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Abstract 14 

As the Antarctic Circumpolar Current crosses the South-West Indian Ocean Ridge it creates 15 

an extensive eddy field characterised by high sea level anomaly variability. We investigated 16 

the diving behaviour of female southern elephant seals from Marion Island during their post-17 

moult migrations in relation to this eddy field in order to determine its role in the animals’ at-18 

sea dispersal. Most seals dived within the region significantly more often than predicted by 19 

chance, and these dives were generally shallower and shorter than dives outside the eddy 20 

field. Mixed effects models estimated reductions of 44.33 ± 3.00 m (maximum depth) and 21 

6.37 ± 0.10 min (dive duration) as a result of diving within the region, along with low 22 

between seal variability (maximum depth: 5.5% and dive duration: 8.4%). U-shaped dives 23 

increased in frequency inside the eddy field, whereas W-shaped dives with multiple vertical 24 

movements decreased. Results suggest that Marion Island’s adult female elephant seals’ dives 25 

are characterised by lowered cost-of-transport when they encounter the eddy field during the 26 

start and end of their post-moult migrations. This might result from changes in buoyancy 27 

associated with varying body condition upon leaving and returning to the island. Our results 28 

do not suggest that the eddy field is a vital foraging ground for Marion Island’s southern 29 

elephant seals. However, because seals preferentially travel through this area and likely 30 

forage opportunistically while minimising transport costs, we hypothesise that climate 31 

mediated changes in the nature or position of this region may alter the seals’ at-sea dispersal 32 

patterns. 33 

Keywords: Marion Island, Mirounga leonina, Antarctic Circumpolar Current, Mesoscale 34 

features, Energetics, Dive types , South-West Indian Ridge 35 
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Introduction 36 

The Southern Ocean is characterised by the Antarctic Circumpolar Current (ACC) (Rintoul et 37 

al. 2001), which provides a crucial mechanism in driving regional biological productivity 38 

(Downes et al. 2011). While the ACC connects the global ocean basins via zonal mixing, it 39 

restricts meridional transport (Rintoul et al. 2001). However, poleward transport of water 40 

masses does occur through the formation of eddies (de Szoeke and Levine 1981), principally 41 

within frontal regions or where the ACC interacts with poleward extensions of western 42 

boundary currents or irregular bathymetry (Rintoul and Sokolov 2001). Some global climate 43 

models predict that increases in atmospheric CO2 could lead to a southward migration and 44 

intensification of the region’s westerly wind belt (Saenko et al. 2005). These changes may in 45 

turn lead to poleward shifts in the ACC’s frontal systems (Downes et al. 2011) as well as 46 

increases in the region’s eddy activity and poleward heat fluxes (Meredith and Hogg 2006). 47 

Eddies are closely associated with nutrient fluxes in the open ocean (Ansorge et al. 2009) and 48 

are utilised as foraging grounds by many marine species, including Subantarctic fur seals 49 

(Arctocephalus tropicalis) (de Bruyn et al. 2009), grey-headed albatrosses (Thalassarche 50 

chrysostoma) (Nel et al. 2001), great frigate birds (Fregata minor) (Weimerskirch et al. 2004) 51 

and southern elephant seals (Mirounga leonina) (Campagna et al. 2006; Bailleul et al. 2010; 52 

Dragon et al. 2010). 53 

The Prince Edward Islands are located south east of South Africa at 46.75°S and 37.92°E, 54 

directly in the path of the ACC (Duncombe Rae 1989; Ansorge and Lutjeharms 2002). The 55 

archipelago consists of Marion Island (270 km2) and the smaller Prince Edward Island (45 56 

km2) (Pakhomov and Froneman 1999). Marion Island is home to over five million birds and 57 

seals (Ryan and Bester 2008) and forms one of the most northerly and isolated southern 58 

elephant seal colonies in the Southern Ocean. The nutritional energy necessary to sustain 59 

such vast numbers of top predators is derived from the close interaction between the oceanic 60 
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environment and the islands themselves. Changes in the oceanic environment resulting in 61 

shifting prey distributions and availability have been earmarked as potential drivers of the 62 

observed population declines of Marion Island’s southern elephant seals during the 20th 63 

century (McMahon et al. 2005). 64 

The islands lie in the Polar Frontal Zone (PFZ), bounded to the north by the nearby sub-65 

Antarctic Front (SAF) and to the south by the more distant Antarctic Polar Front (APF) 66 

(Ansorge and Lutjeharms 2002). While the frontal regions are highly productive (Guinet et 67 

al. 1997), productivity within the PFZ is more patchy (Weimerskirch et al. 1997). Areas of 68 

elevated nutrient concentration within the PFZ may therefore present important foraging 69 

areas. To the south-west of Marion Island lies an extensive corridor of high sea level anomaly 70 

variability corresponding to interactions between the ACC and the highly fractured South-71 

