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2



Important Note

This service is not an operational data service. Updates on weekly ice thickness
fields will happen irregularly and revisions of the entire data time series might
occur at any time. This product shall be a tool for the scientific community to enable
further development of sea ice thickness retrieval algorithms and not be used in
the sense of a fully calibrated and validated data product. It is our aim however, to
implement progress in algorithm development in new revisions. We encourage
users to give feedback (info@meereisportal.de) for further improvements of the
CryoSat-2/SMOS data fusion product.
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1 Introduction

1.1 Purpose of this document

The purpose of this document is to describe the data fusion and the objective mapping al-
gorithm base of the CS2SMOS intermediate climate data record (ICDR), which has been
developed within the framework of the SMOS+Sea ice project, funded by the European
Space Agency. This document provides a description of the algorithm applied to merge
the individual CryoSat-2 (CS2) and Soil Moisture and Ocean Salinity (SMOS) sea-ice
thickness products, as well as output data format specifications. Furthermore, charac-
teristics of the data fusion product are illustrated in order to inform about the differences to
the individual products.

1.2 Motivation and Scope of the CS2-SMOS Data Fusion

The SMOS mission provides L-band observations and the ice thickness-dependency of
brightness temperature enables to estimate the sea-ice thickness for thin ice regimes,
in particular during the freeze-up (Kaleschke et al., 2012). On the other hand, CS2
uses radar altimetry to measure the height of the ice surface above the water level,
which can be converted into sea-ice thickness assuming hydrostatic equilibrium. In
contrast to SMOS, The CS2 mission was primary designed to measure the thickness
of the perennial ice cover and lacks the sensitivity for thin ice regimes (Wingham et al.,
2006).

The complementary nature of the relative uncertainties of CS2 and SMOS ice thickness
retrievals has been shown by Kaleschke et al. (2015). Figure 1 illustrates uncertainty
maps and the relative uncertainties of CS2 and SMOS monthly means from March
2016. The SMOS ice thickness uncertainty is provided as a lower and upper esti-
mate and currently under revision. While the SMOS relative uncertainties are lowest
for very thin ice, CS2 relative thickness uncertainties are smaller over thick ice and
rise asymptotic towards thickness values < 1 m, which is due to the different me-
thodical approach. We acknowledge that the CS2 uncertainties represent statistical
uncertainties only. Systematic errors as due to the usage of a snow climatology as
well as snow-volume scattering may alter the uncertainty estimate (Ricker et al., 2014,
2015).
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Figure 1: Monthly sea-ice thickness uncertainty maps of the CryoSat-2 (a) and SMOS
(b) retrieval for March 2016, where SMOS uncertainties are represented by
the lower estimate. c) Relative uncertainties from March 2016.

However, also the spatial coverage is of complementary nature due to the different orbital
inclinations. Figure 2 shows weekly means of CS2 and SMOS during the freezing season
2015/16. While valid SMOS ice thickness estimates can be found mostly in the marginal
ice zones, the CS2 ice thickness retrieval covers major parts of the Arctic multiyear ice
(MYI). Figure 3 illustrates the number of valid grid cells of the weekly means as shown in
Figure 2. The number of grid cells, which share SMOS and CS2 estimates, is signifi-
cantly lower than of grid cells that contain thickness estimates from one sensor exclu-
sively.

Hence, a data fusion of CS2 and SMOS sea-ice thickness retrievals has the capability to
complete Arctic sea-ice thickness distributions. Therefore, we aim to develop a method to
merge both data sets on a suitable spatial and temporal scale.

1.3 Further Information

Additional information of the CryoSat-2 and SMOS missions as well as other ESA data
products can be found on the following websites:

• ESA - Living Planet Program- CryoSat-2

• ESA - Living Planet Program- SMOS
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Figure 2: Weekly input data grids for the freezing season November-April 2015/16. a)
Weekly CryoSat-2 retrieval as used for the objective mapping. b) Weekly
means of daily SMOS ice thickness retrievals, cropped by a 3 m maximum
SMOS thickness uncertainty filter. The background indicates first-year and
multiyear ice coverage. Note the complementary coverage in a) and b).
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Figure 3: Spatial coverage in number of valid 25 km grid cells. Here, the term valid
means that the grid cell contains a valid thickness estimate. The fusion product
and other weekly retrievals are represented by weeks illustrated in Figure 2.

2 Methods

We use an optimal interpolation scheme (OI) similar to Böhme and Send (2005); Boehme
et al. (2008); McIntosh (1990) that enables the merging of datasets from divers sources
on a predefined, so-called analysis grid. The data are weighted differently based on
known uncertainties of the individual products and modeled spatial covariances. OI mini-
mizes the total error of observations and provides ideal weighting for the observations at
each grid cell.

