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Abstract

Physical and chemical properties of surface sediments and waters of 65 lakes in

Northern and Central Yakutia were analysed. The studies included hydrochemical

analyses as well as sedimentological, organic and inorganic geochemical analyses,

the analysis of stable carbon isotope ratios and the analysis of magnetic susceptibil-

ities.

The objectives of this work were a) to characterise Yakutian lakes by their waters and

surface sediments. Additionally, the geographical setting, i.e. the climate, vegetation

and the morphology were taken into account. b) To explore parameters attributing

for the variation in the measured variables using multivariate statistical methods.

c) To characterise the relationships between sediments and waters.

Most of the sampled lakes originated by thermokarst processes and lack in- and

outflows. The ionic composition of the waters is strongly influenced by the conti-

nentality of the Lakes. Central Yakutian lake waters have considerably higher ion

concentrations and electric conductivities than waters sampled in Northern Yaku-

tia. This reflects the negative water balance (evaporation exceeding precipitation)

in that region, which results in evaporation of lake waters. C/N ratios of surface

sediments sampled in that regions are higher than those in Northern Yakutia as the

bioproductivity is generally higher in Central Yakutia. The influence of the vege-

tation on the watershed is reflected in elevated Na/K ratios of waters sampled in

lakes surrounded by taiga forest or pastures. Statistical analyses identified the elec-
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tric conductivity, ion concentrations and alkalinity of waters as variables controlling

the composition of surface sediments.

Sediments rich in nutrients, with high concentrations of elements related to lush

vegetation on the watershed and high magnetic susceptibilities were encountered

in lakes characterised by a) waters with high ionic concentrations and high electric

conductivities and b) their geographical setting, i.e. the vegetation on the water-

shed and the negative water balance in these regions. These results can be of great

value to paleolimnological and paleoenvironmental studies, as analysed sediments

are being correlated to recent environments.
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Zusammenfassung

Im Rahmen dieser Diplomarbeit wurden Oberflächensedimente und Wässer aus

65 nord- und zentraljakutischen Seen analysiert. Die Untersuchungen umfassten

neben hydrochemischen Analysen der Seewässer sedimentologische und geochemis-

che (organisch und anorganisch) Analysen, die Aufstellung von Verhältinssen der

stabilen Kohlenstoffisotope (12C/13C) und die Erfassung der magnetischen Suszep-

tibilität. Die Ziele dieser Arbeit waren es a) Jakutische Seen nach ihren Wässern und

ihren Oberflächensedimenten zu charakterisieren. Die geographische Lage der Seen,

d.h. klimatische Bedingungen, Vegetation, und die Morphologie der Seen wurde

dabei berücksichtigt. b) Die Identifikation des Parameters, der für den Großteil der

Variationen in den Datensätzen verantwortlich ist. c) Die Beziehungen von Sedi-

menten zu den Wässern zu erfassen.

Die meisten der untersuchten Seen sind durch Thermokarstprozesse entstanden und

haben keine Zu- oder Abflüsse. Die Ionenzusammensetzung der Wässer ist zu einem

hohen Grade von der Kontinentalität der Seen beinflusst. Zentraljakutische Seen

weisen deutlich höhere Ionenkonzentrationen und damit einhergehende elektrische

Leitfähigkeiten auf als Seen, die in Nordjakutien beprobt wurden. Dies resultiert

aus der negativen Wasserbilanz (Evaporation größer als Niederschlag) in Zentral-

jakutien, die zu der Evaporation von Seewässern führt. In dieser Region beprobte

Oberflächensedimente weisen größere C/N Verhältnisse auf als solche, die in Nord-

jakutien beprobt wurden. Dies ist auf die höhere Bioproduktivität in Zentraljakutien
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zurückzuführen. Der Einfluss der Vegetation der Wasserscheide spiegelt sich in ho-

hen Na/K Verhältnissen in Wässern der Seen wieder, die von Taigawäldern oder

Weiden umgeben sind. Die elektrische Leitfähigkeit, Ionenkonzentration und die

Alkalinität von Wässern konnten mittels statistischen Analysen als Variablen iden-

tifiziert werden, die die Zusammensetzung der Oberflächensedimente massgeblich

beeinflussen.

Sedimente mit hohem Nährstoffgehalt und hohen Konzentrationen von Elementen,

die mit reichhaltiger Vegetation auf der Waserscheide in Verbindung gebracht wer-

den und hohe magnetische Suszeptibilitäten aufweisen, wurden in Seen angetroffen,

die a) durch Wässer mit hohen Ionenkonzentrationen und hohen elektrischen Leit-

fähigkeiten und b) durch ihre geographische Lage, d.h. durch die hochkontinentale

Lage, die Vegetation auf der Wasserscheide und die negative Wasserbilanz charakter-

isiert sind. Diese Ergebnisse können von großem Wert für paläolimnologische Un-

tersuchungen und Rekonstruktionen von Paläoumwelten sein, da die analysierten

Sedimente mit rezenten Umweltbedingungen korreliert werden.

X



1 Introduction

Small closed-basin lakes are a common feature of the Yakutian landscape. The

high number of small lakes in Yakutia is a consequence of thermokarst processes

(Nazarova et al., 2005). Information about the limnology of Siberian lakes is sparse.

Duff et al. (1999), Laing and Smol (2000), Kumke et al. (2007) and Wetterich et al.

(2008) are some of the few studies to date. These works focused primarily on hy-

drochemical analyses. In this thesis surface sediments were analysed additionally

to the analyses of waters. To increase the amount of information about lakes in this

region, 65 lakes in Northern and Central Yakutia were sampled during the summers

of 2005 and 2007. Global climate changes are expected to affect high latitude sooner

and with greater intensity – exceeding the mean global warming by a factor of two

(Christensen et al., 2007) – than lower latitudes (Quadfasel et al., 1991; Rouse et al.,

1997). Limnological studies in these sensitive regions are not only of interest to pale-

olimnologists, as aquatic ecosystems are affected by global climate changes in many

ways, e.g. increasing water temperatures or changes in subsurface drainage due to

decaying permafrost (Schindler et al., 1996; Duff et al., 1999).

The knowledge of physical and chemical properties of lake waters and sediments is

important in paleolimnological studies. It is in the nature of paleolimnologic studies

that limnological informations are inferred from the analysis of sediments, e.g. sedi-

ment cores. Such studies are often based on relationships between aquatic organisms

(e.g. diatoms, ostracodes) and abiotic factors (e.g. water chemistry) (e.g. Curry and
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1 Introduction 1 Introduction

Delorme (2003); Wetterich et al. (2005)). Other studies focus on sedimentological and

geochemical records, such as magnetic susceptibility (e.g. Peck et al. (1994)), organic

geochemistry (e.g. Kaushal and Binford (1999); Melles et al. (2007)), inorganic geo-

chemistry (e.g. Boyle et al. (2004); Minyuk et al. (2007)), carbon isotope ratios (e.g.

Brenner et al. (1999); Das et al. (2008)) and grain-size distributions (e.g. Bertrand

et al. (2005); Mischke et al. (2005)). The subject of this work is no sediment core, it

is surface sediments, i.e. recent sedimentated material. As the studied sediments

are recent corresponding lake waters could be sampled and analysed. Furthermore,

relationships between sediments and waters could be explored. Hence, the findings

of this work contain additional information for the reconstruction of paleoenviron-

ments, as a wide variety of limnological proxies were studied.

The aims of this thesis are as follows:

• Characterisation of lakes

– by morphological parameters,

– by the composition of waters,

– by the composition of surface sediments and

– by their geographical setting (e.g. climate, vegetation).

• Identification of variables controlling the composition of lake waters and sur-

face sediments.

• Characterisation of the relationship between surface sediments and lake wa-

ters.

In addition to sedimentological analyses, organic and inorganic geochemistry, mag-

netic susceptibility and carbon isotope ratios of the surface sediments were studied.

The analyses of lake waters consisted of field measurements (pH, electric conductiv-

ity, secchi depth) and hydrochemical analyses to determine their ionic composition
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1 Introduction 1 Introduction

and their alkalinity. To assess the effect of continentality on the lakes two study areas

were chosen. One in Northern Yakutia, the other in Central Yakutia (see figure 2.1).

Statistical methods were used in order to identify controlling variables in the datasets

and to explore the relationships between surface sediments and waters.
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2 Study area

The Republic Yakutia is located in the eastern part of Siberia (between 57
◦ and 75

◦N

and 110
◦ and 160

◦ E) and is with only 0.3 inhabitants per km2 a sparsely populated

region. The populated areas are mostly in the vicinity of major rivers such as Lena

or Vilyuy (Kumke et al., 2007).

Figure 2.1: Map of Russia with study areas in Central (I) and Northern (II) Yakutia.

Map based on The World Factbook, 2008.

With ca. 700.000 lakes in Yakutia (106.000 of those in Central Yakutia), it is safe to

say that the majority of the approximately 3 million lakes of Northern Eurasia are

Yakutian. Most of those lakes originated by thermokarst processes (see chapter 2.2)

and are located in alases. Water depth seldom exceeds 3 m and sizes less than 1 km2
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2 Study area 2.1 Geology and Geography

are characteristic (Koronkevich, 2002; Nazarova et al., 2005).

The central Yakutian study area is located between 62
◦

07’ N and 132
◦

14’ E (study

area I), the northern Yakutian (study area II) between 73
◦

23’ N and 115
◦

45’ E (see

figure 2.1). Exact lake locations are listed in table A.1 in the appendix.

2.1 Geology and Geography

Geological setting

Yakutia extends over the Siberian Platform to the west and the Verkhoyansk-Kolyma

Orogen to the east (see figure 2.2). The study areas are located on the Siberian

Platform, which is made up of two levels: the covering Paleozoic deposits and the

basement consisting of various tectonic blocks (Mitrofanov and Taskin, 1994). The

single blocks are composed of early Precambrian units and are separated by mo-

bile zones which overlie regional belts of strike-slip faults, thrusts and upthrusts

(Mitrofanov and Taskin, 1994). Metamorphic basement rocks are exposed only in

the Anabar shield (Rozen, 1995) and the Aldan shield (Koronovsky, 2002). The plat-

form can be divided into several main structures: Aldan shield, Anabar anticline,

Tungus syncline, Vilyuy syncline and the Angara-Lena basin.

Quaternary sediments of different genesis cover the Siberian platform. In the north-

west glacial sediments are developed, periglacial and lacustrine-alluvial sediments

follow to the south (Koronovsky, 2002). Loess-like sediments are widespread in the

southern area of the platform (Péwé and Journaux, 1983), they were formed during

middle Pleistocene glaciations.
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2 Study area 2.1 Geology and Geography

Figure 2.2: Geotectonic map of Yakutia. 1-basement rocks of the

Siberian Platform, 2-sedimentary cover of the Siberian Platform,

3-Verkhoyansk-Kolyma orogenic region, 4-fragments of Palaeozoic

Baikal-Patom fold-and-thrust belt, 5-main Cenozoic basins. Modified

after Popp (2006).

Glaciations during the Last Glacial Maximum (LGM)

The glaciations during the last glacial maximum (LGM, ~20 ka) of eastern and central

Siberia were limited to local ice shields in the Verkhoyansk region, the Putorana

Mountains and the north-eastern coast of the Taymyr peninsula (Velichko et al., 2002;

Galabala, 1997; Svendsen et al., 2004) (see figure 2.3). The Verkhoyansk mountains

were extensively glaciated on the western slopes, were ice advanced into the foothills

(Shagedanova et al., 2002), whereas the Laptev Sea was never subject to glaciation

(Romanovskii and Hubberten, 2001). Velichko and Spasskaya (2002) distinct between

two glacial events (alternating with interstadials), the extent of which was restricted

6



2 Study area 2.1 Geology and Geography

by arid conditions.

Figure 2.3: Reconstructed extent of northern Eurasian glaciation during the

last glacial maximum (~ 20 ka). The glaciation of the north-eastern coast of

Taymyr peninsula is thought to be caused by surging from elevated parts of

the Barents-Kara Ice Sheet. The local glaciation of the Putorana mountains

is indicated by hatched lines (Svendsen et al., 2004).

Soils

Soils of Yakutia are – as they are in the zone of continuous permafrost (see chap-

ter 2.2) – cryosols (Scheffer and Schachtschabel, 1989). The soils of central Yakutia

are usually referred to as “dry cryogenic soils” (Ivanova et al., 2006). Main soils of

central Yakutia are Pale Calcareous, Pale Solodic and Pale Podzolic soils (Sokolov

et al., 2004). Pale Calcareous and Pale Solodic soils develop within alluvial sedi-

ments (here the Lena terraces) on loesslike deposits (Péwé and Journaux, 1983). Pale

Calcareous soils are predominantly to be found on higher elevation, whereas Pale

Solodic soils occupy depressions (e.g. alases). Pale Podzolic Soils develop in sandy

or sandy-loamy deposits and are to be found on low plateaus under larch vegeta-
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2 Study area 2.1 Geology and Geography

Figure 2.4: Schematic soil map of Central Yakutia, using

drainage as classifying attribute. Simplified after Sokolov

et al. (2004).

tion in semiarid climates (Sokolov et al., 2004). Peat soils form in northern Yakutia

in cryogenic depressions (troughs), and can be divided into Cryic Histosols (thaw

depth ~ 20 cm) and Gelic Histosols (thaw depth 1 – 1.5 m).
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2 Study area 2.2 Permafrost and thermokarst processes

2.2 Permafrost and thermokarst processes

The majority of Siberia is underlain by continuous permafrost (figure 2.5), which

reaches a thickness of 300 m in the southern and 600 m in the northern parts (French,

2007). Large areas (up to 40 % according to Czudek and Demek (1970) and Brouchkov

et al. (2004)) of the central Yakutian lowland are affected by thermokarst processes,

and alases cover approximately 17 % of the area (Katamura et al., 2006). This at-

tributes to the composition of the Lena terraces, which consist of silty and sandy

loam (Péwé and Journaux, 1983) with high ice contents (up to 50 – 80 % according to

Brouchkov et al. (2004)). These sediments are known as “ice-complex” (Brouchkov

et al., 2004). Due to the relatively dry conditions, only 10 % of the area is currently

undergoing thermokarst modifications (French, 2007).

Figure 2.5: Distribution of permafrost in Russia. After Kotlyakov and Khromova

(2002).

Central Siberian soils are frozen during most time of the year. The depth to which

the soils thaw depends on latitude and soil texture (0.2 m in peat soils to 2.5 m in
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2 Study area 2.2 Permafrost and thermokarst processes

coarsely textured mineral substrates) (Sokolov et al., 2004). The development of

thermokarst can be divided into several stages (Czudek and Demek, 1970; French,

2007):

1. A polygonal system of ice wedges begins to thaw, trough-like depressions

above the ice veins form. With further thawing (> 1 – 2 m) the vegetation cover

starts to break and the polygon centre form conical mounds, so called “bayd-

jarakhii”.

2. As thawing continues baydjarakii collapse and a depression in the centre of the

baydjarakh field develops. Connected depressions at this stage are called “du-

jodas”, which are further deepened and widened as soon as they are filled by

water, as water has a higher specific heat than the dry ground (fourfold) or ice

(twofold) and thereby promotes the development of thermokarst (Washburn,

1979; Weise, 1983).

3. A depression with steep sides and a flat bottom, called an “alas” develops. The

term “alas” describes mostly circular depressions, which reach depths between

3 and 40 m and diameters between 0.1 and 15 km (Washburn, 1980). These

alases have flat floors which are treeless but overgrown with grass a and in

most cases a thaw lake (thermokarst lake).

4. Permafrost aggradates following the disappearance of the lake (by infilling or

drainage). Perennial frost mounds or pingos forming in the former alas are

called “bulgannyakhii”.

Most of the lakes studied during this work are thermokarst lakes.
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2.3 Climate

In winter a cold high-pressure system, known as “Siberian High” or “Asian High”,

builds up over northeast Asia in response to the radiational cooling of the earth

surface (Serreze and Barry, 2005; Shagedanova, 2002). Its development is aided by

the polar jetstream, which is positioned south of Beringia (Mock et al., 1998). This

semipermanent system dominates central Siberia from November to march. As it

is thermally induced it is shallow, and is replaced by a trough extending from the

Barents Sea south-eastwards at a height of 850 hPa (Weischet and Endlicher, 2000)

and (Shagedanova, 2002). It is weakening in late spring (from April onwards) and is

more or less dissapeared until May. In June a low-pressure system, with low pres-

sure gradients from north to south develops (Weischet and Endlicher, 2000), which

is displaced by the Siberian High in late September.

