HS

Heat Stress and Heat Waves

Lennart Olsson (Sweden), Dave Chadee (Trinidad and Tobago), Ove Hoegh-Guldberg (Australia), Michael Oppenheimer (USA), John Porter (Denmark), Hans-O. Pörtner (Germany), David Satterthwaite (UK), Kirk R. Smith (USA), Maria Isabel Travasso (Argentina), Petra Tschakert (USA)

According to WGI, it is *very likely* that the number and intensity of hot days have increased markedly in the last three decades and *virtually certain* that this increase will continue into the late 21st century. In addition, it is *likely (medium confidence)* that the occurrence of heat waves (multiple days of hot weather in a row) has more than doubled in some locations, but *very likely* that there will be more frequent heat waves over most land areas after mid-century. Under a medium warming scenario, Coumou et al. (2013) predicted that the number of monthly heat records will be more than 12 times more common by the 2040s compared to a non-warming world. In a longer time perspective, if the global mean temperature increases to +7°C or more, the habitability of parts of the tropics and mid-latitudes will be at risk (Sherwood and Huber, 2010). Heat waves affect natural and human systems directly, often with severe losses of lives and assets as a result, and may act as triggers of tipping points (Hughes et al., 2013). Consequently, heat stress plays an important role in several key risks noted in Chapter 19 and CC-KR.

Economy and Society (Chapters 10, 11, 12, 13)

Environmental heat stress has already reduced the global labor capacity to 90% in peak months with a further predicted reduction to 80% in peak months by 2050. Under a high warming scenario (RCP8.5), labor capacity is expected to be less than 40% of present-day conditions in peak months by 2200 (Dunne et al., 2013). Adaptation costs for securing cooling capacities and emergency shelters during heat waves will be substantial.

Heat waves are associated with social predicaments such as increasing violence (Anderson, 2012) as well as overall health and psychological distress and low life satisfaction (Tawatsupa et al., 2012). Impacts are highly differential with disproportional burdens on poor people, elderly people, and those who are marginalized (Wilhelmi et al., 2012). Urban areas are expected to suffer more due to the combined effect of climate and the urban heat island effect (Fischer et al., 2012; see also Section 8.2.3.1). In low- and medium-income countries, adaptation to heat stress is severely restricted for most people in poverty and particularly those who are dependent on working outdoors in agriculture, fisheries, and construction. In small-scale agriculture, women and children are particularly at risk due to the gendered division of labor (Croppenstedt et al., 2013). The expected increase in wildfires as a result of heat waves (Pechony and Shindell, 2010) is a concern for human security, health, and ecosystems. Air pollution from wildfires already causes an estimated 339,000 premature deaths per year worldwide (Johnston et al., 2012).

Human Health (Chapter 11)

Morbidity and mortality due to heat stress is now common all over the world (Barriopedro et al., 2011; Nitschke et al., 2011; Rahmstorf and Coumou, 2011; Diboulo et al., 2012; Hansen et al., 2012). Elderly people and people with circulatory and respiratory diseases are also vulnerable even in developed countries; they can become victims even inside their own houses (Honda et al., 2011). People in physical work are at particular risk as such work produces substantial heat within the body, which cannot be released if the outside temperature and humidity is above certain limits (Kjellstrom et al., 2009). The risk of non-melanoma skin cancer from exposure to UV radiation during summer months increases with temperature (van der Leun, et al., 2008). High temperatures are also associated with an increase in air-borne allergens acting as triggers for respiratory illnesses such as asthma, allergic rhinitis, conjunctivitis, and dermatitis (Beggs, 2010).

Ecosystems (Chapters 4, 5, 6, 30)

Tree mortality is increasing globally (Williams et al., 2013) and can be linked to climate impacts, especially heat and drought (Reichstein et al., 2013), even though attribution to climate change is difficult owing to lack of time series and confounding factors. In the Mediterranean region, higher fire risk, longer fire season, and more frequent large, severe fires are expected as a result of increasing heat waves in combination with drought (Duguy et al., 2013; see also Box 4.2).

Marine ecosystem shifts attributed to climate change are often caused by temperature extremes rather than changes in the average (Pörtner and Knust, 2007). During heat exposure near biogeographical limits, even small ($<0.5^{\circ}$ C) shifts in temperature extremes can have large effects, often exacerbated by concomitant exposures to hypoxia and/or elevated CO₂ levels and associated acidification (*medium confidence*; Hoegh-Guldberg et al., 2007; see also Figure 6-5; Sections 6.3.1, 6.3.5, 30.4, 30.5; CC-MB).

