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Glacial melting: an overlooked 
threat to Antarctic krill
Verónica Fuentes1, Gastón Alurralde2,3, Bettina Meyer4,5, Gastón E. Aguirre4, 
Antonio Canepa6, Anne-Cathrin Wölfl7, H. Christian Hass7, Gabriela N. Williams2,8 &  
Irene R. Schloss2,9,10

Strandings of marine animals are relatively common in marine systems. However, the underlying 
mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared 
to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an 
increased occurrence of suspended particles in the sea, which is known to affect the physiology of 
aquatic organisms. Here, we study the effect of suspended inorganic particles on krill in relation to 
krill mortality events observed in Potter Cove, Antarctica, between 2003 and 2012. The experimental 
results showed that large quantities of lithogenic particles affected krill feeding, absorption capacity 
and performance after only 24 h of exposure. Negative effects were related to both the threshold 
concentrations and the size of the suspended particles. Analysis of the stomach contents of stranded 
krill showed large quantities of large particles ( > 106 μm3), which were most likely mobilized by glacial 
meltwater. Ongoing climate-induced glacial melting may impact the coastal ecosystems of Antarctica 
that rely on krill.

In the summer of 2002, a massive stranding event of the tunicate Salpa thompsoni, and the euphausiid Euphausia 
superba (hereafter referred to as ‘krill’), which are key components of the Southern Ocean ecosystem, was 
observed in front of the Argentinean Antarctic Station Carlini (formerly known as Jubany Station) along the 
shore of Potter Cove (King George Island/25 de Mayo Island, South Shetland Islands, Fig. 1a)1. We suspected that 
high concentrations of suspended particulate material, primarily of glacial origin, may have been associated with 
this stranding event. Since that event, the beaches of Potter Cove have been surveyed, and repeated stranding 
events have been recorded (Table 1).

Potter Cove is surrounded by the Fourcade Glacier to the North and the East. A detailed description of the 
area has been published2. The glacier has been receding at an increasing rate (up to 1 km since the 1950s3), a trend 
that has also been observed for other glaciers on King George Island4. Glacial retreat causes the massive discharge 
of sediment-laden meltwater. This discharge was observed in Potter Cove during the summer for more than 20 
years2. Sediment-laden surface water plumes, called “brown waters”, originate from meltwater creeks as well as 
from the glacier itself (Fig. 1b). They are a common feature in the area5,6, and the transport of sediments to the sea 
is a natural process in coastal areas, which occurs each spring. In Maxwell Bay, sediment mass accumulation rates 
of up to 0.66 g cm−2 yr−1 have been documented during the last 100 years7. Due to the present warming, dramatic 
increases in glacial melting have resulted in a rising particle discharge via surface and sub-surface drainage. This 
particle discharge is recognized as a threat to coastal ecosystems8,9.

Large quantities of suspended particles affect the growth and survival of benthic filter feeders10,11 by clogging 
their filtration systems8. In copepods, inorganic particles affect feeding efficiency, carbon turnover and egg pro-
duction12 as well as mortality rates13. Deleterious effects such as reduced foraging, growth and changes in physio-
logical condition have also been observed in fish14.
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The Antarctic krill is a key species in the Southern Ocean trophic web15 and to the biological CO2 pump in 
the continental shelf of the Western Antarctic Peninsula (WAP) through the production of faecal pellets and the 
export of particulate carbon to deeper waters16. A strong decline in krill since the mid-1970 s has been associated 
with changes in sea ice17.

Potter Cove is a tributary fjord of Maxwell Bay in the southern coast of King George Island, South Shetland 
Islands, and is 4.7 km long and 1.6 km wide. A high krill abundance is characteristic of the oceanic waters off the 
South Shetland Islands and of spawning areas such as the Scotia Sea (average density approximately 25–50 and 
50–100 ind m−2, respectively18). However, in nearshore waters, such as off Livingston Island, krill biomass densi-
ties have been shown to be higher, more stable and less variable than in the Scotia Sea19. To date, specific studies 
on krill abundance have not been conducted in bays such as Potter Cove and others along the WAP. However, the 
presence of krill is suggested by the stomach contents of the fish Notothenia coriiceps, the dominant benthic fish 
in Potter Cove20, which feeds primarily on krill21, and by the presence of whales feeding on krill inside the cove, as 
described for other coastal bays in the WAP22. Moreover, compared with the shelf and the slope, the coastal WAP 
showed a higher krill abundance between 1993 and 201323.

In the majority of the stranding events documented at Potter Cove since 2002, krill was the primary species 
found. Therefore, our aim was to understand the effect of the concentration and size of suspended particles on 
krill feeding, food absorption efficiency and survival. Here, we provide evidence showing that the quantity and 
quality of suspended inorganic particles are the cause of the mass krill strandings observed, providing the first 
insight into a phenomenon that may be crucial to the polar coastal marine food web in a warming world.

