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ABSTRACT5

In data assimilation applications using ensemble Kalman filter methods, localization is nec-6

essary to make the method work with high-dimensional geophysical models. For ensemble7

square-root Kalman filters, domain localization (DL) and observation localization (OL) are8

commonly used. Depending on the localization method, one has to choose appropriate val-9

ues for the localization parameters, such as the localization length and the weight function.10

Although frequently used, the properties of the localization techniques are not fully inves-11

tigated. Thus, up to now an optimal choice for these parameters is a priori unknown and12

they are generally found by expensive numerical experiments. In this study, the relationship13

between the localization length and the ensemble size in DL and OL is studied using twin14

experiments with the Lorenz-96 model and a 2-dimensional shallow water model. For both15

models, it is found that the optimal localization length for DL and OL depends linearly on16

an effective local observation dimension that is given by the sum of the observation weights.17

In the experiments no influence of the model dynamics on the optimal localization length18

was observed. The effective observation dimension defines the degrees of freedom that are19

required for assimilating observations, while the ensemble size defines the available degrees of20

freedom. Setting the localization radius such that the effective local observation dimension21

equals the ensemble size yields an adaptive localization radius. Its performance is tested22

using a global ocean model. The experiments show that the analysis quality using the adap-23

tive localization is similar to the analysis quality of an optimally tuned constant localization24

radius.25
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1. Introduction26

In ocean modeling and weather forecasting an estimate of the current state is important27

to initialize forecasts of the dynamical process. In sequential data assimilation, variants28

of the Ensemble Kalman Filter (EnKF, Evensen 1994) are commonly used. To deal with29

the particular problems of the geophysical systems many improvements of the methods, e.g.30

covariance inflation and localization (Houtekamer and Mitchell 1998), have been introduced.31

Typically, the state dimension of the models is very high, but only a small ensemble is32

feasible to use. This introduces noise and spurious correlations in the covariance matrices33

and limits the degrees of freedom for the analysis, which are defined by the ensemble size.34

Localization is used to access the problem of spurious correlations, and increases the degrees35

of freedom by calculating a local analysis in every grid point. This approach is justified by36

the fact that dynamical systems can locally behave like a low dimensional systems (see Patil37

et al. 2001). The positive effect of localization for ensemble Kalman filters has recently been38

described for different applications in oceanography and meterology (e.g. Nerger et al. 2006;39

Janjić et al. 2011; Otkin 2012; Losa et al. 2012; Kang et al. 2012)).40

Localization can be applied to the covariance matrices by point-wise multiplication41

(Houtekamer and Mitchell 2001), referred to as covariance localization (CL). Alternatively,42

the domain is decomposed as in domain localization (DL) and separate analysis for each43

subdomain are calculated (Houtekamer and Mitchell 1998). The latter method can be com-44

bined with observation localization (OL), where the observations are weighted according to45

their distance, as described in Hunt et al. (2007). Several studies (Miyoshi and Yamane46

2007; Greybush et al. 2011; Sakov and Bertino 2011; Nerger et al. 2012) investigated the47

relationship between CL and OL and found that the results were comparable, even though48

the effective localization length is shorter for OL than for CL. The relation between different49

weight functions and localization radii was examined in Whitaker and Hamill (2002). They50

found that using a weight function similar to the Gaussian curve (see Gaspari and Cohn 1999,51

Eq. 4.10) produces better results than using a Heaviside step function. For a regional ocean52
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model, the effect of different localization radii in DL was examined in Nerger et al. (2006).53

Yoon et al. (2010) have shown that localization improves the estimation of the covariances.54

According to their findings the localization radius should be chosen large enough to get most55

of the relevant covariances. For all of these localization methods, extensive tuning of the56

localization parameters is necessary to achieve the optimal results.57

Recently, adaptive localization methods (Anderson 2007, 2012; Bishop and Hodyss 2007,58

