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Abstract: Submerged marine forests of macroalgae known as kelp are one of the key structures for
coastal ecosystems worldwide. These communities are responding to climate driven habitat changes
and are therefore appropriate indicators of ecosystem status and health. Hyperspectral remote
sensing provides a tool for a spatial kelp habitat mapping. The difficulty in optical kelp mapping
is the retrieval of a significant kelp signal through the water column. Detecting submerged kelp
habitats is challenging, in particular in turbid coastal waters. We developed a fully automated simple
feature detection processor to detect the presence of kelp in submerged habitats. We compared
the performance of this new approach to a common maximum likelihood classification using
hyperspectral AisaEAGLE data from the subtidal zones of Helgoland, Germany. The classification
results of 13 flight stripes were validated with transect diving mappings. The feature detection
showed a higher accuracy till a depth of 6 m (overall accuracy = 80.18%) than the accuracy of a
maximum likelihood classification (overall accuracy = 57.66%). The feature detection processor
turned out as a time-effective approach to assess and monitor submerged kelp at the limit of water
visibility depth.

Keywords: macroalgae; hyperspectral; coastal; airborne; kelp; imaging spectroscopy;
AISA; Helgoland

1. Introduction

Kelp ecosystems dominate approximately 25% of the world’s rocky shores [1]. Kelps belong
to the brown algae of the order Laminariales and form submerged forests of macroalgae. They are
one of the key structures in worldwide coastal ecosystems and of great importance for ecosystem
functions, aquaculture and food industries [2,3]. Kelp is relevant in determining patterns of abundance
and food supply for fish and invertebrates [4]. Its occurrence is strongly related to the resources
required by different life history stages of fish populations, providing foraging habitat and spatial
refuge from predators [5]. Kelp also has a growing economic value and is harvested for human food
consumption as well as being used in the alginate, mannitol and iodine industry [6,7]. The high
biological productivity, fast growth and high polysaccharide content make macroalgae and, therefore,
also kelp forests attractive for biofuel production [8]. Thus, these harvested patterns and human uses
can affect coastal ecosystems and economies.

Kelp is a sessile life form and constitutes persistent mats or three-dimensional forests in the
coastal eutrophic subtidal zones. The forests flourish from the low tide level up to a depth of 20–30 m,
depending on the turbidity of coastal zones [9]. The species vary considerably in form and size. In the
N-Atlantic kelp species often grow to about 2–3 m in length [10] and forests have to be tolerant to the
physical conditions of their environment, i.e., diurnal or seasonal variations in temperature, salinity,

Remote Sens. 2016, 8, 487; doi:10.3390/rs8060487 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 487 2 of 20

water movement, nutrient and carbon delivery, light availability and levels of UV radiation [11].
Kelps are rather stenothermal and adapted to a narrow range of environmental conditions [12]. Thus,
changes in the occurrence of kelp indicate changing environmental and habitat conditions caused e.g.,
by increasing water temperatures or sea level rise [13].

Kelp ecosystems are responding to climate driven habitat changes all over the world (e.g.,
Japan: [14], Tasmania: [15], Norway: [16,17], Spain: [18]). In many temperate regions, kelp forests are
retreating due to ocean warming and human pressure [19,20]. Several modelling studies forecast a
poleward shift of benthic marine species [21–23]. Recent field evidence also suggests that Arctic kelp
ecosystems are currently undergoing change. At one site in Spitsbergen the depth distribution of
kelps was found to be becoming shallower and biomass has increased considerably [16]. Possible
driving forces are strongly connected to climate change, e.g., the change of the underwater irradiance
climate, a lack of ice-scouring in winter, the elongation of the open-water period and increased
sedimentation [16]. These climate driven changes and the concomitant threats to the marine flora and
fauna are considered by the European Marine Strategy Framework Directive. Programs of measures
for the protection and management of the marine environment should be implemented considering
scientific and technological developments [24].

Rocky shore communities are highly suitable for long-term ecological studies and appropriate
indicators of ecosystem health [25]. Most studies, however, have been conducted in intertidal habitats
that are easily accessible but strongly influenced by tides and waves [26]. Few studies monitor
subtidal habitats with canopy-forming macroalgae such as kelp, mainly because they are difficult to
sample [27]. Remote sensing methods gather areal information about these habitats with less cost
intensive field data sampling. In recent years, techniques have been developed for benthic mapping
in clear waters [28–32]. Some studies also achieved promising results for mapping marine bottom
types in turbid waters, e.g., [33,34]. A poor penetration of light into the water column however was
the major limitation factor.

The difficulty in analysing submerged plants is that their spectral reflectance is usually very
low because water strongly absorbs electromagnetic radiation in the optical spectral region [35,36].
Experimental studies have shown that the contribution of submerged aquatic vegetation (SAV) to
the measured remote sensing signal decreases with increasing depth of the water column over the
vegetation, resulting in a diminished spectral signal of the target species [37], whereas absolute
reflectances of emergent macroalgae, like kelp and other brown algae, significantly increase with
desiccation [38]. Further variability is introduced by changing water levels during tides and due to
currents resulting in a mixing of plant and water signal [39]. Optically active water components, such
as suspended solids or chlorophyll, may share spectral features with SAV [40]. The spectral signature
of aquatic vegetation therefore shows overlapping signatures from water resulting in a wide range of
reflectance values impeding classification [41].