West Indian Ridge (SWIR) (Ansorge and Lutjeharms 2003, 2005; Sclater et al. 2005; 72 

Durgadoo et al. 2010, 2011). This corridor, hereafter referred to as the eddy field, is 73 

comprised of cyclonic and anticyclonic eddies. The eddies are readily identified from satellite 74 

altimetry as sea level anomalies (SLAs) (Ansorge and Lutjeharms 2003, 2005; Ansorge et al. 75 

2009) and result in elevated regional eddy kinetic energy (EKE) (Fig. 1). Cyclonic eddies 76 

(negative anomalies) are associated with enhanced productivity around their centres due to 77 

upwelling of nutrients into the photic zone and advection towards their turbulent edges 78 

(Bailleul et al. 2010). In contrast, anticyclonic eddies (positive anomalies) exhibit elevated 79 

productivity along their edges (Bailleul et al. 2010), due to increased turbulence across their 80 

outer density surfaces (Lévy et al. 2001). Interactions between eddies also result in interstitial 81 

jets, which can lead to enhanced localised biological activity (Lima et al. 2002). Eddies trap 82 

and redistribute nutrients leading to elevated localised productivity (Bailleul et al. 2010). As 83 

these features travel north-eastwards into the vicinity of the islands they are utilised as 84 

foraging grounds by breeding grey-headed albatrosses (Nel et al. 2001).  85 
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There is evidence of a role for eddies in the foraging of southern elephant seals from colonies 86 

at Peninsula Valdés and the Kerguelen Islands (Campagna et al. 2006; Bailleul et al. 2010), 87 

but the behaviour of Marion Island’s population within the archipelago’s upstream eddy field 88 

has remained largely unexplored. This study assesses whether the eddy field to the south-west 89 

of Marion Island represents an important foraging ground for adult female southern elephant 90 

seals during their post-moult (winter) migrations. As a result of localised elevated prey 91 

availability within the eddy field region we expected the elephant seals to (1) preferentially 92 

travel through the region on their migrations to more distant foraging areas; (2) increase their 93 

dive frequencies within the region; and (3) perform shallower and shorter dives which 94 

incorporate fewer underwater up-and-down movements (wiggles). To explore these questions 95 

we determined if seals dived more often than predicted by chance within the eddy field by 96 

developing a correlated random walk model. Metrics describing the diving parameters 97 

(maximum dive depth, dive duration and dive type) of adult post-moult female elephant seals 98 

tracked inside and outside of the region were then compared using a mixed effects modelling 99 

approach.  100 

Materials and methods 101 

Ethics statement 102 

The research described conforms to Antarctic Treaty legislation and to the SCAR code of 103 

conduct. We adhere to the ‘Guidelines for the use of animals in research’ as published in 104 

Animal Behaviour (1990, 41, 183-186) and the laws of the country where the research was 105 

conducted. All flipper tagging and satellite-device deployment/retrieval procedures were 106 

reviewed and approved by the Animal Use and Care Committee of the University of Pretoria 107 

(AUCC 040827-024 and AUCC 040827-023) and fieldwork was performed under Prince 108 

Edward Island’s Research Permits R8-04 and R04-08. 109 
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Data Processing 110 

Between 26 October 2007 and 10 January 2010, 32 female southern elephant seals from 111 

Marion Island were tagged with satellite relay data loggers (SMRU/Series 9000 SRDL or 112 

SRDL/CTD, Sea Mammal Research Unit, University of St Andrews, UK). These devices 113 

record time and dive information which is transmitted via the Service Argos satellite system 114 

(Collecte Localisation Satellites (CLS) 2011) to the Sea Mammal Research Unit (Vincent et 115 

al. 2002). Track position estimates provided by Service Argos are filtered to remove points 116 

describing implausible elephant seal swimming speeds and the positions of the dives are 117 

estimated as interpolated points framed by Argos uplink position estimates (Boehme et al. 118 

2009). These interpolations are based on uplink times in relation to the times at which the 119 

dives occurred and have an estimated accuracy of ± 2 km (Boehme et al. 2009). 120 

The seal track data used for this study are available via the PANGEA information system 121 

(http://www.pangea.de). Each track was made up of consecutive dives for which the time, 122 

date, geographical position, total dive duration, maximum depth as well as depths and times 123 

of four inflection points were recorded. These data were collated with deployment records 124 

from the Mammal Research Institute (MRI, University of Pretoria) so as to include each 125 

individual’s age class and sex, using Python 2.7.5 (http://www.python.org/) along with the 126 

pyodbc (http://code.google.com/p/pyodbc/) and xlrd (http://www.python-excel.org/) libraries. 127 