Results
Environmental conditions during krill stranding events. In the austral summer of 2003, four krill 
stranding events were detected on Potter Cove’s southern shore, but only 3 were quantified (the fourth event was 
documented after most of the krill had drifted out to sea or had been ingested by birds). The average density of 
dead krill on the beach in these events was 1,457 ±  740 ind m−2 of beach surface, of which 20% were adult krill, 
2% were juveniles and 78% were larval krill; the total number of dead krill on the beach ranged between 130,000 
and 413,000 individuals. The largest stranding event was observed in March 2007 (1,042 ±  277 ind m−2, 93% 
juveniles, 7% adults) along a 400 m coastline (Fig. 2) with a median total of approximately 423 000 individuals 
(range: 307,000 to 521,000). The environmental conditions during each of the recorded events are summarized 
in Table 1. Prior to the stranding events, the total amount of suspended particulate matter was similar for all doc-
umented events (p =  0.976) and was positively correlated with both the number of positive degree-days (PDDs) 
(t(23) =  2.604, p <  0.050) and the maximum tide amplitude (t(23) =  2.623, p <  0.050). Generalized linear models 
(GLMs) indicated that the probability of mass (≥ 100 ind m−2, category 2, Table 1) strandings increased directly 
with air temperature and maximum tidal amplitude. When a 24 h time lag was taken into account, total sus-
pended particulate matter (TSPM) and wind speed showed a unimodal response such that high values (of both 
variables) were positively correlated with the probability of mass strandings. Not only was the maximum wind 
speed (> 25 knots on average) important, but the dominant wind direction 24 h prior to the observed krill strand-
ing events was also important (p <  0.050). Wind direction associated with category 2 events typically originated 
from the N and NW quadrants. Furthermore, when air temperature was > 0 °C, a positive correlation with the 
strandings was evident.

Impact of the quantity of sediment on krill feeding activity. Krill showed a linear increase in feed-
ing rate in response to increasing concentrations of natural phytoplankton cultures (with no added suspended 

Figure 1. (a) Map showing the location of the study area in the vicinities of Potter Cove, King George/25 
de Mayo Island, South Shetland Islands, Antarctica during March 2007; maps were created using Inkscape 
0.48.5 (URL: https://inkscape.org/). (b) Typical glacier-originated melt-water creek carrying large amounts of 
particles. Credit photos: V. Fuentes.

https://inkscape.org/
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Category
Air temp. 

( °C)
PDD 
( °C)  

Wind speed 
(kn)

Wind 
direction

Maximum tidal 
amplitude (m)

Water temp. 
( °C)

TPSM  
(mg L−1)

Chl-a  
(μ g L−1)

5-Feb-03 0 3.0 20.7 4.4 W 1.53 nd 28.55 0

14-Feb-03 0 2.7 18.8 8.0 E 1.64 nd 4.85 0.32

17-Feb-03 0 3.1 21.4 3.2 W 2.06 nd 30.5 0.99

19-Feb-03 0 3.2 22.2 9.2 SW 1.98 nd 26.5 0.33

24-Feb-03 2 3.4 23.5 12.4 NW 0.44 nd 10.65 1.2

5-Mar-03 0 − 2.2 0.0 7.6 E 1.6 nd 11.05 0.8

18-Mar-03 0 − 2.0 0.0 14.1 SE 1.94 nd 27.82 0.59

24-Mar-03 2 0.8 7.8 5.3 W 0.65 nd 3.36 0.29

4-Apr-03 1 1.5 10.6 26.6 NW 1.23 nd nd nd

9-Apr-03 0 0.3 12.7 12.5 E 0.39 nd 3.16 nd

6-Mar-06 1 2.2 15.5 17.1 SE 1.75 nd nd nd

16-Oct-06 1 − 0.5 5.0 5.5 E 0.62 nd nd 0.17

1-Dic-06 1 1.3 9.3 5.4 SE 0.56 nd nd nd

14-Jan-07 0 2.9 20.4 7.9 W 0.08 nd 1.98 0.76

22-Jan-07 0 2.2 15.2 3.6 SW 1.38 nd 4.27 1.09

25-Jan-07 1 2.9 20.0 5.0 W 1.46 nd 10.25 1.09

1-Feb-07 0 2.8 19.8 20.1 E 1.76 nd 4.39 0.46

16-Feb-07 1 3.1 21.5 6.4 SW 1.92 nd 10.50 1.07

21-Feb-07 1 2.1 14.9 7.6 SE 1.47 nd 15 1.07

1-Mar-07 0 0.7 7.5 6.7 NW 1.43 nd 2.76 0.23

15-Mar-07 0 − 2.9 1.3 11.3 NW 0 nd 2.56 0.49

25-Mar-07 2 − 0.4 2.5 10.5 W 0.69 nd 7.5 nd

30-Sep-08 2 1.6 11.3 37.3 NW 1.87 nd nd nd

14-Oct-08 0 − 0.3 2.8 4.5 W 1.81 − 0.96 2.8 0.56

27-Oct-08 2 0.9 6.2 16.0 N 1.63 nd 3.6 0.85

30-Oct-08 0 1.2 8.7 19.8 NW 1.95 − 0.25 2.64 nd

16-Mar-09 0 2.9 20.1 20.1 W 0.9 1.61 8.2 0.99

28-Mar-09 2 2.1 14.7 21.7 NE 1.36 nd 16.8 nd

27-Jan-12 0 2.1 14.6 9.4 W 1.53 1.61 0.007 1.88

16-Feb-12 1 2.5 17.3 13.3 W 0 nd nd nd

18-Feb-12 1 1.4 12.0 26.9 SE 0.37 nd nd nd

2-Mar-12 0 2.5 17.3 17.0 NW 0 1.7 0.016 18.06

Table 1.  Environmental variables corresponding to the periods in which krill strandings were studied. 
Category 0 indicates the dates when no dead krill were observed on the beach. Category 1 indicates dead krill 
present at < 100 ind m−2. Category 2 indicates mass strandings of > 100 ind m−2. See text for methodological 
considerations of the variables shown. PDDs: positive degree-days; TSPM: total suspended particulate matter; 
Chl a: chlorophyll a; nd: no data available.

