Molecular signatures of cold-adaptation in the Antarctic eelpout (Pachycara brachycephalum)

Introduction Adaptation of ectotherm organisms to the key abiotic factor temperature can occur by the development of advantegous traits at different levels of organization [1]. Since all biological processes are subjected to the same physicochemical paradigms (Q10-rule), the
composition of biological macromolecules is likely to be affected as well. Hence, proteins and nucleic acids may also contribute to a certain thermal plasticity and tolerance.
Antarctic fishes have adapted to constant cold environmental conditions for millions of years and
provide therefore excellent study objects to evaluate evolutionary trends of thermal adaptation. Comparative sequence analyses with temperate species shed light on the molecular architecture of biological macromolecules in connection with species habitat temperatures.

Methods DNA/RNA sequences as well as their respective translations were compared between the Antarctic eelpout Pachycara brachycehalum and its temperate congener, the Northsea Eelpout, Zoarces viviparus through analyses of normalized transcriptomic cDNA libraries.

overview of cDNA libraries			
		Pachycara [2]	Zoarces [3]
reads	reads total	481,802	$\sim 400,000$
	in assembly	338,993	349,102
	mean length	321	221
contigs	total	65,565	53,447
annotation	known function	19,460	16,315
orthologs	matching sequence pais	s 4,155	

Results
 Functional differences

Functions, differently represented in respective transcripto mes may indicate gene duplication events and distinct metabolic demands. As a „genomic scale", the functional distribution of Gasterosteus aculeatus is indicated by green bars.

Conclusion Comparative sequence analyses of zoarcid congeners revealed patterns of a different thermal adaptation at the molecular level although their mean habitat temperature differs only by $\sim 10^{\circ} \mathrm{C}$. The compositional
biases of cold-adapted proteins and DNA/RNA support an increase of molecule flexibility at the respective levels. These trends promote optimized reaction kinetics at low temperatures trough less stable transition states in reaction
processes shaping the thermal plasticity of organisms at a deeper level. Finally, these data highlight another aspect of species‘ vulnerability of cold-adapted organisms in the context of the ongoing climate change.

13] Kristiansson et al. (2009). BMC Genomics 10,345
$=$
響紋