In this section we present the processing methods, on which the here presented objective
mapping is based on. Figure 4 shows the processing scheme which will be described in
more detail in the following. The OI scheme is used to get an objective estimate of values
at unobserved locations. The basic equation is:

Ta = Tb +K[To −H(Tb)], (1)

where the vector Ta is the analysis field that represents the merged CS2-SMOS ice
thickness retrieval which we aim for. Tb is the background field vector and To the vector
that contains all observations (SMOS and CS2). As observations we define already
gridded thickness estimates, based on weekly averages as shown in Figure 2. We
do this to reduce statistical uncertainties and to provide rather equally distributed ob-
servations, which improves the performance of the OI. Furthermore, it is reasonable
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Table 1: Properties of input and output data grids, which are used to obtain the data
fusion product.

Product Source Frequency Spatial coverage Grid/resolution

SMOS Ice Thickness icdc.zmaw.de/daten Daily Entire Arctic Polarstereo 12.5 km

CS2 Ice Thickness data.seaiceportal.de Weekly Incomplete EASE2 25 km

Ice Concentration osisaf.met.no/p/ice/ Daily Entire Arctic Polarstereo 10 km

Ice Type osisaf.met.no/p/ice/ Daily Entire Arctic Polarstereo 10 km

Fusion Product data.seaiceportal.de Weekly Entire Arctic EASE2 25 km

to reduce the number of observations, otherwise computing can become expensive.
Moreover, we assume that the observations are static, which is a simplification, be-
cause the satellite thickness estimates are temporally dependent due to ice dynamics
and ice drift. Therefore, we neglect any temporal correlations. H is an operator that
transforms the background field into the observation space. To be more specific, this
is realized by an inverse distance interpolation method. We aim to retrieve weekly
analysis fields, based on calendar weeks that reach from Monday to Sunday. Melting
does not allow to retrieve summer sea-ice thickness estimates neither from CS2 nor
SMOS. Hence, the fusion Product is limited to the period from October/November to
April.

2.1 Data Sources

As input ice thickness data we use the AWI CS2 product (processor version 1.2) (Ricker
et al., 2014; Hendricks et al., 2016) and the SMOS sea-ice thickness retrieval from the
University of Hamburg (processor version 3.0) (Tian-Kunze et al., 2014; Kaleschke et al.,
2016). As auxiliary data we use ice concentration and ice type provided by the Ocean and
Sea Ice Satellite Application Facility (OSI SAF). Table 1 summarizes the different input
grids and their spatial resolution.

2.2 The Background Field

The CS2 weekly products leave gaps due to the incomplete orbital coverage (Figure 2a).
Therefore, we compute an averaged composite of weekly retrievals, ranging from 2 weeks
behind to two weeks ahead, to get a nearly complete coverage for the Arctic (Figure 5) at
a certain target week.
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The daily SMOS retrievals are averaged weekly and then re-gridded on an EASE2 25 km
grid to be in line with the CS2 retrieval. Here, we only allow SMOS thickness values with a
corresponding upper uncertainty < 3m which corresponds to a maximum theoretical thick-
ness of 1.2 m. Furthermore we expect strong biases for the SMOS ice thickness in thicker
MYI regimes. Therefore we apply the OSI SAF ice type product (Eastwood, 2012) and dis-
card any SMOS grid cells that are indicated as MYI. The weekly composites of CS2 and
SMOS are shown in Figure 2.

The initial background field is then represented by a weighted average:

T =
Tcs2/σ

2
cs2 +Tsmos/σ

2
smos

1/σ2cs2 + 1/σ2smos

. (2)

T is the ice thickness and σ the statistical uncertainty of the individual products. Since
we use CS2 and SMOS retrievals for the background field beyond the target week
and because the SMOS composite contains artifacts of very thin ice (< 10 cm) in
coastal regions, we additionally use an ice concentration mask, likewise a weekly mean
of daily retrievals from the OSI SAF ice concentration product (Eastwood, 2012) to
guarantee the ice coverage during the target week. Here, we use a threshold of 15
% and only grid cells which exceeds this value will be considered as ice covered,
which corresponds to the ice extent products provided by OSI SAF and the National
Snow and Ice Data Center (NSIDC). Gaps in the weighted average, derived from
Eq. 2 are interpolated by a nearest neighbor scheme. In order to reduce noise, the
background field is low-pass filtered before it is used for objective mapping (Figure
5b).