All subsequent data processing was undertaken in the R environment for statistical computing 128 

(R Core Team 2015).  129 

Only data from the approximately eight-month long adult female post-moult migrations were 130 

included and, to ensure that overall dive behaviour was properly represented, tracks with at-131 

sea durations of fewer than 30 days were excluded from the analysis (cf. Bailleul et al. 2007). 132 

Using the geosphere package (Hijmans et al. 2012), each dive’s distance and absolute bearing 133 

relative to Marion Island was calculated along with distances, speeds, and relative bearings 134 

http://www.pangea.de/
http://www.python.org/
http://code.google.com/p/pyodbc/
http://www.python-excel.org/
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between successive dives. Distances were calculated using Vincenty’s ellipsoidal formula. 135 

The data sets for three seal tracks (GG335 – 2009, GG335 – 2010, YY189 - 2010) contained 136 

unusually large numbers of dives with durations of exactly 5715 sec (201, 780, 167 137 

respectively). These times were attributed to erroneous SRDL tag readings and the dives were 138 

excluded from further analysis. Using the maptools package (Bivand 2013) dives were 139 

classified as taking place during the day or night. If the dives took place within 30 min of 140 

sunrise or sunset they were classified as dawn or dusk dives respectively and excluded from 141 

further analysis (cf. McIntyre et al. 2011). Each dive was further categorised as to whether it 142 

occurred inside or outside of the eddy field. The data set at this point included a total of 143 

107,376 dives within 22 tracks from 16 seals (Online Resource 1, Fig 2). 144 

Dive types 145 

Time-depth profiles based on four inflection points were used to categorize each dive into 146 

one of six types using the approach developed by M. Biuw (unpublished data) and used by 147 

Photopoulos (2007) (Online Resource 2). Two of these dive types are characterised in part by 148 

durations at depth exceeding one minute along with rapid ascent and descent rates (Hindell et 149 

al. 1991). The first of these two types includes large wiggles over a range of depths and are 150 

termed wiggle dives (W-dives) (Hindell et al. 1991; Photopoulos 2007). W-dives show some 151 

diurnal patterns which presumably are linked to the daily vertical migrations of pelagic prey 152 

(Hindell et al. 1991). Square dives (SQ-dives) are characterised by fewer wiggles and no 153 

diurnal pattern (Hindell et al. 1991).  154 

The remaining four dive types are distinguished by slower ascent and descent rates along 155 

with durations of less than one minute in their deepest sections (Hindell et al. 1991). Drift 156 

dives (DR-dives) incorporate a rapid initial descent to around 200 m followed by a longer, 157 

slower descent lasting most of the remainder of the dive (Hindell et al. 1991; McIntyre et al. 158 

2011). These dives are terminated by a rapid ascent (Le Boeuf et al. 1988; Hindell et al. 1991; 159 
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Photopoulos 2007). During the first fortnight of their post-moult migrations the seals cover 160 

up to 120 km per day, primarily undertaking U-shaped dives (U-dives) (Hindell et al. 1991). 161 

Root dives (R-dives) constitute a combination of several unclassified dive shapes and are 162 

thought to be associated with exploratory diving (Hindell et al. 1991; Photopoulos 2007). The 163 

sixth dive type described by Photopoulos (2007) are V-shaped dives which are linked to 164 

travelling to and from foraging grounds. 165 

Breiman’s random forest algorithm was used to classify each dive based on a training set. 166 

The training set is a subset of dives with which proportions of dive time, vertical direction of 167 

travel and rates of ascent or descent between inflection points could be compared for 168 

classification. Generation of a training set requires that a large number of dive profiles are 169 

visually assessed and classified according to the above mentioned dive types. This is a 170 

subjective process and so, in order to increase conformity of results between research studies 171 

we used an existing training set, previously used in studies involving the identification of 172 

dive types in seals from Marion Island (McIntyre et al. 2011). 173 

Correlated Random Walks 174 

Correlated random walk (CRW) distributions were generated using the adehabitatLE package 175 

(Calenge 2006). These CRWs were compared with the tracks of instrumented seals in order 176 

to determine whether tracked animals dived within the eddy field more often than might be 177 

expected by chance. The recorded seal tracks were first split into outward and homeward legs 178 

using their furthest dives from Marion Island as turning points. The 22 outward legs were 179 

then individually analysed in order to derive arguments for the simm.crw() function. The 180 

scaling parameter (h) for each outward track was estimated using the hbrown() function in 181 

adehabitatLE. Each seal’s outward-track turning angles were fitted to a wrapped normal 182 

distribution using the mde.wrappednormal() function from the wle library (Agostinelli 2013). 183 

