

#65001

JOIDES. Blake Panel Report

CRUISE REPORT AND PRELIMINARY CORE LOG M/V CALDRILL I--17 April to 17 May 1965

Prepared by

John Schlee Robert Gerard

NSF Grant GP-4233

August 1965

J.O.I.D.E.S. Blake Panel Report

CRUISE REPORT AND PRELIMINARY CORE LOG M/V CALDRILL I - 17 April to 17 May 1965

Prepared by: John Schlee

Robert Gerard

NSF Grant GP-4233

August 1965

In citing this manuscript in a bibliography, the reference should state that it is unpublished.

TABLE OF CONTENTS

Introduction	1
Drilling and Coring	2
Core Description	19
Rock and Sediment Name	19
Color	27
Structure	27
Recovery Log	27
Graphic Log	29
Age	29
Acknowledgments	29
Bibliography	29
Appendix A - Cruise Narrative	31
Appendix B - Preliminary Core Logs 4	45

199

LIST OF FIGURES

1.	Map showing positions of JOIDES holes drilled	3
2.	M/V CALDRILL I	4
3.	Harbormaster propulsion unit	7
4.	Control console of automatic-positioning	
	equipment	8
5.	Constant-tension device	9
6.	Drill string	13
7.	Drill string and base plate	14
8.	Photograph of core being extruded on the	
	deck of CALDRILL and photograph of core	
	being examined in the shipboard laboratory	15

LIST OF TABLES

1.	Drilling Equipment	5
2.	Summary of Drilling Data	10
3.	Drill String	12
4.	Time Distribution - JOIDES Project	18
5.	List of Abbreviations	20
6.	Classification of Carbonate Rocks	
	according to Depositional Texture	26
7.	Classification of Stratification	28

iv

INTRODUCTION

In May 1964 the Institute of Marine Science (University of Miami), Scripps Institution of Oceanography (University of California), Woods Hole Oceanographic Institution, and Lamont Geological Observatory (Columbia University) joined in the establishment of the JOINT OCEANOGRAPHIC INSTITUTIONS DEEP EARTH SAMPLING (JOIDES) program. The long range purpose of this organization is to obtain continuous core samples of the entire sedimentary column from the floors of the oceans. It was decided that initial efforts would be limited to water depths of less than 1000 fathoms (6000 feet), and tentative locations were selected for drilling operations off the eastern, western and Gulf coasts of the United States.

Near the end of December 1964 it was found that the M/V CALDRILL I, a drilling vessel capable of working to depths of 6000 feet, was to engage in drilling operations on the Grand Banks of Newfoundland during the summer of 1965 for the Pan American Petroleum Corporation. In discussions with Pan American representatives, they agreed to pay for the moving costs of the vessel should JOIDES be able to organize a drilling program along the track of CALDRILL (between California and the Grand Banks). In this agreement JOIDES assumed responsibility for the vessel only during the period of drilling.

Sites were examined along the track where offshore drilling might yield valuable information on problems of the continental margin and be near good logistic ports on the east and west coasts. Selection was made of an area on the continental shelf and the Blake Plateau off Jacksonville, Florida. Based upon many previous geological and geophysical investigations by the participating laboratories, a considerable body of knowledge had been gained about this region of the continental-oceanic border.

A scientific panel for the specific project was formed with members from the JOIDES institutions plus additional members:

> F. F. Koczy - Institute of Marine Science University of Miami

Tj. Van Andel - Scripps Institution of Oceanography University of California

K. O. Emery - Woods Hole Oceanographic Institution

- J. S. Craeger University of Washington
- J. I. Tracey, Jr. U. S. Geological Survey
- D. Fahlquist Texas A & M University
- C. L. Drake Lamont Geological Observatory Columbia University

Drilling sites were chosen along a transect from Jacksonville southeastward to a point about 250 miles offshore, where the ocean depth reaches more than 1000 meters.

For this initial program of JOIDES, the Lamont Geological Observatory was chosen as the operating institution with J. L. Worzel as principal investigator, and C. L. Drake and H. A. Gibbon as program planners.

The field operation began on 17 April 1965 with the arrival of the drilling ship in Jacksonville, and the first hole was begun on the morning of 19 April 50 miles offshore. The mutual interests of the several institutions and of the U. S. Geological Survey led to a mixed group of scientists aboard the ship: Robert Gerard, project supervisor and chief scientist, Tsunemasa Saito and Mark Salkind (Lamont Geological Observatory); John Schlee, principal scientist, J. R. Frothingham, Jr., F. T. Manheim and K. O. Emery (Woods Hole Oceanographic Institution or U. S. Geological Survey based at Woods Hole); Louis Lidz, Walter Charm and Herman Hofmann (University of Miami); R. L. Wait, W. S. Keys and E. M. Shuter (U. S. Geological Survey); and William Bogert, drilling advisor (Pan American Petroleum Corporation).

DRILLING AND CORING

Holes were drilled at the positions indicated on Fig. 1. Water depths at the drill sites ranged from 25 to 1032 meters and penetrations into the bottom from 120 to 320 meters. Positions were determined by Loran A.

The drilling ship M/V CALDRILL I (Fig. 2) is a converted 176-foot AKL-type navy vessel owned by Caldrill Offshore Inc. of Ventura, California. The ship has a 10-foot diameter center well for drilling and standard rotary drilling equipment as listed in Table 1.

.

ω

Æ

TABLE 1.

DRILLING EQUIPMENT

- 1. Hopper Model GX-IG, 6-speed, double drum drawworks with separate electric motors driving through Baylor eddycurrent couplings. Rated capacity 6000' with 4-1/2" drill pipe.
- 2. Hopper special 66' 250,000# mast with guide tracks for blocks and swivel. Mast lays down while in transit.
- 3. Two 700-H.P. Oilwell 6-3/4" x 8" Triplex mud pumps, each driven by a 400-H.P. Cat D343 TA Diesel with 9-speed transmission. Also used for cementing operations equipped with 10,000# fluid ends.
- 4. One 125-H.P. BJ electric powered, 2-stage centrifugal pump for salt water circulation.
- 5. One BJ 5" x 6" centrifugal pump for mixing.
- 6. One 200-H.P. Bowen Itco, Model S3, power swivel.
- 7. Two 350-kw AC generators driven from ship's main propulsion engines, 500-H.P. each and one 500-H.P. Cat D397T driving a 350-kw AC generator. 1500-H.P. available for rig and harbormaster units.
- 8. Hopper special hydraulic pipe-racking system and storage bins.
- 9. Foster hydraulic drill pipe tongs for 2-3/8" to 9-5/8" pipe.
- 10. Complete hydraulic system to power swivel, tongs, and pipe-racking equipment. One 200-H.P. unit and one 20-H.P. unit.
- 11. Storage for 300 barrels of drilling mud plus 300 sacks of dry mud or cement.

5

In order to maintain a fixed position in the ocean while drilling for extended periods, the ship is equipped with an automatic positioning system, which utilizes four 300-H.P. Murray and Tregurtha harbormaster outboard motors, two at the bow and two at the stern (Fig. 3). The speed and direction of the propellors are automatically controlled by signals from an analog computer (Fig. 4). This computer receives signals from a gyro compass and an angle-sensing transducer mounted above a constant-tension taut wire (Fig. 5) from the ship to a 250-kg anchor resting on the ocean bottom. If the ship drifts away from a place directly above the anchor, the transducer senses the departure of the wire from the vertical and generates signals through the computer to the harbormasters, which then move the ship back into position. The positionkeeping equipment functioned well and allowed the ship to drill in surface currents up to 140 cm/sec (2.7 kts) and winds up to 20 m/sec (40 kts), while maintaining position over the hole to within 3% of the water depth.

The main drilling tower is a 66-foot mast, mounted amidships, and having a lifting capacity of 125 tons. A sixspeed double-drum drawworks, driven by an AC motor (through an eddy-current coupling), supplies the lifting power for handling the drill string. Instead of a kelly and rotary table, a hydraulic power swivel is used to rotate the drill string at a maximum of 60 rpm. Drilling fluid is sea water pumped through the drill tubing by an electrically powered centrifugal pump. For spotting mud during drilling and geophysical logging, M/V CALDRILL I has a storage capacity of 300 barrels of barite mud, which is dispensed by two dieselpowered mud pumps. Drill tubing in 30-foot joints is stored horizontally on hydraulically raised pipe racks having a total capacity of 6000 feet. The tubing is moved from the racks by a conveyor belt and lifted into position by a travelling block in the drilling tower. Hydraulic pipe tongs connect tubing joints together.

Most of the drilling and coring was done with a hardformation roller bit and wire-line core barrel; a diamond bit was also used (see Table 2). A constant bit weight was provided by one, two, or three drill collars (one ton each) fixed below one or two 5-foot stroke bumper subs (telescoping joints), used to compensate for vertical motion of the ship. Hole reentry was not attempted; and it was impossible, except at the two shallowest sites (holes 1 and 2), where a heavy base plate was coupled to 60 feet of casing pipe to prevent caving of sand at the top of the hole. The efficacy of this system can be seen by comparing the results at site 2 (Table 2). Holes 2 and 2a were drilled without casing; and after penetrating

Fig. 3. Harbormaster propulsion unit (port, forward) shown in raised position. The four units are lowered to a vertical position when in use for position-keeping.

Fig. 4. Control console of the automaticpositioning equipment. This unit contains the analog computer plus manual controls for dynamic position keeping over the drill hole.

Fig. 5. Constant-tension device, showing the angle-sensing transducer at the outboard end and the taut wire which connects to the anchor on the ocean bottom.

TABLE 2.

