 0.23 0.99 0.49 1.44 86.40 

other Cnidaria indet. sp.   0.04 0.28 0.98 0.51 1.43 87.84 

other Chordata indet. sp.   0.22 0.00 0.89 0.46 1.29 89.13 

C. lurida 0.12 0.08 0.80 0.43 1.16 90.29 
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Table A 3 Results of SIMPER-analysis for dissimilarities between stations. Average dissimilarity between 

samples of different stations, taxa cumulatively contributing > 90% (> 10%; > 5%) and their average 

abundance (Av.Abund), average dissimilarity between stations (Av.Sim), standard deviation of 

dissimilarity (Sim/SD), contribution to dissimilarity [%] (Contrib%) and cumulated contribution to 

dissimilarity (Cum.%). 

Groups MDD  &  CS             

Average dissimilarity = 69.51 Group MDD Group CS         

   Taxon  Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.82 3.87 9.15 1.23 13.17 13.17 

P.exlex   1.80 0.00 5.59 1.27 8.04 21.20 

M. senile   1.58 0.00 5.45 1.05 7.84 29.04 

Porifera indet. sp. 04     1.62 0.74 5.04 1.99 7.26 36.30 

Porifera indet. sp. 02     2.16 0.95 5.00 1.25 7.19 43.49 

Hydrozoa indet. sp.   0.30 1.79 4.81 2.18 6.92 50.41 

Porifera indet. sp. 05     1.00 0.54 3.25 1.30 4.68 55.09 

C. magelhaenica/P. chilensis 0.15 1.00 3.06 1.02 4.40 59.49 

Ascidia indet. sp. 01     1.42 1.43 2.92 1.03 4.20 63.69 

Asteroidae indet. sp.   0.75 0.00 2.44 1.18 3.51 67.20 

other Chordata indet. sp.   0.00 0.99 2.39 0.97 3.44 70.64 

Ascidia indet. sp. 02     0.29 0.68 2.03 0.82 2.92 73.56 

other indet. sp. 04     0.39 0.54 1.92 0.85 2.76 76.33 

other Porifera indet. sp.  0.36 0.38 1.90 0.82 2.73 79.06 

other Gastropoda indet. sp.   0.07 0.34 1.60 0.59 2.29 81.36 

C. variopedatus   0.07 0.41 1.43 0.60 2.05 83.41 

Propagurus gaudichaudi (H. Milne 

Edwards. 1836) 0.00 0.45 1.39 0.57 2.00 85.41 

Pygnogonida indet. sp.   0.00 0.38 1.39 0.57 2.00 87.41 

Sycozoa sp.   0.17 0.34 1.34 0.67 1.92 89.33 

other Polychaeta indet. sp.   0.00 0.28 1.28 0.56 1.84 91.17 

       Groups MDD  &  AG 

      Average dissimilarity = 62.10 Group MDD Group AG 

    Taxon  Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.82 3.69 7.74 1.16 12.46 12.46 

P.exlex   1.80 0.00 5.95 1.35 9.58 22.05 

M. senile   1.58 0.00 5.82 1.11 9.37 31.42 

Porifera indet. sp. 02     2.16 0.73 5.35 1.57 8.61 40.03 

Porifera indet. sp. 04     1.62 0.54 4.36 1.52 7.02 47.05 

C. magelhaenica/P. chilensis 0.15 1.16 3.82 1.51 6.15 53.20 

Porifera indet. sp. 05     1.00 0.19 3.18 1.27 5.12 58.32 

Asteroidae indet. sp.   0.75 0.16 2.60 1.25 4.18 62.50 

Hydrozoa indet. sp.   0.30 0.74 2.51 1.07 4.04 66.54 

Porifera indet. sp. 03   0.00 0.70 2.28 0.90 3.68 70.22 

Ascidia indet. sp. 01     1.42 1.61 2.11 1.11 3.40 73.62 

Ascidia indet. sp. 02     0.29 0.51 1.99 0.88 3.20 76.82 

other Porifera indet. sp.  0.36 0.39 1.84 0.85 2.96 79.78 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)   0.02 0.42 1.37 0.63 2.21 81.99 

other indet. sp. 04     0.39 0.05 1.33 0.64 2.14 84.14 

other Chordata indet. sp.   0.00 0.37 1.19 0.63 1.91 86.05 

Porifera indet. sp. 01 (Tedania sp.?)   0.31 0.00 1.02 0.52 1.64 87.69 
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C. variopedatus   0.07 0.16 0.79 0.41 1.27 88.96 

Porifera indet. sp. 07 (Cliona sp.?)   0.13 0.10 0.73 0.42 1.17 90.14 

       Groups CS  &  AG 

      Average dissimilarity = 59.52 Group CS Group AG 

    Taxon Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.87 3.69 10.29 1.18 17.29 17.29 

Hydrozoa indet. sp.   1.79 0.74 4.42 1.22 7.43 24.71 

C. magelhaenica/P. chilensis 1.00 1.16 3.90 1.33 6.55 31.27 

Ascidia indet. sp. 01     1.43 1.61 3.64 0.87 6.12 37.38 

Porifera indet. sp. 02     0.95 0.73 3.45 1.13 5.80 43.18 

other Chordata indet. sp.   0.99 0.37 3.09 1.11 5.19 48.37 

Porifera indet. sp. 04     0.74 0.54 2.99 0.98 5.02 53.39 

Ascidia indet. sp. 02     0.68 0.51 2.88 0.95 4.84 58.23 

Porifera indet. sp. 03   0.00 0.70 2.58 0.85 4.34 62.57 

other Porifera indet. sp.  0.38 0.39 2.39 0.75 4.02 66.58 

other Gastropoda indet. sp.   0.34 0.15 2.18 0.60 3.66 70.24 

other Polychaeta indet. sp.   0.28 0.14 1.90 0.62 3.19 73.43 

C. variopedatus   0.41 0.16 1.83 0.65 3.07 76.50 

Porifera indet. sp. 05     0.54 0.19 1.81 0.69 3.04 79.54 

Pygnogonida indet. sp.   0.38 0.00 1.72 0.56 2.89 82.42 

P. gaudichaudi  0.45 0.00 1.65 0.56 2.78 85.20 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)   0.00 0.42 1.48 0.60 2.49 87.69 

other Cnidaria indet. sp.   0.34 0.08 1.40 0.62 2.36 90.04 

       Groups MDD  &  Is_Solar 

      

Average dissimilarity = 70.67 Group MDD 

Group 

Is_Solar 

    Taxon  Av.Abund       Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.82 2.55 9.40 1.29 13.30 13.30 