These distributions were used to estimate concentration factor values (r) (Fig. 3). The 184 
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individual seal’s number of outward bound steps and mean durations between successive 185 

steps were used to generate date ranges (dr). 186 

Each seal’s unique combination of h, r and dr values was grouped together. One of these 187 

groups was selected at random for the generation of each CRW in order to render the random 188 

walks more realistic in comparison with the actual tracks. The ratio of simulated dives 189 

occurring within the eddy field domain converged on roughly 8.5% after approximately 5,000 190 

CRWs. We conservatively used 10,000 CRWs for comparisons.  191 

Oceanographic data processing 192 

Daily, delayed time, 1/4 degree resolution zonal(u) and meridional(v) geostrophic current 193 

data for the period 1 January 2008 - 31 December 2010 were produced by Ssalto/Duacs and 194 

distributed by Aviso, with support from Cnes (http://www.aviso.oceanobs.com/duacs/). 195 

These data were used to calculate eddy kinetic energy (EKE in cm2/s2) for the full extents of 196 

the seals migration tracks:  197 

𝐸𝐾𝐸 =  
(𝑢2 + 𝑣2)

2
 198 

The eddy field was defined as the area from 47.33° to 53° S and from 27.33° to 37.66° E 199 

(Fig. 1), where a large proportion of the ACC flow between the SAF and the APF is 200 

concentrated through the Andrew Bain Fracture Region of the South-West Indian Ridge 201 

(Ansorge and Lutjeharms 2005). Topographical interactions give rise to elevated sea surface 202 

height variability (Snaith and Robinson 1996; Pollard and Read 2001) and generate eddies 203 

which move downstream toward the Prince Edward Islands (Durgadoo et al. 2010). As 204 

defined here, the eddy field encloses both the core of the elevated EKE as well as a part of the 205 

downstream path of the region’s cyclonic and anticyclonic eddies. 206 
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Statistical analyses 207 

Dive likelihood inside vs outside the eddy field 208 

Exact binomial tests were run using the core stats package in R to determine whether the ratio 209 

of observed dives occurring outside vs inside the eddy field was significantly greater than the 210 

same ratio within the simulated CRWs. These tests were run for the grouped track data as 211 

well as for each of the 16 seals’ 22 post-moult tracks. Further investigations included only 212 

tracks where individuals had dived within the eddy field significantly more frequently than 213 

predicted by the CRWs. This subsequent data set included 10 individuals, 13 tracks and 214 

71,259 dives (Online Resource 1). 215 

Mixed effects modelling procedures 216 

In order to detect significant differences in maximum depth and dive duration as a result of 217 

diving within the eddy field or changing day-stage (day or night) along with individual seal’s 218 

contributions to variance, linear mixed effects models were run using the nlme package 219 

(Pinheiro et al. 2013) in R. Where mixed effect model results are reported, values refer to 220 

estimated effect ± standard error. Before running mixed effects models, residual histograms 221 

were inspected to ensure that the data were approaching normal distributions (Zuur et al. 222 

2009). In order to account for heterogeneity, scatter plots of model residuals were checked for 223 

funnelling (Zuur et al. 2009). No data transformations were applied during the data 224 

preparation. To check for independence, autocorrelation function (ACF) plots and 225 

semivariograms were generated and examined for each model.  226 

Mixed effects models were run using the restricted maximum likelihood (REML) method and 227 

subsequently updated using first order autoregressive correlation structures with theta set to 228 

the lag-1 interval in order to account for autocorrelation (Pinheiro and Bates 2000). ACF 229 



11 
 

plots and semivariograms were used to confirm autocorrelation reduction. Where mixed 230 

effects models were run on individual seals, constants were used for random effects. 231 

Outside vs inside the eddy field 232 

An initial investigation explored the impact of position (inside vs outside the eddy field), day-233 

stage (day vs night) and time since departure (days at sea) on maximum depth and dive 234 

duration for the individuals which had dived more often inside the eddy field than might be 235 

expected by chance. The results of these models suggested that time at sea explained less than 236 

1 m of depth and 1 min of dive duration variation. Moreover, inclusion of this variable 237 

necessitated limiting the data set to the first 150 days and as a result of this constraint and its 238 

small effect, time since departure was excluded from this report.  239 

To assess the significant effects of the eddy field and day-stage on maximum depth and dive 240 

duration across the full data set, mixed effects models were run on the grouped data as well as 241 

on individual seal data using position relative to the eddy field (inside vs outside) and day-242 

stage (day vs night) as fixed effects. This data set included only the dives from individuals 243 

which had dived within the eddy field more often than expected by chance.  244 

Most dives, both inside and outside of the eddy field, were either U- or W-dives, together 245 

accounting for approximately 95% of the total number of dives. For this reason the remaining 246 

dive types (SQ-, DR-, R- and V-dives) were grouped into a third type called other dives (O-247 

dives). To assess whether the proportions of dive types used by the seals differed 248 

significantly outside vs inside of the eddy field, the binomial regression analysis function 249 

from the EMT library (Menzel 2013) was used. These analyses were run for all the seals 250 

together as well as separately for each individual seal.  251 
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Results 252 

