

Die Eisdicke des Langenferners/Vedretta Lunga

Bericht des Institutes für Meteorologie und Geophysik der Universität Innsbruck über die Messungen am 18.05.2010

MAG. M. STOCKER-WALDHUBER

im Auftrag von Ufficio Idrografico di Bolzano Servizio Prevenzione Valanghe – Servizio Meteorologico Via Mendola 33, I-39100 Bolzano Hydrographisches Amt Bozen Lawinenwarndienst – Wetterdienst Mendelstraße 33, I-39100 Bozen

Inhaltsverzeichnis

Inhaltsverzeichnis 1 1 Bericht über die Messungen am Langenferner 2 2 Ergebnisse 6 Tabellen 14 3 4 Messmethode 17 19 4.1 19 4.2 Meßgerät 4.3 20 Auswertung 4.4 22 4.5 Erstellung der Karten der Eisdicke aus den Punktmessungen 23 Literaturverzeichnis 24

Kapitel 1

Bericht über die Messungen am Langenferner

Die Eisdickenmessungen am Langenferner wurden am 18. Mai 2010 vom Insitut für Meteorologie und Geophysik der Universität Innsbruck im Auftrag des Hydrografischen Amtes durchgeführt. Die Eisdicke des Langenferners wurde an 68 Punkten des Gletschers gemessen. Zur besseren Erfassung der Eisscheide zwischen Zufallferner und Langenferner wurde an zehn Punkten im oberen Bereich des Zufallferners Messungen der Eisdicke durchgeführt. Mit den insgesamt 78 Messungen der Eisdicke ist das Volumen des Langenferners zum Stand 2010 gut erfasst. Abbildung 1.1 zeigt den Blick vom Langenferner talauswärts zum Zeitpunkt der Messungen. Die Oberfläche war gut mit Schnee bedeckt, die Bedingungen waren optimal. Eine Übersichtskarte des Langen- und Zufallferners mit Umgebung ist in Abbildung 1.2 zu sehen.

Hydrographisches Amt Mendelstraße 33 39100 Bozen Tel.: 0471 414740 Fax: 0471 414779

Dr. Ing. Roberto Dinale Tel: 0471 414751 - Fax: 0471 414779 roberto.dinale@provinz.bz.it Insitut für Meteorologie und Geophysik Universität Innsbruck Innrain 52, A-6020 Innsbruck, Austria Tel.: +43 512 507 5451 Fax: +43 512 507 2924 e-mail: Meteorologie@uibk.ac.at

Durchführung der Messungen (IMGI): Dr. Andrea Fischer andrea.fischer@uibk.ac.at Mag. Jakob Abermann Mag. Kay Helfricht Mag. Martin Stocker-Waldhuber

Abbildung 1.1: Blick vom Langenferner talauswärts (oben) und Richtung Eisbruch (unten) zum Zeitpunkt der Messungen.

Abbildung 1.2: Übersichtsplan: Zufall- und Langenferner (Quelle: Google Earth).

Kapitel 2

Ergebnisse

Abbildung 2.1: 3D Ansicht des Langenferners auf der beleuchteten Oberfläche von 2006.

Abbildung 2.2: Verteilung der Messpunkte am Langenferner mit Nummer der GPS Punkte. Die Gletschergrenze von 2006 wurde vom Institut für Geographie zur Verfügung gestellt und ist auf dem beleuchteten DHM von 2006 dargestellt.

