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Abstract 1 

Some species of planktonic Azadinium produce azaspiracids (AZAs), a group of lipophilic 2 

phycotoxins causing human poisoning after mussel consumption. We describe three new 3 

species from the North Atlantic, all of which shared the same Kofoidean plate pattern 4 

characteristic for Azadinium: Po, cp, X, 4´, 3a, 6´´, 6C, 5S, 6´´´, 2´´´´. Azadinium trinitatum 5 

sp. nov. was mainly characterized by the presence of an antapical spine and by the position of 6 

the ventral pore at the left distal end of the pore plate in a cavity of plate 1´. Azadinium 7 

cuneatum sp. nov. had a conspicuously formed first apical plate, which was asymmetrically 8 

elongated and tapered on its left lateral side with a ventral pore located at the tip of this 9 

elongated 1´ plate. Azadinium concinnum sp. nov. was of particular small size (< 10 µm) and 10 

characterized by an anteriorly elongated anterior sulcal plate and by large and symmetric 11 

precingular plates. The ventral pore was located inside the apical pore plate on the cells’ right 12 

lateral side. Molecular phylogenetics as inferred from concatenated SSU, ITS, and LSU 13 

sequence data supported the distinctiveness of the three new species. None of the new species 14 

produced any known AZAs in measurable amounts. 15 

 16 

 17 
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Introduction 1 

 2 

A large number of marine biotoxins produced by micro-algae are known to accumulate in 3 

shellfish making it harmful for human consumption. Intoxications have been categorized 4 

based on diagnostic symptoms as Paralytic, Amnesic, Diarrhetic, and Neurotoxic Shellfish 5 

Poisoning (PSP, ASP, DSP, NSP). As a fifth category, Azaspiracid Shellfish Poisoning (AZP) 6 

was recently coined to account for a toxic syndrome associated with the consumption of 7 

animals contaminated with azaspiracid toxins. The history of azaspiracids (AZAs) extends 8 

back to November 1995, when a harvest of blue mussels cultivated in Killary Harbour 9 

(Ireland) was implicated in the poisoning of at least eight people in the Netherlands. Three 10 

years later, the causative toxin was isolated from mussels, identified, structurally defined and 11 

named azaspiracid according to its chemical characteristics (Satake et al. 1998). The AZA-12 

producing organism, however, remained unknown until the isolation and identification of 13 

Azadinium spinosum Elbrächter et Tillmann from the North Sea (Tillmann et al. 2009) as a 14 

new species in a newly erected genus. 15 

Considering the short interval since the first identification of Azadinium, the knowledge about 16 

its diversity has rapidly increased. The currently encountered seven species are the type 17 

species A. spinosum (Tillmann et al. 2009) and further A. obesum Tillmann et Elbrächter 18 

(Tillmann et al. 2010), A. poporum Tillmann et Elbrächter (Tillmann et al. 2011), A. 19 

polongum Tillmann (Tillmann et al. 2012b), A. caudatum (Halldal) Nézan et Chomérat 20 

[(Nézan et al. 2012); occurring in two distinct varieties: A. caudatum var. margalefii (Rampi) 21 

Nézan et Chomérat and A. caudatum var. caudatum], A. dexteroporum Percopo et Zingone 22 

(Percopo et al. 2013), and A. dalianense Z.Luo, H.Gu et Tillmann (Luo et al. 2013). 23 

Moreover, a close relative was identified with the description of Amphidoma languida 24 

Tillmann, Salas et Elbrächter, and Azadinium and Amphidoma were subsequently placed in 25 

the family Amphidomataceae (Tillmann et al. 2012a). 26 
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Cells of Amphidoma and Azadinium are generally small and rather inconspicuous in light 1 

microscopy. Determination of diagnostic morphological characteristics, such as 2 

presence/absence of an antapical spine and distinct pyrenoid(s), or the location of a ventral 3 

pore, requires electron microscopy or tedious high resolution light microscopy (Tillmann et 4 

al. 2009, 2010, 2012, 2012b). Reliable identification of fixed cells of Azadinium from field 5 

samples is thus problematic and is further challenged by similar size and shape in comparison 6 

to a number of small species of Heterocapsa F.Stein. However, there is a need to 7 

unambiguously identify and quantify the toxigenic source organisms of AZAs and to 8 

distinguish these from their non-toxigenic relatives. This task is challenging because AZA-9 

producing and non-toxigenic species are known to co-exist in the same water mass (Tillmann 10 

et al. 2010, 2011, 2012b).   11 

Multiple strains of the type species A. spinosum, collected at different localities, consistently 12 

produce AZA-1, AZA-2, and AZA-33 (an AZA with the molecular mass of 715; Tillmann et 13 

al. 2012b). Other species have initially been described as non-toxigenic, as none of the known 14 

AZAs have been identified (Tillmann et al. 2010, 2011). However, the recent detection of 15 

four new AZAs in species such as A. languida and A. poporum indicates that species diversity 16 

within the Amphidomataceae is also reflected by high chemical diversity (Krock et al. 2012). 17 

Molecular probes for the first three described species (A. spinosum, A. obesum, A. poporum) 18 

are now available (Toebe et al. 2013) and are in the stage of being tested in field application 19 

(Tillmann et al. 2014a). 20 

It cannot be excluded, or it is even to be expected, that there are more yet undescribed species 21 

of the Amphidomataceae. These may either include a yet not recorded primary source of 22 

AZAs, or might yield false-positive (if non-toxigenic) signals with the molecular probes 23 

already designed for toxigenic A. spinosum and A. poporum. It is therefore important to gain 24 

more information on the diversity of species present in the Amphidomataceae, on their 25 

molecular signatures, and on their geographical distribution. Both the widespread records of 26 
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AZA toxins (Braña Magdalena et al. 2003; James et al. 2002; López-Rivera et al. 2009; Taleb 1 

et al. 2006; Yao et al. 2010) and the increasing number of records of species of Azadinium 2 

(Akselman and Negri 2012; Gu et al. 2013b; Hernández-Becerril et al. 2012; Percopo et al 3 

2014; Potvin et al. 2012; Salas et al. 2011) indicate a global distribution of the genus. 4 

However, species of Azadinium and/or the presence of azaspiracid toxins have not yet been 5 

reported for arctic or subarctic areas (Poulin et al. 2011). In the present paper, we present 6 

detailed morphological descriptions and sequence data of three new species of Azadinium 7 

isolated from water samples collected in the North Atlantic between Greenland and Iceland. 8 

 9 

 10 

 11 

12 
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Results 1 

 2 

1. Species descriptions 3 

Specimens of Azadinium were observed in concentrated whole water samples at a number of 4 

stations between Greenland and Iceland and around the north-west coast of Iceland (Fig. 1). A 5 

total of seven different strains were established. Two strains identified as Amphidoma 6 

languida (isolated from station 532) and Azadinium dexteroporum (isolated from station 526, 7 

see Fig. 1) will be presented elsewhere. The other strains were identified to represent three 8 

different new species with three strains (4A8, 4B11, A2D11) of Azadinium trinitatum sp. 9 

nov., and one strain each for A. cuneatum sp. nov. (3D6) and A. concinnum sp. nov. (1C6) 10 

(Tab. 1). 11 

 12 

Azadinium trinitatum Tillmann et Nézan, sp. nov. (Figs 2-6) 13 

 14 

HOLOTYPE: SEM-stub CEDiT2014H41, prepared from strain A2D11, Figs. 3 B-D, 5C, E, I, 15 

6E; interpretative figure (ICN Art. 44.2.): Fig. 4. 16 

The strain A2D11 of A. trinitatum has been deposited at SCCAP, strain K-1883. 17 

ISOTYPE: Formalin fixed sample CEDiT2014I42, prepared from strain A2D11. 18 

TYPE LOCALITY: North Atlantic Ocean, off Iceland, 64° 43.00’ N, 24° 01.50’ W  19 

HABITAT: marine plankton, sub-Arctic 20 

ETYMOLOGY: The epithet is derived from the Latin term “trinitas” = triad, trinity. This was 21 

inspired by the fact that the species was available as three different clonal strains, and 22 

combine morphological characters of the first three described species of Azadinium, A. 23 

spinosum (the spine, albeit rudimentarily present), A. obesum (the shape, shape of the sulcal 24 

region), and A. poporum (the approximate position of the ventral pore). 25 

 26 
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The following descriptions and micrographs were compiled from studying all three strains 1 

(4A8, 4B11, A2D11), which were indistinguishable with respect to all morphological details 2 

identifiable in light and electron microscopy. Cells of A. trinitatum were ovoid and dorso-3 

ventrally compressed. Freshly formalin preserved cells of strain A2D11 ranged from 11.3-4 

16.6 µm in length (mean length: 14.1 ± 0.8 µm, n = 120) and 7.1-11.5 µm in width (mean 5 

width 9.2 ± 0.8 µm, n = 120), with a mean length/width ratio of 1.5. The episome, which was 6 

higher than the hyposome, terminated in a conspicuous apical pore complex (APC) (Fig. 2). 7 

The hyposome was rounded, slightly asymmetrical, and having its largest part slightly shifted 8 

to the cells’ right lateral side. A small antapical spine was visible in LM occasionally (Fig. 2 9 

B-C). The cingulum was descending counter-clockwise, displaced by about the half of its 10 

width. It was deeply excavated and wide (1.8-2.4 µm), occupying about one quarter of the cell 11 

length. 12 

A presumably single chloroplast was parietally arranged, lobed, and exhibited band-shaped 13 

connections extending into the epi- and hyposome (Fig. 2 B-D, H-K). Generally, one large 14 

pyrenoid with a starch sheath (visible as a ring-like structure) was located in the episome (Fig. 15 

2 A-C, E). Whereas the pyrenoid was always located in the episome, the shape and number 16 

was found to be slightly variable (Fig. 2 F-G). For strain 4A8, a careful examination of 610 17 

cells prepared from a substrain grown at 15°C yielded 582 cells with a single pyrenoid and 28 18 

cells with two pyrenoids. Among 615 cells inspected for strain A2D11, a single pyrenoid was 19 

seen in 539 cells, whereas two pyrenoids were detected in 76 cells. In a substrain of 4B11, the 20 

amount of cells with two pyrenoids was higher (114 of 600 cells). For all these observations, 21 

the presence of two pyrenoids was not related to cells prior to (as potentially indicated by an 22 

enlarged cell width) or during cell division. In addition to pyrenoid(s), cells may have a 23 

number of large grains both in the epi- and hyposome, which differed from pyrenoids in the 24 

absence of a clear starch shield covering them (Fig. 2 E). The large nucleus was spherical, 25 

ovoid through distinctly elongated and was located in the hyposome (Fig. 2 H-K). 26 
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Thecal plates of A. trinitatum were stainable and were identified with calcofluor white (Fig. 2 1 

L). However, the complete plate pattern was more easily determined by SEM (Figs 3, 5-6). 2 