Summary of Drilling Data

				Ocean Bottom Depth	Maximum Su Current Ve		Hole	Bit		Interval	Interval	Total Hours	Core
	Site*	Position	Date	(m)	(cm/sec)	(<u>Dir.</u>)	No.*		End of Operation	Drilled (m)	Cored (m)	Drilling & Coring	Recovery 2
	1	30°33'N 81°00'W	4/28 5/1	25	13-36	Various - Tidal	l la	Rolle r Roller	Bail weather-pulled out Logged (G)**	0- 7.6 0-121.9	7.6-135.6 121.9-277.4	} 37.5	} 32.8
	2	30°21'N 80°20'W	4/18 -21	42	52 (est.)	Various - Tidal	2 2a	Diamond Roller	Pulled out Logged (G)**, backed off	0- 19.8 0- 17.4	17•4-173•4	کے 31 . 5	
		30°20'N 80°20'W	5/10-11	46	26 - 41	Various - Tidal	2b	Roller	Logged (G)** (V)***	0- 15.2 68.6- 76.2. 88.4-146.3 152.4-158.5	15.2- 68.6 76.2- 88.4 146.3-152.4 158.5-320.2	} 21.0	23.5
	۲,	30°23 in 80°08 w	ц/22 - 26	190	72 - 1 <u>4</u>	N	5 5a 50 5c	Roller Roller Diamond Roller	Strong current-pulled out Plugged - pulled out Plugged - pulled out Logged (G)**	0- 9.1 0- 17.7 0- 50.6 0- 97.5	9.1- 30.5 17.7- 57.3 50.6-100.6 97.5-171.6 171.6-245.0 Intermittent	56.5	55.0
	6	30°05'N 79°15'W	5/7	805	<u>h</u> 6	N	6	Roller	Drill tubing broke		0-119.7	17.5	13.5
	4	31°03'N 77°45'W	5/12	885	33-52	NNW	4 4a	Diamond Roller	Poor recovery-pulled out Fouled taut line		0- 91.4 surface	\$ 57.0	} 24.5
		31°02'N 77°43 щ	5/13-15	892		· .	4b	Roller	Exhausted mud		0-178.3)
	3	28°30'N 77°31'W	5 /3- 5	1032	32 - 50	NNW-NNÉ	3 3a	Roller Diamond	Logged (G)** Computer problem - pulled out	0-170•7	0-178.3 170.7-173.7	}_40•5	} 67 . 6
. 1	*			,	· · · · · · · · · · · · · · · · · · ·			·····				an a	na an a

* Site number will be identical with hole number as listed on Core Log sheets. ** Gamma-ray log ** Velocity log

10

173 meters, the drill tubing became stuck and the tools were lost in backing off. Later, at the same site using 60 feet of casing, hole 2b was drilled to 320 meters with no serious caving or sticking. Only minor sticking and caving occurred in the calcareous ooze at the holes of the Blake Plateau. The parts of the drill string used in the drilling and coring are listed in Table 3. The typical drill string is shown schematically in Fig. 6 and is shown together with the base plate in Fig. 7. For most holes coring or attempted coring was continuous after spudding 20 to 60 feet into the sea Cores were obtained with a wire-line core barrel floor. that was dropped through the drill string to a clamped position at the bottom. It was retrieved, usually at 10-foot intervals of drilling, by a weighted wire line dropped through the tubing.

The rock or sediment core was extruded by hydraulic pressure applied to a rubber piston; a few cores were pushed out by a wooden pole applied to the same rubber piston. Cores were extruded into plastic-covered half-round galvanized-steel trays 5 or 10-feet in length and carried to the shipboard laboratory for description and sampling. $\frac{1}{}$ Fig. 8 shows the extruding operation and shipboard core laboratory.

After description, the cores were cut into 2-1/2-foot lengths, enclosed in polyethylene lay-flat tubing, and heat sealed. These lengths were placed in 4-section corrugated cardboard boxes (holding up to 10 feet of core), and all boxes were stored in a refrigerator at 40°F. Upon completion of the cruise, the cores were transferred to permanent storage at the University of Miami - Institute of Marine Science. Except for the time during which cores were split and repackaged, they have been stored at approximately 40°F in sealed polyethylene sleeving.

Core recovery ranged widely, depending on the type of sediment and the bit. It was best in soft unconsolidated silts, clays, and calcareous oozes drilled by a Reed roller bit. It was poorest in well indurated chert or limestone, or in unconsolidated sand. Several different types of core catchers, used separately or in combination, helped retain core. A diamond drill bit and core-barrel assembly were less successful in recovery of core -- particularly in soft sediment. This was due in part to the placement of the inner core-barrel

1/ Some sampling for water content and organic materials was done on board because these samples required freezing.

TABLE 3.

DRILL STRING (listed in ascending order)

- 1. One Hycalog PC6R diamond bit 7-5/8" x 1-3/4" or Reed PC2 hard-formation roller bit 7-5/8" x 2".
- 2. One Hycalog wire-line core barrel assembly 15-1/2' x 5-3/4" o.d. outer barrel with 12' x 2-5/8" o.d. x 1-3/4" i.d. inner barrel or Reed PCC wire-line core barrel assembly 14-1/2' x 6" o.d. outer barrel with 10' x 2-3/8" o.d. x 1-13/16" i.d. inner barrel.
- 3. One, two or three drill collars 30' x 6" o.d. 72 lb/ft.
- 4. One or two Baash-Ross type BPS bumper sub(s) 5-1/2" o.d. x 3" i.d. x 5' stroke.
- 5. One joint acme thread drill pipe 30' x 4" o.d.
- 6. To the surface -- joints of acme thread drill tubing 30' x 3-1/2" o.d.

Fig. 6 - Drill String

Fig. 7 - Drill String and Base Plate 14

(Left) Core being extruded on the deck of CALDRILL at site 4.

(Below) Core examination in the laboratory aboard CALDRILL.

Fig. 8

cutter head just above the drill-bit orifice, where it is subject to the washing effects of the circulating fluid. The cutter head of the Reed inner core barrel projects 1-3/4" below the roller bits, hence washing effects are less. Rock cores obtained with the diamond bit were less broken up than similar material taken with the roller bit, i.e. interbedding of limestone and chert is preserved in diamond cores.

Length of extruded core ranged from a few inches to 11'3". Core lengths in excess of 10 feet were due to stretching of the core during extrusion. Occasionally, intervals smaller than 10 feet were drilled, and a few of these cores were longer than the interval drilled; this may be due to stretching or to an inexactness in fixing the interval cored. Core diameter ranged from 1-3/8" (diameter of cutter head) to almost 2", depending on the softness of the material cored. Cores through chert, siliceous limestone, and dolomite were of minimum diameter. Cores of soft ooze and clay, when extruded, were usually larger than the minimum diameter of the inner core barrel. Flowage of soft sediment into the barrel was indicated in a few cores by a concentric structure, wherein a central core of better compacted sediment is surrounded by a sheath of soft sediment. Flowage structures and draping of stratification at the core periphery could be seen on the open cuts of split cores. During shipboard logging, a coating of recent foraminifera and broken shell debris was noted on the outside of some cores; apparently some detritus washed down the sides of the hole and was plastered up the side of the core before retrieval took place. The greater ages of microfossils in the central undisturbed part of the core attest to the incompleteness of flowage.

Subsequent packaging, shipping, and splitting of the cores has resulted in a shortening of 0 to 36% (average 9.6%2/) below the lengths measured during shipboard description. The remeasurement took place several weeks later at Miami shortly after the cores were split. In the intervening time, cores had been packaged, shipped, split and repackaged. Some telescoping or flowage apparently occurred. Only most recent values of core length are given in the preliminary log for the interval drilled.

Though cores were still moist several weeks after drilling,

^{2/} The figure is the arithmetic average of 100 cores originally 5 feet or longer.

minor color changes were noted at the edges of some cores of noncalcareous clay; the change probably resulted from a reaction with air.

Approximately 2052 meters of drilling was done, during which a total of 1433 meters of coring was attempted with a total recovery of 513 meters. Core recovery averaged 36% overall; best recovery (46%) occurred in the soft formations of silt and clay, whereas poorest recovery (22%) was in hard layers of chert and dolomite. Recovery averaged 28% on the continental shelf, 55% on the Florida-Hatteras Slope, and 38% on the Blake Plateau.

The project had the use of the drilling vessel CALDRILL I for 720 hours, beginning at 1200 hours 17 April and ending at 1200 hours 17 May. A cruise narrative, covering the work done aboard the M/V CALDRILL I during this period, is presented in Appendix A. Table 4 summarizes the time distribution of activities during this period.

TABLE 4. TIME DISTRIBUTION - JOIDES PROJECT

Cat No.	egory Description	Time in hrs	% Total Time
l.	Investigation of Location Checking currents Positioning ship Re-positioning ship Taking dart cores Lowering taut line Taking grab samples Lowering harbormasters	34.25	4.7
2.	Preparation on Location for Drilling Making up tools Running tools to bottom Setting base plate Running casing	43.50	6.0
3.	Drilling and Coring From the Driller's Log it is not possible to make an accurate break between Drilling Time and Coring Time.	261.50	36.3
4.	Recovery of Tools and Equipment Pulling out of hole Raising harbormasters Raising base plate Changing bits Retrieving taut line	47.25	6.6
5.	Logging	29.00	4.0
6.	Drilling Shut Downs Repair time Spotting mud for logging Stuck pipe Fresh-water aquifer tests Plugged bit Pulling up tools - bad weather	32.50	4.5
7.	Time in Port Loading fuel, supplies & equipment Setting up equipment aboard ship Unloading	102.75	14.3
8.	Moving From & to port & between locations	169.25	23.6
	TOTAL	720.00	100.0

CORE DESCRIPTION

The JOIDES cores were described and sampled on shipboard for lithologic and faunal information. The lithology was rechecked by examination of the split cores at the University of Miami depository after the completion of the field work. The preliminary graphic JOIDES core logs for each of the holes are presented in Appendix B of this report.

These logs are intended to provide a general description of the stratigraphy for the interval drilled. More detailed description of individual beds is not feasible on the scale of this log, though it has been made on the original core description during the cruise. The descriptions are representative of the sections where core recovery was high. Where only a small amount of material was recovered, the core is probably not representative. This is especially true where the bit took a long time to drill an interval and only an incomplete core plus scattered chips of chert were recovered.

Certain symbols, abbreviations, and classifications have been used to describe lithology. They are necessary to get in more information and to make it more accurate -- particularly in view of recent advances in carbonate petrology. The abbreviations given on the next pages (Table 5) are taken mainly from Rusnak and Luft (1963), but have been supplemented by abbreviations of Maher (1964) and some devised by the author.

ROCK AND SEDIMENT NAME

Sediment and rock names are given in the first column on the left-hand side of the form. They are based on core descriptions made aboard ship and during reexamination of all cores after they were split. The designation rests on descriptive properties given in abbreviated form at the right side of the log. Three main properties used to affix a name are induration, composition, and texture.

Induration: - The degree of consolidation determines whether the material is considered a rock or sediment. The terms defined below are taken from an informal guide used by the Water Resources Division of the U. S. Geological Survey, as generously provided by R. H. Meade. For the most part, the first three terms are applied to sediments and the last three to sedimentary rocks.

