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Why is this interesting?

Rignot et al., 
Nature Geo., 2008

• Flow speed estimates 
from radar 
interferometry 
(ERS-1/2) 

• Mass loss estimates 
from satellite gravity 
(GRACE)
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Figure 1 Ice velocity of Antarctica colour coded on a logarithmic scale and overlaid on a MODIS mosaic13. Circles denote mass loss (red) or gain (blue) of large basins
in gigatonnes per year. Drainage basins are black lines extending from the grounding-line flux gates. Letters A–K⌅ indicate large basins20. Ice velocities for Siple Coast ice
streams and Ronne Ice Shelf are from refs 22,23. See Supplementary Information for acronyms and the Methods section for velocity precision.

Solid-ice fluxes are then calculated combining vector ice velocity
and ice thickness, with a precision that is glacier dependent and
ranges from 2 to 15% (see the Supplementary Information). The
end points of the selected flux gates define the extent of the glacier
drainage basins determined from the DEM. Individual drainage
basins are grouped into large units labelled A to K⌅.

Snowfall accumulation is from the RACMO2/ANT regional
atmospheric climate model, at 55 km resolution, averaged for
1980–2004 (refs 17–19). Lateral forcings are taken from European
Center for Medium-Range Weather Forecasting reanalyses
(ERA-40) for the period 1980–2002, supplemented with European
Center for Medium-Range Weather Forecasting operational
analyses after August 2002. Comparisons with 1,900 independent
field data show excellent agreement (R = 0.82) with the model18.
The model predicts higher coastal precipitation and wetter
conditions in West Antarctica and the western Peninsula17 than
older maps obtained by interpolating limited field data using
meteorological variables20 or satellite passive microwave data21.
Few reliable in situ coastal accumulation data exist for comparison,
but in the high-accumulation sector of the Getz Ice Shelf (basin
F⌅G), the model predicts precipitation levels consistent with a
2,030 mm yr�1 record at Russkaya station (74⇤46⌅ S, 136⇤52⌅ W)

for 1981–1989. Older maps yield accumulation levels 3 times lower,
which imply a local mass balance 20 times more negative and high
rates of glacier thinning that are not observed2. The RACMO2/ANT
accumulation values yield comparable losses for Pine Island and
Thwaites glaciers, which is consistent with the similarity of their
thinning rates2; other maps yield twice more thinning for Thwaites.
Finally, the model does not mix data from di�erent time periods
and fully incorporates temporal changes in snowfall between 1980
and 2004. A statistical analysis of absolute errors (see the Methods
section) yields an uncertainty in accumulation varying from 10%
in dry, large basins to 30% in wet, small coastal basins.

Ice flux and snowfall are compared for each glacier, for large
basins A–K⌅, and for the Peninsula, East and West Antarctica. To
include non-surveyed areas, we apply a scaling factor on the mass
fluxes of each large basin A–K⌅ based on the percentage surveyed
area versus total area to cover 100% of Antarctica (Table 1). In East
Antarctica, we obtain a near-zero mass balance of �4±61 Gt yr�1.
The J⌅⌅K Filchner22 and E⌅E Ross sectors are gaining mass, but this
is compensated by the mass loss in Wilkes Land (basin CE) from
the Philippi, Denman, Totten, Moscow University Ice Shelf, Cook
Ice Shelf and David glaciers. Interestingly, all of these glaciers are
marine based, that is, grounded well below sea level2, and therefore
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Pine Island Glacier: 
rapid dynamic thinning

Pritchard et al., 
Nature (2009)

Thinning rates inferred 
from laser altimetry 
(ICESat-1)



Why is this interesting?

Schoof, Nature, 2010
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Figure 1 |Map and satellite imagery of the study area. a, Map of
Antarctica (inset) and enlargement of the coastal zone around Pine Island
Bay, showing grounded ice sheet (dark grey) and floating ice shelves (light
grey). The small square over PIG indicates the area covered by b, and the
bold line indicates the cross-section in Fig. 2c. b, Modis image of PIG
obtained on 28 December 2008 showing tracks followed by Autosub3
(white, labelled with mission number) and the grounding line (bold, white)
as mapped in 1996 (ref. 7). The black square and circle indicate the areas
covered by, and circled within c. c, Evolution of surface features on the PIG
ice shelf. The bump (circled) in the 1973 image is smaller in 1975 and
entirely absent in 1982, to be replaced by more complex topography in
recent years.