The basic thecal plate arrangement was: Po, cp, X, 4´, 3a, 6´´, 6C, 5S, 6´´´, 2´´´´ (Fig. 4). The 3 

four apical plates were relatively small. Plate 1´ showed an ortho-pattern and was slender and 4 

almost symmetrical with small sutures to plates 2´ and 4´. In its posterior part, 1´ was narrow 5 

with sutures running almost parallel to the sulcal area (Figs 3 A-C, 5 A, C). Comparing the 6 

small lateral apical plates 2´ and 4´, the right plate 4´ was slightly larger and extending more 7 

to the right lateral side (Fig. 5 A-F). Dorsal apical plate 3´ was hexagonal, small, and with 8 

slightly variable length of the suture to the intercalary plate 2a (Fig. 5 A, B, D-F). Of the three 9 

intercalary plates, the left (1a) and right (3a) plates were relatively large. Due to the small size 10 

of the apical plates, they almost reached the pore plate anteriorly. The mid intercalary plate 2a 11 

was small and tetragonal. Generally, it was longer than wide, but the shape was variable 12 

among cells. The six precingular plates were roughly similar in size, with plate 1´´ as the 13 

widest and plates 2´´ and 4´´ as the narrowest. Plate 1´´ was in contact with an intercalary 14 

plate (1a) and thus in contact with four epithecal plates, whereas plate 6´´ was separated from 15 

plate 3a by the apical plate 4´ (Fig. 5 A-B). 16 

The apical pore was rounded through ellipsoid (mean width: 0.56 ± 0.04 µm, mean length: 17 

0.66 ± 0.06 µm, n = 10, size measurements using SEM images), located in the middle of the 18 

pore plate (Po), and covered by a cover pate (cp) (Fig. 5 G-I). A conspicuous rim bordered the 19 

dorsal and lateral margins of the pore plate adjacent to apical plates 2´, 3´, and 4´, but was 20 

lacking ventrally, where the pore plate abutted the first apical plate and the X-plate. The 21 

apical pore was connected through a finger-like protrusion to the small X-plate, which deeply 22 

invaded the first apical plate (1’) with its posterior part. Shape and anterior borderline of the 23 

X-plate could be seen from interior views of the cell (Fig. 5 I). As a conspicuous part of the 24 

apical pore complex, a large (mean outer diameter: 0.31 ± 0.03 µm, n = 12) and distinct pore, 25 

designated as ventral pore (vp), was located at the left lateral side of the pore plate. This pore 26 
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mainly laid within a pocket of the first apical plate and contacted the 2´ plate and the pore 1 

plate (Fig. 5 G-H). 2 

The hypotheca consisted of six postcingular and two antapical plates (Fig. 6 A-B). All 3 

postcingular plates were tetragonal and similar in shape, but slightly variable in size. Of the 4 

two antapical plates, the 2´´´´ plate was distinctly larger with an oblique running suture to 5 

plate 1´´´´, which was slightly more anterior in position (Fig. 6 A-B). A short spine could be 6 

detected on the second antapical plate (Fig. 6 A-C). 7 

The cingulum was wide, descending, and displaced by about half of its width. Narrow 8 

cingular lists were present. The cingulum was composed of six comparably sized plates, 9 

except for plate C6 that was more slender than the others (Fig. 6 C-D). Furthermore, this plate 10 

was asymmetric in shape, with a conspicuous extension partly covering the sulcal area and 11 

thus giving the flagellar pore area a comma-shaped appearance. 12 

The deeply concave sulcus (Fig. 6 C, E) consisted of a large anterior sulcal plate (Sa) that 13 

with a broad to slightly pointed anterior side partly invaded the epitheca, and a large posterior 14 

sulcal plate (Sp), that extended two-thirds of the line from the cingulum to the antapex. The 15 

left sulcal plate (Ss) was broad, located anterior to Sp and abutted plates 1´´´, C1, Sa, Sd, Sm, 16 

Sp, and C6. The right sulcal plate (Sd) abutted sulcal plates Ss and Sm, as well as cingular 17 

plate C6. The median sulcal plate (Sm) contacted sulcal plates Sa, Ss and Sd (Fig. 6 E-F). 18 

These plates had apparently complex three-dimensional morphologies, with large flanges 19 

invading into the hypotheca (Fig. 6 F). 20 

The surface of all thecal plates was smooth but irregularly covered by few pores of different 21 

size (e.g. arrows in Fig. 5 B). Larger pores ranged in size from 0.11-0.14 µm (mean 0.12 ± 22 

0.01, n = 14), whereas the outer diameter of small pores ranged from 0.07-0.09 µm (mean 23 

0.08 ± 0.01 µm, n = 12). Pores were particularly abundant on the apical plates and most 24 

numerous on the large intercalary plates, whereas plate 2a invariably was free of pores (Fig. 25 

5). Both pre- and postcingular plates only had few pores. On postcingular plates these were 26 
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mainly located close to the cingulum (Fig. 6 A). Occasionally, small pores were found in 1 

small clusters occurring mainly on the cingular plates (Fig. 6 F). There were only few pores 2 

on the antapical plates, mainly located around the antapical spine (Fig. 6 A). In sulcal plates, a 3 

row of pores was typically present on the left anterior part of Sa (Fig. 6 E-F), although it was 4 

often difficult to observe. A small group of pores was located both on lateral sides of Sp and 5 

in the middle of Ss, whereas the small sulcal plate Sm and Sd were free of pores. 6 

The characteristic overlapping pattern of thecal plate margins, individually identified for each 7 

suture mainly by available interior views of the theca (not shown), is indicated in Figure 4 C-8 

D. In the epitheca, the most ventral plate 1′ was overlapped by all adjacent plates except for 9 

the pore plate, whereas the almost mid-dorsal precingular plate 3′′ was identified as the 10 

“keystone plate” (i.e., a plate overlapping all its neighbours: Fig. 4 C). Within the apical 11 

series, the dorsal plate 3′ was overlapped by both adjacent apical plates 2′ and 4′. The small 12 

median intercalary plate 2a was overlapped by all adjacent plates. In the cingular and 13 

postcingular series, we identified plates C3 and 4′′′ as keystone plates, respectively (Fig. 4 D). 14 

On the right-ventral side, the last cingular plate C6 was overlapped not only by the C5 plate 15 

but also by the anterior sulcal plate (Sa) (Figs 4 C, 6 F). 16 

In our strains, a number of deviations from the typical plate pattern shown in Figure 4 were 17 

observed (Figs S1 and S2). Variations in plate pattern primarily consisted of additional 18 

sutures between the epithecal plates (Fig. S1 A-I), although variation in number of hypothecal 19 

plates were also observed (Fig. S1 J-L). As a rare exception, a penta-configuration of plate 2a 20 

was observed (Fig. S2 A). The shape of plate 1´ was variable and was very slender in its 21 

proximal part occasionally (Fig. S2 B-C). Although not explicitly quantified, a significant 22 

number of specimens had a very short or rudimentary spine, or a spine was completely 23 

lacking (Fig. S2 D-I). The position of the ventral pore was consistent but among hundreds of 24 

inspected cells, four exception were found nevertheless, in which the pore was displaced 25 

posteriorly (Fig. S2 J-M). 26 
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 1 

 2 

Azadinium cuneatum Tillmann et Nézan, sp. nov. (Figs 7-12) 3 

 4 

HOLOTYPE: SEM-stub CEDiT2014H43, prepared from strain 3D6; Figs 8 A-D, 10 B-E, 11 5 

D, 12 C-D;  interpretative figure (ICN Art. 44.2.): Fig. 9. 6 

The strain 3D6 of A. cuneatum has been deposited at SCCAP, strain K-1882. 7 

ISOTYPE: Formalin fixed sample CEDiT2014I44, prepared from strain 3D6. 8 

TYPE LOCALITY: North Atlantic Ocean, off Iceland, 65° 27.00’ N, 24° 39.00’ W 9 

HABITAT: marine plankton, sub-Arctic 10 

ETYMOLOGY: The epithet is inspired by the distinct shape of the first apical plate, which is 11 

wedge-shaped in its distal part (lat.: cuneatus = wedge-shaped). 12 

 13 

Cells of A. cuneatum were ovoid and slightly dorso-ventrally compressed. Cell size of freshly 14 

formalin preserved cells ranged from 11.2-16.9 µm in length (mean 14.2 ± 1.0, n = 188) and 15 

from 8.3-12.7 µm in width (mean 10.8 ± 1.0, n = 188), with a mean length/width ration of 1.3. 16 

The episome was higher than the hyposome, and it terminated in a conspicuous apical pore 17 

complex of a concave shape (Fig. 7). The generally rounded hyposome could be flattened and 18 

generally was slightly asymmetric with the longest part displaced to the cells’ right lateral 19 

side. The subequatorial located cingulum was broad and conspicuous in LM (Fig. 7 B, G, I). 20 

A presumably single chloroplast was parietally arranged, lobed, retiform in the episome, and 21 

extending into the epi- and hyposome (Fig. 7 D, H, J-K). A large pyrenoid with a starch 22 

sheath (visible as a ring-like structure) was predominantly located in the episome (Fig. 7 D, 23 

G, I). However, there was some variability for both the number and position of pyrenoid(s) 24 

(Fig. 7 E-F). Among 611 cells of a culture grown at 15°C, 573 cells had a single pyrenoid 25 

located in the episome, 19 cells had a single pyrenoid located in the hyposome, 6 cells had a 26 
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single pyrenoid located in the cingular area, 11 cells had two pyrenoids both located in the 1 

episome, and two cells had two pyrenoids, one of which was located in the episome and one 2 

in the hyposome. For another strain grown at 10°C, a comparable quantification of 621 cells 3 

yielded 577 cells with a single pyrenoid in the episome, 22 cells with a single pyrenoid 4 

located in the hyposome, and 22 cells with two pyrenoids, all of them located in the episome. 5 

The large nucleus was located in the hyposome/cingular region and typically was spherical 6 

through ovoid, but elongated nuclei extending into the episome could also be observed (Fig. 7 7 

H, J). 8 

SEM analysis of A. cuneatum (Figs 8-12) revealed the basic thecal plate pattern as Po, cp, X, 9 

4´, 3a, 6´´, 6C, 5S, 6´´´, 2´´´´ (Fig. 9). Among the 4 apical plates, the lateral and dorsal plate 10 

2´, 3´, and 4´ were relatively large and of equal size (Fig. 10 A-B). The lateral apical plates 11 

2´and 4´ largely extended into the ventral area accounting for about half of the epitheca’s 12 

height (Fig. 10 C-D). The first apical plate was rhomboid and almost symmetric in its 13 

posterior part, but was distinctly asymmetric in its anterior part, which was unequally 14 

elongated and tapered on its left side reducing the pore plate. Three intercalary plates were 15 

symmetrically arranged on the dorsal side (Fig. 10 A, E-F). As the most abundant 16 

arrangement, the distinctly smaller central intercalary plate 2a was tetragonal and almost 17 

symmetrically located above plate 3´´ (Fig. 10 E), but with a slight displacement to the cells’ 18 

right lateral side. A penta-configuration (i.e., plate 2a was pentagonal) was abundant, but with 19 

plate 2a in contact to 3´´ and 4´´ and with the suture between 3´´ and 4´´ shifted towards the 20 

dorsal centre (Fig. 10 F). In cells of a single preservation step, 84 of 123 specimens had a 21 

tetragonal 2a, whereas the plate had a penta-configuration in 39 specimens. In cells of another 22 

preservation step, plate 2a was tetragonal in 27 and pentagonal in 18 of 45 specimens, 23 

respectively. The first and last of the six precingular plates were restricted to the ventral area 24 

and distinctly separated from (i.e., not in contact to) the dorsal intercalary plates (Fig. 10 A-25 
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D). Plates 6´´ and 4´´ were the narrowest precingular plates, while plate 2´´ was the widest 1 

(Fig. 10 A). 2 

The distinct apical pore was circular, tear-drop shaped, or slightly ellipsoid with a mean width 3 

of 0.69 ± 0.04 µm (n = 12) and a mean length of 0.85 ± 0.04 µm (n = 10). It was located in the 4 

dorsal part of a slightly elongated pore plate and covered by a cover plate (Figs 10 A-B, 11 A-5 

