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Appendix to Kinetic model setup

(a) Morphology of the CV

Size and morphology of the coccolith vesicle (CV) are estimated from TEM images
taken from van der Walet al. (1983a) and from SEM images made by Young (2009).
Surface area and volume of a simplified shape (see Fig. S1) are33µm2 and 3.2µm3,
respectively, when a diameter of 3.5µm is presumed for the coccolith, which is the
coccolith size we have the calcite amount for (Young & Ziveri, 2000). The first de-
tectable stage of the CV is the so called proto-coccolith vesicle (pCV, see Fig. 5 in
van der Walet al. (1983a)), for whose shape an oblate spheroid with a large radius
of 0.25µm and a small radius of 0.09µm was assumed (ApCV = 0.5µm2, VpCV =
0.02µm3). Surface area and volume of the CV do not change during coccolith for-
mation in our model in order to keep the model simple. A representative situation
for calcite precipitation was chosen instead. Assuming thetransporter density inside
the CV membrane remains unchanged during coccolith formation, the mean value be-
tween the pCV and the full size CV should constitute a meaningful approach. The
model runs are performed with the following values: 17µm2 for the surface area and
1.6µm3 for the volume of the CV. During coccolith formation, the fluid within the
CV becomes actually more and more restricted to the thin layer between the growing
coccolith and the CV membrane. Therefore, performing modelsimulations with the
whole volume of the CV (1.6µm3) constitutes a conservative assumption.

(b) Carbonate chemistry and [Ca2+]

A summary of the conditions assumed for the cytosol and as initial conditions inside
the CV is given in Table S1. While all chemical characteristics of the cytosol (equili-
brated carbonate system) are kept constant throughout the model runs, the correspond-
ing values of the CV vary with time in response to the individual transported substrates
and reactions of the carbonate system. The cytosolic [Ca2+] is set to 100 nmol·L−1,
the value measured by Brownleeet al. (1995). The initial [Ca2+] within the CV is
assumed to be 0.5 mmol·L−1, a value typical for the ER (Gussoneet al., 2006). The
cytosolic DIC as well as the initial DIC inside the CV equal the seawater value in our
model, i.e. 2 mmol· L−1. Sekino & Shiraiwa (1994) measured the bulk DIC ofE. hux-
leyi to be 13 mmol·L−1. It is, however, very likely that DIC is not distributed evenly
inside the cell. A strong accumulation of DIC inside the cytosol would probably lead
to a strong diffusive CO2 lost, further amplified by the low cytosolic pH value com-
pared to the one of seawater. A more effective location to accumulate DIC are the
organelles, in which Ci is assimilated, i.e. the chloroplast or the CV. However, since
an accumulation of DIC inside the cytosol cannot be excluded, we tested the influence
of a high cytosolic DIC (55 mmol·L−1) on the carbonate chemistry inside the CV in a
basic model version where Ci for calcite precipitation is supplied exclusively via CO2
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diffusion (model version Ib). The pH value of the cytosol andthe initial value of the
CV both are assumed to be seven as given by Anninget al. (1996) (cytosol: 6.9±0.3;
CV: 7.1±0.3). The cytosolic salinity is presumed to be slightly lower than the one
of seawater, because it is reduced by means of organic osmolytes (Bisson & Kirst,
1979; Kirst & Bisson, 1979). The salinity inside the CV is setto the value of seawater,
because no data about compatible solutes inside the CV are available. Salinity and
temperature remain constant throughout the model runs.
The carbonate system inside the CV is described via the following equations:
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The corresponding net reaction rates are denoted accordingto the numbers of the rate
constants and describe the reactions (S 1) to (S 5) from rightto left:

R1,CV = −k+1[CO2]CV + k−1[H+]CV[HCO−

3 ]CV (S 6)

R4,CV = −k+4[OH−]CV[CO2]CV + k−4[HCO−

3 ]CV (S 7)

RH+

5,CV = −kH
+

+5 [H
+]CV[CO2−
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3 ]CV (S 8)
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5,CV = −kOH−

+5 [OH−]CV[HCO−

3 ]CV + kOH−

−5 [CO2−
3 ]CV[H2O]CV (S 9)