Satellite-borne systems are particularly suitable for long-term monitoring due to their high
temporal resolution. Several studies use multispectral satellite systems to achieve information about
SAV (e.g., [42–44]), but remote sensing of benthic ecosystems can only make use of spectral bands in the
wavelengths at approximately 400–740 nm which penetrate into the water [45]. The narrow bandwidths
of forthcoming hyperspectral missions like EnMAP [46] or PRISMA [47] provide a better spectral
resolution in the visible wavelength range. This enables the detection of local features for kelp and
macroalgae detection in general [48]. Unfortunately, these systems are still unavailable and suitable
approaches currently can only be developed using airborne hyperspectral systems. The airborne
systems have already been shown to be suitable for mapping seagrass species, cover and biomass in
clear shallow waters [49] and to differentiate between macroalgae and floating seagrass mats [50]. The
development of new methods should therefore ensure transferability to satellite-borne systems.

In the present study, we developed a fully automated simple processor to detect the presence of
kelp from airborne hyperspectral AisaEAGLE data. The algorithm is designed to work without the
need of field data or intense training. The approach consists of three steps: (1) an anomaly filter to
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remove effects on the water surface; (2) a derivative-based algorithm for kelp-feature extraction and
(3) an identification of kelp dominated pixels using specific spectral features of kelps. The aim of this
algorithm is to reduce the depth limitations imposed by reflectance-based classification methods.
Therefore, we compare the results with a common maximum likelihood classification without
anomaly filtering.

2. Materials and Methods

2.1. Study Site

The archipelago of Helgoland (54˝111N, 7˝531E) is located 50 km off the German coastline in
the central German Bight (North Sea) (Figure 1a). It is the only terrestrial site in this region with an
offshore character [51]. Helgoland is divided into two small islands: the main rocky red sandstone
island Helgoland with an areal coverage of 1.1 km2 and the smaller sandy dune island with 0.6 km2.
The subtidal zone around the two islands is the only hard-bottom locality in the south-eastern part of
the North Sea [52]. The region is characterized by an offshore climate with perennial rainfall (average
annual precipitation = 752 mm) and low annual air temperature fluctuations (daily mean = 9.8 ˝C) [53].
According to Franke et al., (2004) observed changes in the composition of subtidal macroalgae
communities may indicate a climate shift from North Sea climate towards more oceanic conditions
(higher mean winter water temperature, higher and more constant salinities) [54].
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The study site is the subtidal of the archipelago demarcated by the 20-metre isobaths derived 
from a bathymetric map from the Federal Maritime and Hydrographic Agency of Germany  
(Figure 1). This map is the basis to estimate the depth of the detected kelp patches in this study. The 
map has five depth classes between 0 and 20 m: >0 m; 0–2 m; 2–5 m; 5–10 m and 10–20 m. We also 
interpolated these classes to achieve a second infinitely variable depth map (Figure 1b). The bottom 
substrates along Helgoland’s shore are red sandstone, chalk and flint stone. The rocky seafloor forms 
an eroded terrace north and west of the main island. Significant beach nourishments in the early 
twentieth century moulded the natural rock base south and east of the main island. Nevertheless, the 
characteristic morphology of the rocky substratum still offers numerous small habitats as an ideal 
environment for highly diverse macroalgae communities [55]. Extensive kelp forests of the brown 
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com); (b) A bathymetric map based on sea chart level zero (lowest astronomical tide) of the subtidal
zone of the archipelago (data source: courtesy of Federal Maritime and Hydrographic Agency of
Germany 2010).

The study site is the subtidal of the archipelago demarcated by the 20-metre isobaths derived
from a bathymetric map from the Federal Maritime and Hydrographic Agency of Germany (Figure 1).
This map is the basis to estimate the depth of the detected kelp patches in this study. The map
has five depth classes between 0 and 20 m: >0 m; 0–2 m; 2–5 m; 5–10 m and 10–20 m. We also
interpolated these classes to achieve a second infinitely variable depth map (Figure 1b). The bottom
substrates along Helgoland’s shore are red sandstone, chalk and flint stone. The rocky seafloor forms
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an eroded terrace north and west of the main island. Significant beach nourishments in the early
twentieth century moulded the natural rock base south and east of the main island. Nevertheless, the
characteristic morphology of the rocky substratum still offers numerous small habitats as an ideal
environment for highly diverse macroalgae communities [55]. Extensive kelp forests of the brown algae
species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Desmarestia aculeata dominate
the subtidal zone. They are accompanied by an understorey of red algae, e.g., Delesseria sanguinea,
Plocamium cartilagineum or Polysiphonia sp. The solid substrates in the subtidal are nearly always
covered by algae [56]. Brown algae of the species Fucus serratus form dense canopies on the intertidal
sandstone ridges, but their occurrence ends at the infralittoral zone [57]. The high turbidity of the
waters around Helgoland limits the lower growth limit of Laminariales at about 8–10 m, whereas
red-algae still occur in depths up to 20 m [9,56].

