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Nereid Under-Ice, a new polar ROV
Increased light transmission leads to increased deposition of solar 
energy in the upper ocean and thus plays a crucial role in the 
amount and timing of sea-ice-melt and under-ice primary producti-
on. Recent developments in underwater technology provide new 
opportunities to undertake challenging research at the largely inac-
cessible underside of sea ice. 

We measured spectral under-ice radiance and irradiance onboard 
the new Nereid Under-Ice (NUI) underwater robotic vehicle, during 
a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in 
July 2014. NUI  is a next generation hybrid remotely operated vehic-
le (H-ROV) designed for both remotely-piloted and autonomous 
surveys underneath land-fast and moving sea ice. Here we present 
results from one of the first comprehensive scientific dives of NUI 
employing its interdisciplinary sensor suite. We combine under-ice 
optical measurements with three-dimensional under-ice topography 
and aerial images of the surface conditions.

Arctic summer sea ice exhibits strong heterogeneity of optical properties 
on relatively short spatial scales. As the footprints of different radiome-
ters are rather large, this heterogeneity causes geometric effects that 
need to be taken into account in the analysis of measured data.

This affects small scale lateral investigations, as well as vertical measu-
rements where sensors are lowered through a hole in the ice. Derivation 
of inherent optical properties of the seawater can thus be erroneous in 
ice covered waters, if contamination by geometric effects is not avoided 
effectively.

Length scales of variability
Variability length scales were derived from different subsets of the dataset 
by analysis of spatial variograms:
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Conclusions 
• 72% of light variability can be explained by 

ice draft and surface albedo
• Averages over larger footprints better 

describe the variability
• Light field variability is governed by melt 

ponds on small scales (~100m) and by ice 
thickness/type on larger scales

Length scales of variability
V i bilit l th l d i d f diff t b t f th d t t

• Spatially extensive datasets allow statistical 
treatment on the basis of histograms

• Histograms of under-ice light conditions can be 
inferred from distribution functions of albedo and 
ice thickness

• Geometric effects have to be considered in data 
interpretation underneath a heterogeneous ice 
cover

Estimation of light histograms

Geometric effects under a heterogeneous 
sea ice cover

Figure 2: Mosaic of aerial images of the investigated ice floe taken during a low altitude helicopter survey and used for albedo calculations. 
The length of Polarstern is 120m for reference. Inlay map shows the cruise track (red line) and the ice station position (black cross) off 
northeast Greenland.

Figure 1: The Nereid Under-Ice (NUI) H-ROV during deployment from R/V Polarstern.The vehicle has high bandwidth Ethernet connection to the ship 
via an unprotected optical fiber, that spools off between the tow-body (red) and the depressor (white, both visible in top of image) after separation under 
water. Upward looking sensors are located in the  spine payload bay forward of the main lifting point.

Figure 3: Physical measurements taken from the ROV during the colocated pole survey: a) Light transmittance along the survey track. Red circles 
show positions of numbered marker poles. b) Ice draft as measured along track with upward looking multibeam sonar. c) Surface albedo extracted 
from the image. Blue dots indicate spot data, while lines depict data averaged over circles with different diameters. d) Ice Draft as derived from the 
DVL (blue dashed line) and measured by the center beam of the multibeam sonar (red line). e) Light transmittance measured by the radiance (red 
line) and irradiance (blue dashed line) sensors along the survey.

Figure 4: Histograms of light transmission as obtained from the irradiance (a) and radiance sensors (b). Light transmission histograms generated with the 
-1 for the case of independent source 

distribution functions (c). Same histograms presented as cumulative probability functions (d).
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Figure 5: a) Depth slices of the light field underneath a surface geometry extracted from the aerial image (Figure 2) and idealized by classification into 
two transmittance classes. Bright colors show high light transmittance. b) Vertical irradiance profiles extracted at three different close lying locations indi-
cated in a. Geometric effects are clearly visible in transition zone (red line).