F). Because of the invading tip of plate 1´, the pore plate was distinctly asymmetric. It was 6 

bordered by a rim formed by the apical plates along the sutures of 2´-4´ and the pore plate. 7 

Rarely, the rim extended along the left lateral side between the suture of plate 1´ and 2´ (Fig. 8 

11 E). An X plate was located between the first apical and the pore plate, which was clearly 9 

visible from interior views as a small and slightly elongated plate. It invaded both the pore 10 

plate and the 1´ plate, but without reaching the apical pore (Fig. 11 F), as it might be the 11 

impression from exterior view. Cover plate and X-plate were connected by a characteristic 12 

finger-like protrusion (Fig. 11 A-E). A distinct pore with a mean outer diameter of 0.33 ± 0.02 13 

µm (n = 12) was located on the left lateral side of the pore plate and at the tip of the elongated 14 

left anterior part of the first apical plate on the suture between the pore plate and the apical 15 

plate 2´ (Fig. 11 A-E). Despite its almost apical position, we denominate this pore as the 16 

“ventral pore” (vp). 17 

Six postcingular and two antapical plates formed the hypotheca (Fig. 12 A, B). Among the six 18 

postcingular plates, plate 5´´´ was the widest. Plates 1´´´ and 6´´´ were in ventral position and 19 

of the same small size as the most dorsal plate 4´´´. Plate 3´´´ was the plate of the postcingular 20 

series in contact to both antapical plates. Of the two antapical plate, plate 2´´´´ was about 21 

double the size of the 1´´´´ plate (Fig. 12 A-B). 22 

The subequatorial cingulum was wide, descending, displaced by about half of its width, and 23 

was composed of six plates (Fig. 12 C). It exhibited narrow cingular lists formed by the 24 

posterior margins of the precingular plates and anterior margins of the postcingular plates 25 

(Fig. 8 A-D). The most dorsally located C3 and the lateral cingular plates C2 and C4 were 26 
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wide and the ventrally located last cingular plate C6 forming the right ending of the sulcal 1 

area was the narrowest cingular plate (Fig. 12 C). 2 

The excavated sulcal area was formed by five plates (Fig. 12 D-E). The large anterior sulcal 3 

plate (Sa) partly invaded the epitheca, and the large posteriour sulcal plate (Sp) extended 4 

about half the line from the central sulcus to the antapex (Fig. 8 A-B). The left sulcal plate 5 

(Ss) was very broad and ran along the line from plate C1 to C6. Two smaller and centrally 6 

located sulcal plates (Sm and Sd) formed a concave central pocket (Fig. 12 D-E). 7 

The plates of A. cuneatum were smooth with irregularly distributed small pores (Fig. 8) of 8 

slightly varying size (range: 0.08-0.14 µm; mean: 0.11 ± 0.02 µm, n = 23). On the epitheca, 9 

pores were concentrated on the anterior area of the apical plates (Fig. 10). The median 10 

intercalary plate 2a was consistently free of pores. Generally, pores were individual or 11 

arranged in small groups of up to eight. On both post- and precingular plates, pores were 12 

arranged along the boundary to the cingulum (Fig. 12 A, 10 E). Small groups of pores were 13 

present on sulcal plates Sa, on both lateral sides of Sp, and as a distinct group of pores located 14 

in the middle of the broad Ss plate (Fig. 8 A-B). 15 

The pattern of plate overlap was identified individually for each suture mainly by interior 16 

view (not shown) and is depicted in Figure 9 C-D. As most characteristic features, plate 3´ 17 

was overlapped by its neighbouring apical plates 2´ and 4´, plate 2a was overlapped by all 18 

adjacent plates, and plate C6 was overlapped by the central sulcal plate Sa. As keystone plates 19 

of A. cuneatum, we identified 3´´, C3 and 4´´´ for the precingular, the cingular, and the 20 

postcingular series, respectively. 21 

Plate variability observed in the culture of A. cuneatum mainly occurred in the epitheca. The 22 

presence of both quadra- and penta-configuration of plate 2a (Fig. S3 A-C) was already 23 

described before. In addition, only two intercalary plates may rarely be present (8 out of 131 24 

cells) (Fig. S3 D-I). Other epithecal variants and a hypothecal reduction of postgingular plates 25 

are illustrated in Figure S4 A-E. The position of the ventral pore for A. cuneatum was 26 
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consistent but among hundreds of investigated cells, four exceptions were found nevertheless, 1 

where the pore – together with varying degrees of a reduction of the anterior elongation of 2 

plate 1´ – was displaced posteriorly (Fig. S4 F-I). 3 

 4 

 5 

Azadinium concinnum Tillmann et Nézan sp. nov. (Figs. 13-17) 6 

 7 

HOLOTYPE: SEM-stub CEDiT2014H45, prepared from strain 1C6; Fig. 14 A-B; 8 

interpretative figure (ICN Art. 442.): Fig. 15. 9 

The strain 1C6 of A. concinnum has been deposited at SCCAP, strain K-1881. 10 

ISOTYPE: Formalin fixed sample CEDiT2014I46, prepared from strain 1C6. 11 

TYPE LOCALITY: North Atlantic Ocean, Irminger Sea, off Greenland, 62° 13.95’ N, 37° 12 

27.31’ W 13 

HABITAT: marine plankton, sub-Arctic 14 

ETYMOLOGY: The Latin adjective “concinnus” (= beautiful, elegant, harmonious, “skilfully 15 

put together”) reflects the concinnity of this delicate and petite species. 16 

 17 

Cells of A. concinnum were very small, slender and only slightly dorso-ventrally compressed. 18 

The episome was distinctly longer than the hyposome, slightly concave to almost linear in 19 

outline, and terminated in a prominent apex (Fig. 13 B). The rounded hyposome terminated in 20 

a conspicuous antapical spine in median or laterally displaced position (Fig. 13 B-E). The 21 

cingulum was very broad and deeply excavated. Cell size was 8.0-11.5 µm in length (mean = 22 

9.5 ± 0.7, n = 175) and 5.6-8.3 µm in width (mean = 6.6 ± 0.5, n = 175), resulting in a mean 23 

length/width ration of 1.4. A presumably single chloroplast was present, which was lobed and 24 

extending from the episome into the hyposome (Fig. 13 F-I). In LM, there was no indication 25 

for the presence of a pyrenoid surrounded by a starch shield. Occasionally, a number of 26 
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spherical bodies of varying size was seen in both the epi- and hyposome (Fig. 13 D-F). A 1 

large and almost spherical nucleus was located in the subequatorial cingular region (Fig. 13 2 

G, I). 3 

Thecal plates of A. concinnum probably were weakly developed and delicate, which made it 4 

almost impossible to obtain complete cell views of trim specimens. The basic plate pattern of 5 

A. concinnum as inferred from SEM images (Figs 14-17) was Po, cp, X, 4´, 3a, 6´´, 6C, 5S, 6 

6´´´, 2´´´´ (Fig. 15). Four small apical plates surrounded the apical pore (Fig. 16). The first 7 

apical plate, which was extending half the line from the apex to the cingulum (Fig. 14 A), was 8 

narrow, showed sutures to the apical plates 2´ (shorter) and 4´ (longer) of slightly unequal 9 

length (Fig. 16 B), and was rectangular in its posterior part (Fig. 16 A). The sutures of plate 3´ 10 

to its neighboring apical plates were very short so that the epithecal intercalary plates almost 11 

approached the pore plate (Fig. 16 A, D). The series of three small intercalary plates were 12 

located dorsally and together formed an almost circular area with the apical plates around the 13 

apical pore. Plate 2a was distinctly smaller than the other intercalary plates and was of 14 

pentagonal shape and symmetrically in contact to two precingular plates. All six precingular 15 

plates were of equal size and were arranged symmetrically with the suture between plate 3´´ 16 

and 4´´ in mid-dorsal position. 17 

An upward arched arrangement of the apical plates gave rise to the distinct and stepped 18 

appearance of the apex (Figs 14 A-B, 16 F). The apical pore was spherical through slightly 19 

elongated (mean width: 0.47 ± 0.02 µm, mean length: 0.56 ± 0.02 µm, n = 15), covered by a 20 

cover plate, and centrally located in a horseshoe shaped pore plate (Fig. 16 A, H-I). At its 21 

lateral and dorsal parts, a thick rim bordering the pore plate extended ventrally along the 22 

sutures of plate 1´ with its adjacent apical plate 2´ and 4´ (Fig. 16). A small and circular X-23 

plate was visible from interior views (Fig. 16 I), which did not invade the first apical plate and 24 

which was shifted to the cells’ right lateral side adjacent to the ventral pore (see below). A 25 

finger-like protrusion connecting the X-plate and the cover plate was characteristically bended 26 
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to the cells’ right lateral side inserting at the cover plate in a subequatorial position (Fig. 16 1 

G- H). A distinct “ventral pore” was located on the right ventral side of the pore plate with a 2 

distortion of the suture Po/4´, the latter one characteristically accentuated by the recessed run 3 

of the rim (Fig. 16 G-H). 4 

The hypotheca was composed of six postcingular and two antapical plates (Fig. 17 A). The 5 

first and the last postcingular plates were of similar size, ventrally located, and of distinctly 6 

lower height compared to the other postcingular plates. Plate 3´´´ was in contact to both 7 

antapical plates. Because of the low height of the ventral postcingular plates, both antapical 8 

plates largely extended into the ventral area to almost the same level. Plate 2´´´´ was large and 9 

separated by a slightly oblique suture from the smaller first antapical plate. A distinct and 10 

approx. 0.95 µm long antapical spine was located on the dorsal part of plate 2´´´´ in the cells 11 

median axis or slightly displaced to the cells left lateral side (Fig. 14). 12 

With a width of about 2-2.5 µm, the cingulum of A. concinnum was remarkably wide 13 

accounting for about a quarter of total cell length. Furthermore, the cingulum was deeply 14 

excavated, slightly descending, and composed of six plates (Fig. 17). Of the five sulcal plates, 15 

the anterior sulcal plate Sa deeply invaded the epitheca with an elongated and tapered end 16 

reaching about half the line to the apex (Figs. 14 A, 17 B, C). The plate Ss running from plate 17 

C1 across to plate C6 was broad on its left side but distinctly slender in its right part, which – 18 

together with the small central sulcal plates Sd and Sm – formed a deeply concave and egg-19 

shaped central pocket (Fig. 17 B-D). 20 

The surface of thecal plates was smooth with just a very few though conspicuous pores 21 

present (Fig. 14). Invariably, the postcingular plates had a single pore located at underlapping 22 

margins (see below) of the suture to the neighboring postcingular plates (Fig. 17 A). 23 

Consequently, the keystone plate plate 4´´´ (see below) was free of pores. Furthermore, pores 24 

were present on both epithecal and hypothecal margins of cingular plates (Fig. 14). Lateral 25 

and dorsal apical plates 2´- 4´ were free of pores, as were all precingular plates and the central 26 
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intercalary plate 2a (Fig. 16). A single or rarely two or three pores were located on the outer 1 

intercalary plates (Fig. 16 D). A characteristic vertical row of 3-5 pores was always present on 2 

the first apical plate (Figs 16 A, F-H). 3 

The pattern of plate overlap of A. concinnum as inferred mainly from available interior views 4 

(not shown) is schematized in Figure 15 C-D. The overlap pattern was identical to the patterns 5 

described for A. trinitatum and A. cuneatum, with plates 3´´, C3, and 4´´´ identified as 6 

keystone plates of the precingular, cingular, and postcingular series, respectively. 7 

Variation of plate pattern observed in the culture of A. concinnum are summarised in Figures 8 