Interactions between the ACC and a series of faults in the SWIR resulted in elevated 253 

mesoscale activity easily identified from elevated EKE in the region (Fig. 1). The 16 tracked 254 

adult female seals undertook 22 post-moult migrations between 2008 and 2010 (Fig. 2, 255 

Online Resource 1), making 94,771 dives outside of the eddy field and 12,605 dives inside 256 

the region. Of the outward bound dives, 77% took place in the sector south-west of Marion 257 

Island (between 195° and 255° from the island; Fig. 4). Twenty tracks traversed the eddy 258 

field region. 259 

Dive frequencies 260 

The seals performed significantly more dives (18.5%) within the eddy field than predicted by 261 

the CRWs (8.5%; p < 0.01; Fig. 3). On an individual level, 10 of the 16 seals dived within the 262 

eddy field region significantly more often than predicted (13 of 22 tracks; Online resource 1). 263 

Seal OO021 did not dive within the eddy field region during either tracked migration year 264 

(2008 or 2009) while seals PO043 (2008 and 2009) and YY189 (2008, 2009 and 2010) dived 265 

significantly more frequently within the eddy field during all tracked years. Seal GG335 266 

dived significantly more often within the eddy field in 2008 but not in 2009 or 2010. Of the 267 

remaining 12 tracks undertaken by different seals, seven dived within the eddy field 268 

significantly more often than predicted. 269 

Dive parameters 270 

Considering the seals that dived significantly more often in the eddy field than predicted by 271 

the CRW model as a group, the recorded mean and maximum dive depths and durations were 272 

shallower and shorter inside the eddy field, regardless of day-stage (Table 1). Mixed effects 273 

models that included all tracks confirmed that maximum dive depths inside the eddy field 274 

were significantly shallower than dives outside of this region as a result of both position 275 

relative to the eddy field and day-stage (Table 2). The effects of day-stage were stronger than 276 
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the eddy field on maximum depth, accounting for an estimated reduction of 149.30 ± 1.71 m. 277 

In terms of dive durations, diving within the eddy field had a stronger effect than day-stage, 278 

resulting in an estimated 6.37 ± 0.26 min reduction. Little variability in maximum depth 279 

(5.5%) or dive duration (8.4%) could be attributed to differences between individual seals, 280 

with most variation common to the group (Table 3). 281 

U-dives were the most common both inside- (70.4%) and outside (64.3%) of the eddy field, 282 

followed by W- (inside: 23.8%, outside: 29.9%) and O- (inside: 5.8%, outside: 5.7%) type 283 

dives. These values represented statistically significant changes in the frequencies of each 284 

dive type (U dives: +6.07%, W dives: -6.17%, O dives: 0.10%) within vs outside of the eddy 285 

field. 286 

Mixed effects models estimated that diving within the eddy field accounted for significantly 287 

shallower dives in five of the ten cases where seals dived more frequently in the eddy field 288 

than expected (Table 4). However, day-stage had a stronger effect on maximum depth in all 289 

but one cases (OO418). In terms of dive durations, the effects of the eddy field were closer to 290 

those of day-stage; nine seals’ dive durations were shorter in the eddy field and in seven of 291 

these cases, the eddy field effects were stronger than those of day-stage. 292 

Nine individuals showed significant changes in the types of dives which they undertook 293 

inside the eddy field. Within the eddy field, seven seals undertook more U- and fewer W-294 

dives while two seals undertook more W- and fewer U-dives. Percentage changes in O-dive 295 

occurrence were low in comparison to changes in U- and W-dives for all but one individual 296 

(PO043) whose proportional change in dive type use was low across all dive types. Four 297 

seals’ dive type choices changed by more than 10% within the eddy field. 298 
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Discussion  299 

The southern elephant seals in this study showed a strong preference for dispersing south-300 

west from Marion Island during their post moult migrations (Figs 2, 4). Given the expansive 301 

nature of these migrations, it appears that the seals were primarily traversing the region en 302 

route to more distant, preferred foraging grounds (Jonker and Bester 1998; McIntyre et al. 303 

2011; Tosh et al. 2012). Any foraging activity within the eddy field was therefore likely to 304 

have been opportunistic, explaining the variation in individual responses. Nevertheless, the 305 

potential biological relevance of the group response seems to be reinforced by the number of 306 

individuals which dived more frequently within the region than expected.  307 

Given that the adult female southern elephant seals from Marion Island appeared to dive 308 

more often than expected within the eddy field, we predicted that these animals’ maximum 309 

dive depths, their dive durations and the dive types they preferentially used would also differ 310 

within the region. The dives of female elephant seals tend to be shorter and shallower at night 311 

than during the day, most likely in response to vertically migrating prey (McIntyre et al. 312 