Der Langenferner ist ein Talgletscher, dessen Zunge Zufluss aus dem hochgelegenen Plateau zwischen Langenferner und Zufallferner erhält. Durch den Untergrund bedingt werden die Hauptströme dieser Gletscher am Plateau getrennt. Die in Abbildung 2.2 eingezeichnete Gletschergrenze von 2006 wurde vom Institut für Geographie (Stephan Galos) zur Verfügung gestellt. Die Eisscheide wurde für die Berechung der Massenbilanz definiert. Für die vorliegende Studie wurden die Gletschergrenzen übernommen. In Abbildung 2.1 ist eine 3D Ansicht des beleuchteten Oberflächenmodells von 2006 des Langenferners und dem Plateau des Zufallferners zu sehen, wobei die Gletscherfläche des Langenferners blau eingefärbt wurde. Der Hauptzufluss des Gletschers wird durch Felsrippen zum Tal kanalisiert wodurch sich der Fließquerschnitt verkleinert, was zu einer Erhöhung der Fließgeschwindigkeit und damit zu Übertiefungen des Untergrunds führt. Diese Übertiefungen weisen die höchsten Eisdicken auf. Die Radarprofile wurden so angelegt, dass die Eisdicke in den Becken und damit die Lage dieser Übertiefungen möglichst gut erfasst wurden. Abbildung 2.2 zeigt die Verteilung der Messpunkte mit den Nummern der gespeicherten GPS Punkte, wie sie in Kapitel 3 angeführt sind.

Abbildung 2.3: Eisdicken an den Stellen der Messungen in Meter.

Abbildung 2.4: Konturlinien des Untergrundes.

Abbildung 2.3 zeigt die Eisdicke an den Stellen der Messungen. Nördlich der Eisscheide zwischen Zufall- und Langenferner teilt sich der Eisstrom in einen kleinen sehr steilen Teil, der nach Nordnordosten direkt in die Hauptzunge mündet, während der Hauptstrom nach Nordwesten in ein weit auslaufendes Becken fließt. Durch dieses Becken ergeben sich die größten Eisdicken von über 130 Metern in diesem Bereich. Der Hauptstrom des Gletschers teilt sich durch eine Felsrippe im unteren Bereich des Gletschers in zwei Teilströme. Der kleinere Teilstrom speist eine kurze Nebenzunge (orographisch links) während der größere Teilstrom durch einen markanten Eisbruch in die Hauptzunge des Langenferners mündet. Durch die Kanalisierung des Gletschers im Bereich des Eisbruchs ergibt sich an dieser Stelle ein zweites Maximum der Eisdicke. Im steilen, felsdurchsetzten Zufluss vom Plateau zur Zunge (orographisch rechts), sowie im Bereich der Nebenzunge (orographisch links) ist das Eis aufgrund der größen Steilheit des Geländes bzw. des fehlenden Eisnachschubs dünn. Daher ist in diesen Bereichen in den nächsten Jahren eine verstärkte Ausaperung von weiteren Felsinseln zu erwarten.

Die Punktmessungen der Eisdicke wurden räumlich interpoliert um das Eisvolumen zu

berechnen. Dazu wurden die Gletschergrenze sowie das Geländemodell von 2006 verwendet. Resultat dieser Interpolation waren die Konturlinien des Untergrundes (Abbildung 2.4) die zu einem Raster interpoliert wurden aus denen mit der Oberfläche aus dem Jahr 2006 die Eisdicke berechnet wurde (Abbildungen 2.5, 2.6 und 2.7). Die maximale Eisdicke beträgt 137 m, die mittlere Eisdicke 46 m. Damit errechnet sich bei einer Fläche von 1.776 km^2 ein Eisvolumen von 0.082 km^3 (81.696 · 10⁶ m³). Der Untergrund des Langenferners ist dreidimensional in Abbildung 2.8 dargestellt.

Abbildung 2.5: Konturlinien der Eisdicke.

Abbildung 2.6: Raster der Eisdicke.

Abbildung 2.7: Eisdicke in 3D dargestellt (Skala wie in Abbildung 2.6).

Abbildung 2.8: Untergrund des Langenferner am beleuchteten Oberflächenmodell.