S5 and S6. Plate pattern variability was mainly observed for epithecal plates. The most 9 

frequently encountered deviations were a loss of one intercalary plate and/or displacement of 10 

intercalary plates providing contact to the pore plate. For A. concinnum, no variability in 11 

ventral pore position was observed among hundreds of cells investigated. 12 

 13 

2. Molecular Results 14 

The SSU+ITS+LSU alignment was 4609 bp long and comprised 1813 parsimony informative 15 

sites (39%, mean of 11.62 per OTU). Tree topologies were largely congruent, irrespectively 16 

whether the Bayesian or the ML algorithm was applied. Many nodes showed high if not 17 

maximal support values. Figure 18 shows the best-scoring ML tree, in which the 18 

Amphidomataceae were monophyletic (99LBS, 1.00BPP) with respect to the outgroup. The 19 

internal topology of the Amphidomataceae was not fully resolved, but showed a sister group 20 

relationship between Amphidoma languida and Azadinium (55LBS). As inferred from very 21 

short branches in the molecular tree, the different accessions of the three new species did not 22 

show notable variation of rRNA copies. 23 

The new species had different phylogenetic positions in the molecular tree: Azadinium 24 

concinnum (100LBS, 1.00BPP) constituted the sister species of the remainders of Azadinium 25 

(100LBS, 1.00BPP). Within Azadinium, a sister group relationship consisted between A. 26 
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cuneatum (100LBS, 1.00BPP) and a clade comprising the species A. dalianense, A. obesum, 1 

A. poporum, A. spinosum, and A. trinitatum (1.00BPP). Azadinium trinitatum had its closest 2 

relative in a yet undescribed symbiotic partner of the radiolarian Acanthochiasma Krohn, 3 

1861 (94LBS, 1.00BPP) and together, they were closely related to a clade comprising A. 4 

dalianense, A. obesum, A. poporum, and A. spinosum. 5 

 6 

3. AZA analysis 7 

Using SRM, none of previously described AZAs (AZA-1 to -12 and AZA-33 to -41) were 8 

found in A. concinnum (1C6), A. cuneatum (3D6), and A. trinitatum (4A8, 4B11, A2D11) at a 9 

detection limit of 1.1 pg on column, which corresponds to a limit of detection at cellular level 10 

of 0.020-0.026 fg cell-1 for A. trinitatum (slightly different for the different strains due to 11 

different biomass of the samples), 0.015 fg cell-1 for A. cuneatum, and 0.012 fg cell-1 for A. 12 

concinnum. 13 

For detecting putative precursor masses of the characteristic CID-fragments m/z 348 and m/z 14 

362 of AZAs, precursor ion experiments were also negative for all three species. However, 15 

the precursor on mode is approximately a hundred times less sensitive than the SRM mode 16 

and strictly speaking, it did not allow for exact quantitative measurement. Considering a 17 

conservatively determined “detection limit” of 0.2 ng on column, this represented a cellular 18 

detection limit of unknown AZA variants of 2.5 to 5 fg. 19 

20 
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Discussion 1 

 2 

Plate pattern analysis clearly shows that all strains reported here belong to the 3 

Amphidomataceae in general and to Azadinium in particular. Moreover, our analysis reveals 4 

unique morphological features justifying the description of three new species, and this has 5 

been confirmed by the phylogenetic analysis based on concatenated sequence data of the 6 

SSU, ITS, and LSU rRNA. Already with the description of the first Azadinium species, the 7 

presence of an antapical spine and the position of a ventral pore have been highlighted as 8 

important morphological features characterizing different species (Tillmann et al. 2009, 2010, 9 

2011). With the present work and now distinguishing 10 species of Azadinium, this notion is 10 

reinforced with the position of the ventral pore identified as one of the most distinctive 11 

characters (Tab. 3). Generally, the position of the ventral pore seems to be a distinct and 12 

species-specific character for species of Azadinium, although a deviating position of the 13 

ventral pore can be found very rarely (Potvin et al. 2012; this study: Figs. S2, S4 14 

supplementary material). In particular, the three new species described here can be 15 

distinguished from other species of Azadinium by a number of features as follows: 16 

 17 

A. trinitatum 18 

The main characteristic and distinctive features of A. trinitatum are the unique combination of 19 

the location of the ventral pore (located at the left distal end of the pore plate), the presence of 20 

three epithecal intercalary plates, and the presence of an antapical spine. As it is reflected in 21 

its name, A. trinitatum combines morphological characters of the first three described species 22 

of Azadinium. While sharing the presence of an antapical spine with A. spinosum, the slightly 23 

more obese cell shape, the distinctly slender posterior part of plate 1´, and the outline of the 24 

sulcal region more closely resembles A. obesum. With the third species, A. poporum, and also 25 

with A. dalianense (although it has 3 apical and 2 intercalary plates), A. trinitatum shares the 26 
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position of the ventral pore on the left side of the pore plate (Tab. 3). However, a detailed 1 

comparison of the pore plate and vp arrangement (Fig. 19) indicates that the ventral pore is 2 

located more in a cavity of the pore plate in A. poporum. For A. dalianense, the ventral pore is 3 

located at the junction of the pore plate and the first two apical plates in a cavity mainly 4 

formed by the second apical plate and the pore plate. The suture between Po and 1´ is almost 5 

symmetric in A. dalianense. For A. poporum, the pore plate is slightly asymmetric: The left 6 

side of the suture Po/1´ with the vp is located closer to the apical pore than the right side. In 7 

contrast, the ventral pore is located more in a cavity of the 1´ plate at the tip of an elongated 8 

side of the pore plate in A. trinitatum. The pore plate is asymmetric but here, the left side of 9 

the suture Po/1´ with the vp is more distant from the apical pore than the right side (Fig. 19). 10 

The elongated left side of the Po plate resembles the asymmetric and elongated shape of the 11 

Po of A. dexteroporum (Percopo et al. 2013) but here, the elongated side of Po is at right. 12 

The presence/absence and development (in case of A. caudatum var. margalefii or caudatum, 13 

respectively) of an antapical spine has also been emphasized in distinguishing species of 14 

Azadinium (Tab. 3). For all three strains of A. trinitatum, we identify a short antapical spine, 15 

but we find this trait to be variable. Indeed, the presence of a spine in our cultures is 16 

predominant, but such structure is rudimentarily present or definitely missing in many cells 17 

(see Fig. S2 D-I). More prominent spines are described for A. spinosum, A. caudatum, A. 18 

polongum, A. dexteroporum, and described here for A. concinnum. A sporadic but significant 19 

presence of a more rudimentary spine is also described for A. dalianense (Luo et al. 2013). In 20 

any case, more targeted studies of cultivated material are needed to evaluate potential effects 21 

of culture conditions in Azadinium (not restricted to spine formation but also including clonal 22 

plate pattern variability). 23 

Both morphological and molecular data do not allow doubts upon A. trinitatum representing a 24 

novel species, but the taxon might have been illustrated before as “Gonyaulax gracilis” 25 

(Schiller 1935) (not validly published: ICN Art. 38.1., no description or diagnosis). Later, 26 
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Holmes (1956) reported from a “small Goniaulax probably identical with G. gracilis Schiller” 1 

in the southern central Labrador Sea. We cannot exclude that his figure 28 (p. 61) is a species 2 

of Azadinium and particularly A. trinitatum. However, the small spine at the antapex is 3 

lacking in his illustration, while it is visible even using LM in A. trinitatum. Later, Bérard-4 

Therriault et al. (1999) provided additional figures of this species (pl. 90) showing dinophytes 5 

with a great similarity to Azadinium in terms of size, shape, and outline of the sulcal area. One 6 

of the specimens depicted therein has an antapical spine and another cell obviously has no 7 

spine. Other details are not provided, so it even remains uncertain whether the dinophytes 8 

they reported from eastern Canada in fact represent species of Azadinium. Nevertheless, it is 9 

possible that they represent A. trinitatum based on the general appearance of these cells. The 10 

similarity of the locality of the specimen depicted by Bérard-Therriault et al. (1999), the 11 

Canadian Arctic and our record of A. trinitatum from Iceland, generally would support this 12 

view. 13 

 14 

A. cuneatum 15 

A. cuneatum differs from all other species of Azadinium by a very particular first apical plate, 16 

which is asymmetrically elongated and tapered on its left lateral side reducing the pore plate. 17 

Differently from all other species of Azadinium, the ventral pore is located in the middle of 18 

the pore plate at the tip of the elongated 1´ plate and invading both Po and the second apical 19 

plate 2´. In addition, A. cuneatum is characterized by the exceptional large size of the apical 20 

plates (Tab. 3). Furthermore, the first precinguar plate is not in contact with the first 21 

intercalary plate, a feature that A. cuneatum is sharing with A. obesum and A. concinnum only 22 

(Tab. 3). 23 

A tetra-configuration of the intercalary plate 2a (i.e., plate 2a is tetragonal and in contact with 24 

the 3´´ plate) is the most abundant configuration for A. cuneatum. However, a penta-25 

configuration (i.e., plate 2a in contact to five other plates, including both 3´´ and 4´´) is 26 



23 
 

present in many cells as well. In most cases, contact of 2a to 3´´ and 4´´ is asymmetric (a 1 

wider suture of 2a and 3´´: Fig. 10 F), but an almost symmetric arrangement is also observed, 2 

albeit rarely (Fig. S3 C). A symmetric arrangement of precingular plates and a penta-3 

configuration of plate 2a have been described here for the new and first branching species A. 4 

concinnum. The presence of both tetra- and penta-configuration of plate 2a within a single 5 

species has also been described for field populations of Peridiniella danica (Paulsen) 6 

Okolodkov et J.D.Dodge (Okolodkov and Dodge 1995) although here, conspecificity of the 7 

different types is not confirmed. 8 

For many cells (in one preparation quantified as 6%), the presence of only two intercalary 9 

plates is noted in A. cuneatum (Fig. S3 D-I). If the absence of pores is indicative for the “true” 10 

2a plate, then it is indicated that both possibilities, loss of the first and loss of the last 11 

intercalary plate are likewise plausible. An consistent presence of only two intercalary plates 12 

has been described as the main character of A. dalianense, and here in connection with a 13 

concurrent reduction of the apical series to three apical plates (Luo et al. 2013). 14 

 15 

A. concinnum 16 

Azadinium concinnum is unique among species of Azadinium by an elongated anterior sulcal 17 

plate ranging far into the epicone, by large and symmetric precingular plates, by very small 18 

apical and epithecal intercalary plates, and by having a penta-configuration of plate 2a as the 19 

most common configuration. Although size ranges of most species of Azadinium do overlap, 20 

A. concinnum is of particularly small size, almost identical in size with the small species A. 21 

dexteroporum (Tab. 3). A. concinnum and A. dexteroporum also share the position of the 22 

ventral pore on the right side of the pore plate (Tab. 3). However, the pore is located in a pit 23 

of the otherwise symmetric pore plate in A. concinnum, whereas it is located at the posterior 24 

part of an elongated extension of the right side of the pore plate in A. dexteroporum (Percopo 25 

et al. 2013). A position of the ventral pore on the cells’ right lateral side is a feature shared by 26 
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A. concinnum with A. caudatum, A. dexteroporum, and Amphidoma languida. In terms of the 1 

elongated Sa plate, the large and symmetric precingular plates and the small epithecal 2 

intercalary plate with 2a in a penta configuration, there is another species having exactly such 3 

features. A small dinophyte species has been described in 1959 as Gonyaulax parva Ramsfjell 4 

from Atlantic Ocean samples of the central Norwegian Sea and from waters towards Iceland 5 