2011). For this reason, day-stage (day or night) was included in this study as a comparative 313 

measure of biological importance. 314 

Compared to female seals from Peninsula Valdés and Macquarie island (Hindell et al. 1991; 315 

Campagna et al. 1995), female southern elephant seals from Marion Island dive both deeper 316 

and longer (McIntyre et al. 2011). It is likely that the increased depth and duration pushes the 317 

animals closer to their physiological limits (Hindell et al. 2000). This extreme diving 318 

behaviour of Marion Island elephant seals, combined with their relatively short lifespans 319 

(rarely extending past 12-14 years at Marion Island) (de Bruyn et al. 2009), prompted 320 

McIntyre et al.’s (2010) “deeper diving-shorter life” hypothesis.  321 
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The reasonably low measure of between-seal variance in maximum depths and dive durations 322 

may suggest that, to some extent, this study’s seals were behaving in similar ways to one 323 

another (Table 3). Although maximum depth was more strongly affected by day-stage than 324 

by the eddy field, the effect of the latter was still relatively large for half of the seals (Table 325 

4). Moreover dive durations were affected to very similar degrees by both day-stage and the 326 

eddy field and may account for important energy savings for eight seals.  327 

Southern elephant seals show reasonably high levels of at-sea fidelity (Bradshaw et al. 2004). 328 

This may suggest a selective pressure to preferentially traverse the eddy field although this 329 

has yet to be tested. Within such a framework of distribution fidelity, a presumed increase in 330 

physiological stress associated with deeper diving (McIntyre et al. 2010) and the established 331 

biological importance of day-stage (McIntyre et al. 2011) to Marion Island’s southern 332 

elephant seals, diving within the eddy field may have had biologically important impacts on 333 

both dive depth and duration for five and eight of the seals respectively.  334 

Because of the small changes in O-dive occurrence in both the group and individual results, 335 

biological importance of dive type choice was based on changes between U- and W-dives. 336 

Given their dominance during elephant seal migrations, U-dives are necessarily associated 337 

with both travelling and exploration (McIntyre et al. 2011). Furthermore, accelerometry data 338 

gathered from jaw and head movements suggest that, like W-dives, U-dives also appear to 339 

include foraging components (Gallon et al. 2013; Naito et al. 2013). U-dives however lack 340 

the uniform wiggles of W-dives. The observed reduction in underwater wiggles may imply 341 

less searching and more targeted foraging of prey items trapped by an eddy’s density 342 

boundaries. This in turn suggests a change in prey type or foraging strategy within the eddy 343 

field region. Alternatively, the increase in U-dives within the eddy field may indicate an 344 

increase in travelling, along with reduced foraging. Nevertheless, W-dives with their diurnal 345 

patterns made up almost 24% of the within-eddy field dives. W-dives are associated with 346 
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foraging for prey which undertake daily vertical migrations (Hindell et al. 1991). The high 347 

proportion of this dive type suggests that these prey items were still important foraging 348 

targets within the region. Characteristic differences between dive types suggest that the 349 

reported proportional changes in type choice seem likely to have important impacts for a 350 

number of individual seals.  351 

Overall, the effects of diving within the eddy field appear statistically and biologically 352 

significant to varying degrees for nine of the ten seals. Four seals’ dive parameters within the 353 

eddy field combined shallower with shorter dives and two of these also included fewer 354 

energetically costly dive types. The individual results seem to confirm the group result 355 

suggesting that dives within the eddy field were energetically less costly and physiologically 356 

less demanding for the majority of the seals.  357 

Energetics 358 

Before the female seals embark on their post-moult migrations they undergo an energetically 359 

costly moult accounting for around 10.8% of their annual energy budget (Boyd et al. 1994). 360 

During this period Marion Island’s females lose on average 34% of their body mass (Postma 361 

et al. 2013). Females from Marion Island are not only typically smaller, but also lose a 362 

greater proportion of their body mass during their post-moult migrations, when compared to 363 

their equivalents from King George Island, South Georgia or Macquarie Island (Postma et al. 364 

2013). As a result, when the post-moult animals leave the island they are comparatively lean 365 

and negatively buoyant as a result of their loss of fatty tissue. In these periods the seals are 366 

able to glide to depth with their energy expenditure at a basal level, but require active 367 

swimming to return to the surface, thereby expending more energy (Miller et al. 2012). On 368 

their homeward leg the animals are generally carrying more fatty tissue and are more 369 

positively buoyant as a result. In this state the seals’ descents incur the costs of overcoming 370 
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their positive buoyancy, particularly during the initial parts of their dives (Williams et al. 371 