Figure 2.6: Climate of Central and Northern Yakutia. Both graphics are composites of different

stations (Yakutsk and Tabaga for Central Yakutia; Saskylakh and Tiksi for Northern Yakutia), due

to the sparse Siberian meteorological network, and minor data quality. Data was obtained from the

National Climatic Data Center (NCDC).
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2 Study area 2.4 Vegetation

The climate of the study area is characterised by its high latitude and its continental-

ity: winters are extremely cold (-67.7 ◦C were recorded Oymyakon on February 1933,

-67.8 ◦C in Verkhoyansk in 1885), summers are hot and dry. Average winter temper-

atures reach an average of -34
◦C in January in Saskylakh and -39

◦C in Yakutsk. The

difference is due to the continentality of Yaktusk and the proximity of the Laptev Sea

to Saskylakh. North of 62
◦N albedo values are high (up to 80 %) until April (Weis-

chet and Endlicher, 2000), as thaw is just onsetting. Until May temperatures are well

below zero north of the polar circle. While summer temperatures in Yaktusk reach

an average of 19
◦C (1977 – 2008) in July and a maximum of 37

◦C, temperatures in

Saskylakh reach an average of 12
◦C (1977 – 2008) and a maximum of 33

◦C in the

same time. The temperature amplitude is with ~ 90 K in both places huge.

Because of the high latitudes and the resulting low temperatures, the amount of pre-

cipitable water over Yakutia is low (50 mm in January after (Shagedanova, 2002). Wet

air masses are blocked by mountain massifs in the south (Altai, Sayan, Pre-Baikalia’s

and Transbaikalia’s) and to the east (Verkhoyansk Range), and the Atlantic Ocean is

thousands of kilometers in the west (Antipov et al., 2006). This accounts for the low

annual precipitation in central Yakutia (Tabaga: 286 mm p.a.) and northern Yaku-

tia (Tiksi: 381 mm p.a.), approximately 65 % of which falls from May to September

(Péwé and Journaux, 1983; NCDC, 2008). The absence of an thick insulating snow

cower during winters, due to the distribution of annual precipitation (see figure 2.6),

allows the severe cold to penetrate into the ground, promoting permafrost condi-

tions (Popp et al., 2006).

2.4 Vegetation

Northern Yakutia can be divided into three bioms: arctic tundra, typical tundra

and southern tundra (Shagedanova, 2002). This classification is based on latitudinal
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2 Study area 2.4 Vegetation

characteristics like continentality, climate and topography. The southern border of

the arctic tundra zone is the July 5
◦C-isotherm. Mosses and dwarf willows (Salix

polaris and S. arctica) account for the majority of the vegetation of the arctic tundra.

However bare ground is abundant (Antipov et al., 2006; Shagedanova and Kuznetov,

2002). Southwards follows the typical tundra with a continuous vegetation cover. It

is made up of an increasing number of shrubs (Salix, Dryas, Cassiope) and sedges

(Carex ensifolia ssp. arctisibirica). Further south (beyond the July 10
◦C-isotherm), in

the southern tundra, single trees (mostly Larix) occur, and in the shelter of bushes

(Betula, Salix and Alnus) a rich grass, shrub (Betula exiles) and dwarf-shrub vegetation

develops (Shagedanova and Kuznetov, 2002).

The southern study area is characterised by taiga vegetation, which is dominated by

coniferous trees. As Larch (Larix gemlinii) is very undemanding to climate, it is by

far the most frequent tree in central Yakutia (Tishkov, 2002), followed by pine (Pinus

sylvestris). Common shrubs are birch (Betula exilis) and willows (Salix pyrolifolia).

As forest floors are widespread covered by lingonberry (Vaccinium vitisidaea), Larix-

Vaccinium xerophilous forests account for 75 % of all forested land in central Yakutia

(Tishkov, 2002). These forests cover an area of approximately 3.5 x 10
6 km2 (Tomoaki

et al., 2007). As mentioned before the climate is extremely continental, and during

dry and hot summers forest fires are common. In the years 1988 – 1994 an average of

3.61 x 10
3 km2 of forest was burned almost annually in Yakutia (Tomoaki et al., 2007).

These forest fires may promote thermokarst processes (French, 2007). Characteristic

of Yakutian forests are alases, which floors are mostly grass-covered (Elytrigia repens

and Calamagrostis langsdorfii) (Tishkov, 2002; Tomoaki et al., 2007).
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3 Methods

3.1 Field work

During the summers 2005 and 2007 65 lakes were sampled in Northern and Cen-

tral Yakutia (see figure 2.1). The lakes were accessed with an inflatable boat. While

crossing the lake the water depth was measured using an echolot. As soon as the

deepest part was reached – usually the centre of the lake –, several limnological pa-

rameters were assessed on-site. Conductivity, redox potential, pH and temperature

of the surface water were measured using a multi-parameter field meter (WTW Multi

350i). The water transparency was determined using a Secchi disc. The measure-

ments were followed by sampling surface sediment (upper ~ 2 cm) and surface water

(~ 30 cm depth).

3.2 Laboratory methods

Laboratory work was performed at the Alfred-Wegener-Institute for Polar and Ma-

rine Research in Potsdam, Germany. The sediment samples were prepared for sev-

eral sedimentological and geochemical analyses. The sample preparation is a vital

part for further analysis, as any imprecision propagates and may lead to erroneous

results.
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Figure 3.1: Schematic overview on field work, sampling and following laboratory methods.
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3.2.1 Hydrochemistry

Water samples were stored in HDPE bottles and kept cool until laboratory analyses

could be conducted. Samples for anion and cation analysis were filtered trough cel-

lulose acetate filters (pore size 0.45 µm); the cation sample was furthermore acidified

with nitric acid (HNO3, 65 % sup.). Hydrochemical analyses of Central Yakutian

waters were made by Sebastian Wetterich (Wetterich et al., 2008).

Alkalinity

The determination of the alkalinity (or acid neutralising capacity) of a sample is

based on it’s definition, that is, the amount of an acid that is necessary to bring its

reaction to a specified endpoint (here pH = 4.3) (Chester, 1990). The carbonate alka-

linity is measured by titrating hydrochloric acid into the sample (0.01 mol), thereby

converting HCO3

- ions to H2CO3 until no HCO3

- is left in the water at a pH of

4.3 (see 3.2). As it is assumed that HCO3

- is the predominant acid in lake waters,

the carbonate alkalinity is treated as equal to total alkalinity (Hütter, 1990; Drever,

1997).

Figure 3.2: The pH dependent equilibrium between bicarbonate and car-

bonate in fresh waters (Hütter, 1990).
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Measurements were carried out with an automated digital titrator (Metrohm, 794 Ba-

sic Titrino). This system applies a potentiometric titration and determines the equiv-

alence endpoint where the acid reacted completely with the analyte (pH 4.3). Af-

ter calibrating the pH-electrode with two buffer pH-solutions two standards with

known HCO3

- concentrations (500 and 1000 µmol/l) are measured to ensure a work-

ing set-up. Sample volumes of 2 ml were then titrated with 0.01 mol HCl in µl steps,

until the before defined endpoint was reached. The used titre volume can be calcu-

lated into concentration of HCO3

-.

Anions

The concentration of dissolved anions (Br-, Cl-, F-, NO3

-, PO4

3- and SO4

2-) in the

water samples was determined using an ion chromatograph (Dionex DX-320). This

system is a High Performance Liquid Chromatography (HPLC) system. Ion chro-

matography is basically a physical-chemical method to separate ions according to

their exchange processes between a mobile and a stationary phase. 25 µl sample is

injected into the eluent which is flowing continuously through the system. To pre-

vent clogging of the separation column the eluent is channelled through a guard

column beforehand. This and the following separation column make up the station-

ary phase, consisting of an inert material, which is coated with a film of sulphonic

acid, which in turn is coated with aminated latex. Ions contained in the sample

are separated according to exchange processes taking place in the stationary phase.

These processes can be described after Weiß (2001) as:

Latex+HCO3

- + Anion- = Latex+Anion- + HCO3

- (3.1)

By moving through the stationary phase at different speeds, it is possible to iden-

tify discrete bands or zones (see figure 3.3). To enable ion detection by conductivity
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Figure 3.3: Simplified scheme of separation taking place as

the eluent passes the stationary phase. Exchange processes

are described in equation 3.1.

the eluent is converted into H2O while analysed ions are converted into their cor-

responding acids in a suppressor. The resulting differences in conductivity can be

detected. Ions are identified by their retention time, which is detected by a conduc-

tometric detector analysing the position of the anion peaks on the time axis of the

chromatogram. Anion concentrations were derived by calculating the area under the

peak using the software PEAKNET (Dionex).

To ensure reproducible results standards of known anion concentration were mea-

sured in regular intervals and a blank was inserted to distinguish anion concentra-

tions from background noise.

Cations

The concentration of following dissolved cations were analysed with an ICP-OES:

the minor elements Al, Ba, Fe, Mn, Sr (in µg/l) and the major elements Ca, K, Mg,

Na, P, Si (mg/l). The methodology of optical emission spectrometry is described in

the paragraph “inorganic geochemistry” in chapter 3.2.2.3.

3.2.2 Sedimentological analyses

Subsamples for further analyses were taken from the original sample. This has to

be done with care, as the subsample has to be representative for the whole sam-
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ple. The obtained samples then were freeze-dried (Zirbus Sublimator). Samples for

geochemical analyses were finely grounded (Fritsch planetary mill).

3.2.2.1 Grain size distribution

The grain-size distribution was determined using a laser diffraction particle size

analyser (Coulter LS 200). In order to remove organic particles from the samples,

they were treated with concentrated hydrogen peroxide (H2O2) and placed on a

platform shaker (innova 2300) for maximal five weeks. The sample then was washed

using centrifuges of different sizes (Cryofuge 8500 and Multifuge 3s) and subse-

quently dried in a cabinet drier. 0.1 to 5.3 g of the dried and organic-free sediment

was dispersed in approximately 0.75 l ammonia solution (NH4 0.0001 %). 0.1 to 2.5 g

Petranatriumdiphosphat (Na4O7P2 · 10 H2O) were added to enhance the dispersion

of clay concretions. The suspension then was mixed in an overhead shaker (Gerhardt

Laboshake RS 12) for at least 12 hours. Before measuring the sample it was split into

eight homogeneous subsamples using a sample splitter (Retsch DR 100) in order to

attain a concentration of 8 – 12 %, as the laser unit requires a certain transparency. If

the concentration was still to high, 4 of the 8 subsamples were splitted once more.

Each sample was measured at least two times, if possible three times or more. The

mean of at least two samples was then used to calculate the grain-size distribution

using the software Sedivision 2.0 (Beguma). In order to describe grain-size distri-

butions mean, median, kurtosis and skewness in φ-grades (Krumbein, 1964) were

calculated. The grain-size classes and relating φ-grades are displayed in table 3.1.

3.2.2.2 Magnetic susceptibility

The magnetic properties of the samples were measured in polystyrene sample con-

tainers (12.5 ml) using a magnetometer (Bartington Instruments Model MS2B). In this
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Table 3.1: Grain-size fractions after Wentworth (1922) (as citet in McManus

(1988)) and φ-grades after Krumbein (1964).

Grain-size fraction Gravel Sand Silt Clay

[mm] > 2 mm 2 – 0.0625 0.0625 – 0.002 < 0.002

φ -5 – 1 -1 – 4 4 – 8 > 8

system a low intensity (~ 80 ampere per meter) alternating magnetic field is gener-

ated. The remaining magnetisation of the sample is measured and transformed into

values of mass-dependent magnetic susceptibility defined as

χ =
κ

ρ
(3.2)

which is expressed in SI units (10
−8 kg−1) (Dearing, 1999b,a). As the system is cal-

ibrated to sample weights of 10 g, measured values had to be corrected to the cali-

bration mass by:

χ =
mean of measured value [SI] · calibration weight[10g]

sample weight [g]
(3.3)

Each sample was measured at least twice.

3.2.2.3 Geochemistry

Organic geochemistry

The composition of sedimentary organic matter depends on environmental factors

such as temperature, precipitation and sedimentary characteristics. Hence it is pos-

sible to draw several conclusions from the analysis of organic matter, e.g. about
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sources of organic carbon (C/N) or bioproductivity (TOC, TN, TC) (Meyers and

Lallier-Verges, 1999; Tyson, 1995).

The concentrations of total inorganic carbon (TIC), total organic carbon (TOC) and

total nitrogen (TN) were measured using a Vario EL III (Elementar) elemental anal-

yser. The samples had to be finely grounded and, for the measurement of TOC,

made carbonate-free. To dissolve carbonates ~ 4 % hydrochloric acid (HCl) were

added to the sample, which was then heated up to 97
◦C for three hours. The

carbonate-free sample was then washed with water and dried in a cabinet drier.

5± 0.2 mg of finely grounded sample were weighed into tin capsules. Each sample

was measured twice, in order to control the measurements by standard deviation. In

every measurement cycle samples were appended to various calibration and control

standards. Control standards were inserted each twenty samples to assess overall

deviation of the system. The tin capsules were inserted in an automatic sampler,

which could hold up to 79 samples at once. Additional samples could be inserted in

the course of the measurements. The measurement can be divided into three steps:

digestion of the sample and removal of foreign gases (e.g. volatile halogens), sep-

aration of components to be measured, and detection (CHNOS Elementaranalysator

vario EL III - Bedienungsanleitung, 2005). The combustion of the sample takes place

in an oxygen-rich environment at 1150
◦C. After removing foreign gases helium car-

ries the gas mixture through adsorption columns, where the components (here C,

N, and S) are separated. The sulphur content was not measured. While the gas

mixtures (e.g. He/CO2) are flowing through a measurement cell, helium is steadily

flowing through a reference measuring cell. Differences in electrical properties are

equivalent to the elemental concentration.

Detection limits were 0.1 % for carbon and 0.05 % for nitrogen. The carbon to nitro-

gen ratio (C/N) was calculated by division of TOC by TN, the concentration of total

inorganic carbon (TIC) by the difference of TC to TOC.
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Inorganic geochemistry

Different elemental ratios can be used to trace changes in the geochemical compo-

sition of a lake, triggered for example by human impact. In contrast to pollen that

carries a regional signal element ratios reflect the local area (catchment area) through

the input of run-off water.

The concentration of major (Al, Na, Fe, Mn, Mg, Ca, K, P, Ti, Ba and Li) and trace

elements (Co, Cr, Cu, Ni, Pb, Sr, V, Zn and Zr) was determined using an Inductively

Coupled Plasma - Optical Emission Spectrometer (ICP-OES) by Perkin Elmer (Perkin

Elmer Optima 3000XL). This method requires samples to be present as stable solu-

tions. As the measurement is only as accurate as the dissolution is reliable (Walsh

et al., 1997), a complete digestion was achieved by leaching/treating the samples

with nitric, hydrofluoric and perchloric acids in a pressure digestion system (PICO-

TRACE Pressure Digestion System DAS). This procedure consists of five steps: pres-

sure digestion, first closed then open fuming off of excess acids and a final digestion.

First 3 ml nitric acid (HNO3, 65 % sup.), 4ml hydrofluoric acid (HF, 40 % sup.) and

3 ml perchloric acid (HClO4, 70 % sup.) were added to 100 mg of finely grounded

sample in PTFE-crucibles. After at least 4 hours of cold reaction the crucibles were

inserted in a heating block, sealed with PTFE-lids and a pressure plate. This setup

was then heated to 170
◦C with a rate of 57

◦C/h and kept at that temperature for

22 hours. While the system is under pressure solid materials are being decomposed.

During the following evaporation phase the sample material is transformed into

soluble salts. The system then has to cool down to room-temperature before contin-

uing with closed fuming off excess acids. An PFTE evaporation plate was attached

to the crucibles and connected to HDPE-bottles filled with sodium hydroxide solu-

tion (NaOH ~ 4 %) which is used as solvent and neutraliser for acid vapours. The

system then was heated to 180
◦C with a rate of 135

◦C/h. To prevent samples to dry

up this process was terminated after 4.5 hours. This process was followed by open

fuming off at 135
◦C. The crucibles were kept on the heating block until the samples
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reached a gel-like state. In the next step the samples were solubized with 1 ml ni-

tric acid and 5 ml pure water, before placing them in the heating block and starting

the final pressure digestion at 150
◦C. The soluted samples were then transferred to

HDPE-bottles and diluted to 1:500 by adding pure water. In one cycle, consisting

of boiling, closed and open fuming off, thirty-two samples (including two standards

and two blanks) could be prepared.

An ICP-OES consists basically of a source unit (ICP torch), a spectrometer and a

computer. The “Inductively Coupled Plasma” or ICP in the source unit is generated

by adding a strong magnetic field using an induction coil (hence inductively cou-

pled) (Boss and Fredeen, 1989; Heinrichs and Herrmann, 1990). The sample is added

to the system and excitated in the plasma. While being excitated the atoms and ions

emit light, which is measured by a spectrometer. As each element has characteristic

spectral attributes, the concentration of each element can be determined by measur-

ing the intensity of the selected spectral lines (Walsh et al., 1997).

The system was calibrated using solutions with known elemental concentrations.

Different solution were used for major and trace elements. After calibration the sys-

tem standards and blanks were measured. The standard showing the least deviation

was measured each 10 samples to assess overall deviation throughout the measure-

ment cycle. Major elements were measured in a 1:1000 dilution, trace elements in a

1:500 dilution. If measured element concentrations were out of the calibrated range,

the sample was diluted further.

3.2.3 Stable carbon isotope ratios

Natural carbon consists of two stable isotopes, 12C and 13C with abundances of

98.89 % and 1.11 %, respectively. Those isotopes are being fractionated during incor-

poration (Attendorn and Bowen, 1997; Clark and Fritz, 1997). Carbon isotopes in

organic matter can be used to reconstruct productivity rates and the availability of
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nutrients in surface waters (Meyers and Teranes, 2001), and distinguish between or-

ganic matter derived from terrestrial plants (C4 plants) and from open-water sources

(C3 algea) (O’Leary, 1981; Hassan et al., 1997).