M. senile   1.58 0.02 5.46 1.10 7.73 21.02 

P.exlex   1.80 1.05 5.33 1.27 7.54 28.56 

Porifera indet. sp. 02     2.16 0.86 4.82 1.41 6.83 35.39 

Porifera indet. sp. 04     1.62 0.55 4.17 1.52 5.90 41.29 

Ascidia indet. sp. 01     1.42 0.28 4.16 1.58 5.89 47.18 

Hydrozoa indet. sp.   0.30 1.20 3.50 1.36 4.96 52.13 

C. magelhaenica/P. chilensis 0.15 1.03 3.18 1.32 4.50 56.63 

other indet. sp. 04     0.39 1.06 3.10 1.20 4.38 61.02 

Porifera indet. sp. 05     1.00 0.15 3.07 1.26 4.35 65.37 

A. dufresnii  0.12 0.74 2.44 1.08 3.46 68.83 

Asteroidae indet. sp.   0.75 0.17 2.35 1.19 3.33 72.16 

other Porifera indet. sp.  0.36 0.50 1.89 0.93 2.67 74.83 

C. variopedatus   0.07 0.51 1.80 0.75 2.55 77.38 

Porifera indet. sp. 03   0.00 0.53 1.58 0.75 2.23 79.61 

Ascidia indet. sp. 02     0.29 0.25 1.36 0.71 1.93 81.53 

Ophiomyxa vivipara (Studer. 1876) 0.02 0.33 1.15 0.56 1.63 83.17 

other Gastropoda indet. sp.   0.07 0.33 1.08 0.62 1.53 84.70 

Porifera indet. sp. 01 (Tedania sp.?)   0.31 0.01 1.00 0.53 1.41 86.11 

Cosmasterias lurida (Philippi. 1858) 0.16 0.16 0.93 0.57 1.32 87.42 

Sycozoa sp.   0.17 0.16 0.86 0.51 1.22 88.64 

other Cnidaria indet. sp.   0.12 0.19 0.82 0.48 1.16 89.81 

Adeonella sp.   0.02 0.21 0.68 0.41 0.96 90.76 
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       Groups CS  &  Is_Solar 

      

Average dissimilarity = 69.85 Group CS 

Group 

Is_Solar 

    Taxon Av.Abund       Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.87 2.55 10.80 1.25 15.46 15.46 

Ascidia indet. sp. 01     1.43 0.28 4.20 1.48 6.02 21.48 

other indet. sp. 04     0.54 1.06 3.89 1.17 5.57 27.05 

C. magelhaenica/P. chilensis 1.00 1.03 3.67 1.21 5.25 32.30 

P.exlex   0.00 1.05 3.49 0.70 4.99 37.29 

Porifera indet. sp. 02     0.95 0.86 3.37 1.10 4.83 42.12 

Porifera indet. sp. 04     0.74 0.55 2.83 0.96 4.05 46.16 

A. dufresnii  0.00 0.74 2.82 0.98 4.04 50.20 

Hydrozoa indet. sp.   1.79 1.20 2.72 0.97 3.89 54.10 

other Chordata indet. sp.   0.99 0.03 2.64 0.98 3.78 57.87 

C. variopedatus   0.41 0.51 2.51 0.84 3.59 61.46 

other Porifera indet. sp.  0.38 0.50 2.41 0.83 3.45 64.91 

other Gastropoda indet. sp.   0.34 0.33 2.23 0.69 3.19 68.10 

Ascidia indet. sp. 02     0.68 0.25 2.08 0.75 2.97 71.07 

Porifera indet. sp. 03   0.00 0.53 1.75 0.72 2.51 73.58 

Pygnogonida indet. sp.   0.38 0.02 1.63 0.57 2.34 75.92 

P. gaudichaudi  0.45 0.03 1.63 0.58 2.33 78.25 

other Polychaeta indet. sp.   0.28 0.00 1.55 0.54 2.23 80.48 

other Cnidaria indet. sp.   0.34 0.19 1.52 0.67 2.18 82.66 

Porifera indet. sp. 05     0.54 0.15 1.50 0.67 2.15 84.81 

Sycozoa sp.   0.34 0.16 1.48 0.65 2.12 86.92 

O. vivipara   0.00 0.33 1.28 0.52 1.84 88.76 

Porifera indet. sp. 07 (Cliona sp.?)   0.46 0.11 1.27 0.67 1.81 90.58 

       Groups AG  &  Is_Solar 

      

Average dissimilarity = 67.84 Group AG 

Group 

Is_Solar 

    Taxon Av.Abund       Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.   3.69 2.55 10.60 1.28 15.62 15.62 

Ascidia indet. sp. 01     1.61 0.28 5.75 1.60 8.47 24.09 

other indet. sp. 04     0.05 1.06 4.03 1.20 5.94 30.03 

P.exlex   0.00 1.05 3.72 0.73 5.48 35.51 

Hydrozoa indet. sp.   0.74 1.20 3.70 1.11 5.46 40.97 

Porifera indet. sp. 02     0.73 0.86 3.40 1.11 5.02 45.99 

C. magelhaenica/P. chilensis 1.16 1.03 3.11 1.05 4.58 50.57 

A. dufresnii  0.04 0.74 3.00 1.03 4.42 54.99 

Porifera indet. sp. 03   0.70 0.53 2.97 1.03 4.39 59.37 

Porifera indet. sp. 04     0.54 0.55 2.63 0.98 3.88 63.25 

other Porifera indet. sp.  0.39 0.50 2.40 0.86 3.54 66.79 

C. variopedatus   0.16 0.51 2.29 0.77 3.37 70.16 

Ascidia indet. sp. 02     0.51 0.25 2.20 0.82 3.24 73.40 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)   0.42 0.12 1.71 0.69 2.52 75.92 

other Gastropoda indet. sp.   0.15 0.33 1.46 0.66 2.15 78.07 

other Chordata indet. sp.   0.37 0.03 1.39 0.63 2.05 80.12 

O. vivipara   0.00 0.33 1.37 0.54 2.02 82.14 

Porifera indet. sp. 05     0.19 0.15 1.11 0.51 1.64 83.79 

Asteroidae indet. sp.   0.16 0.17 1.07 0.53 1.58 85.37 
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other Cnidaria indet. sp.   0.08 0.19 0.85 0.48 1.25 86.62 

other Bryozoa indet. sp.   0.04 0.21 0.81 0.46 1.19 87.81 

C. lurida   0.04 0.16 0.78 0.43 1.15 88.97 

Porifera indet. sp. 07 (Cliona sp.?)   0.10 0.11 0.76 0.42 1.12 90.09 

 

Table A 4 Results of SIMPER-analysis for samples of different bathymetric zones at stations. Average 

dissimilarity, taxa cumulatively contributing > 90% (> 10%; > 5%) and their average abundance 

(Av.Abund), average dissimilarity between stations (Av.Sim), standard deviation of dissimilarity 

(Sim/SD), contribution to dissimilarity [%] (Contrib%), and cumulated contribution to dissimilarity 

(Cum.%). 

