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Outline 

!  Ensemble-based Kalman filters 

!  Implementation aspects 

!  Assimilation software PDAF 
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Motivation 

Information: Model Information: Observations 

Model surface temperature Satellite surface temperature 

•  Generally correct, but has errors 

•  all fields, fluxes, … 
•  Generally correct, but has errors 

•  sparse information  
  (only surface, data gaps, one field) 

Combine both sources of information  

quantitatively by computer algorithm 

➜   data assimilation 

Losa, S.N. et al. J. Marine Syst. 105 (2012) 152-162 
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Data Assimilation 

"  Combine model with real data 

"  Optimal estimation of system state: 
•  initial conditions     (for weather/ocean forecasts, …) 
•  state trajectory  (temperature, concentrations, …) 
•  parameters             (growth of phytoplankton, …)  
•  fluxes                      (heat, primary production, …) 
•  boundary conditions and ‘forcing’       (wind stress, …) 

"  Also: Improvement of model formulation 
•  parameterizations  (biogeochemistry, sea-ice, …) 
 

€ 

"  Characteristics of system: 
•  high-dimensional numerical model – O(106-109) 
•  sparse observations 
•  non-linear 
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Data Assimilation 

Consider some physical system (ocean, atmosphere,…) 

time 

observation 

truth 

model 

state 
Variational assimilation 

Sequential assimilation 

Two main approaches: 

Optimal estimate basically by least-squares fitting 
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Ensemble-based Kalman Filters 
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Ensemble-based Kalman Filter 
First formulated by G. Evensen (EnKF, 1994) 
Kalman filter: express probability distributions by mean  

and covariance matrix 
EnKF: Use ensembles to represent probability distributions  

observation 

time 0 time 1 time 2 

analysis 

ensemble 
forecast 

ensemble 
transformation 

initial 
sampling 

state 
estimate 

forecast Looks simple! 

BUT: 

There are 
many 

possible 
choices! 

What is 
optimal? 
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Data Assimilation – Model and Observations 

Two components: 

 

1.  State:  

 Dynamical model 

 

€ 

x 2 Rn

xi = Mi�1,i [xi�1]

2.  Obervations: 

 Observation equation (relation of observation to state x): 

 

 Observation error covariance matrix:  

 

y 2 Rm

y = H [x]
R
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The Ensemble Kalman Filter (EnKF, Evensen 94) 

Ensemble 

Analysis step: 
      Update each ensemble member 

Kalman filter 

5 EnKF
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Ensemble 
covariance matrix 

Ensemble mean 
(state estimate) 
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Efficient use of ensembles 

€ 

Kalman gain 
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Alternative form (Sherman-Morrison-Woodbury matrix identity) 

Looks worse:                 matrices need inversion n⇥ n
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Inversion of                  matrix 

(Ensemble perturbation matrix                            ) 
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!  Properties and differences not well understood 
!  Learn from studying relations and differences 

_ 
_ 

ETKF 

Ensemble-based/error-subspace Kalman filters 

A little “zoo” (not complete): 

EAKF 

ETKF 

EnKF(94/98) 

SEIK 

EnSRF 
SEEK 

RRSQRT 

ROEK 

MLEF 
EnKF(2003) 

EnKF(2004) 
SPKF 

ESSE 

ESTKF 

EnKF(94/98) 
SEEK 

SEIK 
Studied in Nerger 

et al. (2005) SEIK 

New study 
(Nerger et al. 2012) 

New filter 
formulation 

L. Nerger et al., Tellus 57A (2005) 715-735 

L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 

RHF 

anamorphosis 

Which filter should one use? 

DEnKF 
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Right sided ensemble transformation 

€ 

 

 

Very efficient:         is small (                or                                     )  

 

Used in:  

•  SEIK (Singular Evolutive Interpolated KF, Pham et al. 1998) 

•  ETKF (Ensemble Transform KF, Bishop et al. 2001) 

•  EnsRF (Ensemble Square-root Filter, Whitaker/Hamill 2001) 

•  ESTKF (Error-Subspace Transform KF, Nerger et al. 2012) 

 

X
0a = X

0fW

W N ⇥N (N � 1)⇥ (N � 1)
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Error-subspace basis matrix  

 

        (T projects onto error space spanned by ensemble) 

Analysis covariance matrix 

 

“Transform matrix” in error subspace 

                                                                                             

Transformation of ensemble perturbations 

 

Ensemble weight matrix 
 

•       is symmetric square root of 

ESTKF (Error-Subspace Transform KF) 

size 
(n x N-1) 