TABLE 5. LIST OF ABBREVIATIONS

Biological Term	IS	phosphate, phosphatic	phos
41	41 m	pyrite	pyr
Algae	Alg	quartz	qtz
Bryozoan	Bry	siderite	sid
burrows	burw	.	
coccolith	cclh	Color Terms	
coral	cor		
Echinoid	Ech	black	blk
Forams	F	blue	bl
gastropod	gstr	brown	brn
mollusk	mlsc	dark	dk
organisms	org	gradational	grdl
Ostracods	Ost	gray	gy
pelecypod	plcy	green	gn
plant	plt	light	lt
Pteropod	Pt	medium	md
preserved	prsvd	mottle, -d	mot
Radiolaria	R	olive	ol
shell (y)	shl (y)	orange	orn
skeletal	skl	speckled	spec
spicules	spcl	stain (ing)	stn (g)
Halimeda	Hal	variegated	vrg
		white	wh
Directional Ter	2 ms	yellow	yl
bottom	bt	Lithologic Terms	
horizontal	hor		
lower	lwr	arenaceous	aren
middle	mid	argillaceous	argl
near	n/	asphaltic	asph
parallel	//	calcareous	calc
perpendicular	I	carbonaceous	carb
plane	pln	cement	cmt
uniform (ly)	unfm (y)	cherty	chty
upper	upr	clay	cl
variable	var	detrital	detr
vertical	vert	micaceous	mic
		oolitic	ool
Mineralogical T	lerms	pisolitic	pis
		quartzose	qtzs
calcite	cal	rock (s)	rk, rx
clay	cl	sand (y)	sd (y)
dolomite	dol	sandstone	SS
dolomitic	dolic	shale	sh
ferruginous	fer	siliceous	sil
glauconite	glauc	silt (y)	slt (y)
limestone	ls	siltstone	sltst
limonite	lmn	tuffaceous	tuf
manganese	Mn	volcanic	volc
marcasite	mrcs	vugs, vuggy	vug
mineral	mnrl		
mineralization	min		

.

Quantitative Terms

abundant common concentration concentrated disseminated flood fraction highly large light medium minute moderate prominent rare scarce scattered slight (ly) small some strong (ly) trace uniform (ly) variable very	abu cm conc contrd dism fld fxn hi lrg lt md min mod prmt r/ sca sl (y) sm s/ strn (y) tr unfm (y) var v
Miscellaneous admixed and angle apparent at average broken complete (ly) debris diameter discontinuous distinct estimate (d) faint from impression indistinct irregular material mixture number odor	Terms adm & & L apr @ ave brkn cpl (y) deb diam dsct dst est fnt fr imp indst irrg mtrl mxt # od

<pre>open space oxidation oxidized partial (ly) partly percent poor (ly) preserved range regular residue solution strength (compressive)</pre>	o-s oxn ox prt (y) pt % pr (y) prsvd rng reg res sol S
similar to well	W
with	w/
zone	zn
Textural and Structural	Terms
aggregate angular bedding clear cloudy coarse compact (ed) composite concretion contact cross-bedded cryptocrystalline crystalline crystalline crystal dense disseminated distributed fine flake friable frosted fracture fragment gradational graded	agr ang bdng clr cldy crs cpt (d) comp cncr ct x-bd crpxl xln xtl ds distrib dstb fn flk fri fstd frac frag grdl grd
gradually grain	grdy grn
granular	grlr
granule	grnl
gravel hard	grv hd

<pre>indurated interbedded interlayered interstitial irregular lamina (ted) layer (ed) loose lumps massive matrix medium nodule oolite parting pebble pebbly pellet plastic polished porous regular replacement rock (s) round (ed) sharp shell (y) soft sorted, sorting stain (ing) streak stringer structure</pre>	<pre>indur intbd intly intstl irrg lam (d) lyr (d) l/ lmps msv mtx md nod ool ptg peb pbly pel plas poled por reg repl rk,rx rnd (d) shp shl (y) sft srt (g) stk strg str</pre>
stringer	
structure subangular	
subrounded	sbang sbrd
texture	text
thin	thn
thin-bedded	t-b
tight	t/
unconsolidated	uncons
uniform (ly)	unfm (y)
void	v/

- Unconsolidated no cementation or compaction; loose, may be dug out easily.
- Plastic sediment may be molded between fingers into long slender ribbons.
- Compacted coherent fine-grained masses which may be broken easily.
- Friable coherent masses (generally in sand range or coarser) which may be broken, but in which individual grains may be dug out with difficulty.
- Firm coherent masses which may be broken by hand only with great difficulty.

Hard - rock-like; hammer needed.

<u>Composition and Texture</u>: - Estimates of major and minor components were made with a binocular microscope. Where percentages are given, visual-estimate charts (Folk) were used. Some observers preferred to use a semi-quantitative terminology, and the one given by Rusnak and Luft (op cit) was used.

Percent	Designation
More than б0	flood
30-б0	very abundant
10-30	abundant
5-10	common
1-5	scarce

Some of the more significant components were used as modifiers of the rock or sediment name. When time permitted, more complete descriptions of minerals and biogenic components could be provided; these are given in the right-hand side of the core log, and they are separated in the description by semi-colons. Phosphate was detected as a yellow precipitate with a solution of ammonium molybdate and nitric acid.

Grain size (modal) was estimated by use of a grain-size comparator (coarse silt to granules) and the relative sorting was also noted. Besides the dominant grain size, prominent secondary admixtures (silty, sandy) are listed. If the sediment was obviously polymodal, this fact also is noted.

Classification of Noncalcareous Sediment: - For sediment with less than 30% carbonate, the Shepard (1954) classification was used. The designations in the core log are only approximate because the estimates of carbonate (as determined by watching a weak hydrochloric acid react with the sediment) were crude. Where calcareous shell material was evident, "calc" is used as a modifier in the descriptive section of the log.

<u>Classification of Calcareous Sediment</u>: - The following charts provide terms for calcareous sediment (30% or more carbonate). For fine-grained sediment, the term "ooze" is used, and boundaries follow the classification of Rusnak and Luft (op cit); modifiers given by Riedel et al (1961, p. 1793) are used.

FINE

Carbonate 30% plus	Carbonate 30% minus	Carbonate <30%
Less siliceous	Siliceous organisms -	Si. organisms <30%
organisms	30% plus	Reddish brown color
calcareous siliceous ooze	siliceous calcareous ooze	red clay

Coarser sediment is referred to as "sand" or "gravel" and modified by Grabau (1904, p. 228-247) terms to point up the calcareous nature of detritus. In addition, terms "biogenic", "oolitic" and "lithic" are employed to show the type of calcareous fraction. Grabau's designations originally were intended for sedimentary rocks, but they have been used subsequently as modifiers for sediment names (Ginsburg, 1956, p. 2405). General grouping of the types of carbonate are carried over from recent rock-carbonate classifications. In cores where a group of animals dominate (Foraminifera - for example), the kinds may also be included as a modifier in the descriptive section to the right side of the log.

SEDIMENT: CARBONATE - rich (more than approximately 30% carbonate)

COARSE

Main Carbonate Type	More than 30% fragments above 3mm*	More than 50% sand size carbonate
Biologic fragments	Biogenic calcirudaceous	Biogenic calcaren- itic sand
Oolites		Oolitic calcareni- tic sand
Limestone rock fragments	Lithic calcirudaceous gravel	Lithic calcareni- tic sand

* Amounts of gravel take precedence.

<u>Classification of Limestone</u>: - Recent advances in carbonate petrology (See Am. Assoc. Petrol. Geol. Mem. 1 edited by W. E. Ham, 1963) show the need for a closer examination of the texture and composition of limestones in order to classify these rocks in terms which could have genetic significance. The approach is not new; sandstones have been studied in a like manner for the past two decades. Inevitably new terms and classifications are introduced which cause the noncarbonate petrologist some consternation.

For the preliminary JOIDES core log, limestones were described (Table 6) in terms of the Dunham classification (Dunham, 1962, p. 108-121). This scheme was used because it pointed up features which might have environmental significance, it was easy to use on board ship, and it has fewer new terms than many other classifications. Where depositional texture can be discerned, Dunham subdivided carbonate rocks on the relative amounts of grains (defined as larger than 20 microns) and mud (generally carbonate). He and others believe that the proportion of muddy matrix reflects the degree to which bottom waters were agitated by waves and currents during deposition of the lime sediment.

TABLE 6.

CLASSIFICATION OF CARBONATE ROCKS ACCORDING TO DEPOSITIONAL TEXTURE

	Depositional Texture Not Recognizable					
Origina	-	Not Bound Togeth	ner During	Original Components Bound Together During Deposition		
Contains mud (particles of clay and fine silt size)			Lacks mud	As shown by inter-		
Mud-supported		Grain-supported	and is grain	grown skeletal matter, lamination contrary to gravity, or sedi-	Crystalline Carbonate	
Less than 10% grains			supported	ment-floored cavities that are roofed over by organic matter and are too large to be interstices.	(Subdivide according to classifications designed to bear on physical texture or diagenesis.)	
Mudstone	Wackestone	<u>Packstone</u>	Grainstone	Boundstone		

from (Dunham, 1962)

COLOR

Color designations are shown on the third column from the left. Where designations are absent, it may be assumed that the last one given immediately above the blank area applies to the interval in question. Colors are in terms of hues, chromas (richness or saturation), and relative lightness (See Goddard et al, 1948, for a brief explanation of the color scheme). A Munsel Book of Color - pocket edition - was used to determine the color of the moist cores; the book contains several hundred color swatches and proved to be more than adequate.

STRUCTURE

Bedding, laminations, mottling, and other sedimentary structures are given to the right and were described when the cores were split at Miami after the cruise. McKee and Weir (1953) bedding classification (Table 7) was followed for descriptive terms except for "massive". This term is used here to indicate an apparent absence of sedimentary structure in a core.

RECOVERY LOG

The amount of core recovered for each interval drilled is shown in the narrow column labeled "Rec."; it is indicated by the blackened portion of the column. Intervals where coring was attempted but no core was recovered are shown by a check-pattern; where coring was not done, the column is In a drilled interval where core recovery is very blank. nearly complete (7 feet or more in a 10-foot section), the missing portion is assumed to be absent from the top of the cored interval, as indicated on the log. The drilling procedure of pumping sea water through the drill string before core retrieval, and before drilling the next interval, probably caused some washing of the uppermost part of the next interval. Where less than 7 feet of core was recovered, its exact depth in the interval is not certain, and hence the position of distinctive horizons cannot be fixed with respect to the sea-floor depth or sea level. The position of shorter cores is indicated schematically in the middle of the drilled

TABLE 7.

۰.

CLASSIFICATION OF STRATIFICATION

Terms to describe stratification		Terms to describe cross-bedding		Thickness	Terms for splitting property
Very thick- bedded		Very thickly cross-bedded	eds	More than 120 cm	Massive
Thick-bedded	ß	Thickly cross-bedded		l20 cm (About 4 feet) to	Blocky
Thin-bedded m		Thinly cross-bedded	Cross-b	60 cm (About 2 feet) to	Slabby
Very thin- bedded		Very thinly cross-bedded		5 cm (About 2 inches) to	Flaggy
Laminated		Cross- laminated	-laminae	l cm (About 1/2 inch) to	Shaly (Claystone & siltstone) Plate (Lime- or sandstone)
Thinly laminated	Lan	Thinly cross- laminated	Cross-	2 mm (About .08 inch) or less	Papery

from (McKee & Weir, 1953)

interval on the log, though its exact position is not known.