The carbon isotope composition of the surface sediment samples was determined

using a setup consisting of an elementar analyser (Flash EA 1112 Series, Thermo

Finnigan), a gas mixing system (CONFLO III) and a MAT Delta-S mass spectrom-

eter (Thermo Finnigan). A calculated net weight – depending on TOC content – of

each sample was weighed into tin capsules, which was then released into the system

by an autosampler system (AS200). Before measuring the sample a standard gas

(CO2) with known isotopic composition was measured in the mass spectrometer in

order to determine the isotopic composition of the sample. Samples are combusted

in the elemental analyser at 950
◦C in an oxygen-enriched atmosphere, thereby trans-

ferring organic matter into CO2, while other gases (byproducts) are reduced. Upon

entering the mass spectrometer, the sample gas is ionised. The ions then are accel-

erated in an electrostatic field and pass a magnetic analyser. The mass-dependent

deviation is recorded and transformed into mass specific peaks, which in turn are

recalculated into isotopic contents and their ratio. Standard samples were measured

for calibrating purposes. Some samples were measured twice in order to guarantee

quality and reproducibility of the data. As only carbonate-free samples were used it

is ensured that the measured isotope composition is that of the organic matter. Over-

all standard deviation was less than 0.15 ‰. The isotope ratios (δ13C) are expressed

as ratios of C13 to C12 (C13/C12) and given delta in per mill (δ, ‰) with reference to

the V-PDB international standard (Pee Dee Belemnite Formation in South Carolina,

USA as defined by the IAEA in Vienna) (Craig, 1997):

δ13C ‰ =
Rsample − Rstandard

Rstandard
· 1000V-PDB (3.4)
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3.3 Multivariate statistics

In order to display the dataset in a diagram ordination techniques were used. Pat-

terns in the datasets were revealed by the use of indirect ordination techniques,

relationships between surface sediments (treated as species) and waters (treated as

environmental data) by the use of direct ordination techniques. In order to achieve

a comparable and deskewed dataset all variables (except pH values) had to be log

transformed (x′= log (x+1)) (Leyer and Wesche, 2007).

A detrended correspondence analysis (DCA) was computed so as to verify a linear

distribution of the dataset. Detrending was accomplished by dividing the first axis

into segments and reducing values by their joint mean, thereby downweighting high

values stronger than low ones. Equidistant values along the first axis where achieved

by non-linear rescaling. The resulting gradient length was used to decide whether to

use linear or unimodal ordination techniques. Gradient lengths, expressed in mul-

tiples of standard deviation (SD), shorter than 3.0 SD suggest a linearly distributed

dataset (Lepš and Šmilauer, 1999).

As a linear distribution was detected a principal component analysis (PCA) was per-

formed. The goal of this analysis is to explore the variation in the physical and chem-

ical variables of the studied lakes, to identify variables that explain the dataset best

and to simplify the dataset by excluding redundant information. This is achieved

by calculating the residual sum of squares. The variable featuring the least residual

sum of squares is the one explaining the dataset best. Following this, a theoretical

variable is built explaining the dataset still better. This variable represents most of

the variance and forms the first axis or principal component (principal component

I). The fit of that axis is expressed by its eigenvalue. The position of the variables

(displayed as vectors) in relation to the principal component indicates how well they

are explained by it. The length of the vectors is comparable as the dataset has been

log transformed (ter Braak, 1987; Leyer and Wesche, 2007). Physical and chemical
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properties of surface sediments were used for the first PCA, physical parameters of

the studied lakes and hydrochemical data for the second PCA. Each variable was

treated as species, so 27 species could be included in the first and 20 species in the

second analysis. Both analysis were carried out for 65 study sites. The variables

were centred and standardised, resulting in columns with averages equal to zero

(centrered) and rows with sums of squares equal to one (standardisation).

In order to explore relationships between surface sediments and waters a redun-

dancy analysis (RDA) was carried out. A RDA is a canonical ordination technique,

that combines indirect gradient analysis (here a PCA) with regressions on environ-

mental variables. Thus, relations between species and environmental variables can

be explored. To determine which environmental variable explains the species data

best, residual sums of squares are calculated. The environmental variable giving

the smallest residual sum of squares is the one explaining the species data the best.

The theoretical variable built in this analysis is, in contrast to that built in a PCA,

dependent on environmental variables (ter Braak, 1987; Leyer and Wesche, 2007).

Furthermore a partial RDA was computed. Therefore statistical significant variables

were identified by using a Monte-Carlo permutation test. Variables with probabili-

ties p > 0.05 were excluded from the analysis.

All ordinations were accomplished using the software CANOCO 4.5 (ter Braak and

Šmilauer, 2002), diagrams were plotted using the software CANODRAW 4.0 (Šmi-

lauer, 2002).
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4 Results

The results from field and laboratory analyses are summarised in the following chap-

ter. It’s structure differs from the preceding in order to ensure readability. Hydro-

chemical parameters are displayed in the first part, and are followed by sedimento-

logical data. A Principal component analysis (PCA) is applied for each dataset. The

results of the Redundancy analyses (RDA) are displayed at the end of the chapter.

4.1 Limnological parameters

The majority of the studied lakes were shallow (< 3 m) and did not exceed water

depth greater then 10 m. Water depths range between 0.15 and 5.2 m in Central

Yakutia and 0.9 and 8 m in Northern Yakutia. The depth of the presumably deepest

Lake (07-SA-08) wasn’t measured but estimated, and should therefore not be taken

into account for any statistical analysis. Sediment samples were taken at maximum

depths. Lake areas range between 2000 x 2000 m and 20 x 30 m. The largest sam-

pled lake is located in the northern study area. When compared to Secchi depths

of Northern Yakutian lakes (0.5 – 4.5 m), Central Yakutian lakes have low depths

(0.15 – 2 m). The pH ranges between 4.85 and 10.2, with Northern Yakutian lakes

being slightly acidic to neutral (pH 4.85 to 7.55) and Central Yakutian lakes being

neutral to slightly alkaline (pH 6.6 to 10.2). The electric conductivity of sampled

lakes ranges between 0.02 and 5.71 mS/cm. Waters from central Yakutian lakes have
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considerable higher conductivities (0.1 – 5.71 mS/cm) than those from from Northern

Yakutia (0.02 – 0.28 mS cm-1).

Hydrochemistry

Concentrations of cations (Ca2+, K+, Mg2+, Na+ and Si4+) and anions (Cl-, SO4

2-,

NO3

- and HCO3

-) contained in the water samples were measured in µg/l and

mg/l, respectively. Ion concentrations detected by hydrochemical analysis (see chap-

ter 3.2.1) are displayed in ternary diagrams (figure 4.1), and were summarised in

table A.2.

Figure 4.1: Hydrochemistry of sampled waters. Water samples from Central Yakutia are

displayed as blue triangles, samples from Northern Yakutia as red squares.

As it is only possible to display three parameters in one diagram, results are divided

into two diagrams showing equivalent concentrations of cations (Na+, K+, Ca2+,

Mg2+) and anions (Cl-, HCO3

-, SO4

2-). In these diagrams percental shares of the

single ions (or ion groups) in the anion or cation composition of the waters are dis-

played in one point. Detected mass concentrations were transformed into equivalent
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concentrations by using the following formula (Hölting and Coldewey, 2005):

equivalent concentration [mol/l] =
mass concentration [g/l]
equivalent mass [g/mol]

(4.1)

or

c(
1
z

X) =
β(X)

1
z M(X)

(4.2)

In order to asses the data quality an ion balance was calculated by using the follow-

ing formula (Hölting and Coldewey, 2005):

ion balance =
∑ c(1

z cations)−∑ c(1
z anions)

0, 5 · (∑ c(1
z anions) + ∑ c(1

z cations))
(4.3)

The ion balance should be even, but deviations are common due to various factors,

e.g. poor analytical precision, low ion concentrations or long storage of the samples.

Deviations are acceptable in certain ranges, but should not exceed 10 % (Hölting

and Coldewey, 2005). Errors of ion balances average at 12.4 % for all sampled lakes,

at 10.9 % for Northern Yakutian and at 14.2 % for Central Yakutian lakes. Highest

deviations coincide ion concentrations that were exceptionally low, sometimes just

above detection limit. Detected ion concentrations and ion balances are displayed in

table A.2 in the appendix. Ion concentrations show similar cation compositions for

lake waters from Northern Yakutia, 88.6 % of which are dominated (>50 %) by Mg2+

and Ca2+. Mg2+ concentrations range between 17.5 and 44.4 %, Ca2+ between 12.4

and 68.7 %. Cation compositions of Central Yakutian lakes have considerably higher

concentrations of Na+ and characterised by concentrations >85 %. Anion compo-

sitions are dominated by HCO3

- in both study areas, with concentrations varying

between 9.17 and 99.4 %. 89.2 % of the studied waters with HCO3

- concentrations

higher than 50 %. According to these high HCO3

- concentrations the anions Cl- oc-

curs in low concentrations. Central Yakutian lakes have Cl- concentrations between

0.3 and 24.3 %.
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PCA on limnological parameters

Hydrochemical data, along with lake parameters as size, depth, etc., were treated as

environmental variables. The PCA biplot of that data (see figure 4.2) explains ~ 62 %

of the variability within the dataset with eigenvalues of λ1 = 0.499 and λ2 = 0.122,

respectively. The first axis accounts for 50 %, the second for 12 %. The third and

fourth axes together account for 15 % (λ3 = 0.079 and λ4 = 0.075). In the following,

third and fourth axes are not plotted as their contribution explaining the variance

of the dataset is rather small. As above, variables containing values below detection

limit were replaced by the value of the detection limit if they occurred below that

limit in less than half of the sites, or were below the detection limit in one region

(e.g. Northern Yakutia) only. Variables which occurred below their detection limit in

more than half of the studied sites were eliminated from the dataset. Three variables

(Al, nitrate and phosphate) met that criterion and were removed. Therefore 21 envi-

ronmental variables and 65 samples were used in this analysis. Variables included

in this PCA and their correlation factors are listed in the appendix in table A.6. The

eigenvalues and the cumulative variance of the four first axes (or components) are

listed in table 4.1.

Table 4.1: Results of PCA performed on 35 water samples and 25 environmental

variables.

Axis Eigenvalue Cumulative variance Individual axes contribution

λ [%] [%]

1 0.499 49.9 49.9

2 0.122 62.1 12.2

3 0.079 70 7.9

4 0.075 77.5 7.5

The variables pH, conductivity, elevation, Ba, Ca, K, Mg, Na, Sr, fluoride, chloride,

sulphate and HCO3

- are positively correlated to the first axis (r > 0.5). These variables
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are closely related and determine the alkalinity and salinity of the lake waters. The

second and third (not shown) axes are associated with water depth, Secchi depth,

approximate size and Fe. Furthermore a separation between northern and central

Yakutian lakes is clearly visible.

Figure 4.2: PCA of 25 measured environmental variables from 35 sampled lake

waters. Northern Yakutian lakes are encompassed by a green envelope, lakes

from Central Yakutia by a yellow one.
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4.2 Surface sediments

Grain-size analysis

The grain-size distributions of surface sediment samples from 65 lakes were analysed

in the course of this work. Gravel was absent in all samples, grain-size classes after

Wentworth consist of clay, silt and sand. Clay contents range from 1 to 40 vol.-%, silt

contents range from 8 % to 76 vol.-% and sand contents range from 0 to 87 vol.-%. Silt

is dominating (>50 vol.-%) 81,5 % of the samples, 12.3 % are dominated by sand. The

samples are subdivided into lithological classes using the classification of Shephard

(1954). By far the most frequent classes are clayey silt and sandy silt. Other detected

classes are silt, silty sand, sand and sand-silt-clay (see figure 4.3). The descriptive

parameters mean, skewness and kurtosis were calculated after a method described

by McManus (1988), in which each grain-size fraction is taken into account. Results

are displayed in table A.3 in the appendix.

Magnetic susceptibility

The Magnetic susceptibility (Xlf) of the surface sediment samples ranges between 3

and 147 Si 10
−8, with an average of 38 Si 10

−8 and a standard deviation of 29 Si 10
−8.

The susceptibilities of Central Yakutian surface sediments are generally larger (me-

dian = 101 SI) than in Northern Yakutian sediments (median = 81 SI). The results are

summarised in table A.3 in the appendix.

Organic geochemistry

The measured concentrations of total carbon (TC), total organic carbon (TOC) and

total nitrogen (TN) as well as total inorganic carbon (TIC) and C/N ratios are given

in table A.3 in the appendix. TC is present with concentrations of 0.25 to a maxi-

mum of 43.8 %. The distribution of TOC follows that of TC and shows a minimum
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Figure 4.3: Ternary Diagram displaying lithological classes

after Shephard (1954). Surface sediments from Central Yaku-

tia are displayed as blue triangles, samples from Northern

Yakutia as red squares.

of 0.23 % and a maximum at 47.3 %. The contents of TIC are with 0 to 2.09 % rela-

tively low. TIC of 20 lakes shows negative values. TN is contained at concentrations

which range between a minimum of 0.05 % and a maximum of 3.87 %. One sample

(07-SA-19) had a TN concentration below detection limit (0.05 %). Calculated co-

efficients of determination (R2) show that strong correlations between TOC and TC

(0.97) and TOC and TN (0.84) exist. TIC did not correlate with any of the above men-

tioned parameters. The contents of nitrogen (TN) and organic carbon (TOC) were

highest in Central Yakutian sediments. C/N ratios follow that spatial distribution,

and range overall between 6.57 and 22.4.
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Inorganic geochemistry

The concentration of Lithium (Li) was below detection limit in all sediment samples.

Lead (Pb) was only contained in five samples in concentrations high enough for the

detection to be reliable. Furthermore concentrations were below detection limit in

four samples for chromium (Cr), eight samples for copper (Cu), four for nickel (Ni),

two for vanadium (V) and two for zirconium (Zr). Aluminium (Al) concentrations

range between a minimum of 0.94 and a maximum of 14.4 %. Concentrations are

generally higher in the northern study area, while variations are higher in the cen-

tral study area. Calcium (Ca) concentrations range from 0.66 to 7.09 %, with highest

values in Central Yakutian sediments. Iron (Fe) concentrations range between 0.51

and 15.3 %. Fe is the major element which the highest concentrations in the studied

surface sediments, while a trend towards lower values in the Central part is notice-

able. Potassium (K) concentration range from 0.14 to 3.28 %. While the minimum

occurs in Central Yakutia and the maximum in Northern Yakutia, a spatial pattern

could be detected. Concentrations of magnesium (Mg) in the lake sediments range

from 0.18 to 12 %. Values are considerably higher in the studied lakes of northern

Yakutia. Manganese (Mn) concentrations range from 0.02 to 0.26 %, it is generally

contained in similar ranges in the northern and the central part of Yakutia. Sodium

(Na) concentrations range from 0.15 to 6.28 %. While the highest values are to be

found in a lake located in Central Yakutia, variations between the northern and the

southern study area are only small. Phosphorus (P) was contained in concentrations

between 0.04 and 0.65 ppm. Lowest concentrations where detected in the northern

area. Titanium (Ti) concentrations range between 0.03 and 0.83 ppm, with highest

values in the central part of Yakutia. Barium (Ba) concentration range between 115

and 907 ppm. The variability does not follow a north-south trend. Lithium (Li) con-

centrations were below detection limit in all samples. Concentrations of chromium

(Cr) range between 13 and 67.5 ppm, however four samples can not be considered in

the further discussion. A spatial pattern is not visible. Copper (Cu) concentrations
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range between 10 and 35 ppm, but again eight samples contained to little copper for

the detection to be reliable. Highest concentrations occur in Central Yakutian lakes.

Nickel (Ni) concentrations range between 13.7 and 52.5 ppm. Variations in north-

ern lakes are high, as they feature the full range of Ni concentrations. Lead (Pb)

is only in four lakes contained in concentrations above detection limit. All of these

lakes are located in Central Yakutia. Strontium (Sr) concentrations range between 98

and 415 ppm, with the maximum in a Central Yakutian lake. Vanadium (V) concen-

trations range between 13.1 and 124 ppm, with two samples with V concentrations

below detection limit. Zinc (Zn) concentrations range between 21.2 and 377 ppm.

The highest detected concentration occurs in a Central Yakutian lake and appears to

be an outlier, as its concentration is almost 220 ppm higher than the following sam-

ples. Zirconium (Zr) concentrations range between 10.4 and 457 ppm. Two samples

contained Zr in concentrations below detection limit. The results of the elemental

analyses are summarised in table A.4 in the appendix. Characteristics of detected

elemental concentrations are displayed in figure 4.4.

Stable carbon isotopes

The δ13C isotope ratios of organic carbon range between 18.7 and 34.6 ‰. The low-

est ratio was detected in a Central Yakutian lake (05-YAK-16), the highest in a

Lake in Northern Yakutia. Generally, ratios were slightly lower in lakes located

in the central part of Yakutia (median = 26.7 ‰), than those from the northern part

(median = 29.1 ‰). Due to problems that were encountered during the measure-

ment of δ13C ratios of Northern Yakutian samples two thirds of the results have a

systematic error. These are listed in table A.3 in the appendix.