R6,CV = −k+6 + k−6[H+]CV[OH−]CV (S 10)

Reaction rate constants are calculated via the equations given in Zeebe & Wolf-Gladrow
(2001), values are listed in Table S2.
DIC and total alkalinity (TA) are defined as follows:

DIC = [CO2]CV + [HCO−

3 ]CV + [CO2−
3 ]CV (S 11)

TA = [HCO−

3 ] + 2 [CO2−
3 ]CV + [OH−]CV − [H+]CV (S 12)

The contribution of borate and several minor components to TA is neglected for the
sake of simplicity. The concentrations of these compounds in cytosol and CV are not
well known and do most probably differ from typical values inseawater.
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(c) Active transport

The transport of molecules and ions across the CV membrane influences the corre-
sponding concentrations inside the modelled CV. The rate bywhich these concentra-
tions change is described by means of a Michaelis-Menten equation:

RT
x =

1

VCV

Vmax[x]

Kx
M + [x]

(S 13)

where VCV stands for the volume of the CV, x for the transported substrate,Vmax for
the maximum transport rate, andKx

M denotes the Michaelis-Menten constant, which
describes the affinity of the transporter towards x.
When Ca2+ transport is concerned,RT

Ca2+ is multiplied by the following cut-off func-
tion f([Ca2+]).

f([Ca2+]) =
tanh(1000 − 100 [Ca2+])

2
+

1

2
(S 14)

where the [Ca2+] is given in mmol·L−1. f([Ca2+]) defines the maximum [Ca2+] ratio
over the CV membrane to be 105, which was calculated by Langeret al. (2006) to be
the maximum ratio that can be achieved by hydrolysis of ATP.
Each of the modelled transporters is dependent on the concentration of one trans-
ported substrate only (e. g. Ca2+ inside the cytosol), which can be done, when the co-
transported or antitransported substrates (e. g. 2 H+ inside the CV, in case of Ca2+ / 2
H+ exchangers) are assumed to be abundant. Besides information on the maximum
transport capacity as it is the case in the classical Michaelis-Menten equation, the pa-
rameter Vmax contains further information on the kinetics of the cotransported, respec-
tively antiported, substrate(s). During the first experiment part of model versions VI
and VII, protons are transported via proton-pumping ATPases into the CV. We pre-
sumed, that neither ATP nor protons limit the transport and hence modelled proton
import with a fixed rate here. A maximal proton concentrationratio of 105 across the
membrane was assumed, constituting a very steep gradient, but allowing for a maximal
effect of the Ca2+ import mechanism during the second model phase.
Our model does not integrate the membrane potential, because nothing is known about
the ion composition around the CV membrane. Therefore, we decided to implement
substrate transporters that exchange ions electrogenically neutral. Consequently, the
stoichiometry assumed for Ca2+ / H+ exchangers is 1 Ca2+ : 2 H+ as it can for instance
be found in the tonoplast ofBeta vulgaris(Blumwald & Poole, 1986). This stoichiom-
etry does not correspond to the one assumed for CAX-like Ca2+ / H+ exchangers (1 : 3,
Szeet al., 2000) nor to that assumed for Ca2+-ATPases (1 : 1-1.5,?Hauser & Barth,
2007). The latter transporter types do most probably exist in calcifying cells ofE.
huxleyi (see Section??). In case of SERCA-type Ca2+-ATPases, stoichiometries of
Ca2+ : H+ vary with the underlying pH value (?Hauser & Barth, 2007). The latter
transporter types do most probably exist in calcifying cells of E. huxleyi(see Sec-
tion 2.1 of main document). In case of SERCA-type Ca2+-ATPases, stoichiometries
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of Ca2+ : H+ vary with the underlying pH value (?Hauser & Barth, 2007). Proton-
pumping ATPases could further influence bulk stoichiometries. We actually tested
the influence of stoichiometries between 1 Ca2+ : 1 H+ and 1 Ca2+ : 3 H+ on a basic
model version, where Ci is supplied passively via CO2 diffusion and Ca2+ is imported
actively via a Ca2+ / H+ exchanger. While stoichiometries of 1 Ca2+ :<2 H+ led to
pH values that were too low for calcite precipitation, thoseof 1 Ca2+ :>2 H+ led to
very high pH values and very high [CO2−3 ] inside the CV. A stoichiometry of 1 Ca2+ : 2
H+, in turn, led to reasonable results. Therefore, the latter stoichiometry which was
assumed for some model versions is meaningful.