2000; Miller et al. 2012). Elephant seals tend to approach neutral buoyancy mid-migration, 372 

expending smaller amounts of energy during both diving and surfacing, thereby minimising 373 

their cost-of-transport (Miller et al. 2012) . 374 

Female seals from Marion Island tend to encounter the eddy field area during the early stages 375 

of their outward- and late stages of their homeward post-moult migration legs. As a result, 376 

dives in the region are likely to have occurred when the animals were close to the extremes of 377 

their buoyancy states, increasing the energetic costs associated with their dives (Miller et al. 378 

2012).  379 

On the one hand, these findings highlight the potential value to Marion Island’s female post-380 

moult elephant seals of being able to potentially access prey items during less energetically 381 

costly shallower and shorter dives. These savings may be compounded by a switch to more 382 

efficient foraging techniques within the eddy field. However, the increased energetic costs 383 

incurred by the elephant seals’ buoyancy states may themselves partially account for the 384 

significant maximum depth reduction in half of the seals, with the significantly shorter dives 385 

undertaken by 80% of the seals as well as the switch from W- to energetically less costly U-386 

dives by 70% of the animals within the eddy field. Based on these findings, we propose that 387 

the occurrence of energetically expensive W-dives could peak during stages of seal 388 

migrations when the buoyancy of seals are closest to neutral and their vertical drift rates 389 

approach zero. This hypothesis however requires further investigation in order to articulate 390 

cost of transport costs associated with W-dives, foraging success attributed to different dive 391 

types, as well as any other factors which may influence dive type choices. 392 
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Conclusions 393 

Interactions between the ACC and the SWIR to the south-west of Marion Island generate an 394 

enhanced eddy field (Ansorge and Lutjeharms 2005). Previous research showed how 395 

southern elephant seals target eddies for foraging (Campagna et al. 2006; Bailleul et al. 2010; 396 

Dragon et al. 2010), suggesting that elephant seals might exploit the eddy field upstream of 397 

Marion Island. In order to investigate this question, dive metrics from Marion Island’s post-398 

moult female southern elephant seals were statistically evaluated within and outside of the 399 

eddy field. Dive behaviours appear to change within this region, with the seals diving more 400 

frequently within the eddy field. Dive parameters within the eddy field suggest potential 401 

energy savings as well as possible changes in foraging strategies in comparison to those 402 

outside of the region.  403 

Comparing the southern elephant seals from Marion Island’s dive parameters outside vs 404 

inside the eddy field suggests that the region may be an energetically inexpensive area in 405 

which to forage. In light of the historic and projected effects of climate change on the ACC 406 

and its frontal systems, the eddy field may be spawning an increasing number of warm core 407 

anticyclonic features as the SAF shifts further south (Gille 2002). Potential direct effects of 408 

changes in the character of the eddy field on the far ranging animals remain unclear. 409 

However, if efficient, opportunistic foraging within the eddy field plays a role in the decision 410 

of the seals to leave Marion Island in a generally south-westerly direction then regional 411 

climate mediated changes may indirectly alter the elephant seals’ dispersal patterns via 412 

changes in the nature of the eddy field. Future investigations could benefit from using newer 413 

biologging technologies (e.g. jaw accelerometers and/or cameras) to better inform the likely 414 

use of the eddy field for foraging purposes by southern elephant seals from Marion Island. 415 
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 605 

Figure captions and Tables 606 

Fig. 1 The region of elevated mesoscale activity, or eddy field (dashed rectangle), to the 607 

south-west of Marion Island. Mean eddy kinetic energy values for the period 2008-2010 are 608 

plotted and the 3000 m isobaths show the series of faults cross-cutting the South-West Indian 609 

Ridge (SWIR). 610 

Fig. 2 The position of Marion Island (white circle) in relation to South Africa, Antarctica, the 611 

sub-Antarctic front (SAF), the Antarctic Polar Front (APF) and the Polar Frontal Zone (PFZ). 612 

The eddy field is demarcated by the shaded rectangle. Black lines represent the 22 post-moult 613 

migration tracks and dive locations referenced in this study. Frontal position estimates from 614 

Swart et al (2008).  615 

Fig. 3 The position of Marion Island (white circle) in relation to South Africa, Antarctica, the 616 

sub-Antarctic front (SAF), the Antarctic Polar Front (APF) and the Polar Frontal Zone (PFZ). 617 