MDD             

Zone 2 

      Average similarity: 58.75 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 Spirorbis indet. sp.  3.96 13.96 1.41 23.76 23.76 

 Porifera indet. sp. 02   2.21 10.96 3.69 18.66 42.42 

 Porifera indet. sp. 04   1.68 7.37 2.26 12.54 54.96 

 P. exlex  2.05 7.29 1.21 12.41 67.37 

 Ascidiacea indet. sp. 01   1.43 6.32 1.5 10.76 78.13 

 M. senile  1.28 4.16 0.8 7.08 85.21 

 Porifera indet. sp. 05   1.07 3.54 0.99 6.03 91.24 

 

       Zone 1 

      Average similarity: 76.72 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 M. senile  3.83 28.3 6.14 36.89 36.89 

 Spirorbis indet. sp.  3.12 16.07 1.35 20.95 57.84 

 Porifera indet. sp. 02   1.52 10.46 6.36 13.64 71.48 

 Ascidiacea indet. sp. 01   1.29 9.19 5.8 11.98 83.45 

 Asteroidae indet. sp.  1.18 8.55 8.99 11.14 94.59 

 

       Zone 3 

      Average similarity: 69.71 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 M. senile  3.04 16.9 19.47 24.25 24.25 

 Spirorbis indet. sp.  2.31 12.43 18.48 17.84 42.08 

 Porifera indet. sp. 02   2.3 11.5 15.85 16.5 58.58 

 Porifera indet. sp. 05   1.55 9.08 11.21 13.02 71.6 

 Ascidiacea indet. sp. 01   1.36 7.86 15.86 11.27 82.87 

 Porifera indet. sp. 04   1.48 7.67 5.42 11 93.87 

 

       Zones 1 & 2 

      Average dissimilarity = 48.59 Zone 2 Zone 1 

    Taxon      Av.Abund    Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

M. senile  1.28 3.83 8.45 2.22 17.38 17.38 

Spirorbis indet. sp.  3.96 3.12 7.49 1.14 15.41 32.8 

P.exlex  2.05 0 6.54 1.67 13.46 46.26 

Porifera indet. sp. 05   1.07 0 3.42 1.46 7.04 53.31 

Porifera indet. sp. 04   1.68 1.06 3.25 1.2 6.7 60 

Porifera indet. sp. 02   2.21 1.52 2.6 1.67 5.35 65.36 
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Asteroidae indet. sp.  0.71 1.18 2.01 1.11 4.13 69.48 

Ascidiacea indet. sp. 01   1.43 1.29 1.94 1.37 3.99 73.47 

other indet. sp. 04   0.4 0.18 1.47 0.75 3.03 76.5 

C. lurida  0.15 0.34 1.34 0.78 2.75 79.25 

other Porifera indet. sp. 0.37 0 1.21 0.7 2.49 81.74 

Porifera indet. sp. 01 (Tedania sp.?)  0.36 0 1.14 0.58 2.34 84.07 

Hydrozoa indet. sp.  0.33 0 1.05 0.6 2.15 86.22 

Ascidiacea indet. sp. 02   0.32 0 1.02 0.58 2.1 88.32 

C. magelhaenica/P.chilensis 0.15 0.18 0.94 0.59 1.93 90.25 

       Zones 2 & 3 

      Average dissimilarity = 41.97 Zone 2 Zone 3 

    Taxon      Av.Abund      Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.  3.96 2.31 6.92 1.75 16.48 16.48 

M. senile  1.28 3.04 5.3 1.71 12.63 29.11 

P.exlex  2.05 0.42 5.17 1.59 12.31 41.42 

Porifera indet. sp. 05   1.07 1.55 2.08 1.09 4.96 46.38 

other indet. sp. 04   0.4 0.59 2.07 0.92 4.94 51.32 

Porifera indet. sp. 02   2.21 2.3 1.95 1.24 4.64 55.97 

other Porifera indet. sp. 0.37 0.75 1.92 1.18 4.56 60.53 

Asteroidae indet. sp.  0.71 0.74 1.78 1.11 4.23 64.77 

Porifera indet. sp. 04   1.68 1.48 1.7 1.18 4.04 68.81 

Ascidiacea indet. sp. 01   1.43 1.36 1.59 1.33 3.78 72.59 

Ascidiacea indet. sp. 02   0.32 0.36 1.46 0.87 3.48 76.07 

Porifera indet. sp. 07 (Cliona sp.?)  0.12 0.43 1.43 0.75 3.4 79.46 

Hydrozoa indet. sp.  0.33 0.32 1.37 0.88 3.26 82.72 

O. vivipara  0 0.36 1.09 0.69 2.59 85.31 

other indet. sp.  0.11 0.32 1.04 0.76 2.48 87.79 

Porifera indet. sp. 01 (Tedania sp.?)  0.36 0 1.01 0.58 2.42 90.21 

       Zones 1 & 3 

      Average dissimilarity = 35.75 Zone 1 Zone 3 

    Taxon    Av.Abund      Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.  3.12 2.31 5.44 1.87 15.23 15.23 

Porifera indet. sp. 05   0 1.55 5.4 6.18 15.11 30.34 

Porifera indet. sp. 02   1.52 2.3 2.87 1.14 8.04 38.38 

Porifera indet. sp. 04   1.06 1.48 2.81 1.13 7.86 46.24 

M. senile  3.83 3.04 2.73 1.61 7.64 53.88 

other Porifera indet. sp. 0 0.75 2.51 1.35 7.03 60.91 

other indet. sp. 04   0.18 0.59 2.11 0.79 5.9 66.81 

Asteroidae indet. sp.  1.18 0.74 1.64 0.92 4.6 71.41 

Porifera indet. sp. 07 (Cliona sp.?)  0 0.43 1.5 0.68 4.21 75.62 

P.exlex  0 0.42 1.38 0.68 3.87 79.48 

other indet. sp.  0.18 0.32 1.29 0.79 3.6 83.08 

O. vivipara  0 0.36 1.27 0.68 3.54 86.62 

Ascidiacea indet. sp. 02   0 0.36 1.27 0.68 3.54 90.16 

       Is_Solar 

      Zone 2 

      Average similarity: 37.50 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 Hydrozoa indet. sp.  1.39 7.87 1.47 21 21 
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Spirorbis indet. sp.  2.37 6.22 0.61 16.6 37.6 

 other indet. sp. 04   1.13 4.87 0.99 12.98 50.58 

 C. magelhaenica/P.chilensis 0.99 4.51 0.85 12.03 62.61 

 Porifera indet. sp. 02   0.85 2.32 0.59 6.2 68.8 

 A. dufresnii 0.65 2.24 0.58 5.98 74.79 

 P.exlex  0.86 1.95 0.46 5.2 79.99 

 C. variopedatus  0.51 1.17 0.37 3.11 83.1 

 Porifera indet. sp. 03  0.55 1.16 0.43 3.08 86.18 

 other Porifera indet. sp. 0.49 1.01 0.4 2.68 88.87 

 Porifera indet. sp. 04   0.51 0.82 0.36 2.19 91.05 

 