Kapitel 3

Tabellen

GPS Nummer	Rechtswert	Hochwert	Gletscher in m	Schnee in m	Eis in m		
321	5145775	623899	138	3.55	39		
322	5145822	623880	51	1.50	34		
323	5145894	623865	123	3.00	41		
324	5145988	623829	57	1.85	31		
325	5146088	623791	488	4.00	122		
326	5146181	623783	177	3.05	58		
327	5146270	623759	110	2.45	45		
328	5146368	623735	95	3.40	28		
329	5146473	623696	210	2.80	75		
330	5146539	623674	129	3.80	34		
331	5146596	623651	223	4.20	53		
332	5146623	623749	192	4.00	48		
333	5146664	623846	157	3.65	43		
334	5146705	623902	218	3.30	66		
335	5146671	623968	124	4.00	31		
336	5146605	624003	111	3.95	28		
Fortsetzung der Tabelle auf der nächsten Seite							

Fortsetzung der Tabelle der vorigen Seite							
GPS Nummer	Rechtswert	Hochwert	Gletscher in m	Schnee in m	Eis in m		
337	5146770	623854	200	2.85	70		
338	5146796	623754	71	2.95	24		
339	5146807	623665	180	3.00	60		
340	5146807	623569	363	2.95	123		
341	5146801	623492	105	2.70	39		
342	5146800	623444	428	2.95	145		
343	5146715	623460	348	4.00	87		
344	5146777	623393	341	3.10	110		
345	5146792	623333	384	2.95	130		
346	5146824	623270	311	2.55	122		
347	5146879	623220	240	2.45	98		
348	5146949	623170	128	1.75	73		
349	5147002	623154	105	1.75	60		
365	5147076	623141	102	3.00	34		
366	5147155	623228	258	2.80	92		
367	5147196	623263	207	2.65	78		
368	5147263	623308	117	1.85	63		
369	5147306	623340	189	3.00	63		
370	5147370	623391	180	2.85	63		
371	5147408	623412	178	2.70	66		
372	5147534	623295	108	2.85	38		
373	5147500	623360	110	2.40	46		
374	5147464	623401	163	2.50	65		
375	5147429	623446	171	2.85	60		
376	5147392	623486	133	3.10	43		
377	5147334	623570	261	4.15	63		
378	5147306	623627	173	3.60	48		
379	5147271	623696	275	3.40	81		
380	5147320	623638	303	3.65	83		
381	5147375	623616	211	2.70	78		
382	5147406	623608	164	2.10	78		
Fortsetzung der Tabelle auf der nächsten Seite							

Fortsetzung der Tabelle der vorigen Seite						
GPS Nummer	Rechtswert	Hochwert	Gletscher in m	Schnee in m	Eis in m	
383	5147474	623590	76	1.25	61	
384	5147555	623568	110	2.20	50	
385	5147632	623548	140	2.65	53	
386	5147699	623533	91	2.75	33	
387	5147764	623527	88	2.85	31	
388	5147834	623513	91	2.95	31	
389	5147881	623516	162	3.05	53	
390	5147922	623526	175	3.30	53	
391	5147870	623602	129	3.30	39	
392	5147818	623638	117	3.25	36	
393	5147762	623693	126	3.50	36	
394	5147725	623704	65	2.10	31	
395	5147843	623713	102	3.00	34	
396	5147876	623769	68	2.95	23	
397	5147639	623814	168	3.50	48	
398	5147604	623878	176	3.20	55	
399	5147573	623945	156	3.05	51	
400	5147495	624026	137	3.60	38	
401	5147498	624089	198	3.60	55	
403	5147487	624153	137	3.60	38	
404	5147567	624164	199	4.15	48	
405	5147597	624213	161	3.50	46	
406	5147636	624278	129	3.00	43	
407	5147664	624362	93	2.45	38	
408	5147720	624435	104	2.90	36	
409	5147781	624481	66	2.55	26	
410	5147812	624582	52	2.25	23	
411	5147855	624634	58	2.40	24	
412	5147879	624708	51	2.20	23	
413	5147870	624770	58	2.40	24	
414	5147850	624831	87	3.00	29	

Tabelle 3.1: Koordinaten der Messpunkte in UTM WGS 84, Entfernung vom Untergrund(Gletscherdicke), Schneehöhe in Metern und Eisdicke in Metern.