2009) have been developed to estimate the correlations between different variables flow-59

dependently. Further, information-based localization schemes have been developed (Zupan-60

ski et al. 2007; Migliorini 2013). As shown for different examples, these methods improve61

the assimilation results, but they still require the choice of different parameters or are com-62

putational very expensive.63

Here, an alternative approach to define the localization radius is investigated. From ex-64

periments using two small models, a relationship between the ensemble size and the optimal65

localization radius is derived in the context of dense observations with uniform error statis-66

tics. Examples of these kind of observations are gridded satellite observations of sea surface67

temperature or sea surface elevation, which are frequently used in ocean data assimilation68

applications (see e.g. Janjić et al. 2012; Losa et al. 2012; Sakov et al. 2012). The relation is69

then used to define an adaptive localization method and tested using a global ocean model.70

The article is structured as follows. In Section 2 the assimilation algorithm and the local-71

ization techniques are discussed. Afterwards, the models are introduced and the numerical72

experiments are described in Section 3. In Section 4, the results for the Lorenz-96 model73

are presented. The experiments using the Shallow-Water-Equations are discussed in relation74

to the Lorenz-96 model in Section 5. In Section 6 assimilation results using a global ocean75

model are discussed and conclusions are drawn in Section 7.76
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2. Assimilation algorithm77

The assimilation experiments in this study are performed with the widely used Ensemble78

Transform Kalman Filter (ETKF, Bishop et al. 2001) with localization (Hunt et al. 2007).79

In this section, the ETKF and the localization techniques are reviewed.80

a. ETKF81

Data assimilation methods provide an estimate of the state of a system xk ∈ Rn at time82

k given the model dynamics83

xk+1 = M(xk) + εk (1)

and a set of observations yo
k ∈ Rp. These are related to the model state via the observation84

operator H85

yo
k = H(xk) + ηk. (2)

The errors ε ∈ Rn and η ∈ Rp are assumed to be Gaussian with zero mean and covariance86

matrices Q ∈ Rn×n and R ∈ Rp×p respectively . Below, the time index k is omitted.87

The background state xf and the covariance matrix Pf are now represented by an en-88

semble of state realisations xf(i), i ∈ {1, . . . , N}. The matrix Xf denotes the matrix whose89

column vectors are the ensemble members, and Xf ′
is the matrix of ensemble perturbations.90

The state estimate is given by the mean of the ensemble x̄.91

The idea of the ETKF is to carry out the analysis in the ensemble space and then map92

the corrections into the state space via the ensemble perturbations. Here, only the equations93

for the ETKF are given. For a detailed derivation of the filter equations see Hunt et al.94

(2007).95

At an analysis time, an analysis weight vector w̄a and an analysis covariance matrix P̃
a

96
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are calculated in the space spanned by the ensemble perturbations:97

P̃
a

= [(N − 1)Iρ+ (HXf ′
)TR−1HXf ′

]−1 (3)

w̄a = P̃
a
(HXf ′

)TR−1(yo −Hx̄f ) (4)

The factor ρ ≥ 1 is used to inflate the ensemble (see Hunt et al. 2007).98

The forecast ensemble is then99

Xa = x̄f1T + Xf ′
(w̄a1T + [(N − 1)P̃

a
]1/2). (5)

During the forecast phase, the ensemble members are all moved forward in time using the100

full nonlinear model101

xf(i) = M(xa(i)) (6)

for all i = 1 . . . N .102

b. Localization in ETKF103

For a local analysis with the ETKF, the domain is decomposed into different local regions104

(Houtekamer and Mitchell 1998), e.g. every single grid point. An analysis increment is then105

calculated separately for every local domain. For the local analysis domains a support106

radius l for the observations is defined. Only observations closer than l from the analysis107

point will have a non-zero weight and thus influence on the local analysis. According to108

Hunt et al. (2007), the observations used for two neighbouring analysis regions should overlap109

significantly to ensure that the weights are similar and a smooth analysis is produced. Except110

for very small localization radii, this was ensured in the experiments.111

The observations inside each observation region are weighted according to their distance112

to the analysis point. These weights are applied by Schur-multiplying the inverse of the113

observation covariance matrix R by a matrix constructed from a correlation function (see114

Hunt et al. 2007).115
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We examine the effect of two localization techniques, domain localization (DL) and ob-116

servation localization (OL) that are characterised by their weighting functions. DL was117

formulated without explicit weights to the observations (see e.g. Houtekamer and Mitchell118