       Zone 3 

      Average similarity: 37.47 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 Spirorbis indet. sp.  2.98 9.77 0.87 26.07 26.07 

 C. magelhaenica/P.chilensis 1.1 4.84 0.98 12.93 39 

 A. dufresnii 0.91 4.54 0.87 12.11 51.11 

 other indet. sp. 04   0.95 3.18 0.72 8.49 59.6 

 Hydrozoa indet. sp.  0.83 2.74 0.65 7.31 66.91 

 P.exlex  1.48 2.69 0.51 7.19 74.1 

 Porifera indet. sp. 02   0.9 2.44 0.61 6.52 80.62 

 Porifera indet. sp. 04   0.65 1.31 0.46 3.48 84.1 

 other Porifera indet. sp. 0.53 1.24 0.4 3.32 87.42 

 C. variopedatus  0.49 1.24 0.39 3.31 90.73 

 

       Zone 1 

      Less than 2 samples in group 

      

       Zones 2 & 3 

      Average dissimilarity = 63.91 Zone 2 Zone 3 

    Taxon      Av.Abund      Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.  2.37 2.98 9.72 1.2 15.21 15.21 

P.exlex  0.86 1.48 5.33 1.02 8.34 23.55 

Hydrozoa indet. sp.  1.39 0.83 3.45 1.11 5.4 28.95 

other indet. sp. 04   1.13 0.95 3.38 1.07 5.29 34.25 

Porifera indet. sp. 02   0.85 0.9 3.32 1.11 5.19 39.44 

C. magelhaenica/P.chilensis 0.99 1.1 3.02 1.07 4.73 44.17 

A. dufresnii 0.65 0.91 2.74 1.05 4.29 48.46 

Porifera indet. sp. 04   0.51 0.65 2.58 1 4.04 52.5 

C. variopedatus  0.51 0.49 2.57 0.91 4.02 56.52 

Porifera indet. sp. 03  0.55 0.52 2.45 0.96 3.83 60.36 

other Porifera indet. sp. 0.49 0.53 2.44 0.92 3.81 64.17 

O. vivipara  0.34 0.33 1.97 0.74 3.08 67.25 

other Gastropoda indet. sp.  0.34 0.33 1.73 0.77 2.7 69.95 

Ascidiacea indet. sp. 01   0.33 0.18 1.46 0.68 2.28 72.23 

Ascidiacea indet. sp. 02   0.28 0.18 1.31 0.62 2.06 74.29 

other Cnidaria indet. sp.  0.14 0.3 1.22 0.6 1.91 76.2 

Thouarella sp.  0.02 0.24 1.12 0.48 1.75 77.95 

Adeonella sp.  0.26 0.11 1.11 0.51 1.74 79.69 

Sycozoa sp.  0.13 0.2 1.05 0.52 1.65 81.34 

other Bryozoa indet. sp.  0.27 0.08 1.01 0.54 1.59 82.92 

Asteroidae indet. sp.  0.18 0.12 0.93 0.53 1.46 84.38 
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Microporella hyadesi (Jullien. 1888)  0.17 0.13 0.92 0.49 1.44 85.82 

C. lurida  0.19 0.08 0.91 0.51 1.42 87.25 

Porifera indet. sp. 05   0.14 0.16 0.8 0.47 1.25 88.5 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)  0.13 0.1 0.76 0.44 1.19 89.69 

Porifera indet. sp. 07 (Cliona sp.?)  0.13 0.07 0.63 0.43 0.99 90.67 

       Zones 1 & 2 

      Average dissimilarity = 77.34 Zone 2 Zone 1 

    Taxon      Av.Abund    Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.  2.37 0 10.71 0.93 13.84 13.84 

Hydrozoa indet. sp.  1.39 0 7.28 1.8 9.41 23.26 

other indet. sp. 04   1.13 0 5.58 1.35 7.22 30.48 

Asteroidae indet. sp.  0.18 1.16 5.43 1.89 7.02 37.5 

C. lurida  0.19 1.16 5.39 1.87 6.97 44.47 

C. variopedatus  0.51 1.16 4.66 1.51 6.02 50.49 

A. dufresnii 0.65 1.38 4.34 1.11 5.61 56.1 

P.exlex  0.86 0 4.19 0.66 5.41 61.51 

Porifera indet. sp. 02   0.85 0 3.79 0.99 4.9 66.41 

C. magelhaenica/P.chilensis 0.99 1.16 3.21 1.08 4.15 70.56 

Porifera indet. sp. 03  0.55 0 2.43 0.79 3.15 73.71 

other Porifera indet. sp. 0.49 0 2.2 0.73 2.84 76.55 

Porifera indet. sp. 04   0.51 0 2.11 0.7 2.73 79.28 

O. vivipara  0.34 0 1.83 0.54 2.36 81.64 

Ascidiacea indet. sp. 01   0.33 0 1.51 0.58 1.95 83.59 

other Gastropoda indet. sp.  0.34 0 1.49 0.59 1.92 85.52 

Adeonella sp.  0.26 0 1.24 0.44 1.61 87.13 

Ascidiacea indet. sp. 02   0.28 0 1.24 0.5 1.61 88.73 

other Bryozoa indet. sp.  0.27 0 1.1 0.49 1.42 90.15 

       Zones 1 & 3 

      Average dissimilarity = 75.38 Zone 3 Zone 1 

    Taxon      Av.Abund    Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.  2.98 0 12.69 1.34 16.84 16.84 

P.exlex  1.48 0 5.88 0.87 7.8 24.64 

C. lurida  0.08 1.16 5.64 2.3 7.48 32.12 

Asteroidae indet. sp.  0.12 1.16 5.6 2.17 7.43 39.55 

other indet. sp. 04   0.95 0 4.55 0.99 6.04 45.59 

C. variopedatus  0.49 1.16 4.15 1.32 5.5 51.09 

Hydrozoa indet. sp.  0.83 0 4.01 1.04 5.32 56.41 

Porifera indet. sp. 02   0.9 0 3.88 1 5.15 61.56 

C. magelhaenica/P.chilensis 1.1 1.16 3.1 1.09 4.11 65.67 

Porifera indet. sp. 04   0.65 0 2.69 0.82 3.57 69.24 

other Porifera indet. sp. 0.53 0 2.69 0.73 3.57 72.8 

A. dufresnii 0.91 1.38 2.63 0.91 3.49 76.3 

Porifera indet. sp. 03  0.52 0 2.18 0.69 2.89 79.19 

O. vivipara  0.33 0 1.72 0.56 2.29 81.48 

Thouarella sp.  0.24 0 1.56 0.48 2.07 83.55 

other Gastropoda indet. sp.  0.33 0 1.4 0.54 1.86 85.41 

other Cnidaria indet. sp.  0.3 0 1.19 0.5 1.58 86.99 

Sycozoa sp.  0.2 0 1.04 0.42 1.38 88.38 

Ascidiacea indet. sp. 01   0.18 0 0.83 0.39 1.1 89.47 

Ascidiacea indet. sp. 02   0.18 0 0.79 0.39 1.05 90.52 
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       AG 