Kapitel 4

Messmethode

Die Eisdicke wurde wie schematisch in Abbildung 4.1 gezeichnet gemessen. Im Bereich dieser Konfiguration wurde auch jeweils die Sondierung durchgeführt.

Abbildung 4.1: Messanordnung am Übeltalferner.

Die Eisdicken wurden mit dem Narod Radargerät des Institutes für Meteorologie und Geophysik der Universität Innsbruck vermessen. Als Wellenlänge wurde 6,5 Mhz verwendet. Die Methode basiert auf Messung des Laufzeitunterschiedes zwischen direkten und am Untergrund reflektierten Signal. Dabei ist zu beachten, dass die Fortpflanzungsgeschwindigkeit des Signals in Luft größer als in Eis ist. Daher muss ein Mindestabstand zu Begrenzungsfelsen eingehalten werden, um das Signal vom Untergrund identifizieren zu können.

Die Radarecholotung ist die in den letzten Jahren meist genutzte Methode zur Messung von Eisdicken. Im Unterschied zu Tiefenbohrungen, Reflexions- oder Refraktionsseismik oder Geoelektrik ermöglicht das Radarecholot (Ground Penetrating Radar - GPR) das Messen von quasikontinuierlichen Profilen.

Die Messung der Eisdicke beruht auf dem Laufzeitunterschied zwischen dem vom Gletscher-

untergrund reflektierten und dem direkten Signal. Das von den Antennen ausgesandte gepulste elektromagnetische Signal dringt in den Gletscher ein, wird am Untergrund reflektiert und kommt später beim Empfänger als das durch die Luft transmittierte (direkte) Signal an. Das reflektierte Signal wird im Eis entsprechend den elektromagnetischen Eigenschaften des Gletschers auch an internen Schichten reflektiert und gestreut. Gletschereis hat eine komplexe Struktur. Eisbewegung, Einschlüsse von Luft, Wasser und Gestein verursachen Inhomogenitäten. Auch reines Gletschereis weist, bedingt durch die Entstehung während verschiedener Niederschlagszyklen, interne Schichten auf. Im Firngebiet gibt es Schichten mit verschiedener Dichte, Wassersättigung, Körngröße und eventuellen Wassertafeln.

Die elektromagnetischen Eigenschaften eines Materials werden durch die komplexe relative Permittivität ε beschrieben:

$$\varepsilon = \varepsilon' - i\varepsilon'' \tag{4.1}$$

 ε'_{Eis} =3,15 ist im gesamten Mikrowellenbereich nahezu unabhängig von der Temperatur des Mediums und der Frequenz des Signals (Mätzler 1987). Schnee ist ein Gemisch aus Luft, Eis und flüssigem Wasser, dessen Permittivität durch Mischungsformeln beschrieben wird (Polder and van Santen 1946) (Denoth 1989) (Tiuri, Sihvola, Nyfors, and Hallikainen 1984).

Die Ausbreitung einer ebenen harmonischen Welle entlang der z- Achse in einem absorbierenden homogenen Medium wird beschrieben durch:

$$E(z) = E_0(z)e^{i\omega(t-z/c)}$$
 (4.2)

mit der komplexen Amplitude $E_0(z)$, der Zeit t, der Kreisfrequenz ω und der Ausbreitungsgeschwindigkeit elektromagnetischer Wellen c.