Figure 2. Stranded krill on the beaches of the southern shore of Potter Cove. Credit photos: V. Fuentes.
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particulate matter). The maximum feeding rate (14% body C d−1) was obtained at phytoplankton concentrations of 
400 μ g C L−1. In Potter Cove, the most frequent phytoplankton concentration ranged between 30 and 60 μ g C L−1.  
Krill feeding on phytoplankton within this concentration range (which corresponds to our control treatment) 
showed an average daily carbon ration of 1.19 ±  0.10% body C d−1. In the feeding experiments with different 
quantities of added bottom sediment from Potter Cove (10, 40, 60, 80 and 100 mg TSPM L−1), even the lowest 
sediment concentration significantly decreased (p <  0.050) the daily carbon ration of adult krill to 0.42 ±  0.03% 
body C d−1 (Fig. 3a). There were no significant differences in the daily carbon ration among the different concen-
trations of added sediment (p <  0.050). In juveniles, the daily carbon ration was similar to the control for added 
sediment concentrations up to 40 mg TSPM L−1 and only decreased significantly at concentrations greater than 
60 mg TSPM L−1 (p <  0.050, Fig. 3b). Shortly after the sediment was added (particle size < 50 μ m; see methods) 
to the phytoplankton, the digestive tract of the krill became a brown colour, indicating that the sediment had 
been ingested by the krill; this effect was similar to in situ observations of krill feeding in sediment-laden waters 
of Potter Cove (see supplementary material). When the feeding experiments were performed with in situ ‘brown 
water’ from Potter Cove (0.9 μ g Chl-a L−1 and 17 mg TSPM L−1), the daily carbon ration dropped significantly, 
by more than 80% (p <  0.001) compared with experiments using clear water (Fig. 3c), suggesting that the quality 
and the size range of TSPM had an impact on krill feeding.

Absorption efficiency of krill in the presence of sediments. When juvenile krill fed only on natural 
phytoplankton cultures, in the absence of sediments, the absorption efficiency reached 88.29 ±  3.72%, whereas 
when fine (< 50 μ m) bottom-sediment was added (20 and 40 mg TSPM L−1), the absorption efficiency decreased 
to 21.44 ±  15.27 and 15.75 ±  3.62%, respectively (Fig. 4a). Once the sediment was added to the phytoplankton, 
faecal pellet production increased with increasing quantities of suspended particulate material (Fig. 4b). The 
rates of biodeposition (mg faecal pellets ind−1) and mass-specific biodeposition (mg faecal pellets g ind−1) were 
higher at higher particle concentrations (p <  0.001). Again, it was observed that the entire digestive system of krill 
exposed to increased quantities of particles was coloured brown. Moreover, at concentrations of 40 mg L−1 TSPM 
in both sets of experiments, 80% of animals stopped swimming and remained at the bottom of the tanks. Their 
feeding baskets and guts were brown-coloured (Fig. 4c) with sediments particles adhering to the surface, very 
probably affecting their capacity for feeding.

Analyses of krill from 2008 and 2009 stranding events. The entire digestive system of the stranded 
krill collected during 2008 and 2009 was filled with brown particles, and the digestive gland was a pale yellow-grey 
colour. Body and stomach wet weights showed no significant differences between the different mortality events 
(p =  0.083 and p =  0.490 for body and stomach, respectively, Table 2) and were similar to the body and stomach 
weights of living krill collected from net tows in clear waters of Potter Cove (Fig. 5a). The digestive glands in living 
krill had a greenish colour, suggesting ingestion of phytoplankton. Centric pelagic and some benthic, pennate 
diatoms were the major items in the stomach contents of these animals (Fig. 5b). Diatoms were also present in 
the digestive tract of dead krill; total diatom volume did not vary among mortality events (p <  0.050) (Table 2) 
but was significantly lower than in the stomachs of living krill (Mann-Whitney U =  16; p <  0.001). However, 
highly significant differences were found in the total amount of lithogenic particles between dead and living krill 
(p <  0.001) in both years. Dead krill had more than two times the volume of lithogenic particles in their digestive 
tract than living krill. Large irregular lithogenic particles (> 1.1 105 μ m3 volume, equivalent to > 75 μ m diameter) 
represented a large fraction of the contents of the digestive tract in dead krill for all three mortality events in the 
2008 and 2009 seasons, and no significant difference in the volume of lithogenic particles in dead krill was found 
between these events (p =  0.840). Very large particles, in the 1.4 106–5.2 106 μ m3 range (175–275 μ m length), were 
only found in the stomachs of krill from the mass mortality events (Fig. 5c).

Figure 3. Daily rations of Antarctic krill fed with varying quantities of particles. Two sets of experiments 
were run. The first had bottom sediments added to the cultured phytoplankton; (a) Adults, (b) Juveniles. The 
second (c) used natural waters, i.e., clear water with no evident particles present in the water and brown water 
with a heavy load of particles.
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Discussion
Mass mortality events of marine organisms are receiving increasing attention. A comprehensive revision has 
been recently published24. The presence of particulate matter has been invoked as the cause for salp and copepod 
deaths in coastal environments1,13.

In light of our findings, we have strong evidence that the quantity and quality of lithogenic material in the 
water column can be a significant threat for krill in the shallow coastal regions of the Antarctic Peninsula. We 
postulate that the ingestion of large lithogenic particles (> 1.1 105 μ m3), which are most likely of glacial origin, is 
the primary cause of the krill mass mortalities studied. This study is the first documentation of the impact of large 
quantities and large sizes of lithogenic particles on krill.