GRAPHIC LOG

Lithology is given graphically on the second column to the left. Symbols are self-explanatory by looking at the rock or sediment-type list to the left. Like abbreviations, they are taken mainly from Rusnak and Luft (op cit) and Maher (op cit). In a section where two or more lithologies are present, they are shown schematically in the log; neither the <u>relative</u> position nor the amount of the symbol is intended to represent the exact situation in the core.

AGE

Time-stratigraphic boundaries are indicated in the preliminary log at the selected depths. Values are measured from the sea floor downward. The boundaries kindly were provided for the log by Dr. Tsunemasa Saito (Lamont Geological Observatory) and Louis Lidz (Institute of Marine Science -University of Miami).

Acknowledgments: The authors wish to acknowledge the assistance of R. L. Wait, E. Shuter, F. Manheim, K. O. Emery and J. R. Frothingham Jr. in making the shipboard core description. K. O. Emery reviewed the manuscript and made many helpful suggestions. Special thanks are due to W. Bogert, who as drilling advisor was responsible for much of the success of the coring operation. The work reported in this paper was supported by the National Science Foundation under grant GP-4233.

BIBLIOGRAPHY

- Dunham, R. J., 1962. Classification of carbonate rocks according to depositional texture: in Am. Assoc. Petrol. Geol. Mem. 1, p. 108-121.
- Ginsburg, R. N., 1956. Environmental relationships of grain size and constituent particles in some south Florida carbonate sediments: Am. Assoc. Petrol. Geol., v. 40, p. 2384-2427.
- Goddard, E. N., Trask, P. D., DeFord, R. K. and Rove, O. N., 1948. Rock Color Chart: National Research Council.
- Grabau, A. W., 1904. On the classification of sedimentary rocks: Am. Geologist, v. 33, p. 228-247.
- Ham, W. E., 1962. Classification of carbonate rocks a symposium: Am. Assoc. Petrol. Geol. Mem. 1, 279 p.
- Maher, J. C., 1964. The composite interpretive method of logging drill cuttings: Okla. Geol. Survey Guidebook 14, 48 p.
- McKee, E. D. and Weir, G. W., 1953. Terminology for stratification and cross-stratification: Geol. Soc. Am. Bull., v. 64, p. 381-390.
- Riedel, W. R., Ladd, H. S., Tracey, J. I. Jr., and Bramlette, M. N., 1961. Preliminary drilling phase of Mohole project II. Summary of coring operations: Am. Assoc. Petrol. Geol. Bull., v. 45, p. 1793-1798.
- Rusnak, G. A., and Luft, S. J., 1963. A suggested outline for megascopic description of marine sedimentary cores: Univ. of Miami Inst. of Marine Sci. Rpt. 63-1, 20 p.
- Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios: Jour. Sed. Petrology, v. 24, p. 151-158.

APPENDIX A

CRUISE NARRATIVE

17 April

At 1200 hours the M/V CALDRILL I was turned over to the JOIDES Blake Plateau Expedition with the signing of official papers by the chief scientist for JOIDES and the master of the vessel. Scientific supplies and drilling equipment were loaded aboard by JOIDES and CALDRILL personnel until late evening. The core storage refrigerator and logging winch were secured at this time. New wire was wound on several winches, including a small air winch holding approximately 1500 meters of wire rope for hydrographic work.

18 April

The remaining scientific equipment was loaded, and all JOIDES personnel moved aboard. Logging equipment was checked out and the last of the drilling equipment placed aboard and secured. Difficulties arose with the Loran navigation unit, which could not be repaired on this date (Easter Sunday). An oil leak on the port forward harbormaster unit was repaired. The core storage refrigerator motor was removed for rewinding purposes. Both this motor and the Loran unit were left ashore for repair, to be brought out by the crew boat H. J. W. FAY, which arrived from Miami late on this date. The ship got under way and departed the Jacksonville pier at 1800 hours, proceeding down-river and out to position 2.

This position was chosen over position 1 in that it was somewhat deeper and would allow the position-keeping equipment to be checked more easily.

19 April

At 0200 a position south of position 2 was reached, and dart cores were taken with the Sandline winch while the harbormaster units were being lowered into position. A Van Veen bottom-grab sample taken at this location indicated shell fragments and much calcareous debris. At 0930 the position-keeping equipment was in operation, and preparations were under way to assemble the drill string, using a Hycalog diamond drill bit. The drill string touched bottom at 1130 at a depth of 42 meters. Problems with the circulating pump delayed the spudding-in
operation. Considerable sticking and other delays ensued due to loss of circulation and pump troubles. A total of 65 feet (20 meters) was drilled with no core recovery in the shelly, unconsolidated sand. During this time, a bathythermograph observation was made and bottom photographs taken with an underwater camera. The drill string was taken up, and the ship was moved a few tenths of a mile to the north to begin another hole using different equipment. By 2130 drilling had begun with a Reed roller bit in place of the diamond bit. Progress was good, and there was a minimum of sticking. Fairly firm material was encountered about 10 meters beneath the ocean bottom.

20 April

Drilling continued during the night with very poor core recovery. A few fragments of material suggested the beginning of the Miocene beds at approximately 35 meters. At 0815 a change to finer-grained sediment permitted good core returns between about 60-70 meters in material which was identified as Miocene. From about 0900 to 1500 the drilling operation was shut down in order to effect repairs on the draw works and the hydraulic drive for the power swivel. Following these repairs, drilling continued with good recovery and by midnight had reached about 135 meters beneath the ocean bottom.

21 April

By 0800 the drill bit had penetrated to 170 meters, and core recovery remained good. At 0900 sticking of the drill string became serious, and we were unable either to circulate drilling fluid or to rotate the drill string. By 1200 circulation and drilling were still impossible, and it was decided to make a gamma-ray log measurement inside the drill tubing down to the maximum penetration of 173 meters. Because explosive perforating charges for downhole cutting of the pipe had not arrived before our departure from Jacksonville, it was necessary to back off the drill string in an attempt to recover some of the equipment. At 1600 hours this maneuver was under-The results were unsuccessful, and only two joints of taken. tubing were recovered; 19 joints, plus one drill collar, one cross-over sub, one bumper sub, and the Reed core barrel and bit were lost in the hole.

At 1630 hours we got under way for a location 40 miles east of site 6 (Fig. 1), estimated to be nearly in the Gulf Stream axis with a depth of about 600 meters. We arrived on position at 2130 hours and began to lower the taut-line position-keeping equipment. The current at this location was estimated at greater than 154 cm/sec (3 kts). Two problems were recognized: the taut line with only 300 lbs. of line tension could not keep a vertical wire angle in the presence of such a strong current, and the harbormaster units were drawing more than 100% of their rated electrical power, thus taxing the ship's equipment beyond safe limits. It was therefore decided to seek a drilling location farther eastward.

22 April

At 0430 a position was reached roughly 20 miles east of the previous position, but here the current, although a little less, was still far too vigorous to attempt to do any work. The wire angle on the taut line was still far from vertical, and it was determined to move still farther to the east and away from the Gulf Stream axis.

Another unsuccessful attempt was made to use the tautwire positioning equipment at a location close to site 6. Conditions here, although less vigorous than those previously observed, appeared to be marginal for our equipment. At this location currents of about 100 cm/sec (2 kts) were running toward the north. We took a Van Veen bottom-grab sample and a dart core, using the wire-line winch. It was then resolved to run west to position 5 and to modify the taut-wire equipment for greater tension or less drag.

An experiment, using the existing set-up with a 3/32" wire in place of the 3/16" wire to cut down drag, was unsuccessful because the thinner wire broke in trying to pick up the 250-kg anchor weight that was used. Although the drag of the 3/32" wire was calculated to be only half that of the 3/16" wire, its marginal strength required us to attempt a different modification. The mechanical system of the taut line consisted of a 4-part pulley-block arrangement with a counterweight of roughly 600 kg. Using an anchor of sufficient weight, it was possible with this counterweight system to maintain a constant line tension on the wire to the ocean bottom of about 150 kg. The maximum vertical travel of this counterweight-block assembly was approximately 7 meters, which allowed a total of 27 meters of wire length accumulation. Ιt was decided to reduce the 4-part pulley system to a 2-part system and to increase the counterweight to 650 kg. This allowed the line tension to be approximately 325 kg, and consequently extra anchor weights were added to a total of about 425 kg. While this change reduced the total accumulation of

the counterweight system by half (approximately 13 meters), this was not considered serious since the position-keeping equipment was capable of holding the ship within 3% of the ocean depth above the hole. Even in 1000-meters depth (the deepest anticipated) we would be able to move laterally about 20% of the water depth before using more than half of the available accumulation. Special wire of the same strength as the taut wire, but having a smaller diameter (swaged construction), was requested by radio telephone.

By 1500 hours the modifications were completed, and the ship arrived at position 5. The current conditions here appeared to be much like those at the attempted position 6; however, in this location the newly modified taut line was able to perform quite well. A bottom-grab sample was taken and showed coarse, shelly silt. The drill string, using a Reed roller bit, spudded-in at 2015 in a depth of 190 meters for hole 5. Below 25-30 feet into the bottom, core recovery became quite good. However, after about 33 meters of penetration it was necessary to pull out of the hole quickly due to strong currents which were hitting the ship broadside. The problem here was ship's electrical power; the electrically driven harbormaster units were drawing excessive current. With the drill string raised, the ship was turned bow into the current to reduce the forces on the ship's hull. We then spudded-in for hole 5a and began to drill back to the depth where we had stopped coring.

A current meter reading at the surface at 2100 hours revealed a surface current of approximately 100 cm/sec (2 kts) toward the north.

23 April

At 0030 we had drilled back to about 30 meters and had begun to core. At 0430 we had gone into a sandy limestone. At a depth of approximately 67 meters the inner core barrel became stuck at the bottom of the drill string, and it was necessary to pull out to retrieve the barrel. This condition was caused by slumping of sediment down the walls of the uncased hole, creating backflow through the drill tubing, which deposited debris in and around the inner core barrel. To stop the backflow of water while pulling out and replacing the inner core barrel, a wire-line stripper was ordered by radio telephone.

At 0920 we again spudded-in for hole 5b, this time with a Hycalog diamond bit. Current measurements showed a current of approximately 100 cm/sec (2 kts) toward the north. These measurements were made by the chip-log method, using oranges thrown off at the bow of the ship and timed until passing the stern, a distance of 56.3 meters. This proved to be a convenient way to measure surface current while the ship was facing into the stream flow. A couple of dye pellets, inserted beneath the skin of the orange, allowed comparison of the rate of speed of the crange and the dyed water (a rate which was identical) and also provided better visibility by creating a bright yellow spot at the sea surface.