(d) Diffusion

CO2 diffuses across the CV membrane in all model versions. Its diffusion rateRD
CO2

is described as follows:

RD
CO2

= γCO2

ACV

VCV

· ([CO2]CS − [CO2]CV) (S 15)

whereγCO2
is the permeability coefficient of CO2 given in Sültemeyer & Rinast (1996)

for the plasma membrane ofChlamydomonas reinhardtiigrown at ambient air and a
pH of 7.8.ACV /VCV reflects the surface to volume ratio of the CV, and [CO2]CS and
[CO2]CV denote the [CO2] inside the cytosol (CS) and the CV, respectively.

(e) Calcite precipitation

The model considers the following reaction to describe calcite precipitation:

CO2−
3 + Ca2+ → CaCO3 ↓ (S 16)

The corresponding precipitation rate is described via the following equations:

RP =

{

kf(Ω− 1)n for Ω > 1
0 for Ω ≤ 1

(S 17)

where the parameter n is given in Table 3 of Zuddas & Mucci (1994, 2.35), and kf
can be calculated from Figure 1 and Table 3 given in Zuddas & Mucci (1994) and the
calculated CV morphology (3.09·10−5 mol·L−1·s−1).

(f) Model versions
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The kinetic parameters used for all model runs are listed in Table S3.
dfsjk
Model version I: Ca2+ / 2 H+ antiport. The activity of carbonic anhydrase (CA) in
model version Ic was modelled via an acceleration factor of 104 for R1,CV (eq. (S 6)).
This factor was taken from Thomset al. (2001) who used it to model the CA inside
the chloroplast.
The differential equations for model version I are constructed from the reaction rates
given in equations (S 6) to (S 10), (S 13), (S 15), and (S 17):

d[CO2]/dt(I) = R1,CV + R4,CV + RD
CO2

(S 18)

d[HCO−

3 ]/dt(I) = −R1,CV − R4,CV − RH+

5,CV + ROH−

5,CV (S 19)

d[CO2−
3 ]/dt(I) = RH+

5,CV − ROH−

5,CV − RP (S 20)

d[H+]/dt(I) = −R1,CV + RH+

5,CV − R6,CV − 2 RT
Ca2+ (S 21)

d[OH−]/dt(I) = +R4,CV + ROH−

5,CV − R6,CV (S 22)

d[Ca2+]/dt(I) = RT
Ca2+ − RP (S 23)

d[PIC]/dt(I) = RP (S 24)

For the following model versions, we will only give the equations that deviate from
equations (S 18) to (S 24).
dfsjk
Model version II: Ca2+ / 2 H+ antiport with active CO2 import. The only differential
equation that is changed compared to model version I, is the one describing the change
of the [CO2]:

d[CO2]/dt(II) = R1,CV + R4,CV + RD
CO2

+ RT
CO2

(S 25)

dfsjk
Model version III: Import of Ca2+ and HCO−

3 . As mentioned in Section 3.1 of the
main document, two different possibilities to import Ca2+ and HCO−3 into the CV are
concerned here. The only equation, in which the two model versions (IIIa and IIIb)
differ from equations (S 18) to (S 24), is the one describing the change of[HCO−

3 ].

d[HCO−

3 ]/dt(IIIa) = −R1,CV − R4,CV − RH+

5,CV + ROH−

5,CV + RT
HCO−

3

(S 26)

d[HCO−

3 ]/dt(IIIb) = −R1,CV − R4,CV − RH+

5,CV + ROH−

5,CV + 2RT
Ca2+ (S 27)

Since our model does not consider [Na+] and [Cl−], we neglect the export of these ion
species.
dfsjk
Model version IV: Ca2+ / CO2−

3 symport. The modified differential equation for this
model version reads:

d[CO2−
3 ]/dt(IV) = RH+

5,CV − ROH−

5,CV + RT
Ca2+ − RP (S 28)
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dfsjk
Model version V: Ca2+ and HCO−

