How is chlorine activation affected by the composition of Polar Stratospheric Clouds (STŚ versus NAT) in the ATLAS CTM?

Ingo Wohltmann¹, Ralph Lehmann¹, Markus Rex¹, Tobias Wegner², Rolf Müller², Gloria L. Manney³, Michelle L. Santee⁴

¹Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany ²Institute of Energy and Climate Research, Forschungszentrum Jülich, Jülich, Germany ³NorthWest Research Associates, Inc., Socorro, New Mexico, USA ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Motivation

- Explore impact of known uncertainties in heterogeneous processes on ozone depletion and chlorine activation
- Use ATLAS CTM and sensitivity runs for every uncertainty
- ► Focus on activation on liquid ternary solutions (STS) only versus activation on STS plus solid NAT particles (Wohltmann et al., 2013, Drdla and Müller, 2012)...
- …and on reaction rate coefficients

ATLAS Model

Lagrangian model

Heterogeneous chemistry module

- ► STS: Carslaw et al. (1995), form up to ice frost point
- ► NAT, ice: Form instantly in equilibrium if given supersaturation is exceeded
- ► NAT, ice: Predefined number density, uniform particle radius (calculated)
- ► NAT forms from STS

and on reaction rate coefficients ATLAS Model	ReactionSTSNATIce $ClONO_2 + H_2O$ HR/ShiHR/AM0.3 $ClONO_2 + HCl$ HR/ShiHR/AM0.3 $N_2O_7 + H2O$ HR0.00060.02	Sensitivity runs
 Lagrangian model Stratospheric chemistry: 180+ reactions, 47 species Rate constants from JPL 2011 Cl₂O₂ photolysis from Burkholder et al. (1990) Heterogenous chemistry: Reactions on NAT, ice, STS Particle-based denitrification model (DLAPSE): Nucleation, sedimentation, growth of "NAT rocks" 	 N₂O₅ + H₂O HK 0.0000 0.02 N₂O₅ + HCl - 0.003 0.03 HOCl + HCl HR/Shi 0.1 0.2 Model setup ERA Interim Resolution: 150 km Vertical: Potential temperature and heating rates December 2009–March 2010 	REF ONLY-LIQ-TER ONLY-LIQ-TER-HRReference run: NAT and STS Activation only on STS (no NAT) As above, but with rates of Hanson and Ravishankara (1994) for STSONLY-LIQ-BINActivation only on binaries (no uptake of HNO3 allowed) ABBATTABBATTRates of Abbatt and Molina (1992) for NAT and 7 more (not discussed here)
NAT versus liquid clouds (Chlorine activation)	All sensitivity runs (Chlorine activation)	Chlorine activation (reference run)
2010/01/18 750 700 700	2010/01/18 750 	CIOx 750 700 Ξ^{650} 1.6 $ClO_X = 1.4$ $ClO + 2Cl_2O_2$

Reference run

- ► NAT (Hanson+Ravishankara) and STS (Shi et al.)
- ► Supersaturation HNO₃ over NAT of 10 (3 K supercooling)
- Number density STS: 10 cm^{-3}
- Number density NAT: 0.1 cm^{-3}
- Number density ice: 0.01 cm^{-3}
- Nucleation rate NAT rocks: $7.8 \cdot 10^{-6}$ particles per h and cm^3

REF	Reference run: NAT and STS
ONLY-LIQ-TER	Activation only on STS (no NAT)

te

- ► Stratospheric chemistry: 180+ reactions, 47 sp
- ▶ Rate constants from JPL 2011
- \blacktriangleright Cl₂O₂ photolysis from Burkholder et al. (1990)

Vortex means of reference run and sensitivity runs for 18 January (CIOx) and 30 March (ozone loss)

Conclusions (NAT versus liquid)

Conclusions (Reaction rates)

All sensitivity runs (Ozone loss)

Conclusions (general)

- Activation on liquid aerosol alone (STS plus binaries) sufficient to
- explain observed magnitude and morphology of ozone depletion and chlorine activation
- Current estimates of NAT number density and supersaturation imply small role of NAT
- ► No final decision possible from our model runs which percentage of activation occurs on STS or NAT (relatively similar results, model bias to observations)
- ► No sufficient constraint from observations (e.g. Calipso) on the fractions that STS and NAT contribute to chlorine activation
- Change between rates of Shi et al. or Hanson and Ravishankara for liquid aerosols has only minor impact
- ► Same is true for change between rates of Abbatt and Molina or Hanson and Ravishankara for NAT...
- ▶ ... but that is caused by the small role of NAT in the model run. More NAT clouds would cause large differences.
- References
- ▶ Poster based on Wohltmann et al. (2013), Uncertainties in modelling heterogeneous chemistry and Arctic ozone depletion in the winter 2009/2010, Atmos. Chem. Phys., 13, 3909-3929.
- ► Drdla and Müller (2012), Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere, Ann. Geophys., 30, 1055-1073.

- Even (unrealistically) large changes in the underlying assumptions have only a small impact on the modeled ozone loss ($\approx 10\%$)
- General morphology of all species is reproduced well
- Runs slightly overestimate HCI and underestimate CIOx and ozone depletion compared to MLS, Geophysica and ozone sondes