PCA on surface sediments

The relationships between surface sediments and lake locations were explored using

a principal component analysis (PCA) based on a correlation matrix. All 65 samples
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Figure 4.4: Boxplot of detected elemental concentrations in surface sediments.

The boxes enclose 50 % of the data with the median concentration of the ele-

ment displayed as a line. The extending lines mark the minimum and maximum

values.

and 27 species – sedimentological variables were treated as species – were used in

this analysis. The eigenvalues and the cumulative variance of the four first axes (or

components) are listed in table 4.2. A high percentage (79.6 %) of the total variance in

the data could be explained by the first four axes. The relevance of the axes decrease

rapidly as 71 % of the variance is explained by the first three axes.

The PCA biplot (figure 4.5) explains ~ 60 % of the variability within the dataset with

eigenvalues of λ1 = 0.346 and λ2 = 0.249, respectively. Axis I accounts for 35 % and

axis II for 25 % of the variance. Components III & IV are not shown. Small angles

between arrows of variables indicate high positive correlations. The longer the ar-

row (vector) of a variable, the larger its variance and its weight in determining axes.

Arrows in the proximity of principal components signify their weight with respect
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Table 4.2: Results of PCA performed on 27 measured variables from 35 surface

sediment samples.

Axis Eigenvalue Cumulative variance Individual axes contribution

λ [%] [%]

1 0.346 34.6 34.6

2 0.249 59.5 24.9

3 0.115 71 11.5

4 0.086 79.6 8.6

to each axis. The ordination of the sampling sites does not show a clear separation

between the lakes. The variables lithium (Li) and lead (Pb) were eliminated from

the dataset, as their concentrations were below the detection limit in more than 90 %

of the study sites. Values below the detection limit were replaced by the value of

their detection limit, if they were detectable in the majority of the lakes. Variables

included in the PCA are listed in the appendix in table A.5. A strong positive correla-

tion (r > 0.5) exists between the first axis and TIC, TOC and TN, while the correlation

between that axis and Al2O3, Fe2O3, K2O, TiO2, Ba, Cr, V, and Zr is highly negative

(r < -0.5). The ordination of sampling sites does not reveal a pattern in the distribu-

tion of the lakes. The correlations between the second axis and the variables clay,

Na2O and Sr are positive, whereas δ13C, sand, silt, Cu, Ni and Zn correlate nega-

tively. Nutrient-related variables (i.e. TN, TOC, TC, C/N and P2O5) are situated in

the lower right quadrant of the ordination, metals and transition metals in the lower

left and alkali and alkaline earth metals are located in the upper left quadrant of the

ordination.
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Figure 4.5: PCA of 27 measured variables from 35 sampled lake surface sedi-

ments. Study site code key in table A.1 in the appendix.

4.3 Multivariate statistics

Detrended correspondence analysis (DCA)

To determine if the distributions of the datasets are linear or unimodal a detrended

correspondence analysis (DCA) for both water and sediment data was computed. As

the length of the longest gradient didn’t exceed 3.0 SD in both sediment (0.64 SD)

and water (0.99 SD) linear distributions were detected. Therefore, linear ordination

methods were used to explore the variation in the dataset.
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Redundancy analysis (RDA)

The redundancy analysis (RDA) was computed in order to estimate how much vari-

ance in the sedimentological data is explained by certain environmental parameters.

Variables included in this analysis and their correlation factors are listed in table A.7

in the appendix. Resulting eigenvalues are listed in table 4.3. The first two axes

explain 37 % of the species variance, with eigenvalues of λ1 = 0.251 and λ2 = 0.119,

respectively. Species and environmental variables correlate well on the first two axes

(axis 1 = 0.865 and axis 2 = 0.763). The sum of canonical eigenvalues was 0.583, the

sum of all unconstrained eigenvalues of the RDA being 1.000. Hence, 58 % of the

variation of the species (surface sediment samples) is explained by the environmen-

tal variables, indicating a close relationship between the two datasets.

Table 4.3: Results of RDA on surface sediments (treated as species) from 65 lakes (treated as samples)

and water samples (treated as environmental variables).

Axis Eigenvalue species/environment Cumulative variance Cumulative variance

λ correlation (species) [%] (environment) [%]

1 0.251 0.865 25.1 43.1

2 0.119 0.763 37.0 63.4

3 0.092 0.848 46.2 79.3

4 0.056 0.723 51.8 88.9

The RDA triplot (figure 4.6) illustrates the correlations of environmental variables

and computed axes. A strong negative correlation exists between the first axis

and water depth (r = -0.61) and secchi depth (r = -0.53), while K correlates positive

(r = 0.56). The second axis is strongest correlated with conductivity (r = 0.73), Br
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(r = 0.64), chloride (r = 0.59) and Mg (r = 0.53). Variables contributing to water chem-

istry characteristics are almost exclusively positioned in the upper right quadrant

of the ordination. These are closely related to alkalinity and salinity of lake wa-

ters. Sample sites are arranged along two gradients: one related to pH, conductivity,

HCO3

- and K, and one related to water depth and secchi depth. Nutrient related

variables (i.e. TN, TOC, C/N and P2O5) are located in the lower right quadrant, the

majority of the metals and transitional metals in the lower left quadrant. Most of the

alkaline earth metals such as K, Na and Ca are located in the upper left quadrant of

the ordination. The sample sites 6 and 7 are located in the far upper right quadrant

of the ordination. This is due to the high alkalinity of the lakes. The results of the

RDA are summarised in table 4.3.

Table 4.4: Results of partial RDA on surface sediments (treated as species) from 65 lakes (treated as

samples) and water samples (treated as environmental variables).

Axis Eigenvalue species/environment Cumulative variance Cumulative variance

λ correlation (species) [%] (environment) [%]

1 0.223 0.829 22.3 53.51

2 0.093 0.810 31.6 76.0

3 0.068 0.816 38.4 92.4

4 0.015 0.313 40.0 96.1

Partial redundancy analysis (RDA)

As to eliminate redundant data from the analysis a Monte-Carlo permutation test

(499 unconstrained permutations) was applied. From 20 environmental variables

only six where detected as significant (p < 0.05) and used in a partial RDA. These

were K (p = 0.002), Mg (p = 0.002), Sr (p = 0.002), water depth (p = 0.004), conductiv-
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Figure 4.6: Triplot of RDA with 20 environmental variables, 27 species and 65

samples. Environmental variables are displayed as red arrows, species data as

blue triangles and samples sites as black crosses.

ity (p = 0.01) and HCO3

- (p = 0.024). The results of that analysis are summarised in

table 4.4, included variables and their correlation factors are listed in table A.8 in the

appendix. The first two axes explain 32 % of the species variance, with eigenvalues

of λ1 = 0.223 and λ2 = 0.093, respectively. Species and environmental variables corre-

late well on the first two axes (axis 1 = 0.829 and axis 2 = 0.810). The sum of canonical

eigenvalues was 0.416, the sum of all unconstrained eigenvalues of the partial RDA

1.000. So 42 % of the variation of the species (surface sediment samples) is explained

by the environmental variables.

The triplot of the partial RDA (see figure 4.7) confirms the results of the RDA as

the environmental variables water depth (λ1 = -0.64) and K (λ1 = 0.64) correlate with
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the first axis while Mg (λ1 = 0.86), Sr (λ1 = 0.54), conductivity (λ1 = 0.84) and HCO3

-

(λ1 = 0.84) correlate with the second axis. The species are positioned in a similar

pattern as in the RDA. Nutrient related variables correlate best with the second axis

while metals and transitional metals correlate with the first axis. Furthermore North-

ern Yakutian sample sites are clustered in the lower left quadrant of the ordination.

As in the triplot of the RDA the sample sites 6 and 7 are positioned in the far upper

right quadrant of the ordination, due to their salinity.

Figure 4.7: Triplot of partial RDA with 5 environmental variables, 27 species and

65 samples. Environmental variables are displayed as red arrows, species data

as blue triangles and samples sites as black crosses. Envelopes encompass lakes

from Northern (green) and Central Yakutia (yellow).
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5 Discussion

Physical and chemical properties of the sampled lakes in Northern and Central

Yakutia are similar to those of other lakes in arctic and subarctic regions of Siberia

(Duff et al., 1999; Kumke et al., 2007; Laing and Smol, 2000) or Canada (Pienitz et al.,

1997; Lim et al., 2001; Michelutti et al., 2002; Lim et al., 2005). The lakes are slightly

alkaline to alkaline (mean pH = 8) and nutrient-poor. Only 10 Central Yakutian lakes

contain phosphorus above detection limit (mean = 0.48 mg/l). These findings are

consistent with values recorded in other arctic and subarctic regions.

Limnological parameters

The electric conductivity of the sampled Central Yakutian lakes is considerably

higher than that of the sampled Northern Yakutian lakes. As the electric conductiv-

ity of waters depends on the amount of dissolved ions, it can be used as a proxy for

salinity (Hölting and Coldewey, 2005). The major ions contributing to conductivity

are Ca2+, Mg2+, Na+, K+, HCO3

-, CO3

2-, SO4

- and Cl- (Wetzel, 2001). These ions orig-

inate from weathering of bedrock of the lake basin and the catchment, precipitation

(e.g. sea spray) or anthropogenic pollution (e.g. agricultural runoff) (Drever, 1997;

Cohen, 2003). Groundwater as ion source can be ruled out as subsurface drainage

in arctic regions is often prevented by the sealing effect of permafrost (Pienitz et al.,

1997). The higher the concentration of these ions, the higher the conductivity of the
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waters. Ion concentrations not only depend on the sources, but also (per definition

of salinity as mg/l) on the amount of solvent or in this case water. The studied lakes

are mainly fed by the low precipitation in these regions (see chapter 2.3) (Wetterich

et al., 2008). In spite of the proximity to the Laptev Sea, Northern Yakutian lakes

are far more dilute than those located in Central Yakutia. This reflects the negative

water balance in Central Yakutia, together with the location in different vegetation

zones. Previous studies of Siberian (Duff et al., 1999; Laing and Smol, 2000; Kumke

et al., 2007; Wetterich et al., 2008) and Canadian lakes (Lim et al., 2005) revealed a

very similar pattern. This demonstrates the influence of the geographical setting (i.e.

the continentality) on the hydrochemical composition of lake waters. The difference

becomes apparent when comparing electric conductivities of waters from Northern

Yakutia (0.02 – 0.28 mS/cm) with waters from Central Yakutia (0.1 – 5.71 mS/cm). As

most of the studied lakes lack in- and outflows, any negative hydrological balance is

bound to increase the ion concentration by evaporation. The lakes then may become

saline (Eugster and Hardie, 1978). Furthermore a connection between increasing

thaw depth during summer months and rising ionic contents of thermokarst lakes

was pointed out by Lopez et al. (2007) and Wetterich et al. (2008).

The concentration of potassium (K) is caused by leaching from vascular plants, as

pointed out by Prentki et al. (1980). As central Yakutian lakes are located exclu-

sively in taiga forests, in contrast to those from Northern Yakutia which are located

in the tundra zone (see chapter 2.4), the importance of K as controlling variable is

apparent. Another source for solute K may be the lakes‘ sediment. Potassium is

assimilated into submerged macrophytes and their epiphytes and utilised by algae

(Wetzel, 2001).

Strontium (Sr) is most likely a proxy for ion concentration. Less than one third of

sampled northern Yakutian lakes contain Sr above detection limit, albeit in very low

concentrations. Detected concentrations should be regarded as unreliable as they

were barely detectable, and are thereby prone to errornous results as pointed out by
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Nölte (2002).

Chlorophyllous plants require Magnesium (Mg) for various processes. This could

make magnesium a limiting factor for bioproductivity. But such conditions are rare

compared to limitations by the restricted availability of other nutrients (e.g. P, N or

Fe) (Wetzel, 2001). Phosphorus (P) is derived mainly from weathering of bedrock

in the lake basin or the catchment. Concentrations were not detectable in Northern

Yakutian waters and only one third of the lakes sampled in Central Yakutia con-

tained P in detectable amounts. The generally low concentrations are caused by the

absence of phosphate-bearing bedrock, and the season in which the samples were

taken, as phosphorus is depleted during the growing season in the epilimnion due

to the demand by autotrophs (Cohen, 2003). Silica (Si) is an essential nutrient for

diatoms and other siliceous algae. Its distribution in Yakutian waters follows a re-

gional pattern, with concentrations barely detectable in Northern Yakutian waters.

Although Si contents are not high in Central Yakutian waters (median = 1 mg/l),

they point to higher productivities of those lakes.

Na/Ca ratios, can be used as indicator for the salinity of waters (Kumke et al.,

2007). Values confirm the detected electric conductivities, as they are considerably

higher (tenfold) for Central Yakutian waters. Two lakes (05-YAK-06 & 05-YAK-06)

have extreme high ratios (682 & 657), which is due to their elevated sodium con-

tent. Other authors (Eugster and Jones, 1979) use Mg/Ca ratios as proxy for salinity.

Central Yakutian lakes have ratios between 0.3 and 57.9 (median = 1.8), while ratios

are considerably lower in Northen Yakutian lakes (median = 0.5). Na/K ratios re-

flect the vegetation sourrounding the sampled lakes (Lim et al., 2005; Kumke et al.,

2007). Ratios were expected to be low in Central Yakutian waters and high in North-

ern Yakutian waters, due to their location in different vegetation zones. This could

not be verified, which possibly is caused by the salinity of Central Yakutian waters

(Kumke et al., 2007).

Central Yakutian lake waters have generally higher pH values, than waters from
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Northern Yakutia. High pH values account to the concentration of hydroxyl ions

being released by the dissociation of bicarbonate and carbonate ions (Wetzel, 2001).

The pH of waters is regulated by the CO2 – HCO3

- – CO3

2- buffering system, as dis-

played in figure 3.2 (Wetzel, 2001). This reflects the morphology of the lake basins, as

the majority has no in- and outflows. These lakes are prone to evaporation resulting

in rising ion concentrations. High alkalinities are likely tied to warm and dry con-

ditions, which promote an intense stratification, biomass production and the release

of base cations (Psenner, 1988; Battarbee, 2000). Additionally, as carbonate alkalinity

is treated as equal to alkalinity (see chapter 3.2.1), elevated alkalinities result from

evaporation and weathering of carbonates. Hence, alkalinities of the sampled lake

waters reflects the climatic setting of the study areas, a finding that concurs with the

findings of Kumke et al. (2007) and Wetterich et al. (2008).

The PCA performed on limnological and hydrochemical data suggests that the wa-

ters are arranged along a gradient of variables controlling the salinity of lake waters

on the one end, and variables describing the physical and morphological parameters

water depth, secchi depth and the approximate size of the lakes on the other end.

The sampled lakes appeared in two clearly deliminated clusters in the ordination.

These findings corroborate the results presented above, as Central Yakutian waters

have higher ion concentration than Northern Yakutian ones.

Surface sediments

Surface sediment samples were obtained from the deepest part of the lakes. Grain

sizes should be smallest in this area, the concentration of organic carbon (TOC) can

therefore be expected to be high (Thompson and Eglington, 1978; Meyers and Ter-

anes, 2001). The concentration of TOC depends on biomass production prior to de-

position and degradation (e.g. microbial reworking) subsequent to deposition (Mey-

ers and Lallier-Verges, 1999), and may vary from place to place in a lake (Meyers and

Teranes, 2001). Main contributors to organic matter in lacustrine sediments are the
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remains of algae, zoo- and phytoplankton, bacteria and aquatic and terrestrial plants

(Hassan et al., 1997; Meyers and Teranes, 2001). Allochthonous organic matter may

enter the lake via run-off additionally to autochthonous sources. Surface sediments

from Central Yakutian lakes contain considerably higher concentrations of nitrogen

(TN) and organic carbon. This reflects the higher bioproductivity of lakes located in

the taiga forests of Central Yakutia. The sources of organic matter in sediments can

be determined by the analysis of δ13C and C/N ratios (Meyers, 1994; Meyers and

Teranes, 2001). C/N ratios from organic matter derived from aquatic plants are low

and usually between 4 and 10, while land plants have ratios of 20 and higher (Mey-

ers and Ishiwatari, 1993). High ratios are to be expected during phases of high input

of allochthonous material (Guilizzoni et al., 1996), e.g. caused by near-lake forest

clearances (Kaushal and Binford, 1999; Routh et al., 2007). Central Yakutian lakes

are often surrounded by pastures, apart from being located in the taiga, resulting in

input of organic matter during mowing. Low ratios on the other hand identify times

of high algeal productivity (Kansanen and Jaakkola, 1985). Plants which incorporate

carbon using the C3 pathway have relative low δ13C ratios (average -27 ‰) and are

thereby distinguishable from plants using the C4 pathway (average -14 ‰) (Smith

and Epstein, 1971). If plants (plankton) utilise carbonates (HCO3

-) instead of CO2,

they become enriched in δ13C, as the δ13C of bicarbonate is 7 to 8 % higher than

that of dissolved atmospheric CO2 (Smith and Epstein, 1971; Hassan et al., 1997;

Meyers and Teranes, 2001). Periods in which HCO3

- becomes an important source

of carbon include times of high photosynthetic uptake of DIC when CO2 becomes

depleted, an alkaline pH is keeping the HCO3

-/CO2 ratio elevated and high temper-

atures (Bernasconi et al., 1997). HCO3

- gets conversed to CO2 slowly at pH values

greater than 7 which is leading to low CO2 concentrations in alkaline lakes (Badger,

1987). The intake of HCO3

- by algae may result in isotopically heavy organic matter

(Bernasconi et al., 1997; Meyers and Lallier-Verges, 1999).