At 1250 hours a hard formation was encountered at 67 meters below the bottom. Drilling continued in this material at a rate of one joint of tubing per hour (10 m/hr). Between 1530-1600 hours a bathythermograph measurement was taken and lowering was made with an in situ deck-reading salinometer. At 1640 hours the crew boat arrived, bringing observers from Scripps Institution of Gceanography, the University of Washington, and the U. S. Geological Survey, all of whom came for a single day's visit. At 2100 drilling had reached a depth of 100 meters and was in Oligocene formations consisting of interbedded hard and soft clays. At approximately this depth trouble again occurred in retrieving the inner core barrel, and it was necessary to pull out the drill string. As before, sand had accumulated above the inner core barrel. The drill string was again made up using a roller bit, and we spudded-in about midnight for hole 5c.

24 April

By 0730 we had drilled back to the depth where coring had ceased with the previous string. A chip-log current measurement made at 1000 hours revealed a current of 134 cm/sec (2.6 kts) toward the north. Between 1430-1500 hours a bottom current reading was taken using an inclinometer current meter. This measurement, 30 centimeters above the bottom, revealed a current of 7.5 cm/sec (0.1 kts) in the direction towards the north-northwest. Drilling continued through the day with good recovery. At 2130 the strong currents and rising winds required that the harbormasters draw maximum load on the electrical system in order to maintain position. Under these conditions the forward starboard unit heated up dangerously, activating its thermal overload relay, which removed it from operation. The trouble was caused mainly by sargasso weed sticking around the intake for the heat exchanger on this unit. For about thirty minutes, while the unit was being put back into operation, it was necessary to use manual control in the absence of automatic computer control. By midnight the drilling

had reached 172 meters and core recovery was good.

25 April

At 0900 drilling continued at a good rate and with good core recovery. In order to keep the slumping to a minimum, we were spotting mud, a few barrels at a time, upon each recovery of the inner core barrel. A bathythermograph measurement was taken at 0915. At 1000 hours a chip-log surface current measurement showed a current of 72 cm/sec (1.4 kts) toward the north.

At 0900 coring reached below 215 meters and core recovery remained good. To speed the coring operation, it was decided to drill 20 feet and core 10 feet for each 30-foot pipe joint. Fuel, water and mud tanks, located deep in the hull, were becoming depleted, which resulted in progressively raising the center of gravity of the ship and lessening its roll stability. Some delays were experienced during the afternoon because of repairs to the mud pump. At 1830 an angle measurement inside the drill string at 204 meters in the hole revealed that the angle was 6° from the vertical. Drilling and coring were continued to 245 meters, where we stopped in the upper Eocene. At 2100 a gamma-ray log was made inside the drill string down to 245 meters. Later the drill string was removed to just below the top of the hole, and electric logging and velocity logging were attempted unsuccessfully.

26 April

At 0100 the wind velocities had risen considerably and currents were running strong. The logging operations had been completed, and the drill tubing was being brought aboard. Retrieval of the pipe joints was hazardous due to the strong current, which bent the drill string as it passed through the moon pool. Several joints of pipe had to be laid aside due to bending that took place during this recovery. By 0500 all drilling equipment had been laid down and the ship headed for Jacksonville, where it arrived at 2000 hours.

27 April

Additional drill tubing, base plates, casing pipe (for drilling in the coarse, sandy shelf sediment), and ship's supplies were loaded on. Fuel, water and mud tanks were replenished, and at 2300 we sailed from Jacksonville.

28 April

At 0330 the ship arrived at location 1, and preparation was made for assembling the bottom plate and casing pipe. The casing consisted of three 20-foot joints of 8-5/8" o.d. pipe. The base plate had four railroad wheels (one at each corner), used as weights, in addition to its heavy steel framework and guide funnel at the center. Guide lines from the ship to the base plate permitted hole re-entry if necessary. This equipment was lowered at the same time as the drill string, which spudded-in at 1500 hours for hole 1. An underwater camera station was taken during the afternoon and bottom grab samples obtained, which revealed gray quartz sand and shell fragments. The in situ salinometer was used, and a bathythermograph measurement was taken. A bottom current measurement showed less than 10 cm/sec (0.2 kts) toward the northnorthwest.

By 1720 hours the drill had reached 20 meters below the sea floor and was in Miocene sediment.

29 April

The drilling and core recovery proceeded through the night at such a rapid rate that it was necessary to purposely slow down the operation in order to keep up with core sampling, description, and packaging. The casing was very effective in preventing slumping at this hole, and there was a minimum of sticking and backflow. By midnight penetration had reached greater than 100 meters, and core recovery had been about 90% from the beginning of this operation. We had penetrated a rather thin section of Oligocene by 108 meters and began to drill the Ocala Limestone, a much harder formation.

While drilling in the upper part of the Ocala, artesian flow of fresh water was observed. Although no packers were used to seal off the aquifer, a head of 30-35 feet above the sea surface was measured. Temperature measurements were taken of the rapidly flowing water, and it was sampled for later chemical analysis.

At about 0430 high winds and strong currents broadside to the ship caused excessive power drain by the harbormaster units. It was impossible to turn the ship to relieve the situation because of the four tugger lines attached to the base plate. Therefore, it was necessary to bring up the equipment. Heavy sea conditions resulted in considerable bent tubing. At 1030 a bathythermograph measurement was taken, and at 1300 a salinometer profile was run. At 1400 a chip-log measurement of surface current was made, revealing a current toward the east at 26 cm/sec (0.5 kts). At 1600 hours the base-plate equipment had been repaired, and we spudded-in for hole la at a position a few tenths of a mile from our first hole. At this time a surface parachute drogue was put out and followed by radar. This drogue used a 16-foot diameter parachute and was observed to move westward and then southward over a period of 8 hours at a rate between 20-35 cm/sec (0.4-0.7 kts).

30 April

By 0430 we had drilled down to 210 meters. At 0600 Worzel, Drake and Gibbon from Lamont came aboard for a oneday visit, arriving in time to witness considerable fresh water flow from the aquifer in the Ocala Limestone and further flow from a level between 250-275 meters in the Claiborne formation; a 3-gallon sample of this water was obtained for chemical studies. At 277 meters drilling was stopped, based on assumptions that the middle Eocene would extend to a considerable distance below this level, and that correlations with nearby land wells were already clear.

A gamma-ray log was run through the tubing; an electric log was attempted with no success. A sound-velocity log with a down-hole hydrophone was also attempted, but the hydrophone malfunctioned and no records were obtained.

l May

The attempts at logging were abandoned at 0130, the tools were all recovered by 0700, and then the ship turned toward Jacksonville, where it arrived at 1100 hours. In port the bent pipe was unloaded for straightening, and important electronic equipment was obtained. All cores collected up to this time (approximately 1000 linear feet) were unloaded and placed in refrigerated storage ashore. Fuel and water were topped off, and departure was made at 1430 hours with an expectation of staying out for approximately one week. Upon passing the sea buoy, an echo sounder run was begun toward position 3, about 250 miles southeast.

2 May

Position 3 was reached at 1745 hours. At 1930 the taut line was set, and a 4-foot dart core was obtained, revealing

tan globigerina ooze. The depth at this position was 1032 meters, the greatest depth to which the taut-wire positioning system had ever been used.

3 May

We spudded-in at position 3 at 0130. It was necessary, however, to pull back the drill string after a few minutes due to uncertainties about ship's drift at this location. In order to insure that we did not drag anchor, we added additional weights down the taut wire and reset the equipment. Following this experience we placed an indicator in the counterweight accumulator to show whether the accumulator might be slipping to one end or another of its travel due to uncontrolled ship's drift. Hole 3 was spudded into finally at 0430, and coring began in globigerina ooze.

At 0819 a bathythermograph observation was made. At 1100 a current chip-log surface measurement revealed a current of about 35 cm/sec (0.7 kts) with considerable variability in direction. A parachute drogue was deployed at 1600 at a depth of 366 meters, revealing a current toward the northwest at approximately 154 cm/sec (3 kts). Core recovery was good, and by 2230 we were 140 meters into the bottom. The globigerina ooze at this site held up extremely well while drilling, and there was no need for spotting mud to preserve the hole; salt water circulation was quite adequate to maintain good drilling conditions. No difficulties were encountered in positionkeeping in this 1000-meter depth. Tidal changes of current direction were observed, and it was necessary to change the ship's heading occasionally as much as 60° , but in such a depth it did not create a problem between the taut wire and the drill string.

4 May

At about 0530 at a depth of 152 meters chert beds were encountered, and drilling rates dropped greatly. Wearing-out of the hard-formation roller bit in the chert made drilling progressively slower. Further, wearing-out of the hole-gauging cutters created an increasingly smaller hole and caused high torque and sticking of the drilling tools. These conditions made it necessary to cease drilling at 178 meters, still in the chert and ooze of the lower Eocene. At 1700 hours the core tubing was withdrawn to near the top of the hole, mud was pumped, and gamma-ray logging was begun. Another attempt at velocity logging was unsuccessful, and the tools were withdrawn and laid down by 1830 hours.

5 May

At 0030 we began to redrill hole 3a with a diamond bit. No coring was contemplated until the depth achieved with the roller bit on the previous day was reached. The drilling operation was stopped several times during the morning because of pump repairs. At 1200 hours coring was begun at a depth of 170 meters. At 1430, after coring only a few meters, a failure occurred in the computer portion of the automatic positioning equipment, and the ship drifted off dangerously The situation was partially corrected by hand from position. control, but the anchor had dragged an unknown distance from its original position, and hence the ship was displaced above the hole. Reluctantly, tubing was brought up at about one joint per minute until it was all stacked at about 1700 hours. No pipe was bent or tools lost in this operation. The diamond bit appeared to be about half used up after penetrating through about 25 meters of interbedded chert. It was decided not to redrill this hole a third time, because it would have taken at least 12 hours to obtain only an additional 30 meters of core, after which the diamond bit would have been worn out. Considerable difficulty was encountered in bringing back the tautline anchor, but this was aboard by 2100 hours.

6 May

The conditions at a location between position 3 and 6 were tested on the run back toward Jacksonville. At one position (29°24.5'N, 78°36'W) currents were too strong to permit position-keeping. A chip-log current measurement revealed a surface velocity of 75 cm/sec (1.5 kts) toward the south at this location, where the depth was about 800 meters. Although not as strong as surface currents at some sites already worked, this appeared to be a deep-reaching current, which created severe bending in the drill string after about 100 meters of tubing had been put in the water. This site was abandoned, and the ship proceeded towards position 6, beginning at about 1800 hours. Site 6 was considered important in that a Woods Hole Oceanographic Institution seismic profile revealed a shallow reflector nearly intersecting the ocean bottom near this location.