2.3 The Optimal Interpolation Algorithm

The weight matrix K, which is needed to calculate Ta, is retrieved by the background error
covariance matrix B in the observation space, multiplied by the inverted total error covari-
ance matrix:

K = BHT(R + HBHT)−1, (3)

where R is the error covariance matrix of the observations. In order to reduce computa-
tion expense we do several assumptions:
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CS2 weekly means SMOS daily Ice Thickness 
retrievals 

OSI SAF daily Ice 
Concentration and Ice Type 

retrievals

netcdf output file 
- analysis grid 
- background grid 
- analysis error grid

Observations of target week: 
CS2 mean of week [i] 
SMOS mean of week [i]

SMOS backgroundCS2 background Ice Concentration background/ 
Ice Type background

Merging of 4 weekly means 
[i-2:i-1, i+1:i+2]

Average of 7 daily retrievals of 
week [i-1]

Correlation length scale 
estimation

Average of 7 daily retrievals of 
target week [i]

Parameter 
- radius of influence 
- max number of considered 

observations

Background field: 
weighted average of CS2 and 
SMOS background at 
ice concentration > 15 %

Optimal Interpolation Kernel

reject SMOS 
data over 
multiyear ice

Figure 4: Objective mapping processing scheme. [i] represents the target week. The
cycle is repeated for each week.

1. We neglect correlations of observation errors which means that R is a matrix with
non-zero elements only on the diagonal. These variances are represented by the
SMOS and CS2 product uncertainties.

2. We assume that the influence of observations that are located far away from the
analysis grid point can be neglected. Therefore, instead of computing the entire
covariance matrix, we only consider observations within a radius of influence. This
radius is set to 250 km to gather just enough observations in regions which large
gaps, for example over thick MYI, between two CS2 orbits where valid SMOS
observations do not exist.

3. To further reduce computation expense we limit the number of matched obser-
vations to 120, meaning that in the case of more matches, only the 120 closest
observations are considered.

4. We generally assume that all observations are unbiased, which might be not true
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Figure 5: a) The scheme illustrates the usage of weekly input grids for the background
field and the observation field. [i] represents the target week. b) Interpolated
and low-pass filtered background field as it is used for the objective mapping.

in any case (Ricker et al., 2014).

Finally, we use a Markov form as a function of the distance to estimate BHT and
HBHT:

BHT = (1 + (d(xoi , xai)/cls))exp(−d(xoi , xai)/cls)

HBHT = (1 + (d(xoi , xoj)/cls))exp(−d(xoi , xoj)/cls) (4)

with the Euclidian distance function:

d(x, y) = ‖x− y‖2 (5)

Here, xoi and xai represent locations of the observations and analysis grid points.
The Markov function serves to model the spatial correlation function, which is then
scaled with the variances of the observation ensemble. Thus, the impact of a data
point decreases with increasing distance. The calculation of cls is described in section
2.4.

After computing BHT and HBHT, yielding K, we retrieve the second term of Eq. 1, which
is called innovation. This iterative procedure is done for every analysis grid point, leading
us to the complete analysis grid Ta.
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Figure 6: Estimation of the correlation length scale (cls) for a single grid cell (a): adjacent
ice thickness grid cells within a radius of 375 km are binned into annuli of
distance and 4 quadrants. (b) Binned thickness estimates are used to calculate
the structure function of each quadrant. The cls is estimated by fitting an
exponential function. c) Map of estimated correlation length scales for the 1st
week of March 2011. d) The enlarged area shows contoured length scales on
top of gray-scaled background thickness with the color scale as in a).

2.4 Correlation Length Scale Estimation

The correlation length scale cls controls how strong the exponential function decreases
with distance. Since we work on a 25 km grid, we will only consider large scale correla-
tions. Ideally, our correlation length scale estimate is large in the center of a certain ice
type regime with similar ice thickness (i.e. first year ice). On the other hand, we expect a
low cls value at locations with a steep thickness gradient. In order to estimate the spatial
distribution of cls, we consider the unfiltered background field Tb. In the following we
define a structure function ε2, which is related to the normalized auto correlation function
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R(d,Q) as follows (Böhme and Send, 2005):

ε2(d,Q) = (T′0 − T′Q,d)
2 = 2σ2T ′ − 2σ2T ′R(d,Q)

R(d,Q) = 1− ε2(d,Q)

2σ2T ′

(6)