C/N ratios of the sampled surface sediments point to aquatic plants as source of
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Figure 5.1: Elemental and carbon isotopic composition of sampled surface sedi-

ments. Organic matter derives predominantly from lacustrine productivity. Sam-

ples from Central Yakutia are displayed as blue dots, samples from Northern

Yakutia as red dots. Scheme after Meyers (1994).

organic matter. Ratios of northern samples are slightly higher (median = 12) than

those derived from Central Yakutian samples (median = 10). Apart from that, C/N

ratios are distributed rather uniformly. δ13C ratios eliminate C4 plants as source of

carbon in organic matter. Both parameters combined suggest C3 aquatic vegetation

as main source to organic matter in the sampled surface sediments (see figure 5.1).

Furthermore, lake sediments can be classified by their C/N ratios after Håkanson

and Jansson (1983). Sediments containing organic matter which has not been de-

composed yet have high C/N ratios (> 10 – 15) are named polyhumic. Sediments

with organic matter decomposed to a higher degree should have C/N ratios lower

than 10, and are called oligohumic. Following this classification, the majority of the

studied lakes are of the polyhumic type. This reflects the climatic restrictions of the

study area, as the input of organic matter is limited, and its decomposition is slow.

Lakes in the northern study area are affected by these processes to a larger degree,
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as the input of organic matter is strictly limited by their location in the tundra, which

results in higher C/N ratios.

The elemental composition of the sampled sediments holds information not only

about the bedrock, but also about climatic conditions of the catchment area. Central

Yakutian lakes are characterised by Sodium (Na), potassium (K), magnesium (Mg)

and calcium (Ca). Those elements are associated with erosion and weathering ac-

tivity in the catchment. A closed vegetation cover (as in the Central Yakutian Taiga)

supports deep weathering, the dissolved ions are carried subsequently into the lake

by runoff waters (Engstrom and Wright, 1984). According to Minyuk et al. (2007)

warm periods are characterised by elevated contents of SiO2, CaO, Na2O, K2O and

Rb and reduced contents of TiO2, Fe2O3, Al2O3 and MgO. Si concentrations were

not measured, as Si is removed by the usage of HF during the acid digestion of the

samples (see section 3.2.2.3). Biogenic production in the lake and weathering in the

catchment, the main sources for these elements, are dependent on climatic condi-

tions. Ca corresponds to organic matter in lake sediments, according to Engstrom

and Wright (1984). This relationship could not be verified for the sampled lakes. The

results of multivariate statistic analyses on the other hand, suggest a relationship be-

tween Ca and variables connected with the bioproductivity in lakes.

Fe/Mn ratios reflect redox conditions in lakes and their catchment (Engstrom and

Wright, 1984; Wersin et al., 1991; Koinig et al., 2003). Ratios below 0.04 point to re-

ducing conditions (Wersin et al., 1991), ratios below 0.02 can be interpreted as proxy

for anoxic conditions (Koinig et al., 2003). Fe/Mn ratios suggest anoxic conditions

for the majority of Northen Yakutian lakes (median = 0.01), while Central Yakutian

have slightly higher ratios (median = 0.02). It should be noted that Fe/Mn ratios

as proxy for reducing conditions in lakes are difficult to interpret, especially in sur-

face sediments due to processes taking place at the sediment-water interface (Cohen,

2003), and may be best applicable when studying sediment cores.

Magnetic susceptibility can be used to draw conclusions about the paleoenvironment
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of a lake. This is possible because magnetic susceptibility provides informations

about grain-size, mineralogy of sedimentary magnetic assemblages, and variations

in the sources of the material (Thompson et al., 1975; Dearing, 1999b), all respond-

ing to changes in climate, human activity and limnology (Dearing and Flower, 1982;

Sandgren and Snowball, 2001). Ferromagnetic minerals in lake sediments may orig-

inate from a) weathering in the catchment, b) air-borne particles and c) authigenic

formation in the lake sediment under anaerob conditions (Evans and Heller, 2003).

High susceptibilities may be caused by the input of eolian dust (Peck et al., 1994).

This dust might contain increased amounts of high coercivity minerals as staining

on eolian grains. Peck et al. (1994) described this with regard to eolian input dur-

ing glacial intervals. Nevertheless, this scheme seems fitting for the studied lakes.

High magnetic susceptibility could as well be the result of detritus (pedogenically-

enhanced or pedogenically-produced) entering the lake via run-off (Dearing et al.,

1998; Chen et al., 1999). Central Yakutian lakes, strongly affected by their continen-

tality, have generally higher magnetic susceptibilities than sediments from Northern

Yakutian lakes.

The PCA performed on sedimentological data suggests that the sediments are ar-

ranged along a gradient with high TOC, TIC and TN on the one end, and low con-

centrations of Al2O3, Fe2O3, K2O, TiO2, Ba, Cr, V, and Zr on the other end. Minyuk

et al. (2007) related most of these elements to climatic conditions.

Correlation of limnological data and surface sediments

A result of the partial RDA was that lakes from Northern and Central Yakutia ap-

pear in two distinct clusters, deliminated by their location (see figure 4.7). This can

be explained by the differences in the catchment vegetation and the climatic setting.

Surface sediment samples correlating with elevated contents of nutrient related vari-

ables, such as TN, TC and P2O5 are located in Central Yakutia. These sediments have

higher magnetic susceptibilities than those from Northern Yakutian lakes. Waters of
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these lakes are characterised by a high alkalinity and electric conductivity. Further-

more, they contain elevated concentrations of potassium (K), magnesium (Mg) and

strontium (Sr). Strontium seems to be solely a proxy for the salinity of the lakes

water, while K and Mg relate to bioproductivity in the lakes. Elevated Mg/Ca ra-

tios of Central Yakutian waters should indicate the precipitation of low-Mg calcite

(Müller et al., 1972). The Concentration of Ca and Mg was considerably higher in

these lakes. The results of the partial RDA support these findings, as Mg and Ca

were identified as variables correlating with Central Yakutian lakes. Sediments from

dilute lakes from Northern Yakutia are coarser than those from Central Yakutia. This

may be due to eolian input of dust during the dry and hot summers. The ashes of

the frequently occurring forest fires in Central Yakutia (Tomoaki et al., 2007) may be

another source for the finer fraction.

Studied morphological parameters of the lakes were the elevation of the water table,

water depth and the size of the lakes. The water depth was identified by the par-

tial RDA as controlling variable. Sampled lakes in Northern Yakutia were generally

larger than their Central Yakutian counterparts. This may be due to the pronounced

evaporation in Central Yakutia, but is more likely an effect of sample lakes not being

chosen at random. The depth of the lakes is correlated to Central Yakutian lakes,

and may refer to evaporation and the negative water balance in that area, but as well

to the size of the lakes.

Summing these results up, sediments rich in nutrients and with high magnetic sus-

ceptibilities are found in lakes with alkaline waters having high ionic concentrations

which result in high electric conductivities. These lakes and are located in regions

with negative water balances, e.g. in highly continental climates.
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6 Conclusion

Physical and chemical properties of surface sediments and waters from 65 Yakutian

lakes were studied. Statistical analyses were used to explore differences between the

lakes, to identify variables explaining physical and chemical properties and eventu-

ally to explore if it is possible to infer information about the composition of waters

from the analysis of surface sediments. Two study areas – one in Central Yakutia,

the other in Northern Yakutia – were chosen in order to explore the characteristics

of lakes located in different climatic settings.

Composition of lake waters and surface sediments

Physical and chemical properties of surface sediments and lake waters vary to a high

degree. Central Yakutian lake waters are generally slightly alkaline to alkaline, have

high ionic concentrations and high electric conductivities. Northern Yakutian lake

waters are slightly acidic to neutral and are generally dilute. The differences in the

ionic compositions are immense, as ion concentrations of Northern Yakutian waters

were often below detection limit or only slightly above it. Central Yakutian lakes on

the other hand contain considerably high ion concentrations, which result in high

electric conductivities. A comparison of corresponding surface sediments reveals a

pattern much alike. Central Yakutian sediments have higher magnetic susceptibili-

ties and elevated contents of nutrients and generally higher elemental concentrations
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than surface sediments from Northern Yakutia.

Variables controlling the composition of lake waters and surface sediments

It is evident from the analyses that the continentality has a strong effect on the com-

position of lake waters and surface sediments. The geographical setting, along with

the negative water balance, leads to elevated electric conductivities and ion concen-

trations in Central Yakutian waters and sediments. The proximity of the Laptev

Sea to the Northern Yakutian lakes is not reflected in their ionic composition. Fur-

thermore, additional to the continentality, the vegetation of the watershed has an

influence on the ionic composition of lake waters and lake sediments. Lakes located

in the taiga are surrounded by forests or pastures. This results in elevated potassium

concentrations in lake waters. The location in a zone of higher bioproductivity is re-

flected by elevated contents of magnesium in the waters and by surface sediments

containing considerably higher concentrations of TOC and TN.

Informations about the watershed and the composition of lake waters inferred

from the analyses of surface sediments

Statistical analyses were used to explore relationships between surface sediments

and waters. Surface sediments enriched in nutrients were found in lakes with high

bioproductivities. As the bioproductivity is reflected in the waters (e.g. in high

Mg contents) a correlation between sediments and waters of those lakes is possible,

and can be shown by analysing the sediments C/N ratios and nutrient concentra-

tions. These highly productive lakes were encountered in a region characterised by

its continentality. The negative water balance results in lake waters with elevated

electric conductivities, elevated ion concentrations and high alkalinities. Waters of

these lakes have high Ca/Mg ratios, and are correlated to sediments with elevated
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concentrations of the same elements.

The findings can be summarised as follows: a) It is possible to distinct between lakes

from Northern Yakutian and Central Yakutia by analysing their waters. Northern

lakes are dilute, while Central Yakutian lakes, which are affected by evaporation to

a higher degree, are characterised by high ionic concentrations, resulting in high

electric conductivities. b) Surface sediments of lakes that are affected by a negative

water balance but are still highly productive are characterised by high contents of

nutrients and elevated magentic susceptibilities.

The above shows that it is possible to infer informations about the characteristics

of a lake (i.e. waters, vegetation, geographical setting) by studying their surface

sediments. Recunstructions based on sediment cores should take alteration of the

sediments after their deposition into account.
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A Appendix

A.1 Field data

Table A.1: Sampled Central and Northern Yakutian lakes.

Lake-No Sample name Latitude Longitude Elevation Approx. size Water depth Secchi depth Conductivity pH

[N] [E] [m a.s.l.] [m x m] [m] [m] [mS/cm] TRef 25
◦C

1 05-YAK-01 61
◦

45’39,6” 130
◦

28’15,6” 213 20 x 30 1.8 no data 1.63 8.54

2 05-YAK-02 61
◦

45’36,0” 130
◦

28’19,2” 213 60 x 100 3.5 0.9 2.38 9.11

3 05-YAK-03 61
◦

45’39,9” 130
◦

28’26,4” 233 80 x 80 4.6 1.5 0.82 8.71

4 05-YAK-04 61
◦

45’54,0” 130
◦

27’55,9” 209 40 x 250 1.8 1 0.91 8.08

5 05-YAK-05 61
◦

46’11,1” 130
◦

28’07,4” 215 100 x 300 4.6 1.1 1.99 9.05

6 05-YAK-06 62
◦

06’13,3” 130
◦

13’21,6” 130 300 x 400 1.3 0.7 5.71 9.96

7 05-YAK-07 62
◦

01’00,1” 130
◦

03’57,1” 138 400 x 700 1 0.5 4.14 9.91

8 05-YAK-08 62
◦

03’60,5” 129
◦

03’23,4” 228 400 x 800 1.5 0.3 0.1 7.54

9 05-YAK-09 62
◦

03’28,9” 129
◦

03’13,9” 228 200 x 300 2.2 0.7 0.12 7.31

10 05-YAK-10 61
◦

42’11,4” 129
◦

22’11,1” 160 80 x 150 5.2 0.5 0.42 8.78

11 05-YAK-11 61
◦

36’50,4” 130
◦

42’12,6” 182 200 x 350 5.2 0.15 0.5 8.64

12 05-YAK-12 61
◦

37’06,6” 130
◦

42’28,1” 172 no data 3 0.35 0.92 8.42
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Sampled Central and Northern Yakutian lakes. (...continued)

Lake-No Sample name Latitude Longitude Elevation Approx. size Water depth Secchi depth Conductivity pH

[N] [E] [m a.s.l.] [m x m] [m] [m] [mS/cm] TRef 25
◦C

13 05-YAK-13 61
◦

33’26,0” 130
◦

32’48,3” 219 200 x 600 3.9 0.25 0.14 8.46

14 05-YAK-14 61
◦

34’0,60” 130
◦

33’59,2” 203 100 x 300 1.9 0.3 0.21 6.86

15 05-YAK-15 61
◦

34’20,7” 130
◦

36’42,7” 198 80 x 300 1.6 0.4 0.16 7.55

16 05-YAK-16 61
◦

24’13,4” 130
◦

33’10,8” 224 150 x 400 1.5 0.4 0.29 10.24

17 05-YAK-17 61
◦

33’09,3” 130
◦

51’34,0” 234 40 x 350 1.6 0.6 0.1 6.60

18 05-YAK-18 61
◦

33’01,5” 130
◦

53’11,7” 211 no data 1.5 0.15 0.39 8.57

19 05-YAK-19 61
◦

24’26,0” 131
◦

07’01,7” 250 50 x 150 1.3 1 0.71 8.02

20 05-YAK-20 61
◦

32’45,3” 130
◦

54’18,9” 230 400 x 800 2 0.8 0.81 9.00

21 05-YAK-21 62
◦

00’11,3” 131
◦

49’06,1” 208 100 x 200 1.9 0.35 0.33 8.19

22 05-YAK-22 62
◦

00’23,7” 131
◦

43’10,0” 207 100 x 200 1.7 0.3 0.36 8.69

23 05-YAK-23 62
◦

07’54,2” 131
◦

13’24,9” 169 150 x 350 2.3 0.2 0.26 9.20

24 05-YAK-24 62
◦

58’05,7” 132
◦

14’49,7” 182 200 x 300 3.2 0.25 0.79 8.58

25 05-YAK-25 61
◦

48’05,9” 132
◦

04’58,8” 198 300 x 500 no data 0.5 0.82 8.75

26 05-YAK-26 61
◦

54’09,9” 132
◦

12’22,1” 187 150 x 150 no data 0.45 0.48 8.16

27 05-YAK-27 61
◦

53’24,2” 132
◦

09’51,3” 200 200 x 350 2 2 0.65 8.20

28 05-YAK-28 61
◦

56’23,9” 132
◦

09’55,8” 171 150 x 200 4.7 0.5 1.95 8.60

29 05-YAK-29 61
◦

56’46,5” 132
◦

08’39,2” 207 150 x 200 1.4 0.3 1.04 8.93

30 05-YAK-30 no data no data no data no data 1.2 no data no data no data

31 07-SA-01 72
◦

29’02,5” 114
◦

06’02,5” 10 2000 x 1000 7.5 0.5 0.03 6.88

32 07-SA-02 72
◦

28’48,1” 113
◦

05’48,1” 6 30 x 30 2 0.5 0.03 6.87

33 07-SA-03 72
◦

35’60,0” 113
◦

51’60,0” 6 150 x 100 8 0.5 0.06 6.86

34 07-SA-04 72
◦

15’10,0” 114
◦

16’10,0” 3 500 x 300 no data 0.5 0.13 6.32

35 07-SA-05 72
◦

15’16,7” 114
◦

16’16,7” 3 1000 x 1000 no data 0.5 0.07 4.85

36 07-SA-06 72
◦

57’20,4” 114
◦

57’20,4” 0 300 x 200 4.5 2 0.03 5.20

37 07-SA-07 72
◦

57’20,4” 114
◦

57’20,4” 0 500 x 500 6.5 1.5 0.02 6.10

38 07-SA-08 72
◦

53’09,6” 115
◦

43’09,6” 4 2000 x 2000 10 1.3 0.03 7.47

39 07-SA-09 72
◦

53’06,0” 115
◦

45’06,0” no data 100 x 100 0.9 ground 0.05 7.46
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Sampled Central and Northern Yakutian lakes. (...continued)

Lake-No Sample name Latitude Longitude Elevation Approx. size Water depth Secchi depth Conductivity pH