Most coral reefs have experienced heat stress sufficient to cause frequent mass coral bleaching events in the last 30 years, sometimes followed by mass mortality (Baker et al., 2008). The interaction of acidification and warming exacerbates coral bleaching and mortality (*very high confidence*). Temperate seagrass and kelp ecosystems will decline with the increased frequency of heat waves and through the impact of invasive subtropical species (*high confidence*; Sections 5, 6, 30.4, 30.5, CC-CR, CC-MB).

Agriculture (Chapter 7)

Excessive heat interacts with key physiological processes in crops. Negative yield impacts for all crops past $+3^{\circ}$ C of local warming without adaptation, even with benefits of higher CO₂ and rainfall, are expected even in cool environments (Teixeira et al., 2013). For tropical systems where moisture availability or extreme heat limits the length of the growing season, there is a high potential for a decline in the length of the growing season and suitability for crops (*medium evidence, medium agreement*; Jones and Thornton, 2009). For example, half of the wheat-growing area of the Indo-Gangetic Plains could become significantly heat-stressed by the 2050s.

There is *high confidence* that high temperatures reduce animal feeding and growth rates (Thornton et al., 2009). Heat stress reduces reproductive rates of livestock (Hansen, 2009), weakens their overall performance (Henry et al., 2012), and may cause mass mortality of animals in feedlots during heat waves (Polley et al., 2013). In the USA, current economic losses due to heat stress of livestock are estimated at several billion US\$ annually (St-Pierre et al., 2003).

References

Anderson, C.A., 2012: Climate change and violence. In: *The Encyclopedia of Peace Psychology* [Christie, D.J. (ed.)]. John Wiley & Sons/Blackwell, Chichester, UK, pp. 128-132.

Baker, A.C., P.W. Glynn, and B. Riegl, 2008: Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. *Estuarine, Coastal and Shelf Science*, 80(4), 435-471.

Barriopedro, D., E.M. Fischer, J. Luterbacher, R.M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: redrawing the temperature record map of Europe. Science, 332(6026), 220-224.

Beggs, P.J., 2010: Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases. International Journal of Environmental Research and Public Health, 7(8), 3006-3021.

Coumou, D., A. Robinson, and S. Rahmstorf, 2013: Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118(3-4), 771-782.

Croppenstedt, A., M. Goldstein, and N. Rosas, 2013: Gender and agriculture: inefficiencies, segregation, and low productivity traps. *The World Bank Research Observer*, 28(1), 79-109.

Diboulo, E., A. Sie, J. Rocklöv, L. Niamba, M. Ye, C. Bagagnan, and R. Sauerborn, 2012: Weather and mortality: a 10 year retrospective analysis of the Nouna Health and Demographic Surveillance System, Burkina Faso. *Global Health Action*, **5**, 19078, doi:10.3402/gha.v5i0.19078.

Duguy, B., S. Paula, J.G. Pausas, J.A. Alloza, T. Gimeno, and R.V. Vallejo, 2013: Effects of climate and extreme events on wildfire regime and their ecological impacts. In: *Regional Assessment of Climate Change in the Mediterranean, Volume 3: Case Studies* [Navarra, A. and L. Tubiana (eds.)]. Advances in Global Change Research Series: Vol. 52, Springer, Dordrecht, Netherlands, pp. 101-134.

Dunne, J.P., R.J. Stouffer, and J.G. John, 2013: Reductions in labour capacity from heat stress under climate warming. Nature Climate Change, 3, 563-566.

Fischer, E., K. Oleson, and D. Lawrence, 2012: Contrasting urban and rural heat stress responses to climate change. *Geophysical Research Letters*, **39(3)**, L03705, doi:10.1029/2011GL050576.

Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(37), E2415-E2423.

HS

Hansen, P.J., 2009: Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B, 364(1534), 3341-3350.

Henry, B., R. Eckard, J.B. Gaughan, and R. Hegarty, 2012: Livestock production in a changing climate: adaptation and mitigation research in Australia. *Crop and Pasture Science*, **63**(3), 191-202.

- Hoegh-Guldberg, O., P. Mumby, A. Hooten, R. Steneck, P. Greenfield, E. Gomez, C. Harvell, P. Sale, A. Edwards, and K. Caldeira, 2007: Coral reefs under rapid climate change and ocean acidification. *Science*, **318**(5857), 1737-1742.
- Honda, Y., M. Ono, and K.L. Ebi, 2011: Adaptation to the heat-related health impact of climate change in Japan. In: *Climate Change Adaptation in Developed Nations:* From Theory to Practice [Ford, J.D. and L. Berrang-Ford (eds.)]. Springer, Dordrecht, Netherlands, pp. 189-203.