Krill is a very effective filter feeder25 adapted to food sources of varying size and density15. They have often 
been observed feeding near sea floor sediments in coastal areas26 and have been recorded feeding in meltwater 
plumes (see supplementary material). Stomach content analyses suggest that krill are adapted to sporadically cope 

Figure 4. (a) Absorption efficiencies and (b) biodeposition rates (in mg fecal pellets ind−1 and mass-specific 
biodeposition rates (in mg fecal pellets g ind−1) of krill fed with natural seston to which two different amounts 
of sediments were added. TSPM: Total suspended particulate matter. (c) Pictures of krill after the feeding 
experiments with high concentrations of suspended particulate material. Red arrows point to the particles in the 
feeding apparatus of the animals. Credit photos: V. Fuentes.

DEAD KRILL LIVING KRILL

30 Sept 2008 27 Oct 2008 28 Mar 2009 21 Dec 2009

Body wet weight (mg) 592.5 (390.6–964.2) 765.8 (493.1–1026.1) 784.3 (686.2–1016.9) 742.3 (491.8–1054.2)

Stomach wet weight 
(standardized, mg) 0.007 (0.004–0.011) 0.008 (0.006–0.009) 0.006 (0.004–0.009) 0.011 (0.005–0.011)

Total volume of diatoms (μ m3) 0.023 (0–12.242) 0.001 (0–0.004) 0.008 (0–0.077) 0.274 (0.084–54.028)

Total volume of lithogenic 
particles (μ m3) 0.113 (0.014–0.194) 0.085 (0.018–0.170) 0.029 (0.009–0.146) 0.049 (0.028–0.075)

Table 2.  Characteristics of krill from the 2008–2009 mortality events and of living krill: median (range) 
body and stomach wet weights (mg) and volume of total diatoms (μm3), total lithogenic particles, and 
lithogenic particles >1.1 105 μm3.
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with a certain level of sediment, as evidenced by the gut content analysis of living krill, both here and in previous 
studies (e.g., 26). The results from our feeding experiments, in which fine bottom sediments from Potter Cove 
were added to natural plankton, demonstrate that this type of material, even in low concentrations (10 mg L−1 
TSPM), has a strong impact on the performance of adult krill. Juveniles showed a similar response at particle con-
centrations > 60 mg L−1. The difference between these age groups may be due to the mean mesh interval of their 
filtration apparatus. For juvenile krill, this ranges between 19 and 36 μ m27, which is smaller than the maximum 
size of the bottom sediment particles used in these experiments. It is probable that most particles did not enter 
their digestive tract. However, at high concentrations, their filtering basket gets clogged (see Fig. 4c). By contrast, 
the mean mesh interval of adult krill ranges from 68 to 83 μ m, such that 50 μ m particles were not filtered out 
and immediately entered their digestive tract, severely affecting their body carbon ration and hence their overall 
performance, as evidenced by the cessation of movement and their position at the bottom of the tank. However, 
the feeding experiments with “brown water” from Potter Cove that originated from glacial melting showed that 
even a low particle concentration (17 mg L−1 TSPM) had a serious negative impact on the daily carbon ration 
and overall condition of juvenile krill. This impact was similar to the experiment in which 100 mg L−1 TSPM of 
fine bottom sediment was added. The mean grain size of the sediment transported via glacier meltwater into the 
cove ranges from 6 to 781 μ m6. The size of the bottom sediments used for the experiment was < 50 μ m. Therefore, 
according to our experimental results, in addition to the quantity of TSPM, the quality of TSPM is also probably 
having an impact on the daily carbon ration and performance of krill. Moreover, when particles were added to 
the food, an immediate increase in faecal pellet production was noted, which diminished the gut residence time.

Due to the morphology and the function of specific organs, the krill’s ability to process lithogenic particles 
is limited. Before large cells can be ingested, the mandibular pars molaris of krill split diatom chains and cut or 
fracture hard particles27. Ingested solid food particles are further macerated and crushed by the gastric mill, 
which is located inside the stomach, and mixed with digestive enzymes28,29. The processed material is then pressed 
through a fine filter system that allows fine food particles (< 0.2 μ m) to enter the midgut, where they are further 
digested. It is probable that the gastric mill of krill is not able to crush and grind lithogenic particles. Although 
coarse food residues, together with small lithogenic particles, can be transported directly to the hindgut25, large 
lithogenic particles may not enter the hindgut due to their size. This may represent an interruption of the pas-
sage of ingested particles, suggesting that the ingestion of large lithogenic particles (> 1.1 105 μ m3) could also 
mechanically disrupt the krill intestine. Lithogenic particles were found in the stomach contents of both dead and 
live krill but represented only a small proportion of the stomach contents of living krill. In addition, no particles  
>1.3 106 μ m3 (175 μ m length) were found in live krill. The large size and shape of the lithogenic particles found in 
the stranded krill guts suggest that this is relatively recent material of glacial origin, with sharp angles compared 
with particles from the bottom. The diatom species composition in dead krill guts showed a dominance of pelagic 
diatoms (Coscinodiscus spp. and Thalassiosira spp., Fig. 5b), indicating that the lithogenic particles in the water 
column are of glacial origin rather than resuspended from the bottom of the Cove.