(Ramsfjell 1959). The plate pattern of this species is, anyhow, different from Gonyaulax and 6 

in fact corresponds to the plate tabulation of Azadinium. Subsequently, the species should be 7 

transferred to Azadinium (Tillmann et al. 2009), but this will be performed in a further 8 

taxonomic study. In any case, A. concinnum differs from G. parva by the presence of the 9 

antapical spine, by the smaller size, and by a more slender cell shape. Based both on the very 10 

similar features of the precingular plates (symmetrical arrangement and size), and on the 11 

small size of all apical and intercalary plates, we expect a very close relationship between A. 12 

concinnum and G. parva. Presence and/or position of the ventral pore have not been reported, 13 

because LM observations of G. parva only are available at this moment in time. 14 

The presence of six large and symmetrical precingular plates, and a small size of the 15 

remaining epithecal plates of A. concinnum, are features also typical for Amphidoma (Dodge 16 

and Saunders 1985; Tillmann et al. 2012a). Moreover, conspicuous pores are consistently 17 

located at the sutures of the postcingular plates of A. concinnum and A. languida as well. At a 18 

first glance, there is a large difference in epithecal plate arrangement, with Amphidoma 19 

exhibiting six apical plates and no apical intercalary plate, while all species of Azadinium 20 

have only 3-4 apical plates but 2-3 apical intercalary plates. However, this difference vanishes 21 

when the total number of epithecal plates is considered: It is plausible to assume that the 22 

intercalary plates of Azadinium are homologous to at least some of the apical plates present in 23 

Amphidoma. Minor displacements of particular epithecal plates have been discussed 24 

controversially in the past also for other dinophyte species such as Protoceratium reticulatum 25 

(Claparéde et Lachmann) Buetschli [= Gonyaulax grindleyi P.Reinecke, Gonyaulacales; 26 
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Dodge (1989); Hansen et al. (1996/97)]. The taxon has been described with both 4´, 0a 1 

(Wołoszyńska 1928) and 3´, 1a (Reinecke 1967), respectively. Hansen et al. (1996/97) 2 

likewise circumscribed the epithecal plate pattern of the species as 3´, 1a, 6´´, but emphasized 3 

as well that nearly 50% of cells of a field sample show contact between 1a and the pore plate 4 

(i.e., 4´, 0a, 6´´ in a strict Kofoidean formula). 5 

 6 

Plate overlap 7 

All three new species share the same imbricate plate overlap pattern. Generally, plate overlap 8 

patterns may reflect functional aspects of ecdysis and/or archeopyle types of coccoid cells, 9 

and help to determine plate homologies. A number of uncommon imbrications have been 10 

identified for the genus Azadinium, i.e. the most dorsal apical plate 3´ is overlapped by the 11 

adjacent apicals 2´ and 4´, the median intercalary plate 2a is overlapped by all adjacent plates, 12 

and the large anterior sulcal plate overlaps the last cingular plate C6 (Luo et al. 2013; Nézan 13 

et al. 2012; Tillmann and Elbrächter 2010; Tillmann et al. 2012a, 2012b), and all of these 14 

pattern have been confirmed here for the three new species. 15 

 16 

Pyrenoids 17 

For a number of species, stalked pyrenoid(s) are visible in LM because of a distinct starch 18 

cup. The presence/absence, position, number, and ultrastructure of pyrenoids have been 19 

regarded as useful characters to delimitate taxa (Schnepf and Elbrächter 1999; Tillmann et al. 20 

2011) and has in particular been discussed as a powerful feature visible to differentiate 21 

species of Azadinium in LM (Tillmann et al. 2011). A. concinnum consistently lacks 22 

pyrenoid(s) identifable by a distinct starch cup, but pyrenoid(s) are variable in A. trinitatum 23 

(both number and position) and A. cuneatum (number). Variability in pyrenoid number and 24 

position has also been reported for A. dalianense, indicating that these traits are of limited 25 
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value for species delimitation. In any case, more detailed information (including 1 

ultrastructure) related to the pyrenoids of Azadinium is needed. 2 

 3 

Evolution 4 

The Amphidomtaceae are always retrieved monophyletic in molecular phylogenetic analyses 5 

(Gu et al. 2013a; Tillmann et al. 2012a, 2012b), although the sister group has not be 6 

determined reliably at this moment in time. This challenges the interpretation of character 7 

evolution within the group. Therefore, it remains unresolved whether the epithecal plate 8 

pattern is derived either in Amphidoma (six apical plates, no intercalary plates) or in 9 

Azadinium (four apical plates, three intercalary plates), because outgroup comparison is not 10 

possible. Azadinium concinnum is the first branching species of Azadinium and shows some 11 

plate pattern variability, at least in our strain. A number of these variants can be interpreted 12 

either as loss of a single intercalary plate and/or as a displacement of a single intercalary plate 13 

getting in contact with the pore plate (Figs S5 and S6; see above). This may support a 14 

scenario, under which epitheca formation is ancestral in Azadinium and derived in 15 

Amphidoma (Fig. 20). However, monophyly of the former including A. concinnum should be 16 

treated with caution the molecular trees given. 17 

The position of the ventral pore either on the left or on the right lateral side of the dinophyte 18 

cell appears not only as a diagnostic, but also phylogenetically informative trait. With the 19 

exception of A. polongum, the species with a ventral pore on the left lateral side constitute a 20 

monophyletic group, while the members with a ventral pore on the right lateral side are 21 

paraphyletic. This makes an evolutionary displacement of the ventral pore from the right to 22 

the left lateral side plausible as inferred from the molecular phylogenetic trees. However, the 23 

ventral pore located on the left lateral side in A. polongum must then be interpreted as result 24 

of an independent development. The distribution of an antapical spine does likewise not 25 

match entirely with the molecular phylogenetic trees. The first four branching lineages 26 
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consistently include species with such a structure, providing evidence that a spine belongs to 1 

the bauplan of the Amphidomataceae. However, the members lacking a spine do again not 2 

constitute a monophyletic group, and its loss must be considered as result of independent 3 

evolutionary events. Presence / absence of a spine may vary even within species (i.e., A. 4 

dalianense), indicating the evolutionary plasticity of this trait. 5 

 6 

Distribution and Toxins 7 

Azadinium has been described from the North Sea, although knowledge on the biogeography 8 

currently is rather limited and patchy. However, there is growing evidence that Azadinium 9 

probably has a world-wide distribution: It has been recorded from the warm Pacific Ocean off 10 

Mexico (Hernández-Becerril et al. 2012), to form blooms along the Argentinean South 11 

Atlantic shelf (Akselman and Negri 2012), to occur along the Asian Pacific coast (Gu et al. 12 

2013b; Potvin et al. 2012), is now known from the Mediterranean (Percopo et al. 2013), has 13 

been included in the check list of Black Sea phytoplankton 14 

(http://phyto.bss.ibss.org.ua/wiki/Azadinium_spinosum), and is verified in SEM plankton 15 

samples from the open Indian Ocean (pers. com., Consuelo Carbonell-Moore, Oregon State 16 

Univ., USA). Here, we now report on a range extension of Azadinium to a sub-polar area 17 

(Irminger Sea, northern Atlantic Ocean off Iceland). This comes not too much as a surprise 18 

given the recent record of A. spinosum and A. polongum from the Shetland Islands (Tillmann 19 

et al. 2012b), which are located in the northernmost part of the North Sea and are largely 20 

influenced by the North Atlantic Ocean. In addition, G. parva (which almost certainly is a 21 

species of Azadinium, see above) has been recorded from the central Norwegian Sea towards 22 

Iceland (Ramsfjell 1959), while “G. gracilis” which probably also refers to a species of 23 

Azadinium, originates from the Canadian Arctic (Bérard-Therriault et al. 1999; Holmes 1956). 24 

We do not yet have quantitative data of Azadinium species from the Irminger Sea and Iceland, 25 

but onboard LM of concentrated bottle samples indicate a generally low abundance of 26 

http://phyto.bss.ibss.org.ua/wiki/Azadinium_spinosum�
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Azadinium-like cells. More detailed studies on the seasonal variation, also using molecular 1 

probes (Toebe et al., 2013), are needed to provide data on the quantitative importance of these 2 

species in cold water ecosystems. With now three new species and the additional record of A. 3 

languida and A. dexteroporum (which will be presented elsewhere), the diversity of the 4 

Amphidomataceae in that region seems to be high, especially since our presented findings are 5 

based on a single cruise and a limited number of stations. 6 

We failed to detect known azaspiracids and other compounds producing AZA-characteristic 7 

MS fragments in all available strains of the three new species. What we know from work with 8 

A. spinosum is that AZA production in a given strain is constitutive, that toxins are found in 9 

significant amounts in the cells at all stages of growth and at all environmental conditions 10 

tested so far (Jauffrais et al. 2013). However, we must be aware that toxin production can be 11 

variable among strains of a single species. Azadinium poporum was reported to be a non-12 

toxigenic species at first (Tillmann et al. 2011) but later, it was proved to produce several 13 

different novel AZAs, although with a high strain variability (Gu et al. 2013b; Krock et al. 14 

2012). Moreover, some new Asian strains produce the previously known toxic AZA-2, and – 15 

among a total of 22 strains of A. poporum analysed so far – four strains without any detectable 16 

AZAs are found (Gu et al. 2013b; Krock et al. 2014). Only a single strain of A. cuneatum and 17 

A. concinnum and three strains of A. trinitatum are available and have been examined so far, 18 

and clearly more strains are needed to evaluate if absence of AZAs is a consistent and 19 

species-specific trait of these new Azadinium species. 20 

21 
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Material & Methods 1 

 2 

Isolation and culture 3 

A number of strains of Azadinium (i.e., strains A2D11, 4A8, 4B11, 3D6, 1C6) were 4 

established from water samples collected at two stations between Greenland and Iceland 5 

(station 525: 62° 13.95´ N, 37° 27.31´W; station 526: 64°45.71´N, 29°56.74´W) and three 6 

stations off the north-western coast of Iceland (station 532: 65°27.00´N, 24°39.00’W; station 7 

537: 65°10.00’N, 23°26.97’W; station 540: 64°43.00’N, 24°01.50’W) during a cruise aboard 8 

the research vessel “Maria S. Merian” in August 2012 (Fig. 1, Tab. 1). One-Liter Niskin 9 

bottle samples (10 m depth) from each station was pre-screened (20 µm Nitex gauze), gently 10 

concentrated by gravity filtration using a 3-µm polycarbonate filter, and examined using an 11 

inverted microscope (Axiovert 200M, Zeiss, Germany). Cells of Azadinium (generally rare in 12 

the samples) were visually pre-identified at high magnification (640X) based on general cell 13 

size and shape, on the presence of a theca and presence of a distinct and pointed apex. 14 

Pre-identified cells were isolated by micro-capillary into wells of 96-well plates filled 15 

with 0.2 mL filtered seawater. By this transfer technique, the inclusion of non-target cells is 16 

unavoidable. Therefore, each primary well of isolation was partitioned as 10 µL quantities 17 

distributed into 20 new wells pre-filled with 0.2 mL filtered seawater. Plates were incubated 18 

at 10°C under a photon flux density of appr. 50 µmol m-2 s-1 on a 16:8 h light:dark photocycle 19 

in a controlled environment growth chamber (Model MIR 252, Sanyo Biomedical, Wood 20 

Dale, USA). After 4 weeks of growth, plates were inspected for the presence of Azadinium-21 

like cells as inferred from the typical size, shape, and swimming behavior of other known 22 

Azadinium species. From each positively identified well, a clonal strain was established by 23 

isolation of single cells by micro-capillary. Established cultures were routinely held at both 24 