Die Ausbreitungsgeschwindigkeit c elektromagnetischer Wellen in einem Medium ist kleiner als die Lichtgeschwindigkeit im Vakuum c_0 . Sie hängt von den elektromagnetischen Eigenschaften dieses Mediums ab:

$$c = \frac{c_0}{\sqrt{\varepsilon'}} \tag{4.3}$$

Misst man die Zeitdifferenz zwischen dem direkten und reflektierten Signal, kann man bei bekannter Fortpflanzungsgeschwindigkeit des Signals den Weg und somit die Eisdicke berechnen. Die Ausbreitungsgeschwindigkeit in Luft wird allgemein mit 300 $\frac{m}{\mu s}$ angegeben. Für Gletschereis findet man in der Literatur verschiedene Werte z.B. 167,7 [$\varepsilon' = 3, 195$, (Glen and Paren 1975)], 168,5 [$\varepsilon' = 3, 170$, (de Q. Robin 1975)] und 169,0 [$\varepsilon' = 3, 150$, (Kovacs, Gow, and Morey 1995)].

In der vorliegenden Arbeit wurde eine Ausbreitungsgeschwindigkeit in Eis von 168 $\frac{m}{\mu s}$ verwendet (Bauder 2001) (Narod and Clarke 1994) und das Medium Gletscher als homogen angenommen und somit unteschiedliche geschwinidgkeiten in Firnschicht und Winterschneeschichten vernachlässigt. Im verwendeten Wellenlängenbereich konnte die Dicke der Firnschicht nicht aus dem reflektierten Signal abgeleitet werden.

Temperierte Gletscher haben einen hohen Anteil an Flüssigwasser, was zu starken Verlusten

in höheren Freuqenzen führt. Um die nötige Eindringtiefe zu erreichen, arbeitet man daher in Frequenzen bis 10 MHz.

4.1 Messanordnung und Positionsbestimmung

Die Position des Messsystems an der Glestcheroberfläche wurde mit einem Garmin Summit GPS bestimmt. Die horizontale Messgenauigkeit beträgt im Normalfall in einige Meter, die Vertikalkomponente wurde barometrisch gemessen, aber nicht verwendet, da Höhendaten aus dem Laserscan DEM der Provinz Südtirol aus dem Jahr 2006 zur Verfügung standen.

4.2 Meßgerät

Für die Messungen wurde ein Hochleistungs-Impuls Sender von Narod (Narod and Clarke 1994) verwendet. Dieser arbeitet mit bipolaren 550 V Pulsen mit einer Anstiegszeit von unter 2 ns. Die Pulswiederholungsrate beträgt 512 Hz. Das Signal auf der Empfängerseite wurde bis 1998 mit einer Scopekarte (Samplingrate bis 200 MS/s) und ab 1998 mit einem digitalen Scopemeter des Typs Fluke 105B, welches Abtastgeschwindigkeiten von bis zu 5 GS/s ermöglicht, aufgezeichnet. Mit dem Fluke 105B können Störimpulse bis 40 ns aufgezeichnet werden, die Ablesegenauigkeit kann je nach gewählter Auflösung bis 5 ns pro Skaleneinheit betragen. Der Stromverbrauch beträgt 180 mA bei 10-14 V Gleichstrom (5mA im Standby Betrieb) und wird aus einer Trockenbatterie (6,5 Ah, 12V) gedeckt. Die RF Spitzenleistung beträgt 24 kW.

4.3 Auswertung

Abbildung 4.2: (oben)Signalaufzeichnung mit Scopekarte; (unten)Signalaufzeichnung mit Fluke

Am Institut für Meteorologie und Geophysik wurden zwei verschiedene widerstandsbelastete Dipol-Antennen (Wu and King 1965) (Rose and Vickers 1974) hergestellt, deren halbe Länge l 15 bzw. 25 m beträgt. Aus diesen ergeben sich nach Narod (pers. Mitteilung)

$$f_c = \frac{96}{l}MHz \tag{4.4}$$

zentrale Frequenzen f_c von 6,5 MHz bzw. 4 MHz.

Die Anordung der Widerstände von 68, 82, 120, 220 und 680 Ohm (von innen nach außen) verhindert die Reflexion des Signals am Antennenende und optimiert so die Energieabgabe an den Untergrund.