3 import and H+ export. Model version Va is
based on a transport mechanism consisting of two decoupled transporters, namely a
Ca2+ / 2 H+ antiporter and a HCO−3 / H+ symporter. The modified differential equa-
tions read:

d[HCO−

3 ]/dt(Va) = −R1,CV − R4,CV − RH+

5,CV + ROH−

5,CV + RT
HCO−

3

(S 29)

d[H+]/dt(Va) = −R1,CV + RH+

5,CV − R6,CV + RT
HCO−

3

− 2RT
Ca2+ (S 30)

Model version Vb mimics a theoretical transporter generating a transport of one Ca2+

and one HCO−3 into the CV and one H+ out of the CV. The differential equations are:

d[HCO−

3 ]/dt(Vb) = −R1,CV − R4,CV − RH+

5,CV + ROH−

5,CV + RT
Ca2+ (S 31)

d[H+]/dt(Vb) = −R1,CV + RH+

5,CV − R6,CV − RT
Ca2+ (S 32)

dfsjk
Model version VI: Ca2+ / H+ exchange after import of H+. For the first part of this
model version, by means of which the proton gradient across the CV membrane is
established, the following equations are used:

d[H+]/dt(VI) = −R1,CV + RH+

5,CV − R6,CV + RT
H+ (S 33)

d[Ca2+]/dt(VI) = −RP (S 34)

d[PIC]/dt(VI) = RP (S 35)

The second model part, during which the established proton gradient is used to import
Ca2+, the equations given for model version I are considered.
dfsjk
Model version VII: Ca2+ and HCO−

3 import and H+ export after import of H+. The
acidification part of this model is described via the equations given for model version
VI (eqs. S 33 - S 35). For the second part in turn, the equationsof model version Vb
(eqs. (S 31) - (S 32)) are used.

Appendix to Results and Discussion

Figures S2 to S6 give the model outputs to all model versions,except for model ver-
sion Ic which was shown already in the main document.
At Time = 0 s, the preset initial conditions are given. Duringthe presented time regime,
the modelled DIC, TA, pH, Ci, Ω, and Ca2+ approach the steady state values listed in
Table 4 of the main manuscript.
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Table S 1:Values for [Ca2+], DIC, pH, salinity (S), and temperature (θ) inside the
cytosol (CS) and the CV. The concentrations of carbonate species are calculated from
DIC and pH (equilibrium values). Values put in parantheses are those for model ver-
sion Ib, which is based on 55 mmol·L−1 DIC in CS.

Parameter Value CS Value CV
[Ca2+] (mmol·L−1) 100·10−6 (Brownleeet al., 1995) 0.5 (Gussoneet al., 2006)
DIC (mmol·L−1) 2 (55 in Ib) 2
pH 7 (Dixon et al., 1989) 7 (Anning et al., 1996)
S 30 35
θ (◦C) 15 15
CO2 (µmol·L−1) 169 (4 656 in Ib) 163
HCO−

3 (µmol·L−1) 1 820 (50 000 in Ib) 1 823
CO2−

3 (µmol·L−1) 12.9 (355 in Ib) 14.5



Table S 2:Reaction rate constants of the carbonate system. Since the salinity of the
cytosol (CS) and the CV are assumed to differ (CS: 30, CV: 35),the rate constants are
listed separately.

Rate constant Value CS Value CV
k+1 (s−1) 14.2·10−3

k−1 (L·mol−1·s−1) 12.9·103 12.4·103

k+4 (L·mol−1·s−1) 2.86·103 2.89·103

k−4 (s−1) 5.96·10−5 6.23·10−5

kH+

+5 (L·mol−1·s−1) 4.89·1010 4.87·1010

kH+

−5 (s−1) 35.5 39.9
kOH−

+5 (L·mol−1·s−1) 5.87·109 5.85·109

kOH−

−5 (s−1) 1.85·105 1.79·105

k+6 (mol·L−1·s−1) 1.43·10−3 1.44·10−3

k−6 (L·mol−1·s−1) 6.27·1010 5.73·1010



Table S 3:Kinetic parameter values for all model versions.