2.2. Field Survey

Mapping via diving transects is a well-established method to investigate subtidal zones [56,58].
For this study, we used georeferenced transect diving mappings conducted during two intensive field
campaigns in summer 2010 and 2011 (Figure 2) which serve as reference for our remote sensing study.
As the subtidal kelp forest is mostly built up by the perennial kelp Laminaria hyperborea [56,58], there is
considerable stability over time in the presence of the forest [56,59]. Thus, the diving information of
both years was used here as validation reference for the remote sensing study.

Data were collected at regular intervals along a horizontal line at the sea floor and species
presence/absence and abundances were recorded. The divers recorded the algal cover approximately
every six meters. The distance was measured with the help of a 2 m stick. The precision of this
underwater distance measurement is not comparable with land measurements and is influenced by
drift and water movement. Therefore, the distance of the recorded points generally varied between 5 m
and 10 m but was sometimes even bigger explaining the partially observable gaps in the diving ground
truth information (Figure 2). Geo-referencing was achieved in the following way: the divers carried
a buoy with an attached Magellan GPS 320 receiver to achieve point location information for their
measurements. At regular distances, the line holding the buoy was pulled straight above the head of
the diver and later the subtidal position was correlated via the synced time stamps of the GPS and the
diving computer. Figure 2 illustrates the spatial distribution of transects in the study area.

Measurements were conducted every six metres (mapping radius three metres) and included:

1. Cover estimation of the four dominant brown macroalgae (Laminaria digitata, Laminaria hyperborea,
Saccharina latissima, Desmarestia aculeata).

2. Presence/absence of brown algae Water depth measurement using a digital depth gauge
(Seemann Sub; precision: 40 cm) and transferred to sea chart level zero [56].

A detailed description of the diving data acquisition is published by Pehlke and Bartsch (2008) [56].
Altogether, the divers mapped 21 transects during the two campaigns. The mapped data were
transferred into a Geographical Information System (GIS). The depth measures were converted to sea
chart level zero with help of the tide gauge level data Helgoland [60]. Coinciding with the mappings
we documented the status of the main kelp habitats with photographs.

The diving mappings only capture the subtidal areas of the study area. We used intertidal field
mappings in addition to the diving data for the validation of the remote sensing classifications results
in shallow waters [41,61]. The intertidal areas are mainly dominated by brown algae from the order
Fucales. These mappings in combination with digital orthophotos enable an evaluation of whether the
classification methods successfully separate kelp habitats from Fucales habitats in the shallow waters
of the study area.



Remote Sens. 2016, 8, 487 5 of 20

Remote Sens. 2016, 8, 487 4 of 20 

 

algae species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Desmarestia aculeata 
dominate the subtidal zone. They are accompanied by an understorey of red algae, e.g.,  
Delesseria sanguinea, Plocamium cartilagineum or Polysiphonia sp. The solid substrates in the subtidal 
are nearly always covered by algae [56]. Brown algae of the species Fucus serratus form dense canopies 
on the intertidal sandstone ridges, but their occurrence ends at the infralittoral zone [57]. The high 
turbidity of the waters around Helgoland limits the lower growth limit of Laminariales at about  
8–10 m, whereas red-algae still occur in depths up to 20 m [9,56]. 

2.2. Field Survey 

Mapping via diving transects is a well-established method to investigate subtidal zones [56,58]. 
For this study, we used georeferenced transect diving mappings conducted during two intensive field 
campaigns in summer 2010 and 2011 (Figure 2) which serve as reference for our remote sensing study. 
As the subtidal kelp forest is mostly built up by the perennial kelp Laminaria hyperborea [56,58], there is 
considerable stability over time in the presence of the forest [56,59]. Thus, the diving information of 
both years was used here as validation reference for the remote sensing study. 

 
Figure 2. Overview of diving transects (a–h), flight stripe cover of the study area (i) and overview of 
diving transects (j–o); the colouring indicates the percentage cover of kelp mapped by the divers. 
Figure 2. Overview of diving transects (a–h), flight stripe cover of the study area (i) and overview of
diving transects (j–o); the colouring indicates the percentage cover of kelp mapped by the divers.

2.3. Hyperspectral Data

The remote sensing data of the study site was acquired using a hyperspectral AisaEAGLE
system. The progressive scan CCD detector system consists of a high efficiency transmissive imaging
spectrograph, a diffuse down welling irradiance collector (FODIS), an Oxford RT3100 global positioning
system (GPS), inertial measurement unit (IMU) (position accuracy ě 1.8 m) and a computer for data
storage and system control [62,63]. The radiometric resolution of the spectrograph is 12 bit for
up to 488 spectral bands within a spectral range of 400–900 nm and with a spectral sampling rate
of 3.3 nm. To gain a better signal to noise ratio the sensor was set to a spectral binning of four resulting
in 120 spectral bands with a sampling rate of 4.6 nm. Furthermore, a spatial binning of two produced
512 pixels across track. Altogether, thirteen flight stripes were recorded on 9 May 2008 (Figure A1)
with a motor glider Condor Stemme S10 owned by Orbital High-technology Bremen (OHB System
AG). Data acquisition took place between 10:00 and 11:45 h UTC at low tide under sunny and calm
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conditions at an altitude of 693 m (2300 ft) above sea level and a velocity of 31 m/s (112 km/h) (Table 1).
The resulting pixel spacing is 0.92 m along track and 0.68 m across track.