1998; Nerger et al. 2006), but implicitly the weights119

wDL(z, l) :=


1 if |z| ≤ l

0 else

are used. Here, l is a predefined cut-off radius. This weighting corresponds to a unit weight120

inside an observation domain and zero outside.121

For OL, a fifth-order polynomial (Gaspari and Cohn 1999, eq. 4.10) is used for weighting122

the observations. This function is very popular because its shape is similar to the probability123

density function of a normal distribution but has compact support. The equations can be124

written as125

wOL(z, l) :=


f1(z/2l) if 0 ≤ |z| ≤ l/2

f2(z/2l) if l/2 ≤ |z| ≤ l

0 if |z| ≥ l

with126

f1(c) = −c
5

4
+
c4

2
+

5c3

8
− 5c2

3
+ 1

f2(c) =
c5

12
− c4

2
+

5c3

8
+

5c2

3
− 5c+ 4− 2

3c
.

OL is the current standard scheme for localization in the LETKF (e.g. Miyoshi and127

Yamane 2007). DL is an older formulation (see e.g. Houtekamer and Mitchell 1998; Nerger128

et al. 2006) and nowadays it is unusual to use DL, because OL yields better assimilation129

performance. However, the constant observation weights allow to investigate the influence130

of localization without considering the effects of varying weights. If the results from DL are131

then compared to the variable weight functions of OL, the basic properties of localization132

become clearer.133
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3. Configuration of Numerical Experiments134

The numerical experiments are performend with the Lorenz-96 model (Lorenz 1995) and135

a shallow-water model. Although being rather simple, both models exhibit strong nonlinear136

behaviour. For the Lorenz-96 model this was described in (Lorenz 1995). The shallow water137

model configuration used here can develop strongly nonlinear dynamics in the form of a138

meandering zonal jet and associated eddies (see Krysta et al. 2011). Since the dynamics of139

the models are distinct, the comparison of the results from both models provides insight to140

which extent the localization behaviour is independent of the model.141

a. Experiments with the Lorenz-96 model142

The characteristics of the localization techniques are first investigated with twin experi-143

ments using the 40-dimensional Lorenz-96 model (Lorenz 1995). For the twin experiments,144

the initial condition X ∈ R40 with X20 = 8.008 and Xj = 8 for all i 6= 20 is first integrated145

for 1000 time steps by using the classical forth-order Runge-Kutta scheme with a time step146

of 0.05. By integrating the model for another 5000 time steps, a trajectory is obtained that147

represents the truth. The observations are generated by adding Gaussian distributed ran-148

dom numbers with unit variance and zero mean to the truth. All grid points are observed.149

The observation error covariance matrix R is chosen to be diagonal with the variance of the150

observation error on the diagonal. A constant inflation factor of ρ = 1.05 is used to inflate151

the background covariance matrix.152

The initial ensemble is generated by second-order exact sampling (Pham 2001) from a153

model run over 10000 time steps. The ensemble size is varied between 5 and 28. Localization154

radii between 0 and 20 are used for the experiments with DL, while for OL localization radii155

from 0 to 50 are used. All experiments are repeated ten times with different random numbers156

for the ensemble initialisation and observations. The ETKF as implemented in the Parallel157

Data Assimilation framework (PDAF, Nerger and Hiller 2013, http://pdaf.awi.de) is used158
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for the experiments.159

For evaluating the assimilation performance, the root mean squared error, averaged over160

the assimilation times and the repetitions is used. This quantity will be denoted as MRMSE.161

b. Experiments with the Shallow water model162

A 2D model using the shallow water equations (see Krysta et al. 2011) is used to asses163

the localization in case of a multivariate model. A detailed review of the model is given in164

Appendix A. The model is calculated on a regular square grid with 25km resolution. At each165

grid point, the sea surface height (h), the horizontal (u) and the vertical velocities (v) are166

defined. The state vector has 19380 elements, of which only the sea surface height is observed167

in the experiments. Both, fully observed h and partial observations of h are considered in168

the experiments. For the partial observations, every second and every third point in both169

directions is observed.170

The experiment is initialised by integrating the initial state h = 500m and u = v =171