[N] [E] [m a.s.l.] [m x m] [m] [m] [mS/cm] TRef 25
◦C

40 07-SA-10 72
◦

57’23,1” 115
◦

20’23,1” 11 2000 x 2000 7.8 1.5 0.07 6.92

41 07-SA-11 72
◦

57’38,4” 115
◦

19’38,4” 4 4000 x 300 6 1.5 0.02 6.80

42 07-SA-12 73
◦

04’44,5” 114
◦

54’44,5” 0 2000 x 2000 5 1.6 0.02 7.14

43 07-SA-13 73
◦

04’56,3” 114
◦

55’56,3” 3 500 x 500 1 ground 0.02 6.90

44 07-SA-14 73
◦

07’32,2” 114
◦

52’32,2” 1 300 x 300 2.3 2.2 0.02 7.23

45 07-SA-15 73
◦

07’47,3” 114
◦

51’47,3” 4 800 x 800 1.3 ground 0.03 7.10

46 07-SA-16 73
◦

07’45,8” 114
◦

51’45,8” 4 800 x 800 1.6 ground 0.03 7.20

47 07-SA-17 73
◦

11’36,1” 114
◦

57’36,1” 10 500 x 500 7.4 2.3 0.05 7.4

48 07-SA-18 73
◦

12’56,2” 113
◦

37’56,2” 8 500 x 300 1.1 ground 0.13 7.42

49 07-SA-19 73
◦

13’17,6” 113
◦

37’17,6” 1 600 x 500 1.2 ground 0.02 6.99

50 07-SA-20 73
◦

22’53,9” 113
◦

55’53,9” 4 700 x 300 1.2 ground 0.06 7.32

51 07-SA-21 73
◦

23’13,5” 113
◦

56’13,5” 4 200 x 80 3.3 2.3 0.05 7.23

52 07-SA-22 72
◦

49’32,2” 113
◦

17’32,2” 8 300 x 200 1.8 1.1 0.02 7.22

53 07-SA-23 72
◦

46’29,7” 112
◦

58’29,7” 4 600 x 400 6.6 1.8 0.04 7.07

54 07-SA-24 72
◦

46’35,5” 112
◦

58’35,5” 1 200 x 200 4.8 1.8 0.28 7.22

55 07-SA-25 72
◦

46’39,5” 112
◦

58’39,5” 1 150 x 150 3.1 2 0.11 7.22

56 07-SA-26 72
◦

19’12,0” 111
◦

11’12,0” 86 400 x 400 6.8 4.5 0.03 7.32

57 07-SA-27 72
◦

19’14,4” 111
◦

11’14,4” 71 500 x 400 3.4 2.4 0.05 7.33

58 07-SA-28 72
◦

04’16,2” 111
◦

06’16,2” 41 500 x 300 5.1 1.3 0.08 7.55

59 07-SA-29 72
◦

04’05,7” 111
◦

06’05,7” 37 180 x 120 4.7 1.2 0.02 7.37

60 07-SA-30 72
◦

04’07,0” 111
◦

06’07,0” 36 200 x 180 5.1 1.3 0.02 7.29

61 07-SA-31 72
◦

04’15,2” 111
◦

07’15,2” 38 150 x 150 6.9 1.8 0.02 7.15

62 07-SA-32 71
◦

44’51,7” 111
◦

07’51,7” 50 100 x 100 2.7 1.5 0.03 6.97

63 07-SA-33 71
◦

44’50,9” 111
◦

07’50,9” 50 600 x 400 5 1.5 0.04 7.20

64 07-SA-34 71
◦

30’10,8” 110
◦

49’10,8” 80 400 x 150 7 3.5 0.05 7.18

65 07-SA-35 72
◦

03’57,5” 113
◦

54’57,5” 15 300 x 100 2.9 2.9 0.04 6.93
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A.2.1 Waters

Table A.2: Hydrochemistry of sampled waters from Central and Northern Yakutian lakes. Ions contained in concentration below detection limit are marked by an asterisk (*)

Lake-No Al Ba Ca Fe K Mg Mn Na P Si Sr F- Cl- SO4 - Br- NO3- PO4 - HCO3- ion balance

[mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l]

05-YAK-01 < 20* < 20* 33.56 35 3.88 178.72 35.4 147.09 < 0.2* 0.18 292.5 0.18 110 436.80 0.87 < 0.15* < 0.1* 540.7 8.37

05-YAK-02 < 20* 33.0 24.11 22 4.03 305.26 25.7 267.42 < 0.2* 0.80 290.8 0.14 199 424.20 3.49 < 0.15* < 0.1* 1210.85 10.4

05-YAK-03 < 20* 34.7 18.64 24.5 1.26 86.23 < 20* 81.08 < 0.2* 0.24 176.8 0.27 33.82 23.98 0.72 < 0.15* < 0.1* 540.46 11.6

05-YAK-04 < 20* 32.8 17.67 130.5 7.45 65.47 43.7 100.28 < 0.2* 0.61 118.0 0.15 83.13 35.39 0.67 < 0.15* < 0.1* 454.76 2.66

05-YAK-05 58 47.2 26.5 24 4.47 285.44 62.7 227.81 0.319 2.15 351.2 0.49 147.55 43.53 3.25 < 0.15* < 0.1* 1509.6 15.5

05-YAK-06 698 < 20* 2.17 1255.0 158.27 96.71 26.0 1481.44 0.467 1.61 < 20* 0.77 408.50 0.52 3.30 < 0.15* < 0.1* 3791.46 3.80

05-YAK-07 < 20* < 20* 1.58 < 20* 68.25 91.64 < 20* 1040.92 0.208 0.48 28.6 0.83 350.80 < 0.1* 1.63 < 0.15* < 0.1* 2578.47 4.62

05-YAK-08 42 28.2 11.61 146 2.74 3.75 < 20* 11.37 < 0.2* 0.62 129.2 0.19 1.32 < 0.1* < 0.05* < 0.15* < 0.1* 56.12 41.1

05-YAK-09 < 20* < 20* 10.0 428 3.03 4.54 110.2 18.62 < 0.2* 5.30 110.0 0.20 2.59 0.94 < 0.05* < 0.15* < 0.1* 75.15 28.3

05-YAK-10 < 20* < 20* 20.8 208 12.49 41.10 < 20* 24.1 < 0.2* 0.45 152.9 0.40 8.56 0.19 0.10 < 0.15* < 0.1* 315.74 6.49

05-YAK-11 < 20* 28.9 32.51 265 3.87 54.85 80 41.12 < 0.2* 2.81 260.7 0.30 5.75 0.33 0.20 < 0.15* < 0.1* 422.73 12.2

05-YAK-12 < 20* 20.1 20.35 < 20* 11.13 86.63 < 20* 124.85 < 0.2* 0.68 195.5 0.36 33.77 10.34 0.79 < 0.15* < 0.1* 681.52 11.6

05-YAK-13 < 20* < 20* 14.33 240 2.32 11.90 < 20* 3.46 0.72 1.18 88.6 0.12 0.37 2.48 < 0.05* < 0.15* 0.48 97.11 14.0

05-YAK-14 < 20* < 20* 22.17 394 1.30 18.02 39.8 5.46 0.438 2.24 113.2 0.14 < 0.1* 2.87 < 0.05* < 0.15* 0.40 140.42 19.1

05-YAK-15 22 < 20* 16.74 411 1.53 14.12 27 3.95 0.399 0.97 79.9 0.13 < 0.1* 2.25 < 0.05* < 0.15* 0.55 107.48 19.8

05-YAK-16 < 20* < 20* 25.39 69 3.93 22.63 < 20* 12.37 0.321 2.82 110.4 0.16 4.24 < 0.1* 0.07 < 0.15* 0.27 189.83 15.3

05-YAK-17 43 < 20* 10.83 549 2.94 7.32 52 1.80 < 0.2* 0.35 50.1 0.09 0.11 0.13 < 0.05* < 0.15* 0.18 62.46 22.9

05-YAK-18 < 20* 26.5 36.25 619 3.63 34.62 27 20.26 0.244 2.05 235.7 0.29 1.46 0.30 0.07 < 0.15* < 0.1* 302.68 11.7

05-YAK-19 45 38.7 21.39 561 4.53 60.50 145 83.24 < 0.2* 0.67 186.0 0.26 19.83 5.18 0.29 < 0.15* < 0.1* 499.96 9.84

05-YAK-20 23 21.1 37.16 191 5.35 38.23 23 175.36 1.391 0.67 204.3 0.50 33.80 1.49 0.26 < 0.15* 2.79 595.48 17.1

05-YAK-21 < 20* < 20* 37.71 118 3.81 25.82 < 20* 8.79 < 0.2* 1.09 152.6 0.18 0.96 0.54 < 0.05* < 0.15* < 0.1* 242.78 11.0

05-YAK-22 < 20* 29.9 40.31 255 4.73 28.99 < 20* 11.09 < 0.2* < 0.1* 187.1 0.22 2.98 2.78 < 0.05* < 0.15* < 0.1* 262.18 11.8

05-YAK-23 29 22.3 34.50 559 3.01 22.88 47 8.20 0.460 1.99 135.5 0.21 0.58 1.10 < 0.05* < 0.15* 0.57 208.99 15.2

05-YAK-24 < 20* 25.8 17.18 29 13.05 96.13 < 20* 129.12 < 0.2* 0.63 185.6 0.42 38.37 5.04 1.50 < 0.15* < 0.1* 737.73 10.2

05-YAK-25 22 36.9 23.50 58 9.22 80.93 < 20* 107.94 < 0.2* 1.45 263.7 0.44 28.36 2.44 0.76 < 0.15* < 0.1* 637.21 12.2

05-YAK-26 273 33.6 35.89 926 6.61 34.84 104 50.21 < 0.2* 2.99 212.5 0.38 5.95 0.60 0.19 < 0.15* < 0.1* 346.11 18.0

05-YAK-27 34 33.5 21.66 87 11.81 62.91 < 20* 65.92 0.350 5.94 206.2 0.30 19.19 0.24 0.16 < 0.15* 0.26 480.92 11.1

05-YAK-28 < 20* 47.8 18.10 21 4.09 226.77 < 20* 288.97 < 0.2* < 0.1* 274.5 0.70 151.35 11.20 3.90 < 0.15* < 0.1* 1468.27 12.0

05-YAK-29 131 27.8 4.91 171 17.95 64.36 < 20* 180.11 < 0.2* 0.33 71.2 0.19 110.36 6.01 1.82 < 0.15* < 0.1* 583.77 7.70

05-YAK-30 482 39.1 8.29 716 2.13 3.67 < 20* 8.11 < 0.2* 1.33 130.6 0.16 1.18 2.70 0.05 < 0.15* < 0.1* 45.26 29.8
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Lake-No Al Ba Ca Fe K Mg Mn Na P Si Sr F- Cl- SO4 - Br- NO3- PO4 - HCO3- ion balance

[mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l]

07-SA-01 39.6 < 20* 4.70 164 0.45 1.16 < 20* < 0.2* < 0.1* 0.42 < 20* < 0.05* 0.27 0.58 < 0.05* < 0.15* < 0.1* 16.2 18.1

07-SA-02 123 < 20* 3.88 587 0.53 1.79 < 20* 0.55 < 0.1* 0.18 29.5 < 0.05* 0.53 < 0.1* < 0.05* < 0.15* < 0.1* 13.7 44.8

07-SA-03 29.5 < 20* 8.80 203 0.56 2.72 < 20* < 0.2* < 0.1* 0.63 21.1 < 0.05* 0.28 0.67 < 0.05* < 0.15* < 0.1* 33.2 17.7

07-SA-04 < 20* < 20* 9.49 119 0.62 2.30 < 20* 7.46 < 0.1* < 0.1* 32.8 < 0.05* 14.0 0.19 < 0.05* < 0.15* < 0.1* 31.1 9.83

07-SA-05 25.9 < 20* 1.62 206 0.40 1.66 < 20* 7.13 < 0.1* < 0.1* < 20* < 0.05* 15.0 0.45 0.09 < 0.15* < 0.1* 4.7 5.59

07-SA-06 < 20* < 20* 2.56 326 0.54 1.07 < 20* < 0.2* < 0.1* 0.11 < 20* < 0.05* 0.56 0.16 < 0.05* < 0.15* < 0.1* 12.4 3.47

07-SA-07 < 20* < 20* 1.62 226 0.45 0.67 < 20* < 0.2* < 0.1* 0.11 < 20* < 0.05* 0.50 0.19 < 0.05* < 0.15* < 0.1* 7.9 -0.63

07-SA-08 < 20* < 20* 3.42 158 0.34 1.32 < 20* 0.21 < 0.1* 0.13 < 20* < 0.05* 0.51 0.22 < 0.05* < 0.15* < 0.1* 15.1 10.8

07-SA-09 21.1 < 20* 4.92 450 0.29 2.80 < 20* 0.98 < 0.1* 0.11 22.5 < 0.05* 0.69 < 0.1* < 0.05* 0.33 < 0.1* 22.0 31.0

07-SA-10 < 20* < 20* 6.85 24.7 0.51 3.19 < 20* 1.02 < 0.1* 0.11 26 < 0.05* 0.90 0.25 < 0.05* < 0.15* < 0.1* 36.1 5.99

07-SA-11 < 20* < 20* 2.05 110 0.40 0.83 < 20* < 0.2* < 0.1* 0.15 < 20* < 0.05* 0.48 0.17 < 0.05* < 0.15* < 0.1* 10.8 -7.50

07-SA-12 < 20* < 20* 1.61 201 0.29 0.70 < 20* 0.52 < 0.1* 0.19 < 20* < 0.05* 1.70 0.18 < 0.05* < 0.15* < 0.1* 7.0 0.97

07-SA-13 31 < 20* 1.96 426 < 0.2* 0.93 < 20* 0.99 < 0.1* < 0.1* < 20* < 0.05* 1.15 < 0.1* < 0.05* 0.18 < 0.1* 8.4 22.8

07-SA-14 < 20* < 20* 2.07 124 0.40 0.71 < 20* 0.50 < 0.1* < 0.1* < 20* < 0.05* 1.12 0.19 < 0.05* < 0.15* < 0.1* 9.0 5.48

07-SA-15 < 20* < 20* 2.48 193 0.25 0.71 < 20* 1.03 < 0.1* < 0.1* < 20* < 0.05* 2.94 0.18 < 0.05* < 0.15* < 0.1* 10.4 -9.62

07-SA-16 < 20* < 20* 2.39 183 0.38 0.90 < 20* 1.11 < 0.1* < 0.1* < 20* < 0.05* 1.72 0.15 < 0.05* < 0.15* < 0.1* 11.3 6.16

07-SA-17 25.4 < 20* 4.91 505 0.46 2.62 < 20* 0.96 < 0.1* 0.79 < 20* < 0.05* 1.16 0.11 < 0.05* < 0.15* < 0.1* 25.5 12.7

07-SA-18 < 20* < 20* 7.06 99.2 0.52 2.46 < 20* 12.7 < 0.1* < 0.1* 29.8 < 0.05* 24.8 0.22 0.09 < 0.15* < 0.1* 21.2 6.27

07-SA-19 < 20* < 20* 0.94 78.0 < 0.2* 0.48 < 20* 1.67 < 0.1* < 0.1* < 20* < 0.05* 3.29 0.22 < 0.05* < 0.15* < 0.1* 4.1 -3.74

07-SA-20 < 20* < 20* 3.57 87.1 0.24 2.53 < 20* 4.06 < 0.1* < 0.1* 21.4 < 0.05* 5.84 < 0.1* < 0.05* < 0.15* < 0.1* 20.1 14.0

07-SA-21 < 20* < 20* 4.45 196 0.31 2.35 < 20* 2.31 < 0.1* < 0.1* < 20* < 0.05* 4.28 0.20 < 0.05* < 0.15* < 0.1* 20.7 11.9

07-SA-22 29.6 < 20* 1.72 399 < 0.2* 0.85 < 20* 1.16 < 0.1* 0.14 < 20* < 0.05* 1.73 0.34 < 0.05* < 0.15* < 0.1* 7.3 15.7

07-SA-23 < 20* < 20* 2.15 158 0.38 1.00 < 20* 3.26 < 0.1* 0.43 < 20* < 0.05* 5.47 1.13 < 0.05* < 0.15* < 0.1* 7.3 13.6

07-SA-24 < 20* < 20* 5.77 181 1.57 4.96 < 20* 36.4 < 0.1* 0.42 41.5 < 0.05* 63.0 9.94 0.23 < 0.15* < 0.1* 12.2 6.08

07-SA-25 < 20* < 20* 3.13 144 0.75 2.04 < 20* 13.0 < 0.1* 0.13 21.8 < 0.05* 22.6 3.89 0.12 < 0.15* < 0.1* 7.8 7.34

07-SA-26 127 < 20* 2.92 130 < 0.2* 1.38 < 20* 0.53 < 0.1* 0.50 < 20* < 0.05* 0.70 0.31 < 0.05* < 0.15* < 0.1* 16.2 -3.14

07-SA-27 < 20* < 20* 5.63 53.6 0.21 2.71 < 20* 0.83 < 0.1* 0.15 < 20* < 0.05* 0.42 0.21 < 0.05* < 0.15* < 0.1* 30.2 6.42

07-SA-28 < 20* < 20* 7.46 < 20* < 0.2* 3.42 < 20* 2.02 < 0.1* 0.28 24.6 < 0.05* 3.11 0.29 < 0.05* < 0.15* < 0.1* 34.9 10.7

07-SA-29 36 < 20* 1.63 393 < 0.2* 0.79 < 20* 0.68 < 0.1* 0.34 < 20* < 0.05* 1.04 0.28 < 0.05* < 0.15* < 0.1* 6.6 20.9

07-SA-30 26.5 < 20* 1.41 409 < 0.2* 0.68 < 20* 0.39 < 0.1* 0.19 < 20* < 0.05* 0.90 0.14 < 0.05* < 0.15* < 0.1* 5.6 16.9

07-SA-31 < 20* < 20* 1.74 303 < 0.2* 0.82 < 20* 0.58 < 0.1* 0.46 < 20* < 0.05* 1.14 0.32 < 0.05* < 0.15* < 0.1* 7.0 15.3

07-SA-32 < 20* < 20* 3.49 215 < 0.2* 1.83 < 20* 0.31 < 0.1* 0.54 < 20* < 0.05* 0.41 0.16 < 0.05* < 0.15* < 0.1* 15.9 20.6

07-SA-33 < 20* < 20* 4.13 477 0.21 2.06 < 20* 0.37 < 0.1* 1.29 < 20* < 0.05* 0.48 0.25 < 0.05* < 0.15* < 0.1* 19.2 17.3

07-SA-34 200 < 20* 5.67 442 0.28 2.25 < 20* 0.59 < 0.1* 1.03 < 20* < 0.05* 0.51 0.85 < 0.05* < 0.15* 0.22 24.1 15.9

07-SA-35 < 20* < 20* 3.97 307 0.4 1.89 106 0.22 < 0.1* 0.18 < 20* < 0.05* 0.57 0.26 < 0.05* < 0.15* 0.24 19.1 11.2
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A.2.2 Surface sediments

Table A.3: Sedimentological, organic geochemical data and stable carbon isotope ratios from sampled Northern and Central Yakutian surface sediments. δ13C ratios with

errornous measurements are marked by a two asterisks (**).