We define quadrants Q to accommodate the anisotropy of the spatial ice thickness dis-
tribution (Figure 6a). ε2(d,Q) represents the square differences between ice thickness
of the grid cell and the ice thickness of the grid cells of binned 25 km distances d in
a quadrant Q. T′Q,d is the unfiltered background thickness, binned according to d and
Q. σ2T ′ are the corresponding mean variances of a certain quadrant. With Eq. 6 we
can then obtain the auto correlation function R(d,Q), which is computed up to radius
of 750 km (30 bins). In the next step, we fit a Markov function to R(d,Q) and therefore
get an estimate for cls. Figure 6 shows how cls is derived. Figure 6a reveals the an-
nuli of distance and the 4 Quadrants. Figure 6b shows the calculated auto correlation
function R(d,Q) and the fitted Markov function. Note the strong decrease of ε2(d,Q)

in Q2, which is because T0 belongs to a thicker ice regime, while the regime in Q3 is
consistently thinner. Therefore ε2(d,Q) rises, while σ2T ′ is small. This leads to a strong
decrease of R(d,Q) with the distance. R(d,Q) can also become negative if ε2 (d,Q)/2
σ2T ′ gets >1. In order to enhance the fitting performance, we set R(d,Q) = 0 if R(d,Q)
< 0. Furthermore cls is set to NaN (not-a-number) if the computation failed. Finally,
we take the mean of the cls values from the 4 quadrants. In order to remove outliers
and noise, the derived cls grid is low-pass filtered with a smoothing radius of 25 km.
Invalid grid cells are interpolated by a nearest neighbor scheme afterwards. Figure 6c
shows the spatial correlation length scales cls for 7-13 March 2011. The enlarged area
in Figure 6d shows how the cls decreases in areas with high sea ice thickness gradi-
ents.

2.5 The Analysis Error Field

The analysis error covariances are derived by:

σ2Ta
= (I−KH)B (7)

Since we consider variances exclusively, we only calculate the diagonal elements of
σ2Ta

. Figure 7 shows the data fusion product and furthermore the innovation field and
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Figure 7: Output grids from the objective mapping processing for weeks in November
2015 and March 2016: The innovation (left column) is the difference between
background and the fusion product ice thickness (center column). The sea-ice
thickness uncertainty of the objective mapping product is derived from the
relative analysis error, scaled with the observation variances (right column).

the analysis error, which is the root of the error variance. The analysis error is a relative
quantity with values between 0 and 1, which is scaled with observation variances in
this figure. It increases where the weekly CS2 retrieval leaves gaps and where valid
SMOS observations are not available, for example at the North Pole or over MYI. In
this case the analysis heavily depends on the background field, and therefore the error in-
creases.

3 Dynamic Range of the Fusion Product

Figure 8 shows ice thickness distributions of monthly means of CS2 and SMOS ice thick-
ness retrievals and the weekly fusion product during the freezing season 2015/16. It illus-
trates the different thickness domains of CS2 and SMOS. The CS2 retrieval lacks sensitiv-
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Figure 8: Sea-ice thickness distributions corresponding to Figure 2 during the freezing
season 2015/16. The fusion product is represented by one week within each
month, while the CryoSat-2 and SMOS retrievals are monthly means.

ity for thin ice (< 0.8 m). This gap can be closed by the SMOS retrieval. Due to the lack of
sensitivity over thick ice and the maximum uncertainty filter, the frequency drops steeply
at about 1 m. The data fusion product shows its capability to combine both the CS2 and
the SMOS ice thickness domains.

4 Data Description

The weekly analysis grids are given in standardized binary data format (Network com-
mon data form: NetCDF v3). The variables are given as grid arrays, see therefore
Table 2. All grids are projected onto the 25 km EASE2 Grid, which is based on a polar
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aspect spherical Lambert azimuthal equal-area projection (Brodzik et al., 2012) (Figure
9).

Table 2: Netcdf file content and description of variables.
Variable Description Unit Type Dimension

xc EASE2 grid x coordinates km double 720

yc EASE2 grid y coordinates km double 720

longitude Longitude deg east double 720,720

latitude Latitude deg north double 720,720

analysis_thickness Analysis sea-ice thickness m float 720,720

analysis_thickness_err Relative error of the analysis thickness arbitrary unit float 720,720

background_thickness Sea-ice thickness background field m float 720,720

corr_scale Correlation length scale m float 720,720

cs2_thickness Weekly averaged CryoSat-2 thickness m float 720,720

smos_thickness Weekly averaged SMOS thickness m float 720,720

innovation Difference background/analysis field m float 720,720

ice_concentration Sea-ice concentration (from OSI SAF) % float 720,720

ice_type Sea-ice type (from OSI SAF) binary float 720,720

Pole

grid 
cell

25 km

+proj = laea  
+lat0 = 90
+lon0 = 0  
+x0 = 0
+y0 = 0  
+ellps = WGS84
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Figure 9: Specifications of the EASE2 25 km grid, which is used for the data fusion
product.
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