0m s−1 for 15 years. The first 5 years are used to spin up the model state. A sample of every172

second day from year 6 to 15 is used to initialise the ensemble through second-order-exact173

sampling. Synthetic observations are generated from the sea surface height with zero mean174

and constant variance of 2m2. The observation errors are assumed to be uncorrelated and175

are assimilated once a day.176

A local analysis is calculated for every single grid point. The influence region for the177

observations is a circle of radius l around the analysis location. The weighting is applied178

according to the Euclidean distance. For the experiments, localization radii between 20km179

and 350km with a step size of 10km and ensemble sizes from 5 to 40 are used.180

The inflation factor is set to ρ = 1.08. It is tuned so that the estimated and true errors181

are in the same order of magnitude for several converged configurations. Thus, is not tuned182

to achieve the minimal error, but such that the following results do not depend on the choice183

of the inflation factor. For the experiments, the same configuration of PDAF as in section184
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3a was used.185

To compare the analysis quality of the different experiments, the root mean squared error186

(RMSE) of the height field h is examined.187

4. Localization behaviour with the Lorenz-96 model188

a. Optimal localization radius for DL189

Figure 1 shows in the top row the MRMSE for all considered parameter values N and190

l for DL. The parameter region can be clearly divided into diverged and converged results.191

An experiment is defined as divergent, if the MRMSE of an experiment is larger than the192

observation error. For every ensemble of less than 21 members, filter divergence occurs when193

a certain localization radius is exceeded (e.g. l = 4 for N = 5). In the following, this radius194

is denoted by ldiv.195

For a constant localization radius, increasing the ensemble size reduces the MRMSE.196

However, after the most information content from the observations is extracted, very little197

error reduction is gained (e.g. for N > 14 for l = 7).198

If the ensemble size is kept constant and the localization radius is increased, the error199

shrinks until an optimal localization radius, denoted by lopt, is reached. Increasing l beyond200

this radius deteriorates the assimilation results and filter divergence can occur.201

In the top panel of figure 2, lopt and ldiv as functions of the ensemble size N are shown for202

DL. The optimal value for lopt is always close to N/2. Filter divergence occurs approximately203

if the localization radius, measured in grid points, exceeds the number of ensemble members.204

As long as in a local analysis not all observations are used, lopt and ldiv depend linearly on the205

ensemble size. For DL, the behaviour changes if the ensemble size is big enough so that the206

filter converges without localization. In this case, filter divergence doesn’t occur anymore207

and the global filter produces the best results.208
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b. Optimal ensemble size for OL209

For OL, the MRMSE for various localization radii and ensemble sizes is also divided into210

regions where the filter diverges or converges (Fig. 1, bottom). The assimilation converges211

as long as l is only slightly bigger than 2N . Compared to DL, the convergence region in212

case of OL is enlarged approximately by a factor of two. A similar relationship holds for the213

optimal localization radius. Since more observations are assimilated, the best assimilation214

results for OL are more accurate than the ones for DL, even with less ensemble members.215

As expected, the observation weighting of OL results in a smaller error with a minimum216

MRMSE=0.1883 compared to MRMSE=0.1901 in case of DL.217

The lower panel of Fig. 2 shows that the relationship between the optimal localization218

radius lopt and the ensemble size N is also linear. However, with OL longer localization radii219

can be used than with DL. The behaviour of the optimal localization radius for N > 20 is220

not representative for OL. The reason is that lopt is bounded by the largest tested localization221

radius. Thus, for N > 20 lopt is likely to be larger than the radii tested here.222

c. Sampling quality of the covariance matrix223

The localization implicitly modifies the state covariance matrix. Here, it is examined how224

well the true covariance matrix is approximated with localization. The results are shown for225

a single ensemble size (N = 16), but also hold for other choices.226

The true covariance matrix Pt is generated from a twin experiment using an Ensemble227

Kalman Filter with an ensemble size of 128. Since the ensemble is significantly larger than228

the state dimension, this covariance matrix should be close to the truth.229

At the end of the assimilation experiment, the normalised difference between the true230

covariance matrix and the analysis ensemble covariance matrix231

δ(Pal) :=

∥∥Pal −Pt
∥∥
F∥∥Pt

∥∥
F

(7)
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is compared in the Frobenius norm ‖ ‖F . Here, the matrix Pal denotes the ensemble covari-232

ance matrix calculated from an assimilation experiment with the localization radius l using233

the LETKF with OL .234

In the local filter, not all elements of the covariance matrix are used. To take this into235

account, we define the matrix Pl as the matrix P with all elements (p)ij set to zero that236

correspond to long distances beyond the localization radius i.e.237

(p)ij =


pij if ‖xi − xj‖ ≤ l

0 else.