Parameter Value Version
γCO2

(m·s−1) 1.8·10−5 (Sültemeyer & Rinast, 1996) all
Vmax(Ca2+ /2 H+) (mol·s−1) 0.54·10−15 (Ia)
KCa2+

m (Ca2+ /2 H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)

Vmax(Ca2+ /2 H+) (mol·s−1) 2.6·10−15 (Ib, Ic)
KCa2+

m (Ca2+ /2 H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)

Vmax(Ca2+ /2 H+) (mol·s−1) 2.6·10−15 (II)
KCa2+

m (Ca2+ /2 H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)
Vmax(CO2) (mol·s−1) 1.4·10−15

KCO2
m (CO2) (mol·L−1) 0.1·10−6

Vmax(Ca2+ /2 Na+) (mol·s−1) 2.6·10−15 (IIIa)
KCa2+

m (Ca2+ /2 Na+) (mol·L−1) 42·10−6

Vmax(HCO−

3
/Cl−) (mol·s−1) 13·10−18

K
HCO−

3
m (HCO−

3
/Cl−) (mol·L−1) 0.1·10−3

Vmax(Ca2+ / 2HCO−

3
) (mol·s−1) 2.6·10−15 (IIIb)

KCa2+

m (Ca2+ /2 H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)

Vmax(Ca2+ /CO2−

3
) (mol·s−1) 2.6·10−15 (IV)

KCa2+

m (Ca2+ /CO2−

3
) (mol·L−1) 42·10−6

Vmax(Ca2+ /2 H+) (mol·s−1) 2.6·10−15 (Va)
KCa2+

m (Ca2+ /2 H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)
Vmax(HCO−

3
/H+) (mol·s−1) 6.52·10−18

K
HCO−

3
m (HCO−

3
/H+) (mol·L−1) 0.1·10−3

Vmax(Ca2+ /HCO−

3
/H+) (mol·s−1) 2.6·10−15 (Vb)

KCa2+

m (Ca2+ /HCO−

3
/H+) (mol·L−1) 42·10−6

V (H+) (mol·L−1·s−1) 0.02·10−3 (VI)
Vmax(Ca2+ /2 H+) (mol·s−1) 1.0·10−15

KCa2+

m (Ca2+ /2 H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)

V (H+) (mol·L−1·s−1) 0.02·10−3 (VII)
Vmax(Ca2+ /HCO−

3
/H+) (mol·s−1) 3.2·10−15

KCa2+

m (Ca2+ /HCO−

3
/H+) (mol·L−1) 42·10−6 (Blumwald & Poole, 1986)
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Figure S 1: Simplified shape of the CV. The large diameter size of the coccolith is
scaled to 1.
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Figure S 2:Model outputs to model version Ib and II. DIC in the cytosol was increased
to 55 mmol L−1 in Ib. Model version II is based on an active CO2 import into the CV.
Development of DIC, TA,Ω, Ca2+ and the individual DIC species’ concentrations
inside the CV during the first 0.8 second of the model run.
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Figure S 3: Model outputs to model version IIIa. Ca2+ and HCO−

3 cross the CV
membrane independently of each other, while no H+ are exported from the CV.
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Figure S 4:Model outputs to version IV, Va, and Vb. Ca2+ and CO2−
3 are actively

imported in version IV. Version V assumes an import of Ca2+, HCO−

3 , and an export
of H+, once via two transporters (V a) and once by means of one complex transporter
(V b).
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Figure S 5:Results to model version VI. The plots on the left hand side present the
first 20 minutes of the model run, while on the right hand side,the time slot, during
which the ATPase activity is stopped and the Ca2+ / 2 H+ exchanger starts its activity,
is shown explicitly. CO2 diffuses across the membrane in both stages.
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Figure S 6:Results to model version VII. Ca2+, HCO−

3 and H+ actively cross the CV
membrane, after the establishment of a proton gradient across the CV membrane by
means of an ATPase. CO2 diffuses across the membrane in both stages. The plots on
the left hand side present the whole model run, while on the right hand side, the time
slot, during which the ATPase activity is stopped and the Ca2+ / HCO−

3 / H+ exchanger
starts its activity, is shown in more detail.