4.3 Auswertung

Gemessen wird der Antennenabstand a und der Laufzeitunterschied Δt zwischen direktem und reflektiertem Signal (siehe Abbildung 4.3), die zur Zeit t_D bzw. t_R am Empfänger eintreffen. Dieser Laufzeitunterscheid hängt von der Geschwindigkeit des Signals in den verschiedenen Medien c_M und den zurückgelegten Weglängen s (im Eis) und a (in Luft) ab. 4.3 Auswertung

Dabei ist a gleich dem Abstand zwischen Sender und Empfänger, und s hängt von der Eisdicke h ab:

$$s = 2 \cdot \sqrt{\frac{a^2}{4} + h^2}$$
 (4.6)

Im Falle eines homogenen, planparallelen Eiskörpers bedeutet dies

$$h = \frac{1}{2} \cdot \sqrt{(\Delta t + \frac{a}{c_L})^2 \cdot c_E^2 - a^2}$$
(4.7)

Abbildung 4.3: Laufzeitunterschied des direkten und des reflektierten Signals.

Ist der Eiskörper nicht planparallel, muss die Lage des Reflexionspunktes durch Migration (Abbildung 4.4) (Yilmaz 1987) ermittelt werden. Dabei wird die Untergrundsform aus den Umhüllenden der Ellipsoide der möglichen Reflexionspunkte des Signals berechnet. Sender und Empfänger liegen in den Brennpunkten des der Messung zugeordneten Ellipsoides.

Abbildung 4.4: Korrektur des Reflexionspunktes und somit der Eistiefe durch Migration am Beispiel des Profils Q9 am Hintereisferner.

4.4 Fehlerabschätzung

Der Gesamtfehler in der Messung der Eistiefe ergibt sich aus in etwa gleichbleibenden Ableseungenauigkeiten und systematischen Fehlern, die stark vom Ort und den Bedingungen zum Zeitpunkt der Messung abhängen. Bei der Bestimmung der Laufzeit kann der Ablesefehler etwa 30 ns betragen. Durch ungünstige Oberflächenbeschaffenheit kann ein Fehler bei der Messung des Antennenabstandes von 2 m auftreten. Kumulieren sich diese Fehler, ist bei einer Laufzeit von 1 μ s und einem Antennenabstand von 15 m ein Fehler in der Eisdicke von etwa 3 m möglich.

Systematische Fehler entstehen aus internen Reflexionen, ungünstiger Untergrundgeometrie, falschen Annahmen über die Geschwindigkeiten sowie der Vernachlässigung von Firnund Schneeschichten am Gletscher.

- **Fehler durch interne Reflexion** An internen Schichten mit unterschiedlichen dielektrischen Eigenschaften kommt es zu Reflexion und Streuung des Signals. Dadurch wird die Interpretation der reflektierten Signale erschwert. Ein Beispiel dafür ist die Reflexion an der Eis/Luft Grenzschicht von Gletscherspalten. Im ungünstigsten Fall sind die Verluste durch Absorption und Streuung an internen Schichten so groß, dass das reflektierte Signal am Empfänger nicht mehr messbar ist.
- Fehler durch ungünstige Untergrundsgeometrie Große Rauigkeit des Untergrundes erschwert die Zuordnung des Reflexionspunktes, der nicht direkt unterhalb des Messprofils liegen muß. Solche Probleme können nur durch sehr dichte Messungen und dreidimensionale Migrationsverfahren mit großem Zeitaufwand vermieden werden. Wird das Signal von einer außerhalb des Profiles liegenden Erhebung im Untergrund reflektiert, kann die Eisdicke im Profil unterschätzt werden. Die Eisdicke zwischen zwei im Profil liegenden Felsrippen im Untergrund wird ebenfalls unterschätzt, wenn der Abstand zwischen den Felsrippen zu klein ist.
- Fehler durch unbekannte Dicke der Firnschicht Auf den hier behandelten Gletschern variiert die Dicke der Firnschicht zwischen 0 und über 20 m. Die Winterschneedecke zum Zeitpunkt der Messung wurde abgezogen. In der Literatur wird der maximale Fehler durch Vernachlässigung der Firnschicht mit 5 % angegeben (Haeberli, Wächter, Schmid, and Sidler 1982).
- **Fehler durch Vernachlässigung der Hangneigung** Bei steilen Gletschern muß berücksichtigt werden, dass der Reflexionspunkt nicht unterhalb des Profiles liegt. Da die Meßpunkte in dieser Stundie alle in relativ flachen, spaltenarmen Gebieten liegen, kann dieser Fehler vernachlässigt werden.