(8)

The quantity δl is then defined as238

δl(P
al) :=

∥∥Pal
l −Pt

l

∥∥
F∥∥Pt

l

∥∥
F

. (9)

In Fig. 3, δ and δl are plotted for the case of OL for N = 16 over all localization radii.239

Both curves show small errors in the covariance estimates as long as l < 13. Increasing240

l beyond 13 worsens the estimation of the covariances. If only the observation at each241

analysis grid point is used (l = 0), the estimates of the variance are even worse than in the242

case when all observations are assimilated at once. Despite this, the state estimation with243

l = 0 is improved over the global filter (see Fig. 1). The smallest error is obtained for the244

localization radius l = 11. This is consistent with the optimal localization radius in Section245

4a. For l > 14 the assimilations become unstable until divergence happens.246

Compared to the global estimate Pal , the error of the local estimate Pal
l is always smaller247

for all localization radii. This shows that the neglected covariances are noisy and therefore248

it is beneficial to omit those noisy parts. For l between 3 and 11 the error of the local249

approximation has roughly the same smallest value. In this interval, the covariances are250

gradually improved by increasing the localization radius. The interval becomes narrower if251

a smaller ensemble is used. Thus, it becomes more difficult to find the optimal localization252

radius. Overall, this experiment shows, that a good choice of the localization radius improves253

the estimate of the covariance matrix P.254
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d. Relation between domain- and observation localization255

Domain and observations localization differ only in their weight functions. To relate256

the localizations of DL and OL, we define an effective observation dimension dWk
for an257

assimilation experiment as the sum of the local weights used to compute the analysis, i.e.258

dWk
:=

pl∑
i=0

Wk(i, l) (10)

where pl is the number of observations in each local region, l the localization radius, and259

k the localization type (OL or DL). Thus, the effective observation dimension takes not260

only into account the number of observations but also the weights given to the observations.261

Because in the experiments the observations have uniform density, the effective observation262

dimension is identical for all grid points. It follows directly from the definition (10) that for263

DL the effective observation dimension dWDL
is equal to the number of observations. In Fig.264

4, dW is plotted for the optimal and divergence localization radii for both DL and OL. The265

optimal effective observation dimensions are in good agreement for ensemble sizes below 16266

with a difference of at most one. For 16 ≤ N ≤ 20 the difference gets slightly bigger. Only267

values up to N = 20 are shown, because, as noted in Section 4b, the effective observation268

dimension for OL is bounded by the considered localization radii for N ≥ 20.269

The effective observation dimension where divergence occurs (bottom of Fig. 4) is nearly270

equal for N < 9 for DL and OL. Above N = 9, the observation dimension where the analysis271

with OL diverges is slightly smaller that the one for domain localization. Yet, the trend272

for the two functions is still similar. Above N = 17, the filter with OL converged for all273

considered localization radii. The behaviour of the curves is also similar if an exponential274

weight function is used (not shown). Over all, by decreasing the weight of the observations,275

they do not constrain the ensemble as strong anymore and the number of observations that276

can effectively assimilated is increased.277
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5. Localization with the Shallow Water Equations278

In this section the localization experiments are repeated using a model with different279

dynamics, to examine whether similar results are obtained. In addition, the shallow water280

model is multivariate, so an additional degree of complexity is introduced.281

The MRMSEs for the experiments with the shallow water model (see Fig. 5) are quali-282

tatively similar to the ones for the Lorenz-96 model. The ability of the filter to handle more283

observations with increasing ensemble size is clearly visible (e.g. the step from l = 70km to284

l = 80km for N = 8 to N = 9) for DL (Fig. 5, top). Compared to the experiments with the285