Table 1. Flight stripe (FS) acquisition time of day (UTC).

FS 1 2 3 4 5 6 7 8 9 10 11 12 13

Start time 10:08 10:20 10:27 10:34 10:41 10:48 10:53 10:59 11:05 11:19 11:27 11:36 11:42

The AISA data were radiometrically pre-processed and calibrated using the software
CaliGeoPro [62]. Geometric correction was conducted using the GPS/IMU data acquired during
the flight and boresight calibration measurements. The pixels were afterwards resampled to 1 ˆ 1 m
pixel spacing using the nearest neighbour approach. The radiometric pre-processing included a dark
current correction and a sensor calibration using data provided by SPECIM. At-Sensor reflectances
were obtained using the FODIS measurements. The next step of data processing was an atmospheric
correction to surface reflectance using ATCOR-4 [64]. Tec5 HandySpec [65] (spectral range 350–950 nm,
spectral sampling interval 3 nm) field spectrometer data collected during the AISA data acquisition
were used to validate the AISA reflectance values. We further masked land and emergent surfaces
using a reflectance threshold at 957 nm and further flagged pixels with a reflectance higher than 3%
and 10%, respectively. The WAF algorithm is written with the programming language IDL for the
software EnMAP-Box [66].

2.4. Kelp Detection

We developed and applied a fully automatic processor to detect the presence or absence of kelp
in remote sensing images of subtidal rocky coastal shores. The program is divided into two steps: at
first a Water Anomaly Filter (WAF) is applied to prepare the data for the kelp analysis and, secondly, a
spectral kelp feature detection was used to separate kelp pixels from non-kelp pixels.

2.4.1. Water Anomaly Filter—WAF

WAF is a spatial function to remove and replace outliers (spectral anomalies) that negatively
influence the kelp detection algorithm. We define anomalies as single pixels with exceptionally
high reflectance values compared to the relatively low water spectra, i.e., pixels with a high spatial
frequency. This includes sunglint, foam or small anthropogenic objects (e.g., buoys, boats). Due to
different emergent radiant flux from the water and varying offsets from the surface and path radiances,
the signal from affected water pixels may be the same as the signal from unaffected ones. The detection
and correction of anomalies therefore cannot be performed with constant (global) parameterisation
and single pixel calculations without considering neighbouring regions. Using an anomaly filter we
analysed the surrounding of each pixel (x) to detect whether it is an anomaly or not. WAF is based
on a moving window approach and works in four steps: (1) A spatially adaptive filter with a kernel
size of (i = 5) ˆ (j = 5) is applied; (2) WAF calculates the arithmetic mean (x) (Equation (1)) and the
standard deviation (σ) (Equation (2)) of the moving window excluding the centre pixel (x3,3) as well as
pixels with zero values. The centre pixel is excluded from the mean calculation emphasizing that kelp
forest has a large spatial extent in contrast to small-scale water surface anomalies.
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(3) The outlier corrected arithmetic mean (xoc) is calculated again, including all pixels within the
range of the standard deviation (noc). The result is an outlier corrected mean value (Equation (3)).

xoc “
1

noc

¨

˝

5
ÿ

i“1

¨

˝

5
ÿ

j“1

#

xi,j, if px´ σq ď xi,j ď px` σq and pi ‰ 3 and j ‰ 3q
0, else

˛

‚

˛

‚ (3)

(4) In a final step, we check whether the central pixel value is within the standard deviation of
the outlier corrected mean value. If this condition is met, the central pixel keeps its original value;
otherwise, the value is replaced by the new arithmetic mean (Equation (4)).

x3,3 “

#

x3,3, if pxoc ´ σq ď x3,3 ď pxoc ` σq

xoc, else
(4)

The kernel passes along each row of pixels (ignoring the edge pixels) producing a new image.

2.4.2. Feature Detection—FD

The Feature Detection is a three-step classification algorithm to separate kelp-dominated pixels
from non-kelp pixels. Uhl et al., 2013 [67] already showed how to use derivative feature detection for
macroalgae analysis. First, the algorithm calculates the first order derivative for each pixel. Derivatives
of the first order provide information about the rate of change in the reflectance of neighbouring bands.
This enables the identification of local minimum and maximum values (spectral features), reduces
spectral noise and separates overlapping features in the spectral signatures of water, sediment and
kelp [38,68,69]. Spectral noise generally has a high impact on the quality of derivatives [70]. To smooth
the spectra we therefore applied the digital polynomial Savitzky–Golay filter [71]. The first derivative
R1 pλbq on wavelength λb from band number b was calculated using a seven band range (three bands
on either side of the central band) and a polynomial degree of two. In the second step, we looked for
zero transition points λ f in the first derivative spectrum. If the sign of the derivative between two
successive bands changed, we determined the wavelength location of this feature (Equation (5)). The
wavelength locations of all features of each single spectrum were stored as a feature location list.