Krill can normally avoid unfavourable environments. At Potter Cove, strong and long-lasting N and NW 
winds are able to build up significant waves that strike the beach at high frequency, hindering the rapid deposi-
tion of glacial particles and increasing resuspension in the wave zone. These winds force the meltwater plumes 

Figure 5. (a) Proportion of inorganic particles and diatoms in the gut contents of stranded krill from 2008  
to 2009. (b) Size classes of the lithogenic particles found in living krill and during the analysed strandings.  
(c) Relative contributions of different diatom species. Note the dominance of the planktonic genera 
Coscinodiscus sp. and Thalassiosira sp. (d) The relatively sharp angles of the particles as seen under the SEM, 
indicative of local and relatively recent origin. Credit photos: G. Aguirre.
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to the southern shore, further increasing the local particulate material concentration in the water5. Under such 
conditions, krill may become trapped in the surf zone close to the beach, ingesting whatever material is present 
there. Therefore, according to our findings, the consequences for krill are twofold: first, krill cannot cope with a 
large concentration of lithogenic particles and their filter system becomes clogged, and second, the large quantity 
of large lithogenic particles interrupts the passage of ingested particles, the accumulation of food in the stomach 
and hence nutrient absorption. The krill become weak and are easily transported by the waves onto the beach or 
die in the water.

Earlier studies have documented the presence of particle-laden “brown water” in Potter Cove5. During the 
storms that occur throughout the active glacial melting periods, the concentration of particulate matter can be 
> 100 mg L−1 10. Over the last six decades, 87% of 244 studied glacier fronts have retreated along the WAP30, 
increasing the discharge of glacial meltwater and particles into the coastal marine ecosystem2. Approximately 
90% of King George Island’s surface is covered by glaciers that are undergoing the same process, increasing the 
runoff of meltwater into the bays and fjords of the island31,3,4. The size and angular shape of the particles recov-
ered from stranded krill guts in this study (Fig. 5d) indicate a relatively short transport time of the particles and 
therefore a local origin, most likely directly from the Fourcade Glacier and its associated meltwater streams. These 
glacially derived particles exceed the average grain size of particles deposited on the seafloor in Potter Cove6, sug-
gesting special discharge events. However, the quantity of material discharged by meltwater forms conspicuous 
sediment plumes that become part of the coastal waters and can be traced for many tens of kilometres32. High 
diffuse attenuation coefficients (Kd) in coastal polar areas have been correlated with the presence of suspended 
inorganic particles33. The extension of these highly turbid waters can be clearly seen in summer along the north-
ern WAP, particularly near the coasts such as those around King George Island (Fig. 6). These plumes show the 
potential extent of the area over which krill survival could be threatened. Indeed, the area around Antarctica that 
is estimated to be affected by changes in the extension of tidewater glaciers alone and their impacts on the biota 
is 2.97 ×  106 km2 9.

An increase in meltwater runoff will additionally reduce surface water salinity and could trigger osmotic 
stress, as observed for phytoplankton34 and amphipods in coastal Arctic waters35. However, krill are osmocon-
formers, and salinities in the range of 25 to 45 psu have little effect on their metabolism36. Surface water warming 
could be an additional source of stress for krill. However, early experiments with temperatures varying from − 1 
to 10 °C have shown that krill are able to tolerate some exposure to high temperatures by lowering their met-
abolic rate37. The mortality observed in this study should therefore not be related to these stressors but to the 
amount and the size of glacially derived lithogenic particles. A similar impact was observed on copepods and 
amphipods in Arctic fjords38. Furthermore, krill strandings were correlated with strong N or NW winds in com-
bination with maximum tidal amplitudes. These conditions would lead krill to ingest large quantities and large 

Figure 6. Diffuse attenuation coefficient, Kd, which is strongly correlated with inorganic suspended matter 
in the water column36, as obtained from NASA Goddard Space Flight Center, Ocean Ecology Laboratory, 
Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Ocean 
Color Data; 2014 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: 10.5067/AQUA/MODIS_
OC.2014.0. (Accessed on 12/10/2015). MODIS satellite images of the northern WAP and King George Island. 
Land is shown in black and clouds in white, and Kd is grey scaled. (a) January 16, 2013, showing relatively high 
values of Kd along the coasts of King George Island and lower values along the WAP coast. (b) January 16, 2014, 
showing a detail of the King George Island area, with relatively high values of Kd. In this image, the WAP is 
covered by clouds and therefore not visible to the satellite and has therefore been omitted. Different dates are 
presented to highlight the persistence of the phenomenon. Note the difference in Kd scales between images.
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sizes of lithogenic particles, debilitating the krill. The particle shape further suggests that the lithogenic material 
is recently derived from the Fourcade Glacier and its associated meltwater streams.

The poor record of krill strandings and the relatively low number of stranded animals would indicate that 
these are rare events. However, the probability of detecting a stranding event depends on specific physical con-
ditions that push the dead organisms onto the beaches. The number of strandings we observed probably reflects 
only a small fraction of all the sediment-related krill mortality events, as most coastal areas in Antarctica are not 
monitored. Most of these dead krill will eventually settle on the sea floor to become part of the benthic food web, 
thereby remaining undocumented. The importance of dead krill as a source of organic matter for benthic organ-
isms has been previously documented39. In addition, the delay between a stranding and its observation is also 
crucial for the quantification of dead animals. Not only will tides and waves wash the dead organisms out back to 
the sea, but also animals such as birds will also profit from this easily available food source.