(N-1 x N-1) 

(N-1 x N) 

(n x N) 

(n x n) Pa = LALT

L := XfT

A�1 = (N � 1)I+ (HL)TR�1HL

X
0a = LWESTKF

WESTKF =
p
N � 1CTT

C A

L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345 
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Requirements for applying ensemble Kalman filters 

“Pure” ensemble-based Kalman filters have usually bad performance 
•  e.g. due to  

•  small ensemble size 
•  nonlinearity 
•  bias in model or data 

Improvements through 
•  Covariance inflation 
•  Localization 
•  Model error simulation 

S: Analysis region 
D: Corresponding data region 

Localization 
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Implementation Aspects 
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Large scale data assimilation: Global ocean model 

•  Finite-element sea-ice ocean 
model (FESOM) 

•  Global configuration  
(~1.3 degree resolution with 
refinement at equator) 

•  State vector size: 107 

•  Scales well up to 256 processor 
cores 

Sea surface elevation 

•  Ocean state estimation by assimilating 
satellite data („ocean topography“)  

•  Very costly due to large model size 
(Currently using up to 2048 processor cores) 
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Computational and Practical Issues 

Data assimilation with ensemble-based Kalman filters is costly!  

Memory: Huge amount of memory required 
  (model fields and ensemble matrix)  

Computing: Huge requirement of computing time 
  (ensemble integrations) 

Parallelism: Natural parallelism of ensemble integration exists  
  (needs to be implemented) 

„Fixes“: Filter algorithms do not work in their pure form 
  („fixes“ and tuning are needed) 
  because Kalman filter optimal only in linear case 



Lars Nerger – Ensemble Data Assimilation 

Implementing Ensemble Filters & Smoothers 

➜ Abstraction of assimilation problem 

Ensemble forecast 
•  can require model error simulation 
•  naturally parallel  

Analysis step of filter algorithms operates on abstract state 
vectors 

 (no specific model fields) 

Analysis step requires information on observations 
•  which field? 
•  location of observations 
•  observation error covariance matrix 
•  relation of state vector to observation 
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PDAF: A tool for data assimilation 

PDAF - Parallel Data Assimilation Framework 

"  an environment for ensemble assimilation 
"  provide support for ensemble forecasts 
"  provide fully-implemented filter algorithms 
"  for testing algorithms and for real applications 
"  easily useable with virtually any numerical model 
"  makes good use of supercomputers  

 

Open source:  
Code and documentation available at  

http://pdaf.awi.de 

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 
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Offline mode – separate programs 

Model 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaa
a 

 

 

 

Start 

Stop 

read ensemble files 

analysis step 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

For each ensemble state 
•  Initialize from restart files 
•  Integrate 
•  Write restart files 

•  Read restart files (ensemble) 
•  Compute analysis step 
•  Write new restart files 

Assimilation 
program 

write model 
restart files 

⬅ generic 
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  single 
program 

state 
time 

state 
observations 

mesh data 

Indirect exchange (module/common) 
Explicit interface 

 

 

 

 

  

Model 
initialization 

time integration 
post processing 

Filter 
Initialization 

analysis 
re-initialization 

Observations 
obs. vector 

obs. operator 
obs. error 

Core of PDAF 

Logical separation of assimilation system 

Nerger, L., Hiller, W. (2013). Software for Ensemble-based DA Systems – Implementation 
and Scalability. Computers and Geosciences. 55: 110-118 
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Extending a Model for Data Assimilation 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

 

 

 

 

 

 

 

 

 

 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Do i=1, nsteps 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

Model Extension for  
data assimilation 

Implementation uses parallel 
configuration of ensemble 
forecast provided by PDAF 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

init_parallel_pdaf 

Do i=1, nsteps 

init_pdaf 

assimilate_pdaf 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

init_parallel_pdaf 

Do i=1, nsteps 

init_pdaf 

assimilate_pdaf 

assimilate_pdaf 
For operational 
forecasting use 
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2-level Parallelism 

Filter 

Forecast Analysis Forecast 

1. Multiple concurrent model tasks  

2. Each model task can be parallelized 

!  Analysis step is also parallelized 

Model 
Task 1 

Model 
Task 2 

Model 
Task 3 

Model 
Task 1 

Model 
Task 2 

Model 
Task 3 
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User-supplied routines (call-back) 