      Zone 1 

      Average similarity: 56.15 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 Spirorbis indet. sp.  3.52 23.8 2.31 42.39 42.39 

 Ascidiacea indet. sp. 01   1.61 13.06 2.75 23.26 65.65 

 C. magelhaenica/P.chilensis 1.3 8.88 1.39 15.81 81.46 

 Hydrozoa indet. sp.  0.84 3.2 0.67 5.7 87.17 

 Porifera indet. sp. 03  0.65 1.96 0.49 3.49 90.65 

 

       Zone 2 

      Average similarity: 44.04 

      Taxon Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

 Spirorbis indet. sp.  4.08 19.17 1.43 43.52 43.52 

 Ascidiacea indet. sp. 01   1.63 9.16 1.47 20.8 64.32 

 Porifera indet. sp. 02   1.01 3.44 0.72 7.82 72.13 

 C. magelhaenica/P.chilensis 0.82 3.38 0.69 7.67 79.8 

 Ascidiacea indet. sp. 02   0.72 1.87 0.49 4.24 84.04 

 Holothuria indet. sp. 02 

(Heterocucumis sp.?)  0.72 1.85 0.5 4.19 88.24 

 Porifera indet. sp. 03  0.84 1.83 0.51 4.16 92.4 

 

       Zone 1& 2 

      Average dissimilarity = 50.69 Zone 1 Zone 2 

    Taxon    Av.Abund      Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Spirorbis indet. sp.  3.52 4.08 9.01 1.2 17.78 17.78 

Porifera indet. sp. 02   0.62 1.01 3.64 1.16 7.18 24.97 

Porifera indet. sp. 03  0.65 0.84 3.43 1.12 6.77 31.74 

C. magelhaenica/P.chilensis 1.3 0.82 3.17 1.16 6.25 37.99 

Hydrozoa indet. sp.  0.84 0.51 3.15 1.09 6.21 44.2 

Ascidiacea indet. sp. 02   0.42 0.72 3.03 0.96 5.98 50.18 

Holothuria indet. sp. 02 

(Heterocucumis sp.?)  0.3 0.72 2.89 0.97 5.7 55.88 

Porifera indet. sp. 04   0.58 0.42 2.62 0.96 5.17 61.05 

other Porifera indet. sp. 0.32 0.56 2.47 0.86 4.87 65.92 

Ascidiacea indet. sp. 01   1.61 1.63 2.42 1.19 4.77 70.69 

other Chordata indet. sp.  0.3 0.52 2.24 0.9 4.42 75.11 

Porifera indet. sp. 05   0.13 0.33 1.81 0.61 3.57 78.68 

C. variopedatus  0.06 0.4 1.7 0.61 3.35 82.03 

Asteroidae indet. sp.  0.15 0.17 1.04 0.5 2.06 84.09 

other Gastropoda indet. sp.  0.13 0.17 1.03 0.49 2.02 86.11 

other Polychaeta indet. sp.  0.13 0.16 1 0.49 1.98 88.09 

Ascidiacea indet. sp. 03   0 0.16 0.99 0.36 1.96 90.05 
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Table A 5 R-values of ANOSIM 1 for stations. Clear 

distinctness (R > 0.75), good distinctness (0.25 < R < 

0.75) and poor distinctness (R < 0.25). 

GR: 0.301 MDD Is_Solar AG 

Is_Solar 0.345 - - 

AG 0.692 0.165 - 

CS 0.785 0.246 0.412 
 

Table A 6 List of species identified on pictures taken 

by SCUBA-diver Matthias Hüne (Escuela de Biología 

Marina, Universidad Austral de Chile) during ROV-

dives. 

Pseudechinus magellanicus Adeonella sp. 2 

Pareuthria plumbea  Pareuthria powelii 

Eurypodius latreillei (?) Pagurus comptus 

Didemnum studeri (?) Arbacia dufresnii 

Campylonotus vagans Calliostoma sp. 

Gorgonocephalus chilensis Pareuthria powelii 

Patagonotothen  tessellata Gonactinia prolifera 

Hypsicomus phaeotenia (?) Corella eumyota  

Primonella chilensis/ 

Convexella magelhaenica   

Ornatoscalpellum 

gibberum 

Clavularia  magelhanica (?) Ophiacantha rosea (?) 
 

 

 

 

 

 

 

Figure A 1: Dendrogram of Cluster-analysis of station MDD. Samples are named after bathymetric zones; 

vertical axis shows % of similarity. 
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Figure A 2: Dendrogram of Cluster-analysis of station Is_Solar. Samples are named after bathymetric zones; vertical axis shows % of similarity. 
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Figure A 3: Dendrogram of Cluster-analysis of station AG. Samples are named after bathymetric zones; vertical 

axis shows % of similarity. 

 

 

 
Figure A 4: Dendrogram of Cluster-analysis of bathymetric zones. 

 

 

 

 

 

 

 



Appendix 

xxviii 

 

Table A 7 Abiotic parameters pH, salinity (Sal.), temperature (Temp.) [°C], depth [m], oxygen saturation 

(Ox. sat.) [%] and oxygen concentration (Ox. conc.) [μmol/l] of all samples. 

Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

MDD3_1 8.22 31.60 11.42 25.20 78.72 220.02 

MDD3_2 8.22 31.60 11.43 25.63 78.81 220.27 

MDD3_3 8.22 31.58 11.44 25.55 78.83 220.31 

MDD3_4 8.23 31.58 11.43 25.53 79.01 220.81 

MDD3_5 8.23 31.59 11.44 25.69 79.23 221.43 

MDD3_6 8.22 31.51 11.32 27.69 78.89 221.10 

MDD3_7 8.22 31.51 11.32 26.23 78.84 220.99 

MDD3_8 8.22 31.52 11.33 24.78 78.69 220.52 

MDD3_9 8.22 31.52 11.33 24.32 78.70 220.54 

MDD3_10 8.22 31.52 11.35 24.20 78.73 220.54 

MDD3_11 8.22 31.57 11.42 27.70 78.81 220.36 

MDD3_12 8.23 31.56 11.40 27.74 79.47 222.30 

MDD4_2 8.19 31.21 11.18 18.53 76.51 215.51 

MDD4_3 8.20 31.21 11.16 18.01 76.66 216.04 

MDD4_4 8.20 31.21 11.17 19.38 76.73 216.17 

MDD4_6 8.20 31.23 11.21 21.39 77.54 218.23 

MDD4_7 8.21 31.21 11.23 18.84 78.04 219.61 

MDD4_8 8.21 31.20 11.21 18.87 78.06 219.74 

MDD4_9 8.21 31.20 11.21 18.87 77.76 218.88 

MDD4_10 8.19 31.22 11.03 22.74 74.42 210.28 

MDD4_11 8.22 31.26 11.13 23.45 76.66 216.10 

MDD4_13 8.24 31.34 11.29 29.96 79.39 222.91 

MDD4_14 8.22 31.28 11.15 25.77 77.87 219.35 

MDD4_15 8.22 31.31 11.19 25.78 78.35 220.48 

MDD4_16 8.22 31.27 11.17 25.75 78.13 220.04 

MDD4_17 8.22 31.27 11.17 25.77 78.13 220.06 

MDD4_18 8.22 31.29 11.16 25.79 78.20 220.22 

MDD4_19 8.22 31.28 11.16 25.80 78.13 220.07 

MDD4_20 8.22 31.29 11.17 25.79 78.22 220.23 

MDD4_21 8.22 31.29 11.16 25.78 78.19 220.19 

MDD4_22 8.22 31.26 11.15 24.98 78.07 219.96 

MDD4_23 8.22 31.26 11.14 24.43 77.90 219.55 

MDD4_24 8.22 31.26 11.13 24.57 77.93 219.64 

MDD4_26 8.22 31.26 11.14 24.60 78.23 220.49 

MDD4_27 8.22 31.26 11.13 24.60 78.22 220.49 

MDD4_28 8.22 31.26 11.13 24.58 78.19 220.39 

MDD4_31 8.21 31.26 11.09 24.58 77.70 219.19 

MDD4_32 8.22 31.27 11.14 24.59 77.95 219.64 

MDD4_33 8.22 31.28 11.18 24.59 78.23 220.23 

MDD4_34 8.22 31.29 11.20 24.58 78.70 221.47 

MDD4_35 8.23 31.30 11.22 24.59 79.20 222.75 
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Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

MDD4_36 8.23 31.29 11.24 24.58 79.58 223.74 

MDD4_37 8.22 31.25 11.15 24.58 79.02 222.65 

MDD4_38 8.23 31.31 11.23 24.58 78.86 221.74 

MDD4_39 8.22 31.24 11.08 24.57 78.81 222.42 

MDD4_40 8.20 31.24 11.04 24.58 77.54 219.02 

MDD4_41 8.22 31.34 11.27 24.58 78.69 221.06 

MDD4_42 8.23 31.30 11.24 24.57 78.86 221.71 

MDD4_43 8.23 31.30 11.24 24.58 79.43 223.31 

MDD4_44 8.21 31.26 11.13 27.10 78.36 220.89 

MDD7_2 8.27 31.55 11.33 22.32 76.99 215.67 

MDD7_4 8.25 31.55 11.36 24.24 75.45 211.25 

MDD7_5 8.26 31.56 11.32 25.15 76.20 213.51 

MDD7_6 8.26 31.54 11.34 25.20 76.11 213.20 

MDD7_7 8.25 31.55 11.32 25.36 75.59 211.84 

MDD7_8 8.25 31.55 11.32 25.39 75.33 211.12 

MDD7_9 8.26 31.55 11.30 25.40 75.41 211.40 

MDD7_11 8.24 31.53 11.34 25.67 74.78 209.48 

MDD7_12 8.24 31.55 11.30 26.20 75.05 210.42 

MDD7_13 8.24 31.56 11.29 25.33 74.88 209.95 

MDD7_16 8.25 31.56 11.30 22.21 74.98 210.17 

MDD7_17 8.25 31.56 11.30 22.18 74.95 210.10 

MDD7_18 8.25 31.56 11.30 22.20 74.99 210.22 

MDD7_19 8.25 31.56 11.30 22.20 74.92 210.03 

MDD7_21 8.24 31.58 11.28 27.09 74.21 208.09 

MDD7_24 8.24 31.58 11.28 27.96 74.22 208.12 

MDD7_25 8.24 31.58 11.28 28.48 74.17 207.99 

MDD7_27 8.24 31.58 11.29 36.22 75.32 211.18 

MDD7_28 8.24 31.58 11.28 35.92 74.92 210.09 

MDD7_29 8.26 31.60 11.39 34.38 77.19 215.92 

Is_Solar1_1 8.13 31.89 10.74 21.60 65.02 184.08 

Is_Solar1_2 8.13 31.90 10.74 21.54 65.08 184.22 

Is_Solar1_4 8.13 31.97 10.75 24.08 65.17 184.35 

Is_Solar1_5 8.13 31.96 10.76 25.07 64.92 183.63 

Is_Solar1_6 8.13 31.97 10.76 24.69 65.05 183.99 

Is_Solar1_8 8.13 32.02 10.77 24.59 65.17 184.23 

Is_Solar1_9 8.13 31.94 10.76 24.57 65.13 184.26 

Is_Solar1_10 8.13 31.94 10.75 24.56 65.24 184.62 

Is_Solar1_11 8.13 32.02 10.76 24.55 65.25 184.51 

Is_Solar1_12 8.14 31.95 10.75 24.49 65.35 184.87 

Is_Solar1_13 8.13 31.92 10.75 23.86 65.34 184.88 

Is_Solar1_14 8.13 31.94 10.76 23.67 65.39 184.99 

Is_Solar1_15 8.14 31.95 10.76 23.21 65.40 185.01 

Is_Solar1_16 8.13 31.97 10.76 23.05 65.40 184.96 
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Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