λ f “

$

’

’

’

’

&

’

’

’

’

%

λb `
λb`1´λb

|R1pλb`1q´R1pλbq|
, i f

`

R1 pλbq ą 0 and R1 pλb`1q ă 0
˘

or
`

R1 pλbqă 0 and R1 pλb`1q ą0
˘

ND, else

(5)

In a last step, the algorithm analysed the feature list of each spectrum for specific features. If a
spectrum showed all specified features, it was identified as a kelp-dominated pixel. In a previous
study, Uhl et al., 2013 [67] used laboratory and remote sensing reflectance spectra of kelp to identify
the feature wavelengths, i.e., spectral ranges with features significant for kelp detection. They reported
suitable spectral regions in the wavelength range of 500–712 nm. However, we had to check whether
these features were still apparent with submerged kelp. For this reason, we performed a spectral
analysis to identify depth invariant kelp features (Section 3.1). Finally, the algorithm classifies a pixel
as (dominated by) kelp if it shows features in all selected wavelength ranges. The FD algorithm was
written with the programming language IDL for the software EnMAP-Box [66]. FD and WAF codes
are available as supplementary data for this paper.

2.5. Maximum Likelihood Classifier—MLC

Maximum likelihood classification (MLC) is a well-established supervised classification method
and has often been applied for the mapping of brown algae e.g., [72,73]. MLC quantitatively evaluates
the variance and covariance of the spectral pattern in each class to classify an unknown pixel. Assuming
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a normal distribution, mean vector and covariance matrix describe the spectral patterns of each class.
Using the probability density function, the probability of a pixel can be calculated for each class. Each
pixel will be assigned to the most likely class or be labelled unclassified if the probability value is
below a user-defined threshold [74].

In this study, we used the software ENVI 4.8 (Exelis Visual Information Solutions, Boulder,
CO, USA) to run the MLC. We analysed photographs and digital orthophotos to set the training
plots for the two classes (kelp and non-kelp). To ensure comparability with the FD algorithm, the
MLC was not performed with depth-dependent zonal classes as proposed by other studies [75,76].
Furthermore, such an approach would imply more extensive field data collection. Each training
class had at least 3000 pixels for the training of the classifier. The spectral range of the input data
was reduced to the visible region (402 nm–696 nm) obtaining 65 spectral bands and the probability
threshold was set to 0.05.

2.6. Validation of Classification Results

The spatial resolution of the AisaEAGLE data is higher than the transect mappings with an
approximate radius of three metres around each mapping point (Figure 3); on average, 38 pixels cover
the same area as a single diving mapping point. After FD and MLC classification, we adjusted the
remote sensing data to the spatial resolution of the diving mapping and examined the accuracy of the
classification results with two methods. For the first statistical analysis, we calculate the percentage
cover from the AISA classifications by counting all kelp pixels and dividing them by the total number
of pixels within the range of a mapping point. We then compare this measure to the mapped kelp
cover for the respective transect mapping point (Figure 3a). This method is used to validate the
results from each single flight stripe and to exclude unsuitable flight stripes from further analysis. For
each flight stripe we calculate three accuracy measures, i.e., root-mean-square error (RMSE), Pearson
product-moment correlation coefficient (R2) and Nash–Sutcliffe model efficiency coefficient (NSE) [77].
We use the setup of three different measures to confirm the accuracies with different accuracies: the
RMSE is the average percentage deviation between the diving mapping and the kelp detection results;
R2 is a measure for a linear correlation between both datasets and NSE assesses the overall match of
mapped and remotely sensed data. NSE = 0 indicates an accuracy as good as the mean of the mapped
data, values close to +1 refer to an accurate detection and negative values indicate that the accuracy is
worse than the mean of the mapped data.
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The second statistical analysis evaluates the feasibility of FD and MLC to distinguish
kelp-dominated and non-kelp areas (Figure 3b). An area is marked as kelp dominated, if 50% or more
of the pixels within the reach of a validation point detect kelp. We also adjust the diving transects
mapping to this differentiation, i.e., a mapping point result indicating >50% coverage of brown algae is
flagged as presence of kelp. Prior to the second analysis, a subset of suitable flight stripes determined
by the first analysis is merged to single image. Accuracy measures are the overall accuracy, error of
omission and error of commission [78].