10°C and 15°C in an natural seawater medium prepared with sterile-filtered (0.2 µm VacuCap 25 

filters, Pall Life Sciences, Dreieich, Germany) Antarctic seawater (salinity: 34 psu, pH 26 
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adjusted to 8.0) and enriched with 1/10 strength K-medium (Keller et al. 1987; slightly 1 

modified by omitting addition of ammonium ions). All strains are available on request. 2 

For toxin analysis, strains were grown in 250 ml plastic culture flasks at 15°C under a photon 3 

flux density of 50 µmol m-2 s-1 on a 16:8 h light:dark photocycle. For each harvest, cell 4 

density was determined by settling lugol fixed samples and counting >800 cells under an 5 

inverted microscope. Densely grown strains (ranging from 3-11 x 104 cells mL-1) were 6 

harvested in 4 x 50 mL centrifugation tubes by centrifugation (Eppendorf 5810R, Hamburg, 7 

Germany) at 3220 g for 10 min. Each four pellets from a single strain were combined in an 8 

microtube, again centrifuged (Eppendorf 5415, 16,000 g, 5 min), and stored frozen (–20°C) 9 

until use. Growth and harvest procedures were repeated several times to yield a total number 10 

of at least 2 x108 cells. Total volume and number of cells harvested for the different strains 11 

was: 4A8: 3.3 L, 2.1 x 108 cells; 4B11: 4.1 L, 2.6 x 108 cells; A2D11: 2.5 L, 2.0 x 108 cells; 12 

3D6: 4.7 L, 3.6 x 108 cells; 1C6: 8.6 L, 4.6 x 108 cells. 13 

All harvests of the different strains were combined in 2 mL methanol and homogenized 14 

with a sonotrode (Sonoplus HD 2070, Bandelin, Berlin, Germany) in 70 cycles at 100% 15 

power for 70 s. Homogenates were centrifuged (Eppendorf 5810 R, Hamburg, Germany) at 16 

15°C and 3220 x g for 15 min. Supernatants were collected, and pellets twice re-extracted 17 

with 1 mL methanol each. Combined extracted were reduced in a rotary evaporator (Büchi, 18 

Konstanz, Germany) at reduced pressure and 40°C water bath temperature to a volume < 0.5 19 

mL and were then taken up in acetone to a final volume of 1 mL. The extracts were 20 

transferred to a 0.45 µm pore-size spin-filter (Millipore Ultrafree, Eschborn, Germany) and 21 

centrifuged (Eppendorf 5415 R, Hamburg, Germany) at 800 x g for 30 s, with the resulting 22 

filtrate transferred into a liquid chromatography (LC) autosampler vial for LC-MS/MS 23 

analysis. 24 

 25 

Light microscopy (LM) 26 
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Observation of live or fixed cells was carried out with a stereomicroscope (Olympus 1 

SZH-ILLD) and an inverted microscope (Axiovert 200 M, Zeiss, Germany) as well, equipped 2 

with epifluorescence and differential interference contrast optics. Light microscopic 3 

examination of the thecal plate tabulation was performed on formalin fixed cells (1% final 4 

concentration) stained with calcofluor white (Fritz and Triemer 1985). Shape and position of 5 

the nucleus was determined after staining of formalin fixed cells with 4'-6-diamidino-2-6 

phenylindole (DAPI, 0.1 µg mL-1 final concentration) for 10 min. Photographs were taken 7 

with a digital camera (Axiocam MRc5, Zeiss, Germany). 8 

Cell length and width were measured at 1000 x microscopic magnification using Zeiss 9 

Axiovision software (Zeiss, Germany) and freshly fixed cells (formalin, final concentration 10 

1%) of strains growing at 15°C. 11 

 12 

 Scanning electron microscopy (SEM) 13 

For SEM examination of thecal plates, cells from growing strains held at 15°C were 14 

fixed, prepared, and collected on 3-µm polycarbonate filters (Millipore) as described by 15 

Tillmann et al. (2011). Filters were mounted on stubs, sputter-coated (Emscope SC500, 16 

Ashford, UK) with gold-palladium, and viewed under a scanning electron microscope (FEI 17 

Quanta FEG 200, Eindhoven, Netherlands). Some SEM micrographs were presented on a 18 

black background using Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA, USA). SEM 19 

micrographs were used for size measurements of various pores. 20 

All material with taxonomic importance (such as type material) was permanently 21 

preserved at the same point in time and was deposited at the Senckenberg Research Institute 22 

and Natural History Museum, Centre of Excellence for Dinophyte Taxonomy (CEDiT), 23 

Germany. 24 

 25 

Chemical analysis for azaspiracids and precursor ion experiments 26 
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For all strains, a deep analysis for the presence of AZAs was conducted. Samples were 1 

analyzed by LC coupled to tandem mass spectrometry (LC-MS/MS) according to the methods 2 

described in detail by Tillmann et al. (2009). Selected reaction monitoring (SRM) 3 

experiments were carried out in positive ion mode by selecting the following transitions given 4 

in Table 2. 5 

 Precursors of the fragments m/z 348 and m/z 362 were scanned in the positive ion 6 

mode from m/z 400 to 950 under the following conditions: curtain gas: 10 psi, CAD: medium, 7 

ion spray voltage: 5500 V, temperature: ambient, nebulizer gas: 10 psi, auxiliary gas: off, 8 

interface heater: on, declustering potential: 100 V, entrance potential: 10 V, collision energy: 9 

70 V, exit potential: 12 V. 10 

 11 

Molecular phylogenetic analysis 12 

Two optional methods were used to obtain genomic DNA: 1) DNA extraction from an 13 

exponentially growing strain of Azadinium prior to DNA amplification or 2) direct PCR 14 

amplification from a single cell isolated from particular strains. For the first approach, cells 15 

from approximately 20 mL of each strain were harvested by centrifugation (4000 rpm, 20 16 

min). The genomic DNA was extracted using the CTAB (N-cetyl-N,N,N-17 

trimethylammoniumbromide) method (Doyle and Doyle 1987). For the second approach, each 18 

cell was deposited on a glass slide, using a micropipette under the Olympus IMT2 inverted 19 

light microscope. Subsequently, each cell was placed in a drop of a sodium thiosulfate 20 

solution to decrease the inhibiting effect of the fixative on the PCR (Auinger et al. 2008), 21 

rinsed twice in double distilled water (ddH2O) before transfer to a 0.2-mL PCR tube 22 

containing 3 µL of ddH2O, and stored at –20°C until direct PCR. 23 

The small subunit (SSU), the internal transcribed spacers (ITS) including the 5.8S, and the 24 

large subunit (LSU, D1+D2 region) of the rRNA operon, were amplified using the primers 25 

specified in Nézan et al. (2012). Genomic DNA was amplified in 25 µL PCR reaction 26 
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containing either 1 µL of extracted DNA or isolated cells, 6.5 µL of ultrapure water, 2.5 µL of 1 

each primer (10 µM), and 12.5 µL of PCR Master Mix 1X (Promega, Madison, WI, USA), 2 

which included Taq polymerase, dNTPs, MgCl2, and reaction buffer. PCRs were performed in 3 

a Mastercycler Personal (Eppendorf, Hamburg, Germany) as follows: one initial denaturation 4 

step at 94°C for 2 min, followed by 45 cycles each consisting of 94°C for 30s, 52°C for 1 5 

min, and 72°C for 4 min, and a final elongation at 72°C for 5 min. To obtain at least two 6 

sequences of each locus and each strain, cloning was performed if applicable. Then, PCR 7 

products were cloned in the pGEM®-T Easy Vector System I (Promega, Madison, WI, USA), 8 

visualized, purified, and sequenced following standard protocols (Nézan et al. 2012). At least 9 

three positive clones were sequenced in both directions. 10 

In total, 45 new sequences were generated in the course of the present study (Tab. 1). The 11 

taxon sample covered the known molecular and morphological diversity of the 12 

Amphidomataceae (43 operational taxonomic units: OTUs corresponding to eleven species 13 

currently recognized), including 15 OTUs of the three new species. All members of the 14 

Gymnodiniaceae, Kareniaceae, Peridiniaceae, and Thoracosphaeraceae exhibiting complete 15 

SSU+ITS+LSU sequences (with branches of comparable length in molecular trees: Gu et al. 16 

2013a) were used as outgroup (Tab. S1). The data set was partitioned into four parts (i.e., 17 

SSU, ITS, LSU ≤D2, LSU ≥D3), and the nucleotide sequences were separately aligned using 18 

MAFFT v6.624b (Katoh et al., 2005; freely available at http://align.bmr.kyushuu. 19 

ac.jp/mafft/software/) with the --auto option and considering the secondary structure of the 20 

molecules (i.e., the ‘QINSI’ option). The sequences were concatenated afterwards, and the 21 

final data matrix is available as NEXUS file upon request. 22 

Phylogenetic analyses of concatenated sequences were carried out using the resources 23 

available from the CIPRES Science Gateway (Miller et al., 2010) with maximum likelihood 24 

(ML) and Bayesian inference methods. For ML calculations, RAxML v7.2.6 (Stamatakis, 25 

2006; freely available at http://wwwkramer.in.tum.de/exelixis/software.html) was applied. To 26 
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determine best fitted ML-trees, we executed 10-tree searches from distinct random stepwise 1 

addition sequence maximum parsimony starting trees and 1,000 non-parametric bootstrap 2 

replicates. Bayesian analyses was performed using MrBayes v3.1.2 (Ronquist and 3 

Huelsenbeck, 2003; freely available at http://mrbayes.csit.fsu.edu/download.php), under the 4 

random-addition-sequence method with 10 replicates and the same GTR+Γ model available in 5 

RAxML. We ran two independent analyses of four chains (one cold and three heated) under 6 

the partition data mode with 15,000,000 cycles, sampled every 1,000th cycle, with an 7 

appropriate burn-in (10%) as inferred from the evaluation of the trace files using Tracer v1.5 8 

(http://tree.bio.ed.ac.uk/software/tracer/). Statistical support values (LBS: ML bootstrap 9 

support, BPP: Bayesian posterior probabilities) were drawn on the resulting, best-scoring ML 10 

tree. 11 

 12 
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Table 1: Overview of Azadinium strains analyzed in the present study.  1 

 2 

3 

strain species 
isolated 

from 
station nr. 

AZA 
toxins 

Fragment 
Sequence 

Molecular 
Method Accession nr. 