thickness overall5, so more gradual thinning over the preceding 20
years is consistent with the ice floating free from the highest point
of the ridge over this timescale. The bump was the only point of
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Figure 2 | Configuration of the ocean cavity beneath the PIG ice shelf.
a, Seabed depth derived from AUV pressure and downward-looking ADCP
range data. Beyond the boundaries of the floating ice (bold), further
bathymetric data come from ship sonar13 and airborne radar29,30 sounding.
Interpolation has been constrained in data gaps (cross-hatched) to ensure
that the seabed is deeper than the ice draft measured by radar. The thin
white lines show the AUV tracks. The magenta rectangles indicate the
sections enlarged in Fig. 3. b, Water column thickness calculated as the
difference between seabed depth (a) and ice draft derived by combining
AUV pressure and upward-looking ADCP range data with radar
soundings29,30. c, Profiles of ice base (magenta) and seabed (black)
elevation measured along the tracks of missions 428, 431 and 434 (Fig. 1b),
combined with ice surface and bed elevation data (grey) measured by
radar29,30 along the same track and extended inland along the axis of the
main glacier channel (Fig. 1a).

NATURE GEOSCIENCE | VOL 3 | JULY 2010 | www.nature.com/naturegeoscience 469

Jenkins et al. 2010



Melt rates: What do the others say?
Jacobs et al. (1996), 3 in-situ CTD casts 
in 1994, water mass analysis

10-12 m/a 
28 Gt/a

Hellmer et al. (1998), numerical model 6−12.5 m/a

Rignot et al. (2008), radar interferometry, 
regional climate model

Grounding line flux of 237±4 Gt/a (PIG and 
Thwaites) 
37±4 m/a (not clear where this comes from)

Jacobs et al. (2011), in-situ CTD 
observations, water mass analysis and 
inverse model

2009: 80 to 85±6 km3/a (ice) (33 m/a) 
1994: 53 to 53±7 km3/a (ice) (22 m/a) 

Bindschadler et al. (2011), observations 
from satellite and airborne platforms 
combined with model calculations

19.1 m/a (44.5 km3/a of ice) 
50.4 m/a (42.5 km3/a of ice) near grounding line

Schodlok et al. (2012), MITgcm/ECCO2
28.28 m/a water 
117.89 Gt/a ice  
(IceBridge topography)

20.32 m/a water 
84.39 Gt/a ice 
(BEDMAP topogr.)



•Problem: Melt rates are difficult to observe/measure 
directly 

•Solution: use inverse methods to infer melt rates from 
available marine observations and dynamical 
constraints (here an OGCM)

Approach
•Given an OGCM with … 
1. (parameterized) ice shelf-ocean interation, 
2. an adjoint model 

•you can calculate gradients/sensitivities of objective 
functions, such as 
- melt rates 
- least-squares model - data misfits



Reproducing Schodlok et al. (2012)

RTOPO (Timmermann et al. 2010) 
melt rate   19.80 m/a 

net mass loss 108.05 Gt/a

IceBridge (Studinger et al. 2010) 
        melt rate   26.07 m/a 
net mass loss 119.23 Gt/a
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Model data comparison: cost function
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Jenkins et al. 2010

cost function: squared 
model-data misfit, weighted 
by prior error estimates

observational data: 
• CTD data of 1994 cruise (3 

casts) 
• CTD and Autosub data of 2009 

BAS cruise (Jenkins et al 2010), 
provided by P. Dutrieux 

• CTD data of 2010 Polarstern 
cruise (5 casts, M. Schröder)



Melt rates and cost function values

first guess CTD + Autosub 
2009 CTD 1994 CTD 2010

RTOPOv1.4 
constant Γ

19.80 m/a 
108.05 Gt/a

17.74 m/a 
96.78 Gt/a 
J = 1477→1151

19.63 m/a 
107.09 Gt/a 
J = 32→31

19.67 m/a 
107.35 ma/ 
J = 70→69

IceBridge Topo 
constant Γ

26.36 m/a 
120.67 Gt/a 

24.35 m/a 
111 Gt/a 
J =1543→1248

RTOPOv1.4 
velocity 
dependent  Γ 
cD = 0.0015

5.10 m/a 
27.84 Gt/a

4.43 m/a 
24.19 Gt/a 
J = 1367→1025

5.00 m/a 
27.28 Gt/a 
J = 28→27

4.98 m/a 
27.20 Gt/a 
J = 63→62



What’s happening to the hydrography?

colder 
fresher

temperature (oC)

salinity

observations!
first guess!
optimized solution

all CTD casts of 2009



Conclusions: Dilemma

• so far sensitivities to uncontrolled parameters/
parameterizations are large (topography, melt rate 
parameterization), much larger than to control 
parameters 

• best fit to observations associated with very low melt 
rates (order 5 m/a or 27 Gt/a of melt water), much lower 
than previous estimates (except for very early estimates 
in the 1990s) 

• first guess too warm and saline compared to 
observations, so that optimization reduces melt rates 
even further