3. Results and Discussion

3.1. Wavelength Range for Deep Kelp Detection

The photochemical properties of kelp mainly influence the spectral reflectance in the visible part
of the electromagnetic spectrum. For SAV, the spectral properties of water influence these spectral
characteristics. The location of spectral features shifts with varying water level or features may even
disappear. The behaviour of kelp spectra under varying water column is the basis to determine the
wavelength intervals of the FD algorithm because the FD algorithm requires unique local reflectance
minima or maxima. To determine suitable wavelength intervals, we extracted kelp spectra from the
AisaEAGLE data at different depth levels. Figure 4 shows a sequence of AISA Laminaria spectra
achieved from different depth positions (Figure 4b–e) derived from the bathymetric map depth classes
in comparison to a dry kelp laboratory spectrum (Figure 4a) [38]. The characteristic absorption troughs
of the main pigments fucoxanthin, chlorophyll c and chlorophyll a are highlighted for each spectrum.
The absorption features from all pigments are visible in the laboratory spectrum (Figure 4a) as well as
in the AISA spectrum (Figure 4b). A water depth of 0–2 m results in a less distinctive chlorophyll c
absorption and the disappearance of spectral troughs at 585 nm and 630 nm (Figure 4c).
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Increasing water depth also affects other spectral features (Figure 4d). A reflectance peak
at 570 nm and troughs at 527 nm and 675 nm are the only local maxima/minima still detectable
at 2–5 m. At a depth of 5–10 m (Figure 4e), the water absorbs electromagnetic radiation >680 nm; the
chlorophyll absorption at 675 nm therefore becomes undetectable. Reflectance between 450 and 570 nm
is higher compared to the shallower algae spectra due to additional reflection of the turbid waters.
The spectral analysis reveals only two spectral features of kelp for all depth levels. The first is the
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wavelength range of 510–546 nm mainly influenced by fucoxanthin absorption, whereas this absorption
feature shifts from shorter wavelengths (low water influence, Figure 4b) to longer wavelengths (deeper
areas, Figure 4e). The second feature is a reflectance peak between 560 and 580 nm. The results clearly
show that the wavelength region >600 nm is unsuitable to detect spectral features of submerged
kelp. In the turbid waters around Helgoland, longer wavelengths are only feasible for the detection
of shallow, emergent or floating algae. To detect kelp in different water depths, it is necessary to
use the spectral range between 500 and 600 nm, where two suitable spectral features are located
at 528 nm ˘ 18 nm and at 570 nm ˘10 nm.

3.2. WAF Performance

Water anomalies have a strong influence on the results of the feature detection algorithm. Initial
tests of feature detection without prior filtering resulted in erroneous kelp detection at sites influenced
by sun glint. By removing outliers WAF significantly improves the FD results. Figure 5 shows some
examples of WAF performance. The imagery is strongly influenced by sunglint before data correction
(Figure 5a,c) while sun glint is significantly reduced by filtering (Figure 5b,d).Remote Sens. 2016, 8, 487 10 of 20 
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Figure 5. Influence of water anomaly filtering (WAF performance) on imagery quality at sites influenced
by sun glint. True colour RGB (639 nm/550 nm/459 nm) for two example areas. Area 1 before filtering
(a) and after filtering (b) and area 2 before filtering (c) and after filtering (d).

WAF performance may also be an indicator of data quality, because the amount of corrected
pixels indicates image homogeneity. Table 2 shows the percentage of WAF corrected pixels for every
flight stripe.

Table 2. Pixels changed by the WAF in percent (%) of all pixels

Flight Stripe 1 2 3 4 5 6 7 8 9 10 11 12 13

corrected pixels (%) 2.91 3.89 2.24 2.11 3.06 4.15 11.65 11.88 5.51 4.42 4.17 4.92 6.56

The data depict an increasing percentage of corrected pixels with increasing flight stripe. Moreover,
the flight stripes eight and nine show exceptionally high numbers of corrected pixels. Visual analysis
reveals an increase of sunglint from flight stripe one to flight stripe thirteen. The flight stripe numbers
correspond with the time of day during image acquisition (Table 1), whereas azimuth flight direction
remains constant for most of the stripes except 7, 8 and 13. Azimuth sun movement resulting in
changing sun-sensor geometries is therefore the main reason for increasing sunglint. The flight
parameters from stripes seven, eight and thirteen corroborate this hypothesis. The flight direction is
approximately from west to east with sun coming from south, while the other data has been recorded
in south-east to north-west flight direction. In these stripes, WAF is not able to sufficiently correct
the sunglint-artefacts, because the glint covered areas are much larger than the filter kernel size
of 5 ˆ 5 pixels. For feature detection, non-filtered data performed poorly.
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3.3. Kelp Detection Results Validated with Diving Transects

Interpreting kelp detection results visually, feature detection successfully captures the kelp forests
in the deep waters around Helgoland. The approach identifies kelp on the rocky ridges and excludes
sandy channels (Figure 6). Reflectance signal from the rocky bottom substrates did not influence the
kelp detection results. Macroalgae completely cover the solid substrates in the intertidal. The reflected
signal from these areas is therefore mainly influenced by the water column and macroalgae. Kelp does
not grow on unconsolidated substrates. Spectral mixing between the sandy ridges and kelp is not a
major problem for this study area. Only the small edges between the two habitats suffer from spectral
mixing. Therefore, both covers could clearly be separated by the kelp detection.
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Figure 6. (a) Stretched true colour image of selected flight stripes and (b) kelp detected by FD.