A2D11 Azadinium 
trinitatum 540 negative 

ITS-LSU(D1-D3) 
ITS 

LSU (D1-D3) 
LSU (D1-D3) 
LSU (D1-D3) 

SSU 
SSU 

DNA extract 
DNA extract 

cloning (clone2) 
cloning (clone5) 
cloning (clone9) 
DNA extract 
DNA extract 

KJ481804 
KJ481806 
KJ481814 
KJ481805 
KJ481807 
KJ481813 
KJ481803 

4A8 Azadinium 
trinitatum 537 negative 

ITS-LSU(D1-D3) 
ITS 

LSU (D1-D3) 
SSU 
SSU 

DNA extract 
DNA extract 
DNA extract 
DNA extract 
DNA extract 

KJ481812 
KJ481809 
KJ481810 
KJ481808 
KJ481811 

4B11 Azadinium 
trinitatum 537 negative 

ITS-LSU(D1-D3) 
ITS-LSU(D1-D3) 

SSU 
SSU 

DNA extract 
DNA extract 
DNA extract 
DNA extract 

KJ481816 
KJ481818 
KJ481815 
KJ481817 

3D6 Azadinium 
cuneatum 532 negative 

ITS-LSU(D1-D3) 
ITS-LSU(D1-D3) 

LSU (D1-D3) 
LSU (D1-D3) 
LSU (D1-D3) 

SSU 
SSU 

DNA extract 
DNA extract 

cloning (clone 1) 
cloning (clone 6) 
cloning (clone 10) 

DNA extract 
DNA extract 

KJ481820 
KJ481823 
KJ481824 
KJ481825 
KJ481821 
KJ481819 
KJ481822 

1C6 Azadinium 
concinnum 525 negative 

ITS-LSU(D1-D3) 
ITS 

LSU (D1-D3) 
LSU (D1-D3) 
LSU (D1-D3) 

SSU 
SSU 

Single cell 
DNA extract 

cloning (clone 4) 
cloning (clone 5) 
cloning (clone 6) 

Single cell 
Single cell 

KJ481830 
KJ481827 
KJ481831 
KJ481832 
KJ481833 
KJ481826 
KJ481829 
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Table 2: Mass transitions m/z (Q1>Q3 mass) and their respective AZAs 1 

Mass transition AZA Collision energy (CE) [V] 

716>698 AZA-33 40 

816>798 AZA-34, AZA-39 40 

816>348 AZA-39 70 

828>810 AZA-3 40 

828>658  AZA-3 70 

830>812 AZA-35, AZA-38 40 

830>348 AZA-38 70 

842>824 AZA-1, AZA-6, AZA-40 40 

842>672 AZA-1 70 

842>348 AZA-40 70 

844>826 AZA-4, AZA-5 40 

846>828 AZA-37 40 

846>348 AZA-37 70 

854>846 AZA-41 40 

854>670 AZA-41 70 

856>838 AZA-2 40 

856>672 AZA-2 70 

858>840 
AZA-7, AZA-8, AZA-9, 

AZA-10, AZA-36 
40 

858>348 AZA-36  70 

860>842 Undescribed 40 

872>854 AZA-11, AZA-12 40 

 2 
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Tab. 3: Compilation of morphological features of all species of Azadinium and of the related species Amphidoma languida 1 
 2 

 A. spinosum A. obesum A. poporum A. caudatum 
var. margalefii 

A. caudatum 
var. caudatum 

A. 
polongum 

A. 
dexteroporum 

A. 
dalianense A. trinitatum A. cuneatum A. 

concinnum 
Amphidoma 

languida 
Length range  

(mean) 
12.3-15.7 

(13.8) 
13.3-17.7 

(15.3) 
11.3-16.3 

(13.0) 25.0-42.1 35.5-52.5 10.1-17.4 
(13.0) 

7.0-10.0 
(8.5) 

11.9-18.0 
(13.9) 

11.5-16.7 
(14.1) 

11.2-16.9 
(14.2) 

8.0-11.5 
(9.5) 

12.9-15.5 
(13.9) 

Width range  
(mean) 

7.4-10.3 
 (8.8) 

10.0-14.3 
(11.7) 

8.0-11.6 
 (9.8) 18.4-30.0 25.0-36.7 7.4-13.6 

 (9.7) 
5.0-8.0 
(6.2) 

8.3-12.7 
(10.1) 

7.3-11.5 
(9.2) 

8.3-12.7 
(10.8) 

5.6-8.3 
(6.6) 

9.7-14.1 
(11.9) 

L/W ratio 1.6 1.3 1.3 1.2 1.2 1.3 1.4 1.4 1.5 1.3 1.4 1.3 
Number apical / 
intercalary plates 4 / 3 4 / 3 4 / 3 4 / 3 4 / 3 4 / 3 4 / 3 3 / 2 4 / 3 4 / 3 4 / 3 6 / 0 

Antapical spine spine No no short horn, 
long spine 

long horn, 
short spine spine spine rare, short 

spine 
spine, 

(unstable?) no spine no 

Stalked pyrenoid 1 none up to four none not shown none 1 up to two 1 (up to two) 1 (up to two) none 1 
1´´ adjacent to 1a yes no yes yes yes yes yes yes yes no no not applicable 

Vp position left side of 1´ left side of 
1´ 

pore plate, 
left side 

pore plate, 
right side right side of 1´ left side of 

1´ 

end of pore 
plate, right 

side 

pore plate, 
left side 

end of pore 
plate, left side 

middle of pore 
plate, left side 

pore plate, 
right side 

right side of 
1´ (anterior 
position) 

Pore plate 
symmetry 

suture to 
1´slightly 

asymmetric, 
right side 

more apical 

suture to 
1´slightly 

asymmetric, 
right side 

more apical 

suture to 1´ 
slightly 

asymmetric., 
left side 

more apical 

suture to 
1´almost 

symmetric 

suture to 
1´almost 

symmetric 

Po 
elongated, 
suture to 
1´almost 

symmetric 

suture to 1´ 
strongly 

asymmetric, 
left side more 

apical 

suture to 
1´almost 

symmetric 

suture to 1´ 
asymmetric, 

right side 
more apical 

suture to 
1´strongly 

asymmetric, left 
side more apical 

suture to 
1´almost 

symmetric 

suture to 
1´almost 

symmetric 

Shape of 1´plate wide 
posteriorly 

narrow 
posteriorly 

wide 
posteriorly 

narrow 
posteriorly 

narrow 
posteriorly 

wide post., 
narrowed 
anteriorly 

narrow 
posteriorly 

wide 
posteriorly 

narrow 
posteriorly 

wide posteriorly, 
anteriorly copped 

narrow 
posteriorly 

narrow 
posteriorly 

Rel. size first and 
last intercalary large small large small small small small large large large small not applicable 

Relative size 
apical plates medium medium medium medium medium medium small medium small large small small 

AZAs AZA-1, -2, -
716 none 

Aza-2, -846, 
-872, none 

(strain 
specific) 

none not tested none 

Aza-3, -7; 
none 

(strain 
specific) 

none none none none AZA-816, -
830 

Records 

North Sea, 
Atlantic, 

Pacific off 
Mexico 

North Sea North Sea, 
Asia Pacific 

Mediterranean, 
North Sea, 

Atlantic 

Mediterranean, 
North Sea, 

Atlantic 
North Sea Mediterranean, 

North Atlantic Asian Pacific North 
Atlantic North Atlantic North 

Atlantic 
North 

Atlantic 

Reference a, b, c d e, f, g, h i, j i k l, m n o o o p, h, m 

References : a) Tillmann et al. 2009 ; b) Salas et al. 2012 ; c) Tillmann et al. 2012b ; d) Tillmann et al 2010 ; e) Tillmann et al. 2011 ; f) Potvin et al. 2012 ; g) Gu et al. 3 
2013 ; h) Krock et al. 2012 ; i) Nézan et al. 2012 ; j) Tillmann et al. 2014b ; k) Tillmann et al. 2012b ; l) Percopo et al. 2013 ; m) Tillmann et al. (unpublished); n) Luo 4 
et al. 2013; o) This study; p) Tillmann et al. 2012a 5 
 6 
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Figure legends 1 

Fig. 1: Geographical locations of selected sampling stations of the “Maria S. Merian” 2 

expedition 2012. 3 

 4 

Fig. 2: Azadinium trinitatum (strain 4A8). Light microscopy of formalin fixed cells except for 5 

E (Lugol fixed). (A-C) General size and shape. Note the presence of a large pyrenoid in 6 

the episome and the presence of an antapical spine (arrow in B and C). (D) Lateral view 7 

to illustrate a ribbon-like connection of the parietally located chloroplast from epi- to 8 

the hyposome. (E) Cell with a purple stained pyrenoid and additional large grains of 9 

presumably storage material. (F-G) Variations in pyrenoid, a cell with a large and 10 

unusually shaped pyrenoid (F) and a cell with two pyrenoids (G). (H-K) Formalin fixed 11 

cell stained with DAPI as viewed using UV excitation showing nucleus and chloroplast 12 

shape and position. (L) A cell with UV excitation after calcofluor staining showing a 13 

dorsal view of the thecal plates. Scale bars = 2 µm. 14 

 15 

Fig. 3: Azadinium trinitatum: SEM micrographs of different thecate cells (A: strain 4B11; all 16 

others: strain A2D11). (A-C) Ventral view. (D) Dorsal view. Scale bars = 2 µm. 17 

 18 

Fig. 4: Azadinium trinitatum. Schematic illustration of thecal plates (as inferred from the 19 

investigation of strain A2D11). (A) ventral view. (B) Dorsal view. (C) Apical view. (D) 20 

Antapical view. Abbreviations: Sa, Sd, Sm, Sp, Ss: sulcal plates as detailed in Fig.6. 21 

Arrows in C-D indicate plate overlap pattern. 22 

 23 

Fig. 5: Azadinium trinitatum: SEM micrographs of different cells (A, D, F, H: strain 4B11; B, 24 

G: strain 4A8; C, E, I: strain A2D11). (A, B) Apical view showing the complete series 25 

of epithecal plates. Black arrows in (B) exemplarily indicate  postion of differently sized 26 
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pores on the thecal plates. (C-F) Epitheca in ventral (C), dorsal (D), left lateral (E) or 1 

right lateral (F) view. (G-I) Details of the apical pore complex (APC). (G, H) APC in 2 

apical view. (I) APC viewed interiorly of the cell. Po = pore plate, vp = ventral pore 3 

(arrow); x = X-plate, cp =cover plate. Scale bars = 2 µm (A-F) or = 0.5 µm (G-I). 4 

 5 

Fig. 6: Azadinium trinitatum: SEM micrographs of different cells (A, D: strain 4A8; B, C: 6 

strain 4B11; E, F: strain A2D11). (A, B) Antapical view of hypothecal plates. Black 7 

arrows exemplarily indicate position of pores on the thecal plates. (C) Ventral view of 8 

cingulum and hypotheca. (D) Dorsal/apical view of the hypotheca showing the series of 9 

cingular plates with an interior view of the sulcal plates. (E, F) Details of the sulcal plate 10 

arrangement in external (E) and interior (F) view. Black arrows indicate the position of 11 

a row of pores on the Sa plate and of a cluster of pores on the C1 plate. (Sa: anterior 12 

sulcal plate; Sp: posterior sulcal plate; Ss: left sulcal plate; Sm: median sulcal plate; Sd: 13 

right sulcal plate). Scale bars = 2 µm. 14 

 15 

Fig. 7: Azadinium cuneatum (strain 3D6): LM of living (B, C) or formalin fixed (all other) 16 

cells. (A-C) General size and shape. Note the noticeable apical pore complex (arrow in 17 

B). (D) Dorsal view of the episome. Note the large pyrenoid and the parietal 18 

chloroplast. (E-F) Variation in pyrenoid, which rarely could be located in the hyposome 19 

(E), or two pyrenoids present in the episome (F). (G-H) Same cell stained with DAPI in 20 

bright (G) or with UV excitation (H) to indicate shape and location of the nucleus. (I-K) 21 

Different views of the same DAPI stained cell in brightfield (I), with UV excitation (J), 22 

or with blue light excitation (K) to show shape and location of the nucleus and of the 23 

chloroplast. Scale bars = 2 µm. 24 

 25 
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Fig. 8: Azadinium cuneatum (strain 3D6): SEM micrographs of different thecate cells. (A-B) 1 

Ventral view. (C) Left lateral view. (D) Dorsal view. Black arrows exemplarily indicate 2 

the position of pores on the thecal plates. Scale bars = 2 µm. 3 

 4 

Fig. 9: Azadinium cuneatum: Schematic illustration of thecal plates (as inferred from the 5 

investigation of strain 3D6). (A) ventral view. (B) Dorsal view. (C) Apical view. (D) 6 