Environmental conditions around Antarctica are changing; in particular, positive air temperature, related to 
glacial melting, has increased and westerly winds, which are related to the krill stranding events in Potter Cove, 
have become more frequent in recent decades40. The Western Antarctic Peninsula (WAP) is one of the most 
rapidly warming areas on Earth41, and krill is the most abundant species in the coastal areas of this region23; 
predators such as fish, seabirds, penguins, seals and whales rely on this single resource. The presence of numer-
ous krill-feeding whales in fjords, such as Potter Cove and others along the WAP, as well as the presence of the 
dominant benthic fish species Notothenia coriiceps, which feeds primarily on krill20, underscore the importance of 
krill for these regions. Of the total krill stock in the Southern Ocean, the majority live over deep oceanic water42, 
suggesting that the increasing discharge of glacial meltwater and particles into the coastal zones of the WAP 
might not affect the entire krill stock. However, summer (when glacier melting and sediment input are highest) 
is a critical time of the year for krill, particularly in terms of the energetic demand to fuel growth and reproduc-
tion43. In summer, cross-shelf gradients result in a higher abundance of krill inshore and over the continental 
shelf44,45. For example, some inshore regions, such as the Bransfield Strait, experience pulses of increased faecal 
flux associated with high populations of krill46. Thus, due to the central role of krill in these regions, an increasing 
loss of krill would have a large impact on the functional biodiversity of coastal systems. If krill in coastal areas are 
increasingly affected by sediments and mortality removes a proportion of them from the water column, birds and 
mammals relying on krill will have higher energetic costs associated with fulfilling their nutritional demands; this 
effect has been observed for species such as the Adélie penguin47, the abundance of which has changed in the area 
around Potter Cove. In addition, the strong decrease in krill biomass since the mid-1970s has been attributed to 
the decrease in winter sea ice cover33. Other investigations have demonstrated that krill appear to be sensitive to 
increasing seawater temperature48 and ocean acidification49. However, the krill’s performance window with regard 
to stressors related to anthropogenic warming is far from clear. The increasing threat to krill due to increasing 
glacier melt might be not be significant in the context of the current total stock, but in the long term, it is one 
additional threat among a number of stressors caused by climate change, which will increase and, in combination 
with other factors, will most likely impact the stock in the future.

Materials and Methods
Krill mortality events. Mortality events of krill were observed on several occasions on the southern shore 
of Potter Cove (Table 1). The first event was detected in 2003, and from 2003 to 2012, monitoring of the coast-
line in the vicinity of Carlini Station was performed when the cove was free of ice. It should be noted that more 
events may have gone undetected during the years of the study. Quantification of the number of dead animals 
was not always possible; therefore, a presence-absence matrix was constructed using qualitative categories for 
abundance as follows: 0 (absence of krill), 1 (abundances from 10 to 102 krill m−2) and 2 (> 102 krill m−2). For the 
strandings, all organisms along a 10 m ×  1 m transect (2003) and within a 1 m ×  1 m square (2007) were counted 
and classified as adults, juveniles or larvae. In some of the events, other planktonic organisms were identified but 
not quantified; those data are not presented here. An absence of krill was recorded for dates during the period 
in which stranding events were studied when the water column was sampled and no stranded krill were found.

Environmental data. Fifteen krill stranding events were recorded. Environmental information for sev-
enteen samplings during the study period in which no stranding event occurred is included in the analyses. 
Meteorological data were supplied by the Servicio Meteorológico Nacional (SMN) of the Argentinean Air Force 
at Carlini Station, and tidal heights were provided by the Servicio de Hidrografía Naval (SHN) of Argentina. The 
mean and maximum wind speed for the 24 h preceding the sampling date and the predominant direction of the 
strongest wind were determined. The average air temperature was calculated for the week preceding the sampling 
events. In addition, the positive degree-days (PDDs) was estimated by adding the positive daily average tempera-
tures for the previous month to the sampling event.

The mean values of the oceanographic parameters were used for the integrated water column. Because 
meteorological and wind conditions during the stranding events usually prevented oceanographic sampling, 
the closest date for which information was available was used. When the closest date was more than 10 days 
before the stranding event, no data were considered available. The oceanographic data are part of a long-term 
monitoring program that started in 1991, in which the water column in Potter Cove is sampled weekly in the 
summer and biweekly in the winter, whenever the meteorological conditions allow sampling. A SeaBird SBE 
Conductivity-Temperature-Depth profiler (CTD; SeaBird Electronics) was used to record seawater tempera-
ture and conductivity (transformed to salinity). However, water temperature and salinity were not included in 
the analyses because insufficient data were available for the studied dates. Water samples were collected at five 
depths (i.e., 0, 5, 10, 20, and 30 m) with 4.7 L Niskin bottles. For Chl-a analysis, seawater (0.25–2 L) was fil-
tered through 25 mm Whatman GF/F filters under gentle vacuum and dim light. Photosynthetic pigments were 
extracted in 90% acetone for 24 h at 4 °C in the dark. Extract absorbance was read using a Shimadzu RF-1501 
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spectrophotometer, and concentrations were calculated and corrected for phaeopigment content following the 
method of Strickland and Parsons50. The total suspended particulate material (TSPM) concentration was meas-
ured gravimetrically after filtering 0.25–2 L of seawater through combusted pre-weighed 25 mm Whatman GF/F 
filters. After filtration, the filters were rinsed twice with distilled water to remove salts and then dried for 24 h at 
60 °C and weighed again. All environmental data are available at http://doi.pangaea.de/10.1594/PANGAEA. The 
relation between the proposed explanatory variables and the number of stranding events was analysed by means 
of Generalized Linear Models (GLMs) using a Poisson error distribution family and a log-link to ensure only pos-
itive model predictions. To find the optimal model, we followed a backward selection criterion, where the process 
ended when all the variables retained during the selection were significant. The analysis of the relation between 
TSPM and the other environmental variables followed the same approach, using a Gaussian error distribution 
family (generalized linear model). To visualize the effects of environmental variables over the modelled probabil-
ity of mass strandings (from the GLMs), the visreg function (visreg package) was used51. Partial effects reflect the 
effect of a particular environmental factor on the response variable (mass stranding category) holding all other 
variables constant (in this case, the median value of the numerical variables and the most common category were 
used as factors).