Analysis of the diving data and the bathymetric map shows that the maximum depth
for hyperspectral kelp detection around Helgoland is approximately six metres. Secchi depth
measurements on 9 May 2008 from the Helgoland Reede time-series reveal 4.1 m visibility depth [79].
We assumed that the Secchi depth may be the limit for optical kelp detection; however, FD exceeds
the expectations by two metres. This difference may be explained by the growth form of kelp, which
stands semi-erect in the water column, whereas the bathymetric map gives the depth to the sea floor.
Thus, the path of the light can be shorter to the canopy of the kelp than to the sea floor. The divers also
mapped kelp deeper than six metres, but these areas are not detected by the feature detection in the
study area. We therefore reduced the diving mapping data to the depth range of zero to six metres
for classification validation (Figure 7). We first verified whether the feature detection successfully
estimates percentage coverage of kelp. Table 3 shows the validation results for the FD using the
diving data.

Table 3. Validation of the FD kelp detection results with dive transect mappings per flight stripe (FS).

FS 1 2 3 4 5 6 7 8 9 10 11 12 13

RMSE 40.45 42.61 36.28 41.27 17.65 18.54 46.85 45.27 69.83 59.11 62.58 57.32 57.14
R2 0.43 0.43 0.40 0.38 0.70 0.72 0.39 0.33 0.06 0.16 0.20 0.29 0.03

NSE ´1.42 ´1.28 ´1.02 ´0.93 0.57 0.65 ´0.81 ´0.94 ´4.90 ´2.05 ´2.29 ´1.93 ´1.25
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Figure 7. Kelp detection validation results with diving transect mapping (a–h), cover of the selected
flight stripes (i) and kelp detection validation results (j).

Validation with the transect mapping shows poor results, except flight stripe five and six which
show RMSE lower than 20%, R2 greater or equal to 0.7 and NSE at approximately 0.6. Results from
the percentage kelp cover estimation showed poor results, indicating that FD might not be suitable
to measure kelp coverage. Nevertheless, the calculated low accuracies do not match the good visual
interpretation results from Figure 6 and comparison with digital orthophotos and field photography
showed good conformity with the FD results. We attribute the low accuracies to several factors.
The low position accuracy of the diving transects (˘25 m) is a substantial problem. The buoy GPS
measurement induced an inaccuracy of several metres in the diving data as measurements were
non-differentially corrected and there always was a misalignment between buoy and diver position,
which tend to float and therefore constantly change their positions and field of view towards the
measurement points. However, the AisaEAGLE data have a high spatial resolution of 1 ˆ 1 m contrary
to the spatial inaccuracy of the in situ measurements. This mismatch between imagery and ground
truth data induces a failure in the correlation between percentage cover estimation by the divers and
the hyperspectral imagery. The time-lag of two to three years between field mapping and remote
sensing data acquisition may also have induced an error. Furthermore, classification errors primarily
occur at pixels with insufficient sunglint removal. Conventional sunglint removal methods may be
suitable to reduce the sunglint and thus also the classification errors [80–82]. However, a first attempt
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to correct the sunglint with the method introduced by Kutser et al., (2009) showed unsatisfactory
results. This is mainly addressed to the differing waterbodies around Helgoland. Flight stripes seven,
eight and thirteen were therefore excluded from further analysis. Strong movements of the aircraft
during recording of flight stripe nine caused errors in the geometric correction, which results in
highly inaccurate pixel locations (validated visually with digital orthophotos and other flight stripes).
We therefore also excluded this stripe from further investigation.

The second statistical analysis evaluates the feasibility of the feature detection to distinguish
kelp-dominated and non-kelp pixels. Therefore, we merged the results of the kelp detection from all
remaining flight stripes to a single image (Figure 7i) and did not calculate accuracy measures for each
single flight stripe.

We compared the results of the FD and mapping results achieving satisfactory accuracies.
The overall accuracy of the kelp/non-kelp detection is 80.18%. 178 out of 222 pixels of the diving
mapping match the remote sensing data. Of special interest are the classification errors: the error of
omission is 18.92% indicating that FD was unable to identify approximately 20% of the kelp mapped
by the divers; with 0.90% the error of commission indicates that detected kelp pixels are nearly always
true kelp pixels. FD therefore is suitable for identifying absence or presence of kelp.

3.4. Feature Detection Results Validated with Maximum Likelihood Classifier

Spatial variations between the in situ data and the remote sensing data are one of the main reasons
for lower accuracy measures of the kelp cover and presence/absence estimation. Therefore, in situ
data alone seem to be insufficient to assess the suitability of the FD for kelp detection. We compared
the FD to results with a commonly used MLC technique. This procedure enables an exact spatial
comparability of the results. The flight stripes selected for this analysis capture the kelp forests around
the main island and the area covered by them is shown in Figure 7i. We validated the MLC results
comparable to the FD results (Section 3.3). Table 4 shows the accuracy measures of the MLC.

Table 4. Validation of MLC results with dive transect mappings per flight stripe (FS).