Is_Solar1_17 8.14 31.92 10.76 23.08 65.40 185.02 

Is_Solar1_18 8.14 31.95 10.76 23.00 65.36 184.89 

Is_Solar1_19 8.14 31.96 10.76 22.95 65.41 185.01 

Is_Solar1_20 8.14 31.94 10.76 22.95 65.32 184.78 

Is_Solar1_21 8.14 31.97 10.76 22.93 65.44 185.09 

Is_Solar1_22 8.13 31.95 10.76 22.95 65.36 184.87 

Is_Solar1_23 8.13 31.97 10.77 22.90 65.38 184.90 

Is_Solar1_24 8.13 31.97 10.76 22.97 65.37 184.90 

Is_Solar1_25 8.13 31.98 10.76 23.12 65.41 185.00 

Is_Solar1_26 8.14 31.91 10.75 22.43 65.40 185.09 

Is_Solar1_27 8.14 31.92 10.76 22.13 65.47 185.23 

Is_Solar1_28 8.14 32.08 10.78 29.00 65.34 184.63 

Is_Solar1_29 8.14 32.11 10.77 29.01 65.49 185.02 

Is_Solar1_30 8.14 32.13 10.77 29.00 65.45 184.89 

Is_Solar1_31 8.14 32.16 10.77 29.02 65.45 184.82 

Is_Solar1_32 8.14 32.23 10.78 29.04 65.60 185.17 

Is_Solar1_33 8.14 32.22 10.78 29.02 65.60 185.20 

Is_Solar1_34 8.14 32.35 10.78 28.98 65.63 185.10 

Is_Solar1_35 8.14 32.39 10.78 29.09 65.77 185.44 

Is_Solar1_36 8.14 31.96 10.76 27.85 65.67 185.76 

Is_Solar1_37 8.14 32.01 10.76 27.89 65.69 185.73 

Is_Solar1_39 8.14 32.33 10.78 28.39 65.80 185.61 

Is_Solar1_40 8.14 32.24 10.77 29.10 65.81 185.77 

Is_Solar1_41 8.14 32.33 10.78 29.10 65.84 185.73 

Is_Solar1_42 8.14 32.20 10.77 29.10 65.92 186.13 

Is_Solar1_43 8.14 32.29 10.78 29.10 66.01 186.26 

Is_Solar1_44 8.14 32.27 10.77 29.10 65.98 186.21 

Is_Solar1_45 8.14 32.08 10.77 29.11 65.99 186.49 

Is_Solar1_46 8.14 32.07 10.77 29.09 65.99 186.52 

Is_Solar1_47 8.14 32.43 10.77 29.65 66.09 186.33 

Is_Solar1_48 8.14 32.42 10.77 29.81 66.11 186.40 

Is_Solar1_49 8.15 32.36 10.78 29.89 66.26 186.89 

Is_Solar1_50 8.15 32.31 10.77 29.91 66.32 187.11 

Is_Solar1_51 8.15 32.32 10.77 29.96 66.33 187.14 

Is_Solar1_52 8.15 32.35 10.78 30.10 66.33 187.09 

Is_Solar1_53 8.15 32.17 10.77 28.87 66.37 187.46 

Is_Solar1_54 8.15 32.16 10.77 27.57 66.31 187.31 

Is_Solar1_55 8.15 31.88 10.76 23.65 66.38 187.90 

Is_Solar1_56 8.15 31.88 10.76 23.64 66.33 187.74 

Is_Solar1_57 8.15 31.69 10.75 23.60 66.21 187.65 

Is_Solar1_58 8.15 31.71 10.75 23.87 66.26 187.75 

Is_Solar1_60 8.15 32.06 10.77 28.13 66.27 187.29 

Is_Solar1_61 8.15 32.18 10.77 28.13 66.19 186.91 
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Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

Is_Solar1_62 8.15 32.51 10.77 33.99 66.32 186.90 

Is_Solar1_65 8.15 32.88 10.68 38.19 66.53 187.38 

Is_Solar1_66 8.15 32.87 10.68 36.96 66.58 187.55 

Is_Solar1_67 8.15 32.89 10.68 36.70 66.56 187.52 

Is_Solar1_68 8.15 32.88 10.68 36.71 66.51 187.36 

Is_Solar1_69 8.15 32.88 10.68 36.72 66.58 187.54 

Is_Solar1_70 8.15 32.88 10.69 36.54 66.58 187.51 

Is_Solar1_71 8.15 32.88 10.69 36.51 66.64 187.71 

Is_Solar1_72 8.15 32.88 10.68 36.32 66.58 187.54 

Is_Solar1_73 8.15 32.88 10.68 36.30 66.62 187.64 

Is_Solar1_74 8.15 32.88 10.69 36.32 66.58 187.52 

Is_Solar1_75 8.15 32.88 10.69 36.32 66.62 187.63 

Is_Solar1_76 8.15 32.88 10.68 36.33 66.60 187.60 

Is_Solar1_77 8.15 32.88 10.68 36.34 66.62 187.67 

Is_Solar1_78 8.15 32.88 10.68 36.34 66.51 187.38 

Is_Solar1_79 8.15 32.85 10.72 36.32 66.76 187.94 

Is_Solar1_80 8.15 32.88 10.67 37.60 66.64 187.76 

Is_Solar1_81 8.15 32.88 10.68 37.84 66.57 187.53 

Is_Solar1_82 8.15 32.89 10.67 37.03 66.41 187.12 

Is_Solar1_83 8.15 32.86 10.65 36.67 66.50 187.49 

Is_Solar1_84 8.15 32.78 10.69 35.54 66.45 187.27 

Is_Solar1_85 8.15 32.82 10.67 35.56 66.49 187.43 

Is_Solar1_86 8.15 32.64 10.73 32.08 66.53 187.48 

Is_Solar1_87 8.16 32.61 10.74 30.70 66.61 187.71 

Is_Solar1_88 8.15 32.45 10.77 30.63 66.66 187.90 

Is_Solar1_89 8.15 32.49 10.77 30.63 66.62 187.79 

Is_Solar1_90 8.16 32.03 10.79 28.03 66.65 188.32 

Is_Solar1_91 8.15 32.07 10.79 28.01 66.62 188.17 

Is_Solar1_92 8.16 32.29 10.80 29.16 66.73 188.19 

Is_Solar1_93 8.16 32.40 10.80 29.40 66.62 187.78 

Is_Solar1_94 8.16 32.45 10.79 29.90 66.66 187.85 

Is_Solar1_95 8.16 32.52 10.78 30.10 66.76 188.07 

Is_Solar1_96 8.16 32.51 10.78 30.09 66.78 188.14 

Is_Solar1_97 8.16 32.51 10.79 30.11 66.76 188.07 

Is_Solar1_98 8.16 32.47 10.79 30.10 66.71 187.95 

Is_Solar1_99 8.16 32.52 10.78 30.53 66.86 188.39 

Is_Solar1_100 8.16 32.56 10.76 30.53 66.83 188.31 

Is_Solar1_101 8.16 32.56 10.76 30.47 66.72 187.99 

Is_Solar1_102 8.16 32.55 10.77 29.86 66.73 188.02 

Is_Solar1_103 8.16 32.46 10.78 28.77 66.76 188.13 

Is_Solar1_104 8.16 32.48 10.78 28.76 66.74 188.06 

Is_Solar1_105 8.16 32.49 10.78 28.60 66.71 187.98 

Is_Solar1_106 8.16 32.47 10.78 28.48 66.67 187.90 
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Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