Lake-No Sand Silt Clay Mean Skewness Kurtosis TC TIC TOC TN C/N Magnetic δ13C

suscpetibility

[vol.-%] [vol.-%] [vol.-%] [φ] [φ] [SI] [‰]

05-YAK-01 8 68 24 4.09 0.35 3.18 1.29 0.66 0.64 0.05 12.3 81 -27.7

05-YAK-02 9.01 65.99 25 5.32 0.5 3.03 1.79 0.54 1.25 0.13 10.0 100 -27.9

05-YAK-03 12 56 32 5.54 0.1 2.07 5.78 1.05 4.73 0.58 8.14 123 -31.7

05-YAK-04 12 62 26 5.51 -0.2 2.41 14.5 -0.46 15.0 1.45 10.3 97 -30.4

05-YAK-05 9.01 70.99 20 5.54 0.69 3.11 1.58 0.47 1.10 6.57 6.57 152 -26.7

05-YAK-06 3.99 47.01 49 5.54 0.46 2.71 23.3 -13.8 37.1 1.70 22.4 45 -23.7

05-YAK-07 1 19 80 2.45 1.18 4.07 25.2 -11.9 37.0 1.89 20.0 50 -22.4

05-YAK-08 6 36 58 4.09 0.79 2.78 43.8 -3.60 47.3 3.76 12.8 78 -20.7

05-YAK-09 9.99 60.01 30 5.49 0.07 2.39 38.6 -2.22 40.9 3.87 10.7 94 -29.6

05-YAK-10 18 71.01 11 6.57 -0.06 2.56 5.22 0.82 4.40 0.48 9.11 110 -26.3

05-YAK-11 18 51 31 5.8 0.14 1.86 23.2 -1.98 25.3 2.31 10.9 91 -27.0

05-YAK-12 9.99 50 40.01 4.98 0.23 2.14 13.4 0.17 13.2 1.34 9.82 102 -26.6

05-YAK-13 8 50 42 4.81 0.19 2.18 35.0 -2.22 37.2 3.52 10.6 94 -23.1

05-YAK-14 9.99 61.01 28.99 5.4 0.23 2.41 15.8 0.45 15.3 1.52 10.1 99 -28.3

05-YAK-15 12 55 33 5.33 0.21 2.21 12.3 0.60 11.7 1.19 9.85 102 -30.8

05-YAK-16 9.01 46.99 44 4.88 0.4 2.14 31.6 -0.38 32.0 3.47 9.23 108 -18.7

05-YAK-17 11 52.01 37 5.1 0.33 2.28 18.5 0.67 17.9 1.74 10.3 97 -31.5

05-YAK-18 13 53.99 33 5.54 0.17 1.98 17.6 -0.55 18.2 1.83 9.21 109 -23.8

05-YAK-19 9.01 50.99 40.01 4.75 0.24 2.3 24.4 -0.31 24.7 2.31 10.7 94 -25.9

05-YAK-20 14 49 37 5.39 0.26 1.96 12.6 -0.37 13.0 1.24 10.5 95 -25.0

05-YAK-21 11 62 27.01 5.42 0.51 2.56 14.9 1.70 14.3 1.67 8.59 116 -28.2

05-YAK-22 9.99 53.01 37 5.21 0.2 2.08 22.6 0.46 22.1 2.70 8.17 122 -28.5

05-YAK-23 9.01 59.99 31 5.32 0.46 2.69 8.09 0.99 7.10 0.97 7.32 137 -27.5
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Sedminentological, organic geochemical data and stable carbon isotope ratios. (...continued)

Lake-No Sand Silt Clay Mean Skewness Kurtosis TC TIC TOC TN C/N Magnetic δ13C

suscpetibility

[vol.-%] [vol.-%] [vol.-%] [φ] [φ] [SI] [‰]

05-YAK-24 9.01 57.99 33 5.36 0.16 2.19 14.6 0.96 13.6 1.57 8.69 115 -25.3

05-YAK-25 9.99 58 32 5.34 0.29 2.25 6.21 0.79 5.42 0.59 9.18 109 -26.2

05-YAK-26 12 51 37 5.22 0.25 2.12 10.8 0.24 10.6 1.20 8.84 113 -28.8

05-YAK-27 9.01 51.99 39 5.03 0.36 2.31 14.3 0.70 13.6 1.52 8.98 111 -26.4

05-YAK-28 13 53.99 33 5.55 0.2 1.97 6.52 1.08 5.44 0.75 7.27 138 -27.1

05-YAK-29 13 56 31 5.81 -0.04 1.89 21.2 -2.01 23.7 1.98 12.0 83 -26.1

05-YAK-30 13 53.99 33 5.57 0.24 2.03 38.0 -1.82 39.7 3.65 10.9 92 -22.4

07-SA-01 17 66.01 17 6.07 0.37 2.25 12.0 0.00 12.0 0.64 18.7 54 -28.7**
07-SA-02 18 67 15.01 6.32 0.12 2.12 17.4 0.74 16.7 1.26 13.3 75 -31.0**
07-SA-03 15.99 53.01 31 5.69 0.63 2.15 2.35 0.28 2.06 0.15 14.1 71 -28.0**
07-SA-04 5 10.01 84.99 2.93 1.97 5.58 0.91 0.35 0.56 0.08 6.9 144 -26.0**
07-SA-05 18 43 39 5.54 0.15 1.67 20.5 -0.93 21.6 0.97 22.3 45 -28.5**
07-SA-06 12 59.99 28.01 5.36 0.91 2.79 1.85 0.36 1.50 0.13 11.6 86 -28.3**
07-SA-07 15.99 73.01 11 6.15 0.51 2.36 63.07 0.18 2.89 0.26 11.0 91 -30.1**
07-SA-08 20 70.99 9.01 6.41 0.42 2.21 6.27 0.25 6.01 0.45 13.5 74 -28.7**
07-SA-09 30 68 2.01 7.42 -0.21 2.39 31.3 -2.47 34.0 2.31 14.7 68 -30.6**
07-SA-10 21.01 63 15.99 6.32 0.35 1.98 3.76 0.36 3.39 0.30 11.5 87 -29.9**
07-SA-11 9.01 37 53.99 4.36 0.85 2.6 0.73 0.11 0.62 0.07 8.56 117 -28.4**
07-SA-12 9.01 31.98 59.01 4.33 1.04 2.96 1.00 0.19 0.81 0.08 9.73 103 -28.4**
07-SA-13 40.01 56.98 3.01 7.75 -0.68 2.95 32.7 -2.58 35.5 1.84 19.3 52 -30.3**
07-SA-14 22.99 75 2.01 6.81 0.28 1.99 13.3 -0.32 13.4 0.76 17.6 57 -29.1**
07-SA-15 22.99 53.01 24 6.3 -0.1 1.77 24.8 2.09 22.7 1.61 14.1 71 -22.8**
07-SA-16 17 59.01 624 5.96 0.18 2.04 12.5 1.05 11.4 0.92 12.4 80 -25.9**
07-SA-17 15.99 63 21.01 5.78 0.69 2.34 3.56 0.33 3.23 0.28 11.5 87 -30.3**
07-SA-18 27.01 61 12 6.86 -0.13 2.07 21.3 -1.39 22.6 1.26 17.9 56 -29.3**
07-SA-19 5 8 87 2.69 1.95 6.03 0.25 0.02 0.23 < 0.05 5.72 175 No data
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Sedminentological, organic geochemical data and stable carbon isotope ratios. (...continued)

Lake-No Sand Silt Clay Mean Skewness Kurtosis TC TIC TOC TN C/N Magnetic δ13C

suscpetibility

[vol.-%] [vol.-%] [vol.-%] [φ] [φ] [SI] [‰]

07-SA-20 25 59.01 15.99 6.54 0.02 1.91 16.4 0.07 16.3 1.07 15.3 65 -29.3**
07-SA-21 40.01 58.99 1 7.68 -0.45 2.22 26.4 -0.93 27.4 1.95 14.0 71 -29.4**
07-SA-22 13 34.99 52.01 4.63 0.62 2.13 11.6 0.67 11.0 0.66 16.7 60 -28.5**
07-SA-23 22.99 65.01 12 6.63 -0.1 2.27 7.88 0.11 7.77 0.50 15.7 64 -28.8**
07-SA-24 21.01 70.99 8 6.66 0.24 2.19 4.62 0.12 4.50 0.36 12.6 79 -28.9

07-SA-25 21.01 64.99 14 6.49 0.15 2.02 7.12 0.13 6.99 0.49 14.2 70 -29.0

07-SA-26 22.99 76 1 6.83 0.35 2.02 4.43 0.29 4.14 0.39 10.5 95 -28.8

07-SA-27 28.01 70.99 1 7.11 0.18 1.91 7.04 0.52 6.53 0.71 9.26 108 -27.7

07-SA-28 33 67 0 7.41 0.01 1.88 6.77 0.11 6.66 0.59 11.3 89 -29.6

07-SA-29 32 68 0 7.48 -0.05 2.06 9.91 0.12 9.79 0.88 11.1 90 -30.5

07-SA-30 28.99 71.01 0 7.34 0.12 2.03 9.31 -0.02 9.34 0.76 12.3 81 -30.5

07-SA-31 32 68 0 7.46 -0.01 2.02 5.95 0.14 5.81 0.48 12.1 83 -31.4

07-SA-32 21.99 64 14 6.45 0.09 2.2 10.5 0.42 10.0 1.04 9.66 104 -34.6

07-SA-33 28.01 71.99 0 7.38 0.27 2.13 5.31 0.23 5.08 0.56 9.05 110 -30.8

07-SA-34 15.99 68.02 15.99 6.1 0.46 2.36 3.28 0.39 2.89 0.29 9.94 101 -30.5

07-SA-35 13 27.01 59.99 4.04 0.68 1.84 3.64 0.85 2.79 0.32 8.61 116 -26.1

Table A.4: Inorganic geochemical data obtained from sampled Northern and Central Yakutian surface sediments. Elements contained below in concentrations below detection limit are marked by an asterisk (*).

Lake-No Al2O3 CaO Fe2O2 K2O MgO MnO Na2O P2O5 TiO2 Ba Li Cr Cu Ni Pb Sr V Zn Zr

(gesamt)

[%] [%] [%] [%] [%] [%] [%] [%] [%] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

05-YAK-01 13.77 3.54 4.36 2.88 2.44 0.07 2.43 0.17 0.69 698 < 0.5** 51 17.6 28.75 26.45 324 84.5 64.5 263.5

05-YAK-02 13.64 2.85 4.05 2.9 2.02 0.1 2.62 0.13 0.68 725 < 0.5* 48.9 13.1 30.85 26.65 333.5 80 59.5 318

05-YAK-03 13.4 4.09 5.4 2.59 2.92 0.11 1.75 0.26 0.69 612 < 0.5* 64 27.2 39.65 29.3 249 85.5 91.5 147.5

05-YAK-04 10.35 2.98 3.92 2.07 2.6 0.08 1.52 0.21 0.5 472 < 0.5* 54 28.9 36.95 < 25* 223 77 67.5 111.5
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Inorganic geochemical data. (...continued)

Lake-No Al2O3 CaO Fe2O2 K2O MgO MnO Na2O P2O5 TiO2 Ba Li Cr Cu Ni Pb Sr V Zn Zr

(gesamt)

[%] [%] [%] [%] [%] [%] [%] [%] [%] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

05-YAK-05 13.6 2.84 4.98 2.78 2.42 0.08 2.29 0.16 0.65 665 < 0.5* 58 18.55 32.95 26.75 302 83 68.5 278

05-YAK-06 1.36 7.09 1.25 0.95 12.02 0.04 6.28 0.48 0.07 166 < 0.5* < 10* < 10* < 10* < 25* 365.5 19.35 21.15 10.4

05-YAK-07 1.18 5.67 1.32 0.52 11.94 0.04 4.87 0.45 0.06 180 < 0.5* < 10* < 10* < 10* < 25* 415 17.35 35.2 < 10*
05-YAK-08 0.95 1.34 0.51 0.18 0.25 0.03 0.18 0.27 0.03 159 < 0.5* < 10* 10 22.9 < 25* 129.5 < 10* 35.45 < 10*
05-YAK-09 1.43 1.09 2.17 0.27 0.23 0.05 0.24 0.53 0.05 215 < 0.5* 13.45 13.15 26.55 < 25* 111.5 13.05 69 18.85