7 May

At 0005 hours we arrived at position 6 and followed the ship's drift on Loran in order to estimate the current conditions. At 0100 the taut-line was put down, and at 0200 the automatic positioning had been set in operation. At 0245 all

tools were in the water, and we spudded-in at 0522 in an ocean depth of 805 meters for hole 6. The spudding-in operation indicated a hard bottom, and a small amount of manganese oxide cemented ooze was recovered in the first core. We began drilling almost immediately in Oligocene sediment, which continued down to 55 meters. At 1130 hours surface current measurements were 47 cm/sec (0.9 kts) toward the north. At 1400 two Van Veen bottom-grab samples were taken, revealing hard manganese oxide cemented ooze. At 1500 hours the crew boat arrived from Jacksonville, bringing additional weights for our counterweight constant-tensioning device. At 1600 hours drilling had reached to about 100 meters and was rather slow. Considerable yawing of the ship was experienced, probably due to the large amount of drag affecting the drill string as compared to the drag on the ship's hull. It would probably have stabilized somewhat if the ship had been laid broadside to the current; such a heading with respect to the current would have put a greater percentage of the drag on the ship and, hence, under direct control of the positioning equipment. Core recovery was poor, and the sensing of the drill bit on bottom was difficult due to the extreme bowing of the drill string in the presence of the strong and deep-reaching current. These problems were increased by the erratic swinging of the ship.

At about 100 meters chert layers were encountered, and the drilling slowed down even further. Below 100 meters the interbedded chert became more like massive chert, and the rate of penetration decreased still further. At about 118 meters we broke through the chert and were in softer ooze, identified as Paleocene. While drilling our first pipe joint in the Paleocene ooze, a short 6-foot pup joint (used between the uppermost length of tubing and the power swivel) broke while turning in the spyder or guide above the moon pool. This joint and the other tubing in the string had been forced against one side of the spyder during much of the drilling due to strong currents. In particular, this joint had been work-hardened, because it was repeatedly brought into the spyder after the lowering of each joint of pipe. Obviously, in conditions such as this, a tapered shoe is needed in order to spread the stress over a greater area. The loss included all tools plus 95 joints of tubing. Our capability of continuing operations in deep water was in jeopardy at this point; we had 67 joints of tubing aboard with 53 joints back in Jacksonville for a total of somewhat more than 4000 feet of drill tubing. It was determined to return to Jacksonville immediately.

8 May

At 1500 hours the CALDRILL I was tied up and began to load

pipe and mix mud with the expectation of leaving the following morning.

9 May

۰.

Delays in the arrival of food and fuel prevented departure until 1730 on this date.

10 May

Redrilling and deepening of site 2 was attempted next. By 0115 the harbormasters had been put down and the computer and position-keeping equipment stabilized at site 2 in a depth of 46 meters. The base plate and casing pipe were lowered, and the drill string was spudded-in at 0445 for hole 2b. At 1030 alternate coring and drilling had penetrated about 150 meters into the ocean sediment. At 1230 hours we had reached 182 meters of penetration and had tested for fresh water without success.

ll May

Drilling and coring continued during the night and stopped at 0130 at a depth of 320 meters in beds of middle Eocene age. It did not seem feasible to drill through the remaining Eocene section (estimated to be another 300 meters). Therefore, drilling was stopped at this time. A gamma-ray log was taken through the pipe and the pipe withdrawn to near the top of the hole. A velocity log was successfully taken between about 240 and 60 meters; shot arrivals were recorded at 15-meter intervals in the hole. This work was completed by 1030, and after drill string retrieval, the ship headed for position 4.

12 May

At 0030 hours an attempt to hold the ship at a location about 30 miles to the west of position 4 was not successful due to strenuous currents. At 0730 the taut-wire and positioning equipment were set up in a depth of 885 meters. The diamond bit was used and spudded-in at 1050 for hole 4. At 1115 hours a Van Veen bottom-grab sample was taken. Little or no core was obtained through the afternoon, and the penetration rate was very slow. After 90 meters of penetration, sticking developed, and at 2130 we began to pull out of the hole.

13 May

ŧ

All tools were taken in and laid down by 0030. The diamond bit was found to be in good condition, and it was difficult to understand why the drilling rate had been so The roller bit and equipment were set up and lowered poor. to the bottom, but immediately became entangled with the taut wire and had to be brought back. This was called hole 4a since a small sample of bottom sediment was obtained when the drill bit touched bottom. The taut-wire anchor was replaced at a position about a mile from the original spot, and we again set up for drilling. At 1105 we spudded-in at the new position in a depth of 892 meters for hole 4b. In this drill string a third drill collar was used in order to create greater bit weight.

14 May

During the day strong winds (20 kts) from the north helped to create a choppy sea against a current to the north estimated at 35 cm/sec (0.7 kts). At 0630 the drill reached the lower Paleocene (88 meters), attended by good recovery throughout this hole. Hard siliceous limestone from the lower Eocene (80 meters downward) made for very slow drilling during the day. Drilling recovery was commensurately poor, roughly 1/2-meter per 3-meter core barrel, and the drilling rate was a little under 3 m/hr.

At 0900 a bathythermograph measurement was made, and at 0930 a chip-log measurement showed surface current to be 35 cm/sec (0.7 kts) to the north-northwest. At 1030 a 28-foot parachute drogue was launched at a level of 380 meters and was observed to move at 20 cm/sec (0.4 kts) toward the northnortheast. Sticking and slumping became a problem as the drilling progressed, and it was necessary to spot 6-8 barrels of mud for each core taken. The mud was required after each core retrieval to prevent collapse of the walls in the upper portion of the hole. However, the hole-gauging teeth on the roller bit did not seem to have degraded since we did not experience high torque and sticking in the hole.

15 May

At 0100 hours our mud supply was exhausted except for 50 barrels saved for logging the hole. The final depth was 178 meters. The hole was filled with mud and logging was attempted, but a failure in the logging cable prevented logging of this hole. By 1730 all tools were recovered, and the ship proceeded toward Jacksonville.

16 May

We arrived in port at 2000 hours.

<u>17 May</u>

By 1200 hours all scientific equipment had been removed from the ship, and papers were signed releasing the vessel back to the owner.

	<u></u>	Jan		APPENDIX B.
	PR	ELIM	INARY	JOIDES CORE LOG-HOLE
	ARE	EA: Inne:	r continent	al shelf east of Jacksonville, Florida
	LAT	Г. 30° 3	3'N	LONG. 81°00'W DATE 4/28 to 5/1 1965
	LOG	GER(S)	Schlee,	Wait, Frothingham DEPTH 25 m
	REN	ARKS: betw		drill of hole with a slight movement of ship oles; first hole achieved a depth of 135.6 m.
	Classification	Graphic	Color Rec	Deseriation
o fi	Classification m - SAND	Log		Description fn to md grn, w srt, qtzs, shly, uncons; qtz-fld,
-	(surface)		5Y5/2 spec	crl to cldy; shl-plcy abu; dk mnrl-scr
-	-			fn to md grn, slty, qtzs, phos, uncons; phos-abu, as dk gy grns; few frag of ss; stk of wh cl
-	•• ••		10Y4/2	md to fn grn, slty, pry srt, qtzs, calc, msv, sl
-	-		10Y4/4	H2S od; qtz-fld; phos and glauc (?)-cm; sh frag-plcy
	-		10Y5/4	fn to md grn, slty, qtzs, calc, msv, uncons, H ₂ S od; F-abu
			2GY4/2	v fn grn, slty, calc, qtzs, phos, strn H ₂ Sod; phos
-	-			and dk mnrls-cm; post Miocene-Miocene boundary at 20.4 m.
1	SILT		5GY3/4	crs grn, sdy, calc, qtzs, phos, cptd, H ₂ S od
-		· · · · · · · · · · · · · · · · · · ·	5GY4/4	sdy, strny calc, phos, mot, plas to cptd, strn H_2S od; F cm to abu
-	-		7.5¥5/2	cly, to sdy calc, fnt not, pt cptd, H ₂ S od; qtz-cm;
100		· · · · · · · · · · · · · · · · · · ·	5Y3/2	<u>F-cm;phos-cm</u> qtzs mic, sl calc, phos, msv, plas to cptd, strn
-	• •			H2S od
_	•	· · · · · · · · ·	1 0Y3/2	mic, qtzs phos, sl calc, msv,plas to cptd; F cm crs to md grn, qtzs, phos mic, sl calc, fnt bdng
-[-	······································	*	and mot, plas to cptd , H2S od; F cm.
 		· · · · · · · · · · · · · · · · · · ·	103740	cly, qtzs, mic, phos, sl calc, fnt mot to t-b, H ₂ S od; 1 inch slty calc phos cl at base of core
	CLAY		10Y4/2	slty qtzs, sl calc, phos, indst bdng to mot, pt
-	- 			cptd to plas, mod H ₂ S od
ŀ	50		10Y4/1	slty, sl phos, sl calc, msv, uncons to cptd, sl H2S od
Ę.	•		10Y5/2	slty, qtzs, mic, sl phos, msv to fnt bdng, v sl H2S od
ł	•		10Y3/2	slty, phos, mot plas to pt cptd, sl H2S od
-	•		10¥4/2	slty, msv to indst lamd cptd, strn H2S od; phos cl ptg near bottom of core
200-				slty, phos. fnt mot. cptd to plas