Lorenz-96 model, the convergence region is not increasing uniformly with growing ensemble286

size. This is due to the nonuniform increase of the number of observations in the local do-287

mains because the domain is 2-dimensional. The smallest errors for the considered ensemble288

sizes are achieved for localization radii between 80km and 100km. If l is increased beyond289

this value, the analysis quality is degraded. For OL (Fig. 5, bottom), the methods behave290

more uniformly, since the weighting of the observations allows a smoother increase of the291

observation dimension. This leads to an almost linear increase of the optimal localization292

radius for N ≤ 14.293

For OL, the convergence region is almost twice as large compared to DL. This occurs294

because the weight of distant observations is decreased so that more observations can as-295

similated in a beneficial way. As a consequence, the errors are also slightly reduced. The296

smallest MRMSE = 0.27 is obtained with a localization radius between 190km and 210km297

and the largest investigated ensemble size.298

In Fig. 6, the effective observation dimensions for the experiments are shown. For DL,299

the optimal observation dimension lopt is nearly a step function. This means that a much300

bigger ensemble is needed to assimilate the step-wise increase of observations in an optimal301

way. This effect does not occur for OL where the optimal observation dimension is growing302

at a slower rate. For N = 15 and N = 28, the optimal observation dimension for DL and OL303

are almost the same. In between, the optimal observation dimension increases about linearly304
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for OL compared to the sudden step for DL. The optimal value for the effective observation305

dimension is slightly smaller than the ensemble size N for OL, and depends linearly on the306

ensemble size.307

For the effective observation dimension ldiv at which the filter diverges, the behaviour308

is slightly different. Divergence occurs for both weighting functions for nearly the same309

effective observation dimension. Again, the dependence on N is smoother for OL than for310

DL.311

The optimal localization radii for the unobserved u and v fields are almost equal to the312

optimal localization radius for the height field. There is only a minor difference for DL, when313

the local number of observations is heavily increased (e.g. l = 70km to l = 80km). At this314

point the optimal localization radius is a bit smaller for the u and v fields than for the h315

field (not shown).316

For DL, the slopes of lopt and ldiv as functions of the ensemble size are reduced compared to317

the experiment with the Lorenz-96 model. Nevertheless, the effective observation dimensions318

for DL and OL are very similar, thus the degrees of freedom for both methods are very close319

to each other.320

If the observation density is reduced, the optimal effective observation dimension still321

depends linearly on the ensemble size (see. Fig. 7). The smaller the observation density, the322

smaller the optimal effective observation dimension becomes. Thus, if not the whole field is323

observed, the optimal localization radius has to be normalised by the observational density.324

This becomes especially an issue, if the spatial distribution of the observations is not regular.325

This case will be examined in future studies.326

Figure 5 also allows to estimate the optimal localization radius as a function of the327

ensemble size. The relationship is approximately328

lopt ≈ 8

√
N

40
dx (11)

where dx denotes the grid spacing. At this localization radius, the effective observation329

dimension is approximately equal to the ensemble size. This relation should hold in general330
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for dense observations that are distributed in 2 dimensions and a regular orthogonal model331

grid.332

6. Localization in a global ocean model333

The experiments discussed above indicate that an optimal localization radius is obtained334

when the effective observation dimension is approximately equal to the ensemble size. To335

assess whether this localization can be applied in a realistic large-scale model, we apply336

it here in twin experiments using a global configuration of the finite-element sea-ice ocean337

model (FESOM, Danilov et al. 2004; Wang et al. 2008; Timmermann et al. 2009). The338

twin experiments are similar to an application of FESOM by Janjić et al. (2012) where real339

satellite dynamic ocean topography data was assimilated.340

a. Experimental setup341

FESOM is an ocean general circulation model that utilises finite elements to solve the342

hydrostatic ocean primitive equations. Unstructured triangular meshes are used, which allow343

for a varying resolution of the mesh. The configuration used here has a horizontal resolution344

of about 1.3◦ with refinement in the equatorial region. The model uses 40 vertical levels.345

For the data assimilation, FESOM was coupled to the assimilation framework PDAF346

(Nerger et al. 2005; Nerger and Hiller 2013, http://pdaf.awi.de) into a single program. The347

state vector includes the sea surface height (SSH) and the 3-dimensional fields of temperature,348

salinity, and the velocity components. The state vector has a size of about 10 million. For349

the twin experiments, the model is initialised from a spin-up run and a trajectory over one350

year is computed. This trajectory contains the model fields at each tenth day and represents351

the “truth” for the assimilation experiments. An ensemble of 32 members is used, which352

is generated by second-order exact sampling from the variability of the true trajectory (see353