The eddy field is demarcated by the shaded rectangle. Black lines represent a 22 track subset 618 

of the 10 000 outward leg correlated random walks with which the recorded dive locations 619 

were compared.  620 
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Fig. 4 Frequencies of post moult migration dive position bearings relative to Marion Island 621 

for the 22 post moult migrations referenced in this study. 622 

Online Resource 1: Tagged post-moult female southern elephant seals from Marion Island 623 

included in this study along with deployment ages, years, dates of the first dives, track 624 

durations, numbers of recorded dives (excluding those within 30 min of sunrise or sunset). 625 

Percentage of recorded, outward leg dives which occurred within the eddy field for the 626 

10,000 CRW simulations as well as for the grouped and individual post-moult tracks (n=22) 627 

of adult female southern elephant seals from Marion Island included in this study (n=16). 628 

Significant differences between observed and predicted values are indicated by * (p < 0.01). 629 

Online Resource 2: Characteristic profiles of the six dive types identified in this study. The 630 

four inflection points (D1-D4) as well as start and end times used to categorise the dive types 631 

are shown. R root dive, V V-shaped dive, DR drift dive, U U-shaped dive, W wiggle dive, 632 

SQ square dive. 633 

 634 
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Table 1: Post-moult dive maximum depth and dive duration statistics for the adult female southern 

elephant seals from Marion Island which dived more frequently within the eddy field (EF) than 

predicted (n = 9) between 2008 and 2010. Values are grouped by position relative to the eddy field 

and day-stage (day or night). 

Maximum depth (m) 

Day dives 

(mean ± sd) Max (day) 

Night dives 

(mean ± sd) Max(night) 

Inside EF 520.34 ± 158.81 1188.8 385.04 ± 136.09 1128.8 

Outside EF 575.28 ± 171.52 1678.0 410.61 ± 154.70 1486.0 

Dive duration (min)   
 

 

Inside EF 23.88 ± 9.87 88.25 20.80 ± 9.12 73.25 

Outside EF 32.93 ± 12.11 95.25 26.31 ± 9.68 83.25 
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Table 2: Mixed effects model estimates of the impacts of the eddy field and day-stage on maximum 

depth and dive duration for the adult female southern elephant seals from Marion Island which dived 

more frequently within the eddy field (EF) than predicted (n=9) between 2008 and 2010.  

 Max depth (m ± se) DF t-value p-value 

Inside EF -44.33 ± 3.00 65639 -14.77 < 0.01 

Night -149.30 ± 1.71 65639 -87.40 < 0.01 

 Dive duration (min ± se)    

Inside EF -6.37 ± 0.26 65639 -24.25 < 0.01 

Night -5.86 ± 0.10 65639 -57.60 < 0.01 
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Table 3: Mixed effects model estimates of variability in maximum depth and in dive duration, 

between (τ2) and within (σ2) individual adult female southern elephant seals from Marion Island 

which dived more frequently within the eddy field than predicted (n=9), during their post-moult 

migrations between 2008 and 2010. 

 

Variance (τ2 ± SD) Residual (σ2 ± SD) Between seal variability 

Maximum depth (m) 1407.48 ± 37.52 24245.23 ± 155.71 5.5 % 

Dive duration (min) 9.37 ± 3.06 102.68 ± 10.13 8.4% 
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Table 4: Mixed effect model estimates of significant individual maximum depth and dive duration 

effects attributed to diving within the eddy field and day-stage for post-moult adult female southern 

elephant seals from Marion Island which dived more frequently within the eddy field (EF) than 

predicted (n = 9) between 2008 and 2010. Reported values are significant at p < 0.01 or p < 0.05 

where marked with *.  

 

Maximum depth (m ± se)  Dive duration (min ± se) 

Seal ID Inside EF Night-time  Inside EF Night-time 

WW061 -56.79 ± 14.75 -174.71 ± 5.42  -7.79 ± 1.05 -4.98 ± 0.29 

PO043 -77.66 ± 5.51 -159.37 ± 3.71  -8.49 ± 0.37 -8.54 ± 0.21 

OO418 -210.33 ± 18.77 -147.71 ± 8.36  -4.55 ± 1.14 -3.87 ± 0.43 

YY264b - -201.03 ± 6.48  -8.80 ± 1.56 -7.26 ± 0.42 

YY039 -75.43 ± 9.86 -110.51 ± 6.12  -6.38 ± 0.92 -5.73 ± 0.35 

BB246 - -180.22 ± 6.32  -10.19 ± 1.67 -6.46 ± 0.43 

RR435 - -130.78 ± 6.94  - -6.47 ± 0.36 

YY189 -14.74 ± 4.80 -112.92 ± 3.22  -7.37 ± 0.45 -4.90 ± 0.20 

BB191 - -128.55 ± 7.44  -2.02 ± 0.85* -2.16 ± 0.43 

GG335 - -169.99 ± 5.49  -5.64 ± 1.38 -5.03 ± 0.36 
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