FS 1 2 3 4 5 6 10 11 12

RMSE 66.20 45.50 48.62 62.04 49.04 57.62 60.22 59.44 47.90
R2 0.12 0.39 0.19 0.20 0.27 0.25 0.13 0.21 0.39

NSE ´5.44 ´1.59 ´2.61 ´3.33 ´2.33 ´2.37 ´2.16 ´1.95 ´1.03

Compared to FD, MLC accuracies are significantly lower for all measures (RMSE Ø ´13.42;
R2 Ø ´0.17; NSE Ø ´1.46); except for flight stripes eleven and twelve. Nevertheless, the poor
accuracies support the findings from Section 3.3, that georeferencing of diving mappings may be
unsuitable to validate remote sensing data with high spatial resolution. For the second statistical
measure, the kelp/non-kelp detection, we again merged the results of the MLC from the selected flight
stripes to a single image. This analysis reveals an overall accuracy of 57.66% (n = 222), which is 22.52%
lower than for the FD approach. The error of omission is 42.34% and the error of commission is zero.
Thus, no areas have been falsely declared as kelp, but MLC was unable to identify several kelp areas
(94 of 222 transect mapping points).

The total cover of kelp detected by FD is 1.90 km2 while MLC detects 1.93 km2. Although there is
only a small difference in the total area of detected kelp between both classifications, detected areas
are distributed unevenly. Figure 8a shows the spatial comparison of the two kelp detection results,
visualizing that 80.45% of the kelp area matches for both methods, but MLC classifies 10.42% of kelp
coverage mainly in very shallow waters close to the coastline, whereas FD detects 9.13% in waters
deeper than 4 m. Table 5 shows the accuracies of FD and MLC for different depth limits using the
diving depth gauge measures.
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Table 5. Depth dependent kelp/Non-kelp detection accuracies.

Depth Limit (m) 1 2 3 4 5 6

MLC overall accuracy (%) 100 92.65 80.53 65.66 58.5 57.66
FD overall accuracy (%) 100 98.53 96.46 87.95 82 80.18

The overall accuracy of MLC drops significantly with a depth of four metres, while FD still
sufficiently detects kelp at six metres depth (overall accuracy = 80.18). Figure 8b shows that the
decreasing accuracy mainly results from kelp patches unidentified by MLC. The fully automatic FD
detects kelp areas deeper than four metres with higher accuracy than the MLC. Both classifiers identify
kelp between two and four metres water depth; due to the intensive training, however, MLC is much
more labour-intensive. Nevertheless, differences between the two approaches are especially high in
shallow waters (<2 m, Figure 8b). The diving mappings do not capture the transitional zones close to
the intertidal habitats. Using digital orthophotos and intertidal mappings, we found MLC to falsely
identify spectrally similar Fucales habitats as kelp (Figure 9c).

However, FD only identifies few Fucales habitats as kelp. Diving mappings do not reveal this
error of commission of MLC and FD because species of the order Fucales do not grow in the intertidal
areas mapped by the divers. Furthermore, FD clearly reveals the depth dependent transition from
kelp to Fucales habitats (Figure 9, red polygons). The deeper areas of these mixed habitats are mainly
dominated by kelp, shifting to Fucales dominated areas in the shallow waters close to the island.
Using multiple algae classes and depth dependent training for the MLC should overcome the false
classification but is related to even more intense field mappings and classifier training. Furthermore, a
comparison of both methods is only given, if both techniques distinguish between the same classes.
Our results show that detection of submerged kelp still remains a challenge. Nevertheless, there
are several indices, also from open ocean applications, that have already shown successful to detect
emergent kelp, e.g., FAI [83], MCI [84] or even the terrestrial NDVI. We expect that a combination of
such an index with the FD algorithm may improve the performance for shallow habitats, for example
to fully separate Fucales habitats from kelp habitats. Suitable in situ data, however, is still necessary to
adjust and validate a combined approach.
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a comparison of both methods is only given, if both techniques distinguish between the same classes. 
Our results show that detection of submerged kelp still remains a challenge. Nevertheless, there are 
several indices, also from open ocean applications, that have already shown successful to detect 

Figure 9. Intertidal field mappings compared to MLC and FD kelp detection results. Intertidal field
mapping results (a); field mapping compared to FD results (b); field mapping compared to MLC
results (c).

4. Conclusions

The results clearly demonstrate the potential of FD to map sublittoral kelps as shown in this case
study from Helgoland (North Sea). WAF is a promising filter to remove water anomalies from turbid
coastal waters and furthermore allows for improving remote sensing data quality. The mismatch of
spatial position accuracy of the hyperspectral imagery with the diving transects was insufficient to
validate percentage coverage products of kelp from high spatial resolution remote sensing data. We
therefore validated the FD algorithm with MLC classification results. FD is a suitable and time-effective
approach to assess and monitor submerged kelp at the limit of water visibility depth in the turbid
coastal waters of Helgoland. The fully automated simple processor depends on reflectance derivatives
and identifies kelp using spectral features in the wavelength range of 500–600 nm. The width of the
features is >20 nm; the approach might therefore be transferred easily to satellite borne sensors or
other areas to detect deep kelp. Furthermore, the FD was able to separate Fucales habitats from kelp
habitats in the shallow waters. MLC failed in distinguishing these two brown algae covers. The MLC
training process is much more time consuming than the FD and the results strongly depend on the
availability of training data. Furthermore, supervised classifiers rely on absolute reflectance data;
the class statistics are calculated from the remote image, and transfer to other data requires repeated
training. To improve the performance of the FD approach, a combination with algae indices (like FAI,
MCI) [85] may be promising.
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