Pham 2001). The initial state estimate is given by the mean of the true trajectory. Pseudo354
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observations of the SSH at each surface grid point are generated by adding uncorrelated355

random Gaussian noise with a standard deviation of 5 cm to the true model state. The356

analysis step is computed after each forecast phase of 10 days with an observation vector357

containing about 68000 observations. Overall, the experiments were conducted over a period358

of 360 days.359

The experiments use the ETKF with OL. Two experiments with fixed localization radii360

of l=500km and l=1000km are performed. A third experiment uses the localization radius361

determined such that the effective observation dimension is equal to the ensemble size. The362

inflation factor was set to ρ = 1.1.363

b. Assimilation performance364

Figure 8 shows of the RMS errors of the sea surface height over time relative to an365

experiment without data assimilation for the three experiments. For the fixed radius of366

l=1000km, the relative RMS error is quickly reduced below 0.5, but increases again after367

day 150. The relative RMS errors for the fixed radius of 500km and the experiment with368

the localization radius based on the effective observation dimension are similar and the error369

generally decrease over time. However, the variable localization results in smaller RMS370

errors than the fixed localization radius. In the second half of the experiment, the RMS371

errors obtained with the variable localization radius are even smaller than those for the fixed372

localization radius of 1000km.373

Overall, the experiments show that the effective observation dimension can be used to374

specify a spatially varying localization radius that yields estimates of similar quality than375

those produced by a fixed radius. However, while the fixed radius has to be tuned with376

several experiments this is not required for the variable radius.377
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7. Conclusion378

In this study, the optimal value for the localization radius in domain localization and379

observation localization was examined using numerical experiments. Using the Lorenz-96380

model and a nonlinear shallow-water model allowed to assess the localization behaviour381

with two simple nonlinear models with different dynamics. The main focus was on dense382

observations with uniform observational error, which are used in real assimilation applica-383

tions, e.g., as gridded satellite observations of the ocean surface temperature or sea surface384

height. For this type of observations, it was possible to assess the relation of the localization385

radius to the ensemble size over the whole model domain.386

The localization radius is optimal if the estimation errors are minimal. It depends on387

the ensemble size and varies for different weight functions. Typically, the optimal radius is388

determined by experimentation. Yet, one can define an effective observation dimension given389

as the sum of the observation weights involved in a local analysis. The optimal localization390

radius was obtained, if the effective observation dimension was about equal to the size391

of the ensemble. Moreover, the optimal value of the effective observation dimension is392

constant for different weighting functions. This situation can be explained by the fact that393

the degrees of freedom for the analysis are determined by the rank of the ensemble. The394

degrees of freedom are optimally utilized if the ensemble size equals the effective observation395

dimension. In the case of constant observation errors, the degrees of freedom are distributed396

over different numbers of observations for different weight functions. If the observation397

network is less dense, other effects, like sampling error for distant observations, become398

more important so that this relation is weaker. For multivariate data assimilation in the399

shallow water model, the optimal effective observation dimension was the same for all three400

model fields. If the observation density is reduced, the linear relation in the shallow water401

model was still conserved, but the slope was different. For both models, the optimal value402

of the effective observation dimension was roughly equal to the ensemble size if a field403

was completely observed. For dense observations that are distributed in two dimensions, a404
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simple relation between the ensemble size and the optimal localization radius was deduced405

from the experiments. This relation can be used to define an adaptive localization radius406

that ensures that the effective observation dimension is equal to the number of ensemble407

members. The relation was tested using a global ocean model where synthetic observations408

of the sea surface height were assimilated. With the adaptive localization, without tuning,409

a similar error reduction as using an optimally tuned fixed localization radius was achieved.410

This study lead to a simple relation between the ensemble size and the localization radius411

that should result in the minimal analysis errors of the observed field for dense observations.412