05-YAK-10 14.13 4 6.26 2.82 2.9 0.1 1.34 0.42 0.69 620 < 0.5* 67.5 32.45 44.7 31.1 237.5 109.5 102.5 113

05-YAK-11 7.24 3.75 3.8 1.36 1.99 0.06 0.96 0.38 0.35 372 < 0.5* 39 26.85 28.7 < 25* 220.5 58.5 69 41.5

05-YAK-12 10.88 3.53 4.29 2.23 2.74 0.08 1.39 0.26 0.54 523 < 0.5* 56 27.6 35.45 < 25* 249.5 81.5 72.5 74.5

05-YAK-13 4.38 1.37 1.69 0.81 0.81 0.02 0.61 0.32 0.2 244 < 0.5* 27.2 21.65 23.1 < 25* 121 34.05 55 22.9

05-YAK-14 10.37 1.76 4.4 1.94 1.71 0.03 1.44 0.29 0.47 505 < 0.5* 49.95 31.3 32.75 < 25* 201.5 71.5 88 116.5

05-YAK-15 12.04 1.64 3.97 2.35 1.84 0.03 1.6 0.25 0.58 550 < 0.5* 50.5 29.8 37.1 < 25* 218.5 75.5 94 154.5

05-YAK-16 5.73 1.48 2.52 1.11 1.21 0.03 0.75 0.37 0.28 287 < 0.5* 29.55 24.3 25 < 25* 131.5 46.5 52.5 74

05-YAK-17 9.94 1.4 2.57 1.95 1.19 0.03 1.37 0.23 0.49 496 < 0.5* 41.45 28.7 27.8 < 25* 201 66 93 164.5

05-YAK-18 9.26 3.4 4.23 1.69 1.82 0.07 1.14 0.34 0.45 456 < 0.5* 40.4 35 37.95 < 25* 219.5 70 98.5 36.8

05-YAK-19 7.12 2.6 3.12 1.47 1.74 0.06 1.08 0.2 0.35 387 < 0.5* 24.7 21.35 25.6 < 25* 216.5 52.5 51.5 70

05-YAK-20 10.88 4.16 6.49 2.05 2.01 0.09 1.44 0.58 0.54 546 < 0.5* 27.85 28.85 35.2 < 25* 236.5 85 79 64.5

05-YAK-21 9.84 2.31 3.06 2.07 1.45 0.04 1.56 0.28 0.51 504 < 0.5* 21.95 20.8 26.6 < 25* 231.5 58.5 65 151

05-YAK-22 8.37 2.28 3.09 1.67 1.57 0.03 1.01 0.38 0.4 390 < 0.5* 35.8 30.25 33.8 < 25* 169 63 5 73 47.75

05-YAK-23 12.7 2.25 4.42 2.58 92 0.05 1.78 0.25 0.63 610 < 0.5* 51 22.95 32.4 < 25* 236.5 81 75 150.5

05-YAK-24 10.03 4.07 3.8 2.11 2.45 0.07 1.5 0.36 0.51 489 < 0.5* 40.4 22.6 29.3 < 25* 244.5 68 67 18.95

05-YAK-25 12.26 3.58 4.03 2.65 2.34 0.07 2 0.2 0.61 638 < 0.5* 41.65 16.45 27.6 < 25* 313 73.5 63.5 127

05-YAK-26 11.64 4.1 4.82 2.28 2.17 0.08 1.34 0.31 0.55 534 < 0.5* 40.8 32.5 34.85 < 25* 238 82 82 22

05-YAK-27 9.81 4.39 3.7 2.13 2.52 0.06 1.4 0.28 0.5 501 < 0.5* 27 22.1 28.4 < 25* 255 67.5 65 24.6

05-YAK-28 12.94 3.29 4.66 2.6 2.77 0.09 1.97 0.24 0.64 619 < 0.5* 23.65 23.85 36.8 < 25* 265.5 83 77.5 87.5

05-YAK-29 8.77 3.08 3.92 1.89 3.55 0.08 1.43 0.31 0.49 385 < 0.5* 43.9 25.7 32.25 < 25* 202.5 71 77.5 92

05-YAK-30 0.94 1.14 0.75 0.14 0.26 0.04 0.15 0.22 0.03 115 < 0.5* < 10* 11.95 36.3 < 25* 131 < 10* 41.1 12.7

07-SA-01 10.9 1.53 3.65 1.9 0.88 0.05 1.86 0.14 0.67 499 < 0.5* 53 16.35 27.6 < 25* 213.5 85.5 48.85 192.5

07-SA-02 8.31 1.3 2.8 1.42 0.94 0.04 1.21 0.17 0.5 370 < 0.5* 49.65 14.85 31.55 < 25* 165 66.5 115.5 138

07-SA-03 12.32 1.64 3.52 2.7 1.1 0.05 2.47 0.14 0.66 680 < 0.5* 53 10.75 25.45 < 25* 271.5 76 65.5 253

07-SA-04 9.79 0.97 1.13 3.28 0.18 0.08 2.79 0.05 0.19 907 < 0.5* 13 < 10* < 10* < 25* 346.5 17.5 17.85 103

07-SA-05 8.67 0.91 3.88 1.57 0.82 0.08 1.19 0.22 0.35 363 < 0.5* 38.1 16.2 19.15 < 25* 182 60 47.85 101.5

07-SA-06 13.7 1.87 3.73 2.7 1.14 0.06 2.8 0.16 0.78 706 < 0.5* 28.25 < 10* 24.9 < 25* 343.5 81 65.5 292

07-SA-07 14.42 1.54 5.89 2.49 1.36 0.08 2.51 0.29 0.8 626 < 0.5* 35.15 13.6 32.6 < 25* 292.5 98.5 92 202

07-SA-08 13.3 1.51 5.88 2.26 1.36 0.07 2.04 0.23 0.79 552 < 0.5* 37.05 20 36.6 < 25* 228 110.5 78.5 180

07-SA-09 3.36 1.29 4.62 0.52 0.56 0.08 0.31 0.44 0.17 220 < 0.5* 13.95 21.65 45.75 < 25* 131 30.95 376.5 65

07-SA-10 12.94 1.55 8.29 2.36 1.24 0.18 2.21 0.28 0.72 621 < 0.5* 44.25 18.65 32.3 < 25* 247 97.5 67 187.5

07-SA-11 11.81 1.34 2.39 3.02 0.64 0.05 2.48 0.1 0.79 855 < 0.5* 25.75 < 10* 13.65 < 25* 338 54.5 36.95 456.5
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Inorganic geochemical data. (...continued)

Lake-No Al2O3 CaO Fe2O2 K2O MgO MnO Na2O P2O5 TiO2 Ba Li Cr Cu Ni Pb Sr V Zn Zr

(gesamt)

[%] [%] [%] [%] [%] [%] [%] [%] [%] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm]

07-SA-12 12.21 1.44 3.33 2.88 0.75 0.08 2.83 0.12 0.5 821 < 0.5* 26.65 < 10* 16 < 25* 355 50.5 43.55 201

07-SA-13 5.27 0.85 5.22 0.62 0.47 0.03 0.53 0.28 0.27 235 < 0.5* 20 12.5 31.05 < 25* 98 63.5 62 65

07-SA-14 12 1.23 4.39 1.82 1.08 0.07 1.74 0.18 0.61 487 < 0.5* 29 18.6 33.15 < 25* 211.5 96.5 92.5 123.5

07-SA-15 6.86 1.14 4.12 1.04 0.64 0.07 1.04 0.18 0.36 332 < 0.5* 19.05 11 31 < 25* 147.5 58 74.5 91.5

07-SA-16 10.71 1.22 4.03 1.88 0.97 0.04 1.79 0.22 0.53 521 < 0.5* 30.2 15 33.2 < 25* 228.5 80 87.5 123.5

07-SA-17 13.47 1.72 4.15 2.4 1.28 0.08 2.44 0.14 0.75 608 < 0.5* 38.8 15.95 30.75 < 25* 273.5 96 79.5 179.5

07-SA-18 10.47 1.39 5.88 1.22 1.23 0.06 0.94 0.22 0.57 328 < 0.5* 41.05 23.1 44.3 < 25* 134.5 121.5 98.5 87.5

07-SA-19 8.09 0.92 1.69 2.39 0.4 0.04 1.78 0.04 0.38 693 < 0.5* 26.35 < 10* < 10* < 25* 246.5 27.8 16.6 266

07-SA-20 10.92 1.38 5.05 1.6 1.43 0.06 1.18 0.17 0.64 362 < 0.5* 65.5 23.15 42.8 < 25* 150.5 106 120.5 117.5

07-SA-21 5.57 1.61 3.26 0.93 0.85 0.03 0.79 0.35 0.34 234 < 0.5* 29.05 21.9 37.5 < 25* 124 51 110 75.5

07-SA-22 7.97 0.93 4.13 1.67 0.55 0.05 1.36 0.13 0.39 494 < 0.5* 36.2 11.75 27.45 < 25* 180.5 61 58 105

07-SA-23 13.79 1.12 5.3 2 1.35 0.05 1.7 0.17 0.81 472 < 0.5* 58.5 20.2 36.65 < 25* 199.5 124 99 146.5

07-SA-24 14.28 1.2 4.92 2.41 1.64 0.05 1.93 0.18 0.83 457 < 0.5* 60.5 25.9 42.75 < 25* 230.5 122 119 173.5

07-SA-25 12.85 1.13 4.79 2.2 1.4 0.04 1.85 0.19 0.75 448 < 0.5* 67.5 24.25 41 < 25* 215 113.5 110 167

07-SA-26 11.96 1.34 9.59 1.93 1.18 0.26 1.75 0.37 0.75 500 < 0.5* 60.5 21.85 38.15 < 25* 198 109 85.5 186

07-SA-27 12.77 1.41 5.36 1.99 1.31 0.07 1.71 0.2 0.78 518 < 0.5* 53.5 25.45 40.6 < 25* 197 112 80.5 201.5

07-SA-28 11.54 1.18 13.5 1.75 1.17 0.15 1.52 0.37 0.72 458 < 0.5* 61 24.65 40.75 < 25* 177.5 109.5 76 160

07-SA-29 12.07 0.96 5.88 1.65 1.15 0.05 1.27 0.24 0.69 410 < 0.5* 53.5 28.65 51 < 25* 146 117 136 139.5

07-SA-30 13 0.99 5.83 1.77 1.26 0.05 1.37 0.2 0.74 440 < 0.5* 59.5 23.95 43.6 < 25* 154.5 116 132 140

07-SA-31 12.19 0.97 15.3 1.73 1.17 0.1 1.46 0.65 0.73 438 < 0.5* 60.5 27.4 52.5 < 25* 162 122 116.5 151

07-SA-32 10.2 1.07 6.21 1.58 1.07 0.04 1.36 0.48 0.6 429 < 0.5* 52.5 23.65 38.2 < 25* 156 91.5 82 126.5

07-SA-33 13.6 1.12 6.93 2.02 1.44 0.07 1.63 0.37 0.8 493 < 0.5* 58 29.45 44.7 < 25* 177.5 124 94.5 149.5

07-SA-34 12.91 1.31 6.1 2.07 1.31 0.17 1.79 0.25 0.78 510 < 0.5* 55 21.8 38.65 < 25* 201 106.5 91.5 173.5

07-SA-35 7.69 0.66 6.06 2.12 0.34 0.08 1.34 0.11 0.22 634 < 0.5* 25.3 < 10* 13.75 < 25* 193.5 25.2 30.25 104
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A.3 Multivariate statistics

Table A.5: Correlation of species data and principal components I – IV. PCA of species data.

Variable Axis I Axis II Axis III Axis IV Variable Axis I Axis II Axis III Axis IV

λ1 = 0.3461 λ2 = 0.2490 λ3 = 0.1148 λ4 = 0,0858 λ1 = 0.3461 λ2 = 0.2490 λ3 = 0.1148 λ4 = 0,0858

TC 0.7666 -0.5324 0.1840 -0.0758 MgO -0.0279 0.1071 0.9277 0.1894

TOC 0.7866 -0.5088 0.2032 -0.0259 MnO -0.4402 -0.1091 0.1346 0.0252

TIC -0.3494 0.1682 0.1361 -0.3380 Na2O -0.4601 0.5393 0.4169 0.4814

TN 0.8348 -0.3563 0.1721 6 -0.3003 P2O5 0.3142 -0.4841 0.4719 -0.1402

C/N 0.3337 -0.3590 -0.0040 0.8349 TiO2 -0.9368 -0.1957 0.0597 0.0788

δ13C -0.1284 -0.5006 0.2715 0.2277 Ba -0.8735 0.3766 -0.0245 -0.1229

sand -0.3466 -0.7906 -0.3771 0.1023 Cr -0.7804 -0.3658 0.0892 -0.0782

silt -0.3042 -0.7681 0.2403 0.0673 Cu -0.1801 -0.6143 0.3959 -0.4106

clay 0.3046 0.7054 0.1925 -0.1650 Ni -0.3572 -0.8539 0.0597 -0.2171

magnetic susceptibility -0.3272 0.3698 0.0022 -0.8316 Sr -0.4232 0.7020 0.4673 0.2133

Al2O3 -0.9550 -0.0708 0.0007 -0.0637 V -0.8223 -0.4499 0.1473 0.0914

CaO 0.0637 0.2239 0.9100 -0.0885 Zn -0.3031 -0.8158 0.0891 -0.0709

Fe2O3 -0.7023 -0.5362 0.0517 0.0384 Zr -0.8433 0.0604 -0.3490 0.1274

K2O -0.8928 0.3465 0.1347 -0.0612

Table A.6: Correlation of environmental data and principal components I – IV. PCA of environmental data.

Variable Axis I Axis II Axis III Axis IV Variable Axis I Axis II Axis III Axis IV

λ1 = 0.4992 λ2 = 0.1219 λ3 = 0.0788 λ4 = 0.0755 λ1 = 0.4992 λ2 = 0.1219 λ3 = 0.0788 λ4 = 0.0755

pH 0.6131 0.1925 -0.2634 0.4521 Mg 0.9826 -0.0076 -0.0706 -0.0605

conductivity 0.8760 0.3453 0.0934 0.1584 Mn 0.3375 -0.5344 -0.1824 0.0875

elevation 0.7478 -0.2665 -0.3355 0.1999 Na 0.9465 0.1538 0.1572 0.0403
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Correlation of environmental data and principal components I – IV. (...continued)

Variable Axis I Axis II Axis III Axis IV Variable Axis I Axis II Axis III Axis IV

λ1 = 0.4992 λ2 = 0.1219 λ3 = 0.0788 λ4 = 0.0755 λ1 = 0.4992 λ2 = 0.1219 λ3 = 0.0788 λ4 = 0.0755

water depth -0.2751 0.2889 -0.7668 -0.0782 Si 0.4746 -0.5860 -0.2400 0.2683

Secchi depth -0.3040 0.2808 -0.6747 0.0746 Sr 0.8407 -0.3679 -0.1005 -0.2578

approximate size -0.3351 0.3759 -0.1482 0.5183 fluoride 0.8629 0.0687 0.1098 0.2860

Ba 0.6612 -0.1381 -0.0589 -0.3700 chloride 0.7792 0.4766 0.1968 -0.0414

Ca 0.7121 -0.4824 -0.2082 -0.1894 sulphate 0.6287 0.2099 -0.1516 -0.5798

Fe -0.3539 -0.6020 0.1791 0.2966 Br 0.7843 0.4745 0.0354 -0.0629

K 0.8485 0.0371 0.1839 0.3414 HCO3
-

0.9704 -0.0466 -0.0419 0.0874

Table A.7: Correlation of species data and axes I – IV in RDA

Variable Axis I Axis II Axis III Axis IV Variable Axis I Axis II Axis III Axis IV

λ1 = 0.251 λ2 = 0.119 λ3 = 0.092 λ4 = 0.056 λ1 = 0.251 λ2 = 0.119 λ3 = 0.092 λ4 = 0.056

TC 0.5480 -0.3578 0.3051 0.0591 MgO 0.2098 0.6214 0.5675 0.3788

TOC 0.5833 -0.3340 0.2937 0.1208 MnO -0.3357 0.1443 0.0594 0.0366

TIC -0.2594 0.2046 0.1044 -0.3568 Na2O -0.1340 0.7169 -0.0939 0.3764

TN 0.6243 -0.3279 0.3582 -0.1227 P2O5 0.2514 -0.0547 0.4725 0.1843

C/N 0.2225 -0.0323 -0.2980 0.6026 TiO2 -0.7788 0.0619 0.0762 0.1105

δ13C -0.2120 0.0267 0.1829 0.0302 Ba -0.6262 0.2599 -0.0426 -0.249

sand -0.5299 -0.5222 -0.1247 0.1717 Cr -0.7326 -0.1554 0.3061 0.1160

silt -0.3858 -0.1183 0.2907 0.0523 Cu -0.2420 -0.2444 0.6500 0.0256

clay 0.4290 0.2862 0.0853 -0.2922 Ni -0.4533 -0.4340 0.3438 0.0024

magnetic susceptibility -0.2171 0.0389 0.2929 -0.6033 Sr -0.0466 0.7542 0.0293 0.0206

Al2O3 -0.8025 0.0527 0.0741 -0.0621 V -0.7371 -0.0496 0.2069 0.1971

CaO 0.3047 0.5965 0.6563 -0.0160 Zn -0.4204 -0.3429 0.2681 0.1221

Fe2O3 -0.6733 -0.0885 0.1162 0.1499 Zr -0.7594 0.0442 -0.3056 -0.0010
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Correlation of species data and axes I – IV in RDA(...continued)

Variable Axis I Axis II Axis III Axis IV Variable Axis I Axis II Axis III Axis IV

λ1 = 0.251 λ2 = 0.119 λ3 = 0.092 λ4 = 0.056 λ1 = 0.251 λ2 = 0.119 λ3 = 0.092 λ4 = 0.056

K2O -0.6285 0.3456 0.0718 -0.1127

Table A.8: Correlation of species data and axes I – IV in partial RDA

Variable Axis I Axis II Axis III Axis IV Variable Axis I Axis II Axis III Axis IV

λ1 = 0.251 λ2 = 0.119 λ3 = 0.092 λ4 = 0.056 λ1 = 0.251 λ2 = 0.119 λ3 = 0.092 λ4 = 0.056

TC 0.4638 -0.0658 -0.2623 -0.2130 MgO 0.2804 0.8405 0.2153 -0.1407

TOC 0.4977 -0.0561 -0.2048 -0.2354 MnO -0.2800 0.1641 0.0787 0.0831

TIC -0.1650 0.1628 -0.2130 0.0671 Na2O -0.0180 0.4520 0.5839 -0.0356

TN 0.5393 -0.0201 -0.4115 -0.1286 P2O5 0.2865 0.2168 -0.1259 -0.1524

C/N 0.1570 -0.1749 0.5419 -0.2142 TiO2 -0.7302 0.1454 0.0550 -0.0307

δ13C -0.1499 0.1364 -0.0786 -0.0575 Ba -0.5246 0.1328 -0.0774 0.0847

sand -0.5827 -0.3838 0.0083 -0.1316 Cr -0.7235 0.1929 -0.1332 -0.1594

silt -0.3924 0.1820 -0.1488 -0.0336 Cu -0.2140 0.2620 -0.4268 -0.1636

clay 0.4437 0.1906 -0.2129 0.0844 Ni -0.4881 -0.0108 -0.3120 0.0135

magnetic susceptibility -0.1521 0.1773 -0.5342 0.2234 Sr 0.0594 0.5108 0.2377 0.0985

Al2O3 -0.7289 0.1067 -0.0839 -0.0411 V -0.6962 0.1578 0.0099 -0.1411

CaO 0.3876 0.8188 -0.1517 0.0418 Zn -0.4587 -0.0217 -0.1708 -0.1330

Fe2O3 -0.6388 0.0622 0.0430 -0.0678 Zr -0.7522 -0.0943 0.1717 0.0582

K2O -0.5092 0.2840 -0.0192 -0.0025
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