Antapical view. Abbreviations: Sa, Sd, Sm, Sp, Ss: sulcal plates as detailed in Fig. 12. 7 

Arrows in C-D indicate plate overlap pattern. 8 

 9 

Fig. 10: Azadinium cuneatum (strain 3D6): SEM micrographs of different cells to illustrate 10 

epithecal plate arrangement. (A) Apical view (B) Ventral/apical view. (C) Left lateral 11 

view (D) ventral view. (E-F) Dorsal view. Note the tetragonal shape of the median 12 

intercalary plate 2a in (E) and a more rarely found pentagonal configuration of plate 2a 13 

in (F). Black arrows in (E) exemplarily indicate the position of pores on the precingular 14 

plates. Scale bars = 2 µm. 15 

 16 

Fig. 11: Azadinium cuneatum (strain 3D6): Details of the apical pore complex (APC). (A-E) 17 

External view of APC in apical view. Note the rare case in (E), where the rim around Po 18 

is extending along the suture of plate 1´ and 2´ (arrow). (F) APC viewed interiorly from 19 

the cell. Po = pore plate, vp = ventral pore (arrow); x = X-plate, cp = cover plate. Scale 20 

bars = 0.5 µm. 21 

 22 

Fig. 12: Azadinium cuneatum (strain 3D6): SEM micrographs of different cells. (A, B) 23 

Antapical view of hypothecal plates. Black arrows in (A) exemplarily indicate the 24 

position of pores on the postcingular plates. (C) Dorsal/apical view of the hypotheca 25 

showing the series of cingular plates (C) with an interior view of the sulcal plates. (D) 26 
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Details of the sulcal plate arrangement in external view. (E) Details of the sulcal plate 1 

arrangement in interior view. (Sa: anterior sulcal plate; Sp: posterior sulcal plate; Ss: left 2 

sulcal plate; Sm: median sulcal plate; Sd: right sulcal plate). Scale bars = 2 µm.  3 

 4 

Fig. 13: Azadinium concinnum (strain 1C6): LM of formalin fixed cells. (A-E) General size 5 

and shape. Note the prominent apical pore complex (black arrow in B), the very 6 

prominent antapical spine (white arrow in C), and the spherical bodies of varying size in 7 

both the epi- and hyposome (D, E). (F-I) Pair of same DAPI stained cells in either 8 

bright-field (F, H) or with UV excitation (G, I) to indicate shape and position of nucleus 9 

and chloroplast. Scale bars = 2 µm. 10 

 11 

Fig. 14: Azadinium concinnum (strain 1C6): SEM micrographs of different thecate cells. (A-12 

B) Ventral view. (B) Dorsal view. Black arrows exemplarily indicate positions of pores 13 

on the thecal plates. Scale bars = 2 µm. 14 

 15 

Fig. 15: Azadinium concinnum: Schematic illustration of thecal plates (as inferred from the 16 

investigation of strain 1C6). (A) ventral view. (B) Dorsal view. (C) Apical view. (D) 17 

Antapical view. Abbreviations: Sa, Sd, Sm, Sp, Ss: sulcal plates as detailed in Fig. 17. 18 

Arrows in C-D indicate plate overlap pattern. 19 

 20 

Fig. 16: Azadinium concinnum (strain 1C6): SEM micrographs of different cells to illustrate 21 

epithecal plate arrangement and the apical pore complex (APC). (A) Apical view. Note 22 

a vertical row of pores on the first apical plate. (B) Ventral/apical view. (C) Left lateral 23 

view (D) Dorsal view. Black arrows indicate position of pores on the intercalary plates. 24 

(E) Right lateral view. (F-G) Ventral view of the APC. Black arrow in (G) indicate the 25 

position of a row or pores on the first apical plate. (H) External view of APC in apical 26 
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view. (I) APC interiorly viewed from the cell. Po = pore plate, vp = ventral pore 1 

(arrow); X = X-plate, cp = cover plate. Scale bars = 1 µm (A-E) or  = 0.5 µm (F-I). 2 

 3 

Fig. 17: Azadinium concinnum (strain 1C6): SEM micrographs of different cells. (A) 4 

Antapical view of hypothecal plates. Note conspicuous pores near the sutures of 5 

postcingular plates (black arrows). (B-C) Ventral/antapical view of cingulum and 6 

hypotheca. (D) Detailed view of sulcal plates. (E) Dorsal/apical view of the hypotheca 7 

showing the series of cingular plates. (Sa: anterior sulcal plate; Sp: posterior sulcal 8 

plate; Ss: left sulcal plate; Sm: median sulcal plate; Sd: right sulcal plate). Scale bars = 1 9 

µm. 10 

 11 

Fig. 18: Maximum likelihood tree (–ln = 72424.15) of 43 OTU assigned to the 12 

Amphidomataceae, as inferred from a MAFFT generated rRNA nucleotide alignment 13 

spanning the SSU, ITS and LSU (1813 parsimony-informative positions). Major clades 14 

are indicated, and branch lengths are drawn to scale, with the scale bar indicating the 15 

number of nucleotide substitutions per site. Numbers on branches are statistical support 16 

values for the clusters to the right of them (above: ML bootstrap support values, values 17 

under 50 are not shown; below: Bayesian posterior probabilities, values under .90 are 18 

not shown), and asterisks indicate maximal support values. The tree is rooted with 88 of 19 

the Gymnodiniaceae, Kareniaceae, Peridiniaceae, and Thoracosphaeraceae. 20 

 21 

Fig. 19: Comparison of APC of A. poporum (A) and A. trinitatum (B). Scale bars = 0.5 µm. 22 

 23 

Fig. 20: Potential transition between apical plate pattern of Azadinium (A: interpretative for A. 24 

concinnum) and Amphidoma (B: interpretative for A. languida). When the dorsal apical 25 

plate 3´ of Azadinium is lost (C), all three intercalary plate may get in contact to the pore 26 
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plate leading to an “Amphidoma” arrangement (D). Alternatively, when the medium 1 

intercalary plate of Azadinium is lost (E), the two remaining intercalary plates may get 2 

in contact to the pore plate leading to an “Amphidoma” configuration (F). 3 

 4 

5 
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Figure legend Supplementary material 1 

 2 

Fig. S1: Azadinium trinitatum: Variations in plate pattern observed in cultivated cells. (A) 3 

Unusual contact of plate 2´ to plate 2a (white arrow). (B) Loss of contact between plate 4 

3´ and 2a (white arrow). (C) Subdivision of plate 3a. (D) Subdivision of plate 4´. (E) 5 

Subdivision of both lateral apical plates 2´ and 4´. (F) Subdivision of plate 3´. (G) 6 

Subdivision of two plates on the apical right side (4´ and 5´´). (H) Subdivision of both 7 

plates 3´ and 2a. (I) Loss of the last intercalary plate 3a. Note that here plate 4´ 8 

unusually is in contact to 2a and that plate 4´´ is unusually small and triangular. (J) 9 

Antapical view showing the presence of just five postcingular plates (assumed to be the 10 

result of a fusion of plates 3´´´and 4´´´). (K) Antapical view showing the presence of 11 

just five postcingular plates (here assumed to be the result of a fusion of plates 2´´´and 12 

3´´´). (L) Antapical view showing a reduction of both precingular and antapical plates. 13 

Scale bars = 2 µm. 14 

 15 

Fig. S2: Azadinium trinitatum: Variations in plate pattern observed in culture. (A) A very rare 16 

case of plate 2a in penta-configuration (white arrow, plate 2a in contact to both plate 3´´ 17 

and plate 4´´). (B-C) Examples of cells with a particularly narrow posterior part of the 18 

first apical plate 1´ (white arrows). (D-G) Examples of cells with a rudimentary 19 

appearance of the antapical spine (white arrows). (H-I) Antapical view of cells without 20 

an antapical spine. (J-M) Compilation of all observed cases with a displaced ventral 21 

pore (white arrows). Scale bars = 2 µm. 22 

 23 

Fig. S3: Azadinium cuneatum: Variations in plate pattern observed in culture. (A-B) Penta-24 

configuration of plate 2a (i.e plate 2a is five sided and in contact to both plates 3´´ and 25 

4´´). Note the asymmetric arrangement with the suture between plate 2a and 3´´ being 26 
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substantially longer than the suture between 2a and 4´´. (C) Plate 2a in a symmetric 1 

penta-configuration. (D-I) Examples of losses of one intercalary plate. Based on the 2 

absence of thecal pores the plate 2a was identified. (D-G) Loss of the first intercalary 3 

plate 1a. (H-I) Loss of the last intercalary plate 3a.  4 

 5 

Fig. S4: Azadinium cuneatum: Variations of plate pattern observed in culture. (A) Reduction 6 

of each of the apical plate series to three apical, two intercalary, and five precingular 7 

plates. (B) Subdivision of both plate 4´ and 5´´. (C) Displacement of plate 3a getting in 8 

contact to the pore plate. (D) Fusion of  plate 2´ and 3´. (E) Antapical view showing the 9 

presence of just five postcingular plates (here assumed to be the result of a fusion of 10 

plates 2´´´and 3´´´). (F-I) Compilation of all observed cases with a displaced ventral 11 

pore (white arrows). Scale bars = 2 µm. 12 

 13 

Fig. S5: Azadinium concinnum: Variations of plate pattern observed in culture. (A-C) Loss of 14 

one epithecal intercalary plate. Note that either the first (A) or the last (B, C) intercalary 15 

has contact to three precingular plates. (D-E) Displacement of one intercalary plate to 16 

get in contact to the pore plate. (F) Detailed dorsal view of apical and intercalary plates 17 

indicating the loss of one intercalary plate. Note that the plate labelled here as 4´ might 18 

be a displaced intercalary plate 3a. (G) The first intercalary plate 1a displaced and in 19 

contact to the pore plate (white arrow). (H-I) Plate 3a displaced and in contact to the 20 

pore plate. (J) Loss of the middle intercalary plate 2a. Note that here plate 4´´ is small 21 

and without contact to an intercalary plate. (K) “Five” apical and two intercalary plates, 22 

here interpreted as a loss of plate 2a and a subdivision of plate 4´. (L) Loss of plate 2a 23 

and plate 3a displaced and in contact to the pore plate plate. (M) Antapical view 24 

showing the presence of just five postcingular plates (here assumed to be the result of a 25 
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fusion of plates 3´´´and 4´´´). Note the pore (white arrow) now disconnected to a plate 1 

suture. Scale bars = 2 µm (A, B, D, H, J-M) or  = 1 µm (C, E-G, I). 2 

 3 

Fig. S6: Azadinium concinnum: Variation of plate pattern observed in culture. (A-B) Loss of a 4 

single intercalary plate. Note that here plate 4´´ is small and not in contact to an 5 

intercalary plate. (C) Loss of a single intercalary plate. Note that here plate 5´´ is small 6 

and not in contact to an intercalary plate, (D-E) Loss of two intercalary plates. Note that 7 

in (E), there is also a fusion of plate 4´´ and 5´´. (F) Total loss of all intercalary plates. 8 

Note that plate 4´´ is small and the only precingular plate not in contact to an apical 9 

plate. (G) Loss of plates 3´ and 2a. (H) Loss of plate 3´, of two intercalary plates, and 10 

presence of just five precingular plates. (I) Detailed dorsal view of apical plates 11 

showing loss of plate 2a. (J-K) A “loss” of plate 2a most likely caused by a fusion of 12 

plates 3´and 2a. (L) Displacement of plate 2a not being in contact to the first intercalary 13 

plate 1a. (M) Loss of plate 2a. Scale bars = 2 µm (A-H, K-M) or = 1 µm (I, J). 14 

 15 
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