However, in real applications the localization radius can be influenced by other factors. For413

example, it is known that localization influences balances in the model state and a longer414

localization radius will have a smaller impact on the balances. Accordingly, one might prefer415

a longer localization radius in multivariate assimilation applications. In addition, the study416

only considered twin experiments. When assimilating real observations one can encounter417

biases and the observation error covariance matrix might be incorrectly estimated. It is418

unclear to which extend these factors can require the adaption of the localization radius to419

obtain overall optimal assimilation results.420

In the experiments, the optimal localization length was not influenced by the model421

properties. Thus, while different fields in a model can have different correlation length scales,422

this does not seem to influence the optimal localization radius. A reason for this finding might423

be that the optimal localization radius for dense observations is rather short. For example,424

the optimal radius was 8 grid points in the shallow water model for the largest tested ensemble425

of 40 members. In combination with the weighting by observation localization, observations426

have only an influence over a distance of a few grid points. This distance should be short427

enough to effectively remove spurious correlations when the real correlations are very short428

ranged. If the true error correlations are significant over a long range, at some point they can429

no longer influence the analysis, because of the limited degrees of freedom provided by the430

ensemble. Since it is well known that long range correlations are not well approximated with431
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small ensembles, this might be desirable. Nevertheless, the relation between the optimal432

localization radius and the physical error correlation should be further investigated.433

The findings of this study hold for dense observations with uniform observation errors434

and spatially constant inflation. The experiments with lower observation density indicate435

that the chosen effective localization dimension has to be smaller in this case, to account436

for the lack of information. This effect might be related to the sampling quality of the437

ensemble-estimated state error covariance matrix. When observations with spatially varying438

error variances and varying spatial distribution are assimilated, the global measurements439

of this study are no longer possible. One can expect that observations with different error440

variances show a varying influence on the analysis step that should be accounted for in the441

localization, perhaps by information-based methods (e.g. Migliorini 2013). These aspects442

will be investigated in a future study.443
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APPENDIX448

449

Appendix A450

a. The shallow-water equations451

The shallow-water model used in section 4 is similar to that used in Krysta et al. (2011).452

For completeness, the equations are given here. This 2-dimensional model consist of the453

horizontal and vertical velocities (u, v) and the water height h. The model equations are:454

δtu+ uδxu+ vδyu− fv + g∗δxh =
τx
ρ0h
− ru+ ν∆u

δtv + uδxv + vδyv + fu+ g∗δyh =
τy
ρ0h
− rv + ν∆v

δth+ δx(hu) + δy(hv) = 0

The model domain is chosen as the square domain [0, L]× [y0 − L, y0 + L] with length L =455

2000km and y0 = 0. The Coriolis parameter f is approximated by a β-plane approximation456

f(y) ≈ f(y0) + β(y − y0) (A1)

where β = 2 ·10−11 m−1 s−1. The variable g∗ denotes the reduced gravity, ρ0 water density, ν457

diffusivity friction and r the bottom friction coefficient. The system is driven by a wind stress458

τ = (τx, τy)
T , which is given by τx(y) = τ0 cos[2π(y − y0)/L] and τy = 0. The constants are459

chosen as f(0) = 7 ·10−5s−1, g∗ = 0.02ms−2, ρ0 = 103km−3, τ0 = 0.015N m−2, r = 5 ·10−9s−1
460

and ν = 9m2s−1.461

The domain is discretized on a regular Arakawa C grid with 25km resolution in both462

directions. For the boundary, a no-slip condition is used, i.e. u = v = 0. As time stepping463

method, a leapfrog scheme (Sadourny 1975) smoothed by the Robert-Asselin filter (Robert464

1966) with α = 0.01 and ∆t = 30min is used.465
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Fig. 1. MRMSE for the assimilation experiments with DL for the different parameter values
(top) and for OL (bottom) with the Lorenz-96 model.
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Fig. 2. The optimal and divergent localization radii for DL (top) and OL (bottom).
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calculated from an experiment with 128 ensemble members.
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Fig. 4. Comparison of the optimal effective observation dimension (top) and the effective
observation dimension where the filter on average diverges (bottom).
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Fig. 5. MRMSE for the assimilation experiments with DL for the different parameter values
(top) and for OL (bottom) with the shallow water model.
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Fig. 6. The optimal and divergent observation dimensions for DL (top) and OL (bottom)
for the shallow water model.
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