Is_Solar1_107 8.16 32.44 10.79 28.48 66.73 188.07 

Is_Solar1_108 8.16 32.22 10.78 25.16 66.61 188.01 

Is_Solar1_109 8.16 32.09 10.78 24.65 66.64 188.26 

Is_Solar2_1 8.18 32.22 10.79 27.70 66.51 187.71 

Is_Solar2_2 8.18 32.54 10.79 27.71 66.53 187.40 

Is_Solar2_3 8.18 32.51 10.79 27.41 66.51 187.37 

Is_Solar2_4 8.17 32.47 10.79 27.95 66.55 187.53 

Is_Solar2_5 8.18 32.25 10.78 26.76 66.53 187.76 

Is_Solar2_6 8.17 32.15 10.78 26.68 66.56 187.96 

Is_Solar2_7 8.18 32.21 10.79 26.56 66.52 187.74 

Is_Solar2_8 8.18 32.25 10.79 26.55 66.48 187.59 

Is_Solar2_9 8.17 32.18 10.78 26.55 66.50 187.76 

Is_Solar2_10 8.17 32.27 10.79 26.55 66.52 187.68 

Is_Solar2_11 8.18 32.27 10.79 26.55 66.46 187.51 

Is_Solar2_12 8.18 32.37 10.79 26.16 66.42 187.28 

Is_Solar2_13 8.18 32.37 10.79 26.16 66.53 187.58 

Is_Solar2_14 8.18 32.02 10.77 26.17 66.46 187.89 

Is_Solar2_15 8.18 32.49 10.78 29.10 66.57 187.56 

Is_Solar2_16 8.18 32.54 10.78 29.20 66.79 188.17 

Is_Solar2_17 8.18 32.36 10.78 27.91 66.76 188.28 

Is_Solar2_18 8.18 32.55 10.78 29.84 66.85 188.30 

Is_Solar2_19 8.18 32.49 10.78 29.82 66.88 188.45 

Is_Solar2_20 8.18 32.54 10.78 29.84 66.91 188.51 

Is_Solar2_21 8.18 32.54 10.78 29.85 66.86 188.36 

Is_Solar2_22 8.18 32.56 10.77 30.00 66.87 188.39 

Is_Solar2_23 8.18 32.58 10.77 30.58 66.96 188.61 

Is_Solar2_24 8.18 32.57 10.77 31.17 66.87 188.38 

Is_Solar2_25 8.18 32.58 10.77 30.95 66.86 188.34 

Is_Solar2_26 8.18 32.54 10.78 31.64 66.96 188.64 

Is_Solar2_27 8.18 32.59 10.77 31.63 66.81 188.18 

Is_Solar2_28 8.18 32.62 10.77 31.35 66.89 188.41 

Is_Solar2_29 8.18 32.68 10.76 36.52 66.94 188.49 

Is_Solar2_30 8.18 32.80 10.72 37.87 67.03 188.77 

Is_Solar2_31 8.18 32.77 10.72 37.85 67.13 189.07 

Is_Solar2_32 8.18 32.80 10.71 38.16 67.08 188.92 

Is_Solar2_33 8.18 32.80 10.71 38.20 66.98 188.64 

Is_Solar2_34 8.18 32.81 10.71 38.39 67.00 188.70 

Is_Solar2_35 8.18 32.81 10.71 38.72 66.98 188.66 

Is_Solar2_36 8.18 32.76 10.73 38.57 67.03 188.78 

Is_Solar2_37 8.18 32.81 10.70 39.10 66.97 188.64 

Is_Solar2_38 8.18 32.68 10.75 39.40 66.73 187.96 

Is_Solar3_1 8.17 32.29 10.74 25.04 66.83 188.70 

Is_Solar3_2 8.17 32.29 10.75 25.06 66.71 188.35 
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Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

Is_Solar3_3 8.18 32.05 10.71 22.84 67.70 191.60 

Is_Solar3_4 8.18 32.00 10.71 22.16 67.70 191.64 

Is_Solar3_5 8.18 32.01 10.71 22.09 67.68 191.59 

Is_Solar3_6 8.18 32.02 10.71 22.01 67.68 191.56 

Is_Solar3_7 8.18 31.99 10.71 22.11 67.66 191.56 

Is_Solar3_8 8.18 31.99 10.71 22.13 67.69 191.63 

Is_Solar3_9 8.18 32.09 10.72 23.05 67.64 191.36 

Is_Solar3_10 8.18 32.11 10.72 23.06 67.61 191.24 

Is_Solar3_11 8.18 32.12 10.72 23.07 67.64 191.30 

Is_Solar3_12 8.18 32.08 10.72 23.05 67.58 191.19 

Is_Solar3_13 8.18 32.12 10.72 23.29 67.65 191.32 

Is_Solar3_14 8.18 31.95 10.71 20.56 67.72 191.79 

Is_Solar3_15 8.18 31.94 10.71 20.50 67.68 191.66 

Is_Solar3_16 8.18 31.93 10.71 20.45 67.70 191.73 

Is_Solar3_17 8.18 31.95 10.71 20.43 67.64 191.54 

Is_Solar3_18 8.18 31.93 10.71 19.74 67.60 191.45 

AG_1 8.29 28.80 10.95 18.90 72.23 207.60 

AG_2 8.29 28.81 10.94 18.91 72.28 207.80 

AG_3 8.29 28.80 10.94 18.90 72.24 207.69 

AG_4 8.29 28.81 10.94 18.89 72.19 207.54 

AG_5 8.29 28.77 10.93 18.90 72.25 207.79 

AG_6 8.29 28.81 10.94 18.91 72.30 207.82 

AG_7 8.29 28.78 10.93 18.89 72.29 207.88 

AG_8 8.28 29.00 10.94 21.13 72.06 206.90 

AG_9 8.25 29.64 10.98 29.19 73.20 209.15 

AG_10 8.29 28.85 10.91 19.49 74.03 212.88 

AG_11 8.29 28.85 10.90 19.50 73.80 212.28 

AG_12 8.29 28.82 10.92 19.50 73.73 212.05 

AG_13 8.29 28.84 10.90 19.49 73.75 212.14 

AG_14 8.30 28.79 10.92 19.33 73.94 212.67 

AG_15 8.29 28.82 10.91 18.82 73.64 211.79 

AG_16 8.30 28.80 10.92 17.60 73.75 212.14 

AG_17 8.30 28.73 10.96 16.48 73.86 212.37 

AG_18 8.30 28.72 10.97 14.13 74.21 213.29 

AG_19 8.30 28.74 10.95 14.15 74.09 213.02 

AG_20 8.30 28.77 10.93 15.74 74.08 213.04 

AG_21 8.30 28.79 10.92 16.88 74.00 212.83 

AG_22 8.29 28.88 10.90 21.02 73.59 211.62 

AG_23 8.28 29.21 10.99 24.21 73.87 211.58 

AG_24 8.27 29.37 10.99 24.20 74.06 211.90 

AG_25 8.27 29.37 10.99 24.20 74.03 211.83 

AG_26 8.29 29.14 10.98 23.98 74.51 213.57 

AG_27 8.28 29.25 11.00 23.99 74.48 213.20 
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Sample pH Sal. Temp. [°C] Depth [m] 

Ox. sat. 

[%] Ox. conc. [μmol/l] 

CS_1 8.29 28.91 10.97 17.63 75.54 216.89 

CS_2 8.23 30.15 10.83 36.23 69.72 199.19 

CS_4 8.25 29.78 10.90 35.65 70.78 202.42 

CS_6 8.28 29.36 10.94 34.42 72.49 207.65 

CS_7 8.30 29.11 10.97 32.62 73.06 209.48 

 

 