•  Model und observation specific operations 

•  Elementary subroutines implemented in model context 

•  Called by PDAF routines though a defined interface 
•  initialize model fields from state vector 
•  initialize state vector from model fields 
•  application of observation operator H to some vector 
•  initialization of vector of observations 
•  multiplication with observation error covariance matrix 

  single 
program 

state 
time 

state 
observations 

mesh data 

Indirect exchange (module/common) 
Explicit interface 

 

 

 

 

Model 
initialization 

time integration 
post processing 

Filter 
Initialization 

analysis 
re-initialization 

Observations 
obs. vector 

obs. operator 
obs. error 

Core of PDAF 
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Features of online program  

•  minimal changes to model code when 
combining model with filter algorithm  

•  model not required to be a subroutine 

•  no change to model numerics! 

•  model-sided control of assimilation program 
(user-supplied routines in model context) 

•  observation handling in model-context 

•  filter method encapsulated in subroutine 

•  complete parallelism in model, filter, and 
ensemble integrations 

Aaaaaaaa 

Aaaaaaaa 

aaaaaaaaa 

 

 

 

Start 

Stop 

Initialize Model 
generate mesh 
Initialize fields 

Time stepper 
consider BC 

Consider forcing 

Post-processing 

init_parallel_pdaf 

Do i=1, nsteps 

init_pdaf 

assimilate_pdaf 

assimilate_pdaf 
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PDAF originated from comparison studies of different filters 

Filters 
•  EnKF (Evensen, 1994) 
•  ETKF (Bishop et al., 2001) 
•  SEIK filter (Pham et al., 1998) 
•  SEEK filter (Pham et al., 1998) 
•  ESTKF (Nerger et al., 2012) 

•  LETKF (Hunt et al., 2007) 
•  LSEIK filter (Nerger et al., 2006) 
•  LESTKF (Nerger et al., 2012) 

Smoothers for  
•  ETKF/LETKF  
•  ESTKF/LESTKF  
•  EnKF 

Current algorithms in PDAF 

Global filters 

Localized filters 

Global and local 
smoothers 
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Parallel Performance of PDAF 
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"  Performance tests on 
   SGI Altix ICE at HRLN (German “High performance computer north”) 

        nodes: 2 quad-core Intel Xeon Gainestown at 2.93GHz  
        network: 4x DDR Infiniband  
        compiler: Intel 10.1, MPI: MVAPICH2 

"  Ensemble forecasts  
!  are naturally parallel 

!  dominate computing time 
    Example: parallel forecast over 10 days: 45s 
           SEIK with 16 ensemble members: 0.1s 
           LSEIK with 16 ensemble members: 0.7s 

 
 

Parallel performance of PDAF 
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Parallel Performance 

Use between 64 and 4096 processors of 
SGI Altix ICE cluster (Intel processors) 

94-99% of computing time in model 
integrations   

Speedup: Increase number of processes 
for each model task, fixed ensemble size 

!  factor 6 for 8x processes/model task 

!  one reason: time stepping solver  
    needs more iterations 

512 proc. 

4096 proc. 

64/512 proc. 

4096 proc. 

512 proc. 
64/512 proc. 

Ti
m

e 
in

cr
ea

se
 fa

ct
or
 

S
pe

ed
up 

Scalability: Increase ensemble size, fixed 
number of processes per model task 

!  increase by ~7% from 512 to 4096    
    processes (8x ensemble size) 

!  one reason: more communication  
    on the network 
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… 
 
 
 
 
 
 

Sea surface elevation "  Ocean state improvement by 
assimilation of satellite altimetry into 
global model 

Application examples run with PDAF    

RMS error in surface temperature 
 
 
 
 
 
 
 
 
 
 

"  Chlorophyll assimilation into global 
NASA Ocean Biogeochemical Model 
(with Watson Gregg, NASA GSFC) 

"  Coastal assimilation of ocean surface 
temperature  
(S. Losa within project “DeMarine”)  

+ external users, e.g. 
•  NMEFC, China (Q. Yang) 
•  IPGP Paris (PARODY, A. Fournier) 
•  IFM HAMBURG, Germany  

(MPI-OM, S. Brune/J. Baehr) 
•  U. Frankfurt (J. Tödter/B. Ahrens) 
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Summary 

!  Ensemble-based Kalman filters: 
!  Current efficient methods 

suited for large-scale problems 
!  Tuning of filters required 

!  Simplification of technical implementation using PDAF 

!  Application of the same assimilation software for test 
problems up to high-dimensional & operational systems 

Thank you ! 
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