MODIS-Aqua spatially extracted Level-2 files were acquired for the study area from the NASA ocean color 
web page (http://oceancolor.gsfc.nasa.gov). Two images (January 16, 2013 and January, 16 2014) were chosen 
because of their relatively low cloud cover over the area of interest.

The standard Kd, the diffuse attenuation coefficient, product derived from Kd2 algorithm52 was obtained. This 
Kd product was updated using in situ data from NOMAD version 2. The algorithm form describes the polynomial 
best fit relating the log-transformed geophysical variable to a log-transformed ratio of remote-sensing reflectance 
(Rrs) as Rrs(490 nm)/Rrs(555 nm). Kd was mapped to a WGS 84 reference system (datum WGS84, ellipsoid WGS84 at 
1100 m of spatial resolution at nadir and co-registered with respect to a reference landmask), and used as a proxy 
for the presence of inorganic particles in the water column33. Land and cloudy pixels were flagged to zero.

Feeding and absorption efficiency experiments. Juveniles and adults of E. superba were collected from 
the outer part of Potter Cove using a 200 μ m mesh Nansen net with a 2 L cod end, towed vertically (100 m below 
the surface) and obliquely with a winch installed on a Zodiac rubber raft. The cod end was immediately trans-
ferred to a 50 L plastic bucket filled with filtered seawater and then immediately transferred to a cold room (0 °C) 
where the animals were placed in a 100 L container.

A Sartorius MC1 balance (precision =  10−4 g) was used to determine wet weight. To estimate dry weight, 
animals were placed on aluminium foil and dried at 60 °C for 3 days and then weighed again. The organic con-
tent was determined by ashing the tissues at 500 °C for 4.5 h and calculating the difference between wet and dry 
weights. Faecal pellets were processed in the same manner as krill.

Feeding experiments. A natural phytoplankton culture was used as food for the experimental incubations. 
Phytoplankton were collected using 5 L Niskin bottles. The content of the bottles was transferred to 30 L aquaria 
(located in the cold room at 0 °C) previously filled with filtered sea water. A series of 5 phytoplankton cultures 
were established, and the Chl-a concentration was measured every second day to track phytoplankton growth. 
A series of three experiments were performed to estimate feeding rates. The first experiment was performed on 
increasing phytoplankton concentrations from the cultures describe above. The phytoplankton were diluted in 
filtered seawater to attain the various experimental concentrations, without any added sediment. This dilution 
process allowed determination of the daily ration (see below) for each phytoplankton concentration. The second 
experiment used a fixed phytoplankton concentration (based on the most typical field Chl-a concentrations for 
the area2), to which different concentrations of particulate matter (0.1, 10, 40, 80 and 100 mg TSPM L−1) were 
added, reflecting the range of in situ concentrations recorded in Potter Cove1,10. The added particles were obtained 
from natural sediments taken from the seafloor of the inner cove with a Van Veen grab sampler at a 20 m depth, 
near a creek mouth. Sediments were dried at 70 °C and sieved through a 50 μ m mesh sediment sieve. This size 
fraction was chosen because it could be easily resuspended in seawater. The organic fraction of the sediments 
was determined by ashing the filtered material for 4 h at 400 °C and then re-weighing the sample. The aver-
age proportion of organic matter was 2.36 ±  0.07%. Experiments were run on adult (45.22 ±  0.44 mm length, 
515.46 ±  159.52 mg DW, 257.73 ±  79.76 C content) and juvenile (26.57 ±  0.71 mm length, 36.81 ±  2.22 DW,  
18.40 ±  1.11 C content) krill. The total length of krill (mm) was measured from the front of the eye to the tip of 
the telson. Four juveniles were placed in each of 3 replicate 2.4 L bottles. The bottles were installed in a plankton 
wheel to maintain the food and sediments in suspension and ensure an equal concentration in all the bottles. For 
adult krill, 10 organisms were placed in 60 L containers equipped with a gentle mixing system to ensure that the 
food and the sediments always remained suspended. The experiment was run for 24 h. Once completed, animals 
were lyophilized for 24 h, and individuals were weighed and ground to powder in liquid nitrogen. For analysis of 
C, 0.2–0.5 mg aliquots of each krill homogenate were analysed15,50.

A similar experiment was run with juveniles, comparing two different natural waters from Potter Cove, desig-
nated as brown and clear waters. Brown water contained 17 mg L−1 TSPM and 0.9 μ g Chl-a L−1, while clear water 
contained 10 mg L−1 TSPM and 1.3 μ g Chl-a L−1. Four juveniles were placed in each of 3 replicate 2.4 L bottles. 
The experiment was run for 24 h.

All experimental conditions were maintained at a temperature of 0 ±  0.48 ° C and salinity 34 ±  0.3.
Chl-a was analysed on 3 replicate 250 mL samples from each container at the beginning and after 24 h incu-

bation29,53. Feeding was estimated as clearance rate (CR, ml mg−1 body C h−1). No significant changes in Chl-a 
concentration were detected in the controls (no krill), so that CR was calculated as54:

http://doi.pangaea.de/10.1594/PANGAEA
http://oceancolor.gsfc.nasa.gov
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= .CR ln Cc Ck V mk t( / ) / ,

where Cc and Ck are the initial and final Chl-a concentrations, respectively, V is the volume of the container (ml), 
mk is the body mass (mg C) of the krill, and t is the duration of the experiment (h). Ingestion rates (IR) were cal-
culated as the product of CR and the initial carbon concentration (mg ml−1) as IR =  CR.Ci and then expressed as 
the daily carbon ration (% body C d−1) under the assumption that krill feeding rates reflect the daily average rate.