Hughes, T.P., S. Carpenter, J. Rockström, M. Scheffer, and B. Walker, 2013: Multiscale regime shifts and planetary boundaries. Trends in Ecology & Evolution, 28(7), 389-395.

- Johnston, F.H., S.B. Henderson, Y. Chen, J.T. Randerson, M. Marlier, R.S. DeFries, P. Kinney, D.M. Bowman, and M. Brauer, 2012: Estimated global mortality attributable to smoke from landscape fires. *Environmental Health Perspectives*, **120**(5), 695-701.
- Jones, P.G. and P.K. Thornton, 2009: Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environmental Science & Policy, 12(4), 427-437.
- Kjellstrom, T., R. Kovats, S. Lloyd, T. Holt, and R. Tol, 2009: The direct impact of climate change on regional labor productivity. Archives of Environmental & Occupational Health, 64(4), 217-227.
- Nitschke, M., G.R. Tucker, A.L. Hansen, S. Williams, Y. Zhang, and P. Bi, 2011: Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: a case-series analysis. *Environmental Health*, **10**, 42, doi:10.1186/1476-069X-10-42.
- Pechony, O. and D. Shindell, 2010: Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19167-19170.
- Polley, H.W., D.D. Briske, J.A. Morgan, K. Wolter, D.W. Bailey, and J.R. Brown, 2013: Climate change and North American rangelands: trends, projections, and implications. Rangeland Ecology & Management, 66(5), 493-511.
- Pörtner, H.O. and R. Knust, 2007: Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95-97.
- Rahmstorf, S. and D. Coumou, 2011: Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 108(44), 17905-17909.
- Reichstein, M., M. Bahn, P. Ciais, D. Frank, M.D. Mahecha, S.I. Seneviratne, J. Zscheischler, C. Beer, N. Buchmann, and D.C. Frank, 2013: Climate extremes and the carbon cycle. *Nature*, 500(7462), 287-295.
- Sherwood, S.C. and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9552-9555.
- Smith, K.R., M. Jerrett, H.R. Anderson, R.T. Burnett, V. Stone, R. Derwent, R.W. Atkinson, A. Cohen, S.B. Shonkoff, and D. Krewski, 2010: Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. *The Lancet*, **374**(**9707**), 2091-2103.
- St-Pierre, N., B. Cobanov, and G. Schnitkey, 2003: Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86, E52-E77.
- Tawatsupa, B., V. Yiengprugsawan, T. Kjellstrom, and A. Sleigh, 2012: Heat stress, health and well-being: findings from a large national cohort of Thai adults. *BMJ Open*, 2(6), e001396, doi:10.1136/bmjopen-2012-001396.
- Teixeira, E.I., G. Fischer, H. van Velthuizen, C. Walter, and F. Ewert, 2013: Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206-215.
- Thornton, P., J. Van de Steeg, A. Notenbaert, and M. Herrero, 2009: The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. *Agricultural Systems*, **101(3)**, 113-127.
- van der Leun, J.C., R.D. Piacentini, and F.R. de Gruijl, 2008: Climate change and human skin cancer. Photochemical & Photobiological Sciences, 7(6), 730-733.
- Wilhelmi, O., A. de Sherbinin, and M. Hayden, 2012: Chapter 12. Exposure to heat stress in urban environments: current status and future prospects in a changing climate. In: *Ecologies and Politics of Health* [King, B. and K. Crews (eds.)]. Routledge Press, Abingdon, UK and New York, NY, USA, pp. 219-238.
- Williams, A.P., C.D. Allen, A.K. Macalady, D. Griffin, C.A. Woodhouse, D.M. Meko, T.W. Swetnam, S.A. Rauscher, R. Seager, and H.D. Grissino-Mayer, 2013: Temperature as a potent driver of regional forest drought stress and tree mortality. *Nature Climate Change*, **3**, 292-297.

This cross-chapter box should be cited as:

Olsson, L., D.D. Chadee, O. Hoegh-Guldberg, M. Oppenheimer, J.R. Porter, H.-O. Pörtner, D. Satterthwaite, K.R. Smith, M.I. Travasso, and P. Tschakert, 2014: Cross-chapter box on heat stress and heat waves. In: *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 109-111.