Die Fehler durch interne Reflexion, unbekannte Signalwege und ungünstige Untergrundgeometrie können beliebig groß sein. Im Normalfall werden sie aber bei der Datenkontrolle durch Vergleich mit den Nachbarpunkten erkannt und der Datensatz nicht berücksichtigt. Also kann der Fehler durch Ablesefehler und Vernachlässigung der Firn/Schneeschicht etwa 5 m betragen.

4.5 Erstellung der Karten der Eisdicke aus den Punktmessungen

Die Karten der Eisdicke wurden aus den Punktmessungen händisch interpoliert. Dazu wurden Linien der gleichen Eisdicke basierend auf den Punktwerten der Eisdicken, den topographischen Daten und den Gletschergrenzen 2006 konstruiert und diese mit dem Tool topo2raster in ArcGIS interpoliert. Die Eisdicke an der Gletschergrenze von 2006 wurde auf 0 gesetzt (Fischer 2009).

Literaturverzeichnis

Bauder, A., 2001: Bestimmung der Massenbilanz von Gletschern mit Fernerkundungsmethoden und Fliessmodellierungen. VAW Mitteilungen 169, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich.

de Q. Robin, G., 1975: Velocity of radio waves in ice by means of a bore-hole interferometric technique. *Journal of Glaciology*, **15**, 151–159.

Denoth, A., 1989: Snow dielectric measurements. Adv. Space Res., 9.

Fischer, A., 2009: Calculation of glacier volume from sparse ice thickness data, applied to schaufelferner, austria.calculation of glacier volume from sparse ice thickness data, applied to schaufelferner, austria. *Journal of Glaciology*, **55**, 453–460.

Glen, J.W., and J.G. Paren, 1975: The electrical properties of snow and ice. *Journal of Glaciology*, **15**, 15–38.

Haeberli, W., H.P. Wächter, W. Schmid, and C. Sidler, 1982: Erste Erfahrungen mit dem US Geological Survey Monopuls Radioecholot im Firn, Eis und Permafrost der Schweizer Alpen. *Arbeitsheft*, **6**, 23.

Kovacs, A., A.J. Gow, and R.M. Morey, 1995: The in-situ dielectric constant of polar firn revisited. *Cold Regions Science and Technology*, **23**, 245–256.

Mätzler, C., 1987: Applications of the interaction of microwaves with the natural snow cover. *Remote Sensing Review*, **2**, 259–387.

Narod, B.B., and G.K.C. Clarke, 1994: Miniature high-power impulse transmitter for radioecho sounding. *Journal of Glaciology*, **40**, 190–194.

Polder, D., and J.H. van Santen, 1946: The effective permeability of mixtures of solids. *Physica*, **12**, 257.

Rose, G.C., and R.S. Vickers, 1974: Calculated and experimental response of restively loaded v antennas to impulsive excitation. *Int. J. Electron.*, **37**, 261 – 271.

Tiuri, M., A. Sihvola, E. Nyfors, and M. Hallikainen, 1984: The complex dielectric constant of snow at microwave frequencies. *J. Ocean Eng.*, **OE-9**, 377–382.

Wu, T.T., and R.W.P. King, 1965: The cylindrical antenna with non-reflecting resistive loading. *IEEE Trans. Antennas Propag. AP-*.

Yilmaz, O., 1987: *Seismic Data Processing*. Society of Exploration Geophysicists, P.O. Box 702740, Tulsa.