2 00 ft	. m				Ţ
2002	CLAY		10Y5/1		slty, phos, msv to t-b, cpted to plas, mod H2S od; lower 2½ ft is a sdy phos slt
-	ŠAND		10Y2/2		v fn to fn grn slty, pbly, w, srt, strny phos, calc;
4	-				phos as peb up to 12 mm and sct grns fn grn slty hi phos, fnt mot, uncons, sl H2S od
	-				single piece of md grn phos chty sltst
	-				slty, sl calc, phos, msv to mot, plas to cptd, sl
	CLAY		5Y3/2		H ₂ S od; phos as blk pol grns
4	-		5¥5/2		slty to sdy, sl calc, phos, fnt mot, cptd to plas
-			10Y4/2	a ,	slty, phos, sl calc, msv to irrg mot, plas to cptd
	SILT & SAND -		10Y2/2	ľ	cly to sdy, phos, qtzs, msv to irrg mot, uncons to plas, v sl H ₂ S od; phos grns-fn to md grn and pol
	SILT		7.5¥3⁄2	0	cly, phos, irrg. mot, plas to cptd, sl H ₂ S od
-	CLAY		10Y4/4		phos, fnt to irrg mot, plas to cptd; marked color
-				Ň	changes, slty to sdy.
300-	•		2.5GY 4/2	X	slty, phos, fnt to irrg mot, plas; sct phos peb and
	CLAY TO		10Y4/2	×	sltst imps at top of core slty, phos, irrg mot, plas; sct pel of phos thru
	SAND				core; slty cl at top to slty sd at base
-	SAND		10 Y3/2		slty, phos, calc, uncos to firm; lower 2" is fn grn
-	<u>100</u> 100ze		10Y6/2	×,	phos calc cem ss; Miocene-Oligocene boundary at 99.1 m
-			1010/2 10Y7/2	×	slty, calc, msv, plas; oily od in lower 2' of core
				×	slty, calc, fnt mot, plas to cptd, sl oily od; mod
•	•••		2.5GY 6/2 10Y8/2	Я)	calc mtx calc, fnt mot, plas; v fn grn calc mtx; Oligocene-
-	LIMESTONE	┣╼ ┍╺ ┝╸┍╌┝╴			Upper Eocene boundary at 108.2 m
	SAND	1.1.1.	5Y8/2		biogenic, calcarenitic, grainstone in sd rng; md
•	LIMESTONE	· · · · · · · · · · · · · · · · · · ·		Å.	grn, msv, firm; plcy shl frag up to 30 mm; 20%void calcarenitic, biogenic, md grn, slty, pt cptd; brkn
di	μ. Γ.			×	shl frags, F, cor deb and rx frags; mtx-abu
-				X	biogenic calcarenitic grainstone; md to crs grn. w srt, msv, fri; voids-25%; brkn shl, F, pel
400-	- -		I,	Î٨	NO CORE RECOVERED
_			1		biogenic, calcarenitic, grainstone; v crs grn, mod
-	-	┝┯╾┯╴╴	시 위 '		srt, msv, firm; void-20%; brkn plcy shl, cor same; voids-20-30%; brkn shl frags, pel, Bry, cor,
-			1		same; firm to hd
-		ł	1		NO CORE RECOVERED
-			10Y8/1		biogenic, calcarenitic, grainstone, firm to pt cptd;
	E		-	Ø -	s/intbd sft packstone calcarenitic packstone; voids-10-20%
~	SAND &	Junnin.	1078/1	×	calcarenitic, slty, brkn plcy shl frags, Bryo; intbd
-	OOZE LIMESTONE		2		calc ooze; H2S od biogenic, calcarenitic, grainstone; por, due to sol
-			I		of plcy shl
	- -		1	X	biogenic, calcarenitic, packstone, slty; sl H2S od; mtx-abu
			1		calcarenitic, biogenic, grainstone; F, Bryo and plcy shl frags
•	-150	<u> </u>	1		NO CORE RECOVERED
500-	<u>k</u>	L	I	×.	

J-l

	PR	ELIM	INAF	7 <i>Y</i>	JOIDES CORE LOG-HOLE 2
	ARE	E A: Ou	iter part	: of	continental shelf east of Jacksonville, Florida
	`LA1	1. 30°	21' N 20' N		LONG. 80° 20' W DATE 4/18-21 and 5/10-11, 1965
		GER(S)	Schle	e,	Frothingham, Manheim DEPTH 42, 46 m
	REN	MARKS:	from	173	rilled twice; the second time it was deepened .4 m to 320.2 m t section
		Graphiç		1	
o fi	Classification	Log	Color	Rec	
	SAND		5Y5/2 spec		crs grn, mod srt, qtzs, shly uncons; qtz-md to crs-grn, sbang to sbrd, clr, to iron oxide stn, v abu; skl carbonate-abu, F, plcy shl frags; pel or ool-cm, gy to blk; glauc-tr
	GRAVEL		1.51//4		pebs and shl frags (4-20 mm) and rx frags; shl frags-plcy brkn, dull; rx frags-ss, qtzs md grn calc cem; ls-calcarenite, grainstone, dk gy (N-6), phos pebs of rx frags (10-40 mm)- _{SS} , crs to v crs grn, qtzs, shly; calc cem; rnd qtz and shl frags pebs (10-40 mm) of shl frags-abu; and ss-fld, md grn, w srt, qtzs, shly
- 100			spec		crs to v crs grn, mod srt, sbang to sbrd, qtzs, calc, uncons; qtz-v abu, md to v crs grn, clr; shl frags-abu plcy, md grn to grnl; rx frags-scr; pel-scr similar to previous interval; post Miocene- Miocene boundary at 48.8 m
2 00	-50 GRAVEL	N 2022			v crs grn, fn sd to fn grv, pry srt, uncons; qtz- v abu, v crs grn, sbang to sbrd; skl carbonate- abu, plcy shl, F, Bry, gstr shl frags; rx frags and pel-abu, qtzs calc ss and dk gy pel calcirudaceous (4-16 mm); shl frags-abu, plcy brkn fresh, w srt; rx frags-fld, ss, calc qtzs, fn to md grn

*

2	00 <u>ft</u>	RAVEL	°V~V~%	k	a	s on the previous page
	£		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	Ē	
	F			X		
	Ļ		~~~V	X		
	6	SILT		.5GY 🕅	s	dy, mod srt, qtzs, calc, msvto fnt mot, uncons
	÷	- !	<u> </u>	6/4	F	- cm; s/qtz sd; glauc-tr, strn H ₂ S od
			·-··			
	-t					
	ŀ	-		××	/ ,	sdy.gtzs. calc. phos. msy to fnt mot. plas to u
	1	-	· · · · · · · · · · · · · · · · · · ·	1 0Y5/2		sdy,qtzs, calc, phos, msv to fnt mot, plas to up cons; F-cm to abu; qtz-cm, v fn grn; strn H2Sod ohos - dk gy crpxl pebs; upper Miocene-lower Miocene boundary at 79.2m
	ļ	-	1			Miocene boundary at 79.2m
]	SILT	·····	7.5Y4/4		sdy (v fn grn), calc, msv to fnt mot, cptd
		-	<u>`````````````````````````````````````</u>			slty, calc, sl phos, msv to fnt mot, cptu
		CLAY				-
	4	•		10Y4/4 7.5Y5/4		qtz-tr; F-cm; oily od
	t	_		•		slty , calc, phos, msv to mot, cptd, oily od; ph
	f	-		10Y5/2		sca grnl and pebs, dk gy; sd-tr
ŕ	00-	•			L 1-	slty, msv to fnt mot, plas to pt cptd
ు		•				same as before; phos-cm as sca dk grns
	_	-				slty, calc, phos, msv to indst lam, plas to cptd
	-	•		Ç		F-scr to cm; phos cm as sca grns (sd to peb) pol
	-	-				NO CORE RECOVERED- slty cl and phos peb in catcher
		100				
	-	CLAY		10Y5/2		slty, msv to fnt lamd, plas to pt cptd; F-sca to a
		~			VI 77	NO CORE RECOVERED-catcher plugged by ss and
				10Y4/2		shl frags
	-			1014/2	ſΓ	slty, msv to lamd, cptd; F-scr; phos-scr, as bl
					4-1	pol grns
	-					slty, phos, mot to msv (pt cptd to crumbly); pho blk sbrd grns, 12 mm or less in size, abu in upp
		7		10Y3/2		2 feet; scr at base
	-	-		2 4		slty, msv to indst lamd, pt cptd
		- -		10Y4/2		same as before; phos, plas
	-	-			1 k	NO CORE RECOVERED
•	-	•			⊿_/	slty, phos, msv to lamd, plas to pt cptd; lower
	•					Miocene -Oligocene, boundary at 121.3m
4	400—	CLAY	<u> </u>			calc, msv to fnt bd, pt cptd to crumbly; phos-t
· .						
	ī	D OZE	\//////////////////////////////////////	10Y6/2		slty to cly, calc, phos, fnt bd and mot, plas to
		Ł				pt cptd.
	-	ŀ -				slty, calc, msv, plas to crumbly; qtz-as slt, cr
	-	F			8	sl slty, strn calc, msv, sl plas to crumbly
		F			\backslash	
	-	Ł		10Y5/2	X	sl slty, v calc, msv to fnt mot, plas to crumbly
		┝				
	•	F	<i>\////////////////////////////////////</i>	10Y6/2		same as above; msv to fnt lam; phos-tr
,		j				
	_	-		10Y5/2		slty, v calc, msv to fnt lamd, plas to cptd
		ł				same as before; cptd, fnt mot and lamd
		F		1 0Y6/2		sl slty, v calc, msv to fnt lamd, sl plas
				7.5Y5/4		calc, cly, impure msv to mot to fnt lamd, cptd,
		OOZE &		1 [']		oily od: F-abu; phos-tr ls-packstone. glauc. m
		L 'IMESTON		5Y8/2	X	oily od; F-abu; phos-tr ls-packstone, glauc, ms hd to firm; Oligocene-Upper Eocene boundary at 149.4 m
	500-					149.4 M

J-2

J-2

f+	~					J
80 0 <u>ft</u>	F 1			त्र		7
_	- 1			X	NO CORE RECOVERED	
•				X		
-	-250 SAND		1 01 10 /1		biogenic, calcarenitic, slty, mot, µt cptd to fri;	-
	SAND	////	10 Y 8/1	×	mtx- 30-40%; shl frags-brkn (up to 8 mm); pel;	
-	LIMESTON		spec		Ech; glauc-tr	
	LIMESION.			(k	biogenic, calcarenite, md grn (frags up to 10 mm),	-
-	-			8		
	LIMESTONE		10 Y 8/2		mod to pry srt, glauc, carb, msv, firm to hd, oily od; carb-blk oily flk; Alg; shl-brkn plcy frags; mtx	
•	&_OOZE		,		biogenic, slty packstone, glauc, msv to fntly lam,	
-	-			Å	F-abu; Alg	
	LIMESTONE		5Y7/2	8/		
-	<u>-</u>			X	<u>ooze-slty, calc, msv</u> biogenic, calcarenitic, packstone, v in grn sd to	
				8-	crs slt, mod srt, msv, hd to firm; glauc (?)	
-	OOZE			R -	cly, biogenic, calcilutaceous, slty, msv, mic crumbly to plas; is imps	
				8/	biogenic, slty packstone, msv, firm to cptd, sl	-
	LIMESTONE			Ø.	H_2S od; glauc-lmps of v fn grn agrs	
000-	E					-
900-	Ţ.		1	×/	biogenic, sdy to slty packstone, glauc, msv, firm;	;
-	<u>F</u>			X	glauc-scr, as sm cluster agrs	
	-			X		
	-		7.5Y7/2		biogenic, calcarenitic, packstone, crs slt rng, ms	V
	Ł	┠┱┘┬┶┈			firm to pt cptd; F-cm; sca glauc, mod srt	
	F		7.5Y8/2		biogenic, calcarenitic, grainstone to packstone,	
•	-	┟┵┑┶┯┙	/ _	8	fn sd to crs slt rng, msv, firm to cptd; glauc	
				X	clusters, tr; carb-sca blk flk	
•	1			8	biogenic, calcarenitic, grainstone to packstone, v	
	F			8	fn grn, w srt, msv, por, firm to pt cptd; glauc-tr,	
					agr clumps; calc frags-Alg	ł
	LIMESTONE		10Y7/2	8	ls-md grn, biogenic, calcarenitic, grainstone, gla	
	-& CLAY		5GY5/2		cl-cal, glauc, plas to crumbly; glauc-v abu, md	
		┝╍╪╼╍┾╼╍	N-9		grn Upper Eocene-Middle Eocene boundary at 298.8 m	n
	LIMESTON		2.5Y8/2	8	fn gr biogenic, calcarenitic, grainstone, w srt,	٦
			1	Ø	dolic, msv, hd, vug; dol-intstl cem; sca glauc-tr	
1000-	LIMESTON	╠╧╱╤┼╌┰╴	2.5Y9/4	Ø-	biogenic, calcarenitic, grainstone, dolic, por,	1
000-			5GY6/1		msv. hd; carb	
				Ŕ	dol-calc, msv, glauc, hd	
	F	$4 - \overline{2}$	5Y8/2	1	biogenic, calcarenite, fn to crs grn, w srt, dolic,	-1
				Ŕ.	msv, hd; F-cm; pel-abu	
	POLOMITE		2.5Y7/4	K-	biogenic, calcarenitic, md grn, w srt, por, msv,	\neg
			spec 5Y7/2	Ŕ	hd; dol-intstl yl fn xls and as filling of bioclastic	
	LIMESTONE	┢┰ᡬ╤┰┷ᡬ		之	frags	
			5Y8/2	Ø	biogenic, calcarenitic, grainstone, md to fn grn,	┥
	<u>}</u> -			[2]		
	-		1	TN.	dolic biogonia colcoronitia grainstono dolia may m	
	Ł			$ \rangle$	biogenic, calcarenitic, grainstone, dolic, msv, po	11
	E				to solid, hd; voids-up to 30%; F; cor and Alg deb;	
	-				shl frags	
	E	1				
	1_				END OF CORE AT 320.2 m	
	F		l l	$\left \right $		
	7	1				
1100-	<u></u>	J	J			-
-					52	