The depletion of autotrophic biomass ranged between 1 and 20% in all experiments.
Single factor, one way ANOVA was used to evaluate the effects of TSPM on the daily carbon ration for both, 

adult and juvenile individuals of E. superba. When significant (p <  0.050) differences were detected post-hoc 
Tukey HSD tests were run. The daily carbon ration was log (+ 0.5) transformed to pass homogeneity and normal-
ity assumptions55. Analyses were run under the free statistical software R, version 2.15.156.

Absorption efficiency experiments. The effect of the concentration of particles on the absorption of 
organic matter and the production of faeces was investigated using natural seston as a food and two different con-
centrations of fine sediments. The organic fraction in the added sediments was 1.87 ±  0.1%. Three experimental 
conditions were used: 1) no added sediment (TSPM =  2.39 ±  0.5 mg L−1), 2) natural seston +  20 mg L−1 sediment 
(TSPM =  22.3 ±  1.6 mg L−1), 3) natural seston +  40 mg L−1 sediment (TSPM =  42.8 ±  2.3 mg L−1). Prior to the 
experiments, animals were starved during 48 h in GF/F filtered seawater to empty their stomachs. Six cylindrical 
8 L aquaria with individual recirculation pumps were settled in a running 90 L sea water flow bath to keep water 
at in situ temperatures (0 ±  1 °C). A 200 μ m mesh was fitted 10 cm above the bottom of each aquarium to allow 
water to flow and avoid the disruption of the faecal pellets in the circulating system. One control (no krill) and five 
replicates with 12 animals each (size range: 35–46 mm total length) were used for each experiment. Incubations 
lasted for 24 h, and no dead animals were registered in any of the experiments. There was no significant difference 
between initial and final TSPM concentrations in the control aquaria among different experimental trials, and 
therefore a correction for sedimentation of particles was not needed.

The absorption efficiency was estimated using the Conover ratio57, which assumes that only the organic com-
ponent of the food is significantly affected by the digestive process. Thus, the absorption efficiency was obtained 
as the difference of the ratio of mass loss after food combustion, and the corresponding percentage of mass loss 
after combustion of faeces: Absorption efficiency = − −F E E F( )/[(1 ) ], where F is the organic fraction in the 
food and E is the organic fraction in the faeces. The absorption efficiency was then reported as percentage. The 
time elapsed between food delivery and faeces production was recorded. The biodeposition rate was calculated as 
the dry weight of faeces produced per individual per day. The weight-specific biodeposition rate was referred to 
animal body mass per day. The faeces were collected every 30 minutes during the first 6 h of incubation and then 
every hour; the faeces were pooled for absorption efficiency calculations.

Differences among treatments were analysed using one-way ANOVA, since all data met the assumptions of 
ANOVA analysis. Normality of residuals was tested by mean of Shapiro-Wilks test58, while homoscedasticity was 
confirmed by Levene’s test59. When significant differences were encountered, the Tukey–Kramer method60 was 
used as a post-hoc test to identify significant differences among the means. Statistical analyses were run with the 
softwares InfoStat v.61 and PAST v. 3.0462.

Krill stomach content analyses. Freshly dead or dying krill (referred in the text as ‘dead krill’) were col-
lected along the coastline and from shallow coastal waters during the mortality events of 2008 and 2009. Samples 
were blotted dry and stored at − 80 °C for stomach content analyses at the Alfred Wegener Institute, Helmholtz 
Centre for Polar and Marine Research (Bremerhaven, Germany). During those years, zooplankton and water 
samples were collected from a rubber boat at the inner part of the cove. Healthy krill (referred in the text as ‘living 
krill’) was caught only once during this period. The stomach content was compared with that from dead krill. Ten 
adult krill individuals sampled during each of the stranding events and of the catchment were studied (n =  40). 
Wet body weight was registered before dissection. Then, the exoskeleton was removed and the stomach was taken 
out and weighed. Stomach contents were analysed29 and an Utermöhl chamber was used to count and identify the 
particles. Abundant size classes (> 100 particles) were counted in two perpendicular transects across the chamber, 
while for the less abundant size classes the whole chamber was counted at 250× . The dimensions of the different 
items in the stomachs were measured and their biovolume calculated63,64. The lithogenic particles found in the 
stomach contents were enumerated and grouped into size intervals according to their length as follows: < 3.8, 
3.8–7.5, 7.6–18.8, 18.9–37.5, 37.6–56.3, 56.4–75.0 and > 75.0 μ m. The length of each particle was measured and 
its volume estimated assuming a rectangular parallelepiped form with width and height half their length.

The wet weights and the composition of the stomach content did not follow a normal distribution, and there-
fore medians and percentages were calculated to compare the data among the three events in which stomach 
content was studied by means of Kruskal-Wallis test. When no differences among strandings were found, data 
were grouped and compared with the results from living krill by means of Mann-Whitney’s test.

For the scanning electron microscope (SEM) analyses, the stomach and the hindgut were removed from the 
frozen krill, and their contents released separately in Eppendorf tubes. The samples were prepared65, with certain 
modifications. Briefly, each of the stomach contents was washed 5 times with deionized water to remove salt. 
Then, the sample was cooked in NaOH 1N at 60 °C during 2 h to remove the rest of stomach and gut tissues, and 
washed again 5 times with deionized water. The sample was then filtered on 0.1 μ m cellulose nitrate membrane 
filter and air-dried. Filters were mounted on SEM stubs and sputtered with gold-palladium (ca. 20 nm thickness). 
Images were taken with a FEI Quanta 200 FEG microscope.
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