-	PRE	ELIMI	NAR	77	JOIDES CORE LOG-HOLE 3
	ARE	A: Eas	stern ed	ge	of the Blake Plateau east of Cape Kennedy, Fla.
	LAT	. 28° 3	0'N		LONG. 77° 31'W DATE 5/3-5/5, 1965
			Schloo	F	rothingham, and Shuter DEPTH 1032 m
				·, 1	
	REN	IARKS:			
	Classification	Graphic Log	Color	Rec	Description
0 f t.	- SAND	7.7.7.7	10YR8/2	X	calcarenitic, biogenic, F, slty, md to crs grn,
-		/ / / / / /	10Y7/4		mod srt, uncons; F-fld, yl and wh tests; below
	-	مر مر مر مر مر مر مر		X	upper 5'4" is a sdy biogenic calcilutaceous
-		بر مر کر مر			ooze
-			1 01 -0 /4		
-	- OOZE		10YR8/4	\bigotimes	calcilutaceous, biogenic, sdy, fn to md grn, un- cons; F-v, abu; mtx-40-60%; post Miocene-Mio-
	-			×.	cene boundary at 12.2m
-	-		2.5Y8/2	8	biogenic, calc, slty to sdy, F, fnt bdng to msv,
-	SAND				uncons
	- -	, , , , , , , , , , , , , , , , , , ,		×	biogenic, calcarenitic, slty, F msv, uncons to pt
		////	2.5Y9/ 4		cptd; mtx-20-50%
-	E		ļ		biogenic, fn to md grn, F, msv, uncons; Upper Miocene-Middle Miocene boundary at 22.9m
	-				calcarenitic, biogenic fn to md grn, slty to cly,
-			d t	×,	msv, uncons to pt cptd; F-fld; mtx-abu
100 —		<i>//////</i>	2 500 / 1		same as before; F-fld; becomes cly in lower pt
-	- -	/////	2.5¥8/4		calcarenitic, biogenic, md grn, slty, F, msv, to fnt mot, uncons to pt cptd; mtx-30-40%
	-				same as above; md grn, slty; F-v abu
-		7.7.7.7	2.5Y8/2		biogenic, calcarenitic, slty, fn to md grn, F-cclh(;
-	-	X X X X			msv to fnt mot, pt cptd to uncons; Middle Miocene-
	- -		1		Lower Miocene boundary at 39 m
-	COZE			×	NO CORE RECOVERED biogenic, calcilutaceous to calcarenitic, F-cclh(?),
-	F F				msv to fnt bd, uncons to pt cptd
-	-				same as before; F-v abu; msv to mot; uncons in up-
	-50				per 2/3 and pt cptd in lower 1/3 NO CORE RECOVERED
-	E		2.5Y9/4	1×	biogenic, F-cclh(?), msv to indst mot, uncons to
-			mot		pt cptd; sca carb stk
	F F		2.5 Y 9/2		same as before; sdy, pr srt, msv to mot; intly cptd and uncons zones
-			4.313/4		biogenic, calcilutaceous, sdy, F-cclh(?), fnt bd
2 00-		<u> ////////////////////////////////////</u>	1		53

7-4

Г	00	CI IMAINI	ADV	
	Fri		чл /	JOIDES CORE LOG-HOLE 5
	ARE LA1	Jackson	ville,]	the Florida-Hatteras Continental Slope east of Florida. LONG. 80° 08' W DATE 4/-22-26/65
	LOG	GER(S) Sci	nlee, M	Manheim, Wait, Shuter DEPTH 190 m.
	REN	MARKS: R	edrilled	d three times to achieve depth of 244.8 m.
	Classification	Graphic Log Cold	or Rec	Description
	SILT (surface	1 0Y4		sdy to cly, sl calc, uncons;sd toward base; brkn shl frags; F.
	SAND	10Y spe		biogenic, calcarenitic, v crs grn to fn grv, mod srt, phos,uncons; brkn shl frags, F, Pt; slt mtxpel-phos NO CORE RECOVERED calc, slty to cly, msv,uncons; glauc-scr, dk gn- blk; qtz-abund slt to fn sd; shl frag & F-cm-abu. slty, biogenic, calcarenitic, strn H ₂ S od; F-fld; qtz
بینی بر بر بر بر بر بر بر بر بر بر بر بر بر	· 	1 0 Y		-scr, v fn grn, sbang to sbrd; shl frags of Pt and plcy (to 2 mm); glauc-scr to cm, w srt, in F tests <u>NO CORE RECOVERED</u> biogenic calcarenitic, v fn grn, slty, uncons; F-fld; plcy shl frags-cm, brkn, thn shl up to 2 mm; qtz-cm biogenic calcitutaceous, pry srt, msv w/sca mot;
- - - - - -	SILT	7.5¥	·6/2	F-abu; shl frags-cm; qtz-v fn grn. slty, biogenic calcarenitic, msv, uncons to pt optd H ₂ S od; F, Ost, Ech; glauc-scr to cm, v. fn grn; qtz-abu.
	SAND	1 OY	5/2×	biogenic calcarenitic, slty, msv, uncons, H ₂ S od; glauc-in fn sizes, abu; F, Ost, Ech, gstr- v abu. biogenic calcarenitic, v fn grn, slty mtx, uncons; F, Ost, gstr, brkn shl frags-abu; glauc-cm; qtz-abu biogenic, calcarenitic slty, pry srt, msv, plas to uncons; glauc-abu; shl frags - v abu, brkn, srt,
	SILT		1/4	
	CLAY & SAND -50 SAND	1 OY6		biogenic calcilutaceous, sdy to cly, sca mot, plas to pt_cptd, pt stratified, H2S od; horn corals slty, pt calc, plas to firm;glauc-abu;sd-abu, calc debris;layers of biogenic calcarenitic slty sd;H2S od
- - -	SILT	10Y	5/3	biogenic calcarenitic, slty to cly, H2S od, uncons to plas; glauc-abu;F & shl frag abu;cly mtx in lowrhf
2 00	SAND & SILT	2.5G	Y6/2	calc sdy, msv, plas to frm, H ₂ Sod; fn calc mtx; same as above; irrg mot calcarenitic slty, por, plas to firm; mtx-abu;F-abu

J-5	
200 <u>ft m</u>	7
SAND NO CORE RECOVERED biogenic, calcarenitic, v in grn, slty, mod srt, ms	sv
to irrg mot, uncons to pt cptd; mtx-v abu	
2.5GY slty, impure, phos, calc, t-b to lam, hd, post Mid	0
SILTSTONÉ 5-7/2 Scene-Oligocene boundary at 67.1 m.	
NO CORE RECOVERED	
LIMESTONE impure calcilutaceous, slty, packstone, indst flas	er
10Y6/2 bdng; F- cm; sca plcy shl imp up to 6 mm long	
top 5" is a calcirudite of plcy shl frags (30%) in	
an indur mtx slty calcarenite; remainder is a wacke	9
stone in slt rng, indst lam. impure.	4
Calcilutaceous, impure, slty, wackestone, lam to	
irrg mot, firm; lamd in upper 2/3 of core and mot	
in lower 1/3; dk mnrls - scr	_
calcilutaceous wackestone, slty, lamd to irrg mot,	
cptd to hd; dk mnrls-scr; glauc-tr; lam are sca ar	na
300-1 impure, calcilutaceous slty wackestone, lam to mo	+.
	"
Same as before; pt_cpted to hd; H ₂ S od strn	
10Y6/2 /impure calcilutite-wackestone, slty. msv w/sca	-
bk lam, firm to hd, H ₂ S od strn	
& CLAY 5/2 <u>cl-calc, slty to cly, fnt mot, plas; sca bk lam</u> intbd slty calcilutite, msv, hd to firm and cl,	_
slty, calc, fnt mot to dsct lamd, plas to cptd	
same intbd calcilutite and slty cl	
	r
CLAY & 6/2 intbd ls - calcilutite, wackestone, firm to cptd	<u> </u>
LIMESTONE and cl - calc, slty, plas; tk to t-b	
same as before, tk to t-b, fnt mot	
intbd slty calc cl and msv firm to cptd calcilutit	e;
$\frac{1}{2}$ $\frac{1}$	
400 5/2 same intbd calcilutite-wackestone and slty plas	
= $=$ $=$ $=$ $2.5 GY$ msv cl	
6/2 same as before; cl fnt lamd and borders on being	
- 10Y6/2 a calc ooze	
intbd calcilutite, fn to md slt max size, fnt mot	
and cl, slty, calc; sca plcy shl frags up to 1 cm	
cl-calc, slty, fnt mot, plas, H ₂ S od strn ls-	
wackestone to carbonate mudstone, firm to cptd	
intbd calc plast slty cl and slty msv impure calci-	-
- CLAY &	
SILTSTONE sltst-calc, cly, msv, crumbly to firm	
- CLAY &	
LIMESTONE ONU Intbd slty calc, msv to fnt mot plas cl and calci-	
CRAVEL 10Y6/2 lutaceous slty mot, firm to cotd wackstone CLAY &10Y6/2 brkn shl frags and sltst rx frags - probably slump	
LIMESTONE intbd msv to fnt bd slty firm wackstone and fnt	
-150 mot calc, slty cl; sca brkn plcy shl frags up to 20) mh
same as above; dk mnrls-scr; H2S od strn; msv	
500	

.

J−Ő

64