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Abstract 13 

Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential 14 

to reveal Holocene environmental variations, which likely have consequences for global climate 15 

change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a 16 

small lake (radius~100 m), was used to reconstruct the development of the lake and its catchment as 17 

well as vegetation and summer temperatures over the last 7,100 calibrated years. A multi-proxy 18 

approach was taken including pollen and sedimentological analyses. Our data indicate a gradual 19 

replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of 20 

the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-21 

Holocene summer temperatures until the establishment of modern conditions around 3,000 years ago 22 

is reconstructed based on a regional pollen-climate transfer function. The inference of regional 23 

vegetation changes was compared to local changes in the lake’s catchment. An initial small water 24 

depression occurred from 7,100 to 6,500 cal. years BP. Afterwards, a small lake formed and deepened, 25 
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probably due to thermokarst processes. Although the general trends of local and regional 26 

environmental change match, the lake catchment changes show higher variability. Furthermore, 27 

changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight 28 

that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of 29 

the Holocene. 30 
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1. Introduction 34 

The globally occurring warming trend is especially pronounced in the arctic region as a consequence 35 

of polar amplification (Serreze et al., 2009; Bekryaev et al., 2010; Hinzman et al., 2013) and is 36 

expected to accelerated in the future in northernmost Siberia, particularly around the Taymyr 37 

Peninsula (IPCC, 2013). To substantiate this prediction it is useful to interpret reconstructions from the 38 

past with similar spatial patterns, but few quantitative climate reconstructions are available from 39 

northern Siberia. 40 

Reconstruction of past climate requires an understanding of how the climate proxy is temporally and 41 

spatially related to climate change. From the ongoing environmental changes we already know that the 42 

timing and strength of the various components of the Arctic environmental systems to climate forcing 43 

are extremely variable (Lenton, 2012; Hinzman et al., 2013; Pearson et al., 2013). For example, 44 

hydrological changes of permafrost lakes may be abrupt but the direction of change varies locally, e.g. 45 

rising lake level at one site and increased outflow at a nearby site (Brouchkov et al., 2004; Smith et al., 46 

2005; van Huissteden et al., 2011; Morgenstern et al., 2011; Kanevskiy et al., 2014; Turner et al., 47 

2014). Accordingly, proxies of hydrological changes in thermokarst lakes may respond immediately 48 

but change is not linearly related to climate. On the other hand, the vegetation change in response to 49 

climate may by uniform, i.e. northward species migration and a boreal forest expansion in times of 50 

warming (Naurzbaev and Vaganov; 2000; Elmendorf et al., 2012a, b; Berner et al., 2013; IPCC, 51 
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2013). This response to climate variation might be consistent over larger areas but its reaction can be 52 

masked regionally (Sidorova et al., 2009; Giesecke et al., 2011; Tchebakova and Parfenova, 2012; 53 

Kharuk et al., 2013). At the Siberian treeline, the most reasonable scenarios are leading-edge 54 

vegetation-climate disequilibrium at times of climate warming due to restricted larch migration rates 55 

and trailing-edge disequilibrium because of persistent forest despite a cold climate. This indicates that 56 

a reasonable ensemble of environmental variables needs to be collected to control for the uncertainties 57 

originating from the various scales on which processes operate. 58 

Continuous records of millennial-scale environmental changes in northern Siberia are best obtained 59 

from lake sediments that can be explored for various parameters. Here, we present results of 60 

palynological and sedimentological analyses of a lake sediment core from the southern Taymyr 61 

Peninsula (northern Siberia) covering ~7,100 cal. years BP to present. Because pollen is still one of the 62 

most reliable climate proxies available for the region, we provide a pollen-based climate 63 

reconstruction and assess the obtained results in connection with local hydrological changes as 64 

inferred from sedimentological and geochemical parameters. 65 

2. Regional setting 66 

The Khatanga River Region forms part of the Northern Siberian Lowlands and is located between the 67 

Taymyr Peninsula to the North and the Putorana Plateau to the South, politically belonging to the 68 

Krasnoyarsk Krai of Russia. The studied lake’s catchment is underlain by thick terrigenous and 69 

volcanic sediments that are rich in smectite originating from Siberian Trap basalts of the Putorana 70 

Plateau (Wahsner et al., 1999; Petrov, 2008; Vernikovsky et al., 2013). Overlying Quaternary 71 

periglacial and, to some extent, lacustrine-alluvial deposits are predominately of Putoran origin and 72 

therefore basaltic (Peregovich et al., 1999; Shahgedanova et al., 2002). Loadings in the Khatanga 73 

River have been reported to comprise up to 80% of the montmorinolit clay mineral smectite (Rachold 74 

et al., 1997; Dethleff et al., 2000). The lowland's landscape is homogeneous with low relief. The 75 

region was probably not or only locally glaciated during the Last Glacial Maximum but was situated 76 

between the glaciers of the Taymyr and Putoran Mountains, hence, periglacial conditions prevailed 77 

(Svendsen et al., 2004; Ehlers and Gibbard, 2007). The region is controlled by continuous, very deep 78 
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permafrost with medium ground-ice content up to 20% by volume (Schirrmeister et al., 2013; Brown 79 

et al., 2014) and numerous lakes are found there (Ananjeva and Ponomarjeva, 2001).  80 

The regional climate is dominated by the polar front, which is located close to the coast of the Arctic 81 

Ocean during winter. In summer, the region lies within the arctic front. Prevailing winds are from the 82 

north-west and south-east (Treshnikov, 1985; MacDonald et al., 2000b; Pospelova et al., 2004). The 83 

subarctic climate of the region is continental, having short and mild summers with a mean July 84 

temperature around 12.5°C and severe winters with a mean January temperature ~ -31.5°C. Annual 85 

precipitation is low, around 250 mm with the most rain falling during the summer month between June 86 

and September. Snow cover lasts between 180 and 260 days with up to 80 cm height (Grigoriev and 87 

Sokolov, 1994; climate station, established in Khatanga town in 1934, 88 

http://www.pogodaiklimat.ru/climate/20891.htm). 89 

The vegetation of the region represents the southern fringe of shrub tundra and is composed of a 90 

mosaic of vegetation types (Stone and Schlesinger, 1993; Yurtsev, 1994; CAVM, 2003) with 91 

continuous vegetation cover, but locally, for example on drier hilltops, bare soil may be found 92 

(Chernov and Matveyeva, 1997). The moss layer is extensive and at least 10 cm thick. The most 93 

abundant genera are Sphagnum, Hylocomium, Aulacomnium, Dicranum, and Polytrichum. The 94 

herbaceous and dwarf-shrub layer grows up to fifty centimetres high. Dominating are sedges, such as 95 

species of Eriophorum and Carex, and shrubs, especially Ledum palustre, Vaccinium species, Betula 96 

nana, and Alnus viridis subsp. fruticosa. This shrub tundra is dotted by stands of Larix gmelinii 97 

(Abaimov, 2010). In this area, the northernmost “forest islands”, with the regional name Ary-Mas, 98 

grow as far north as 72°56’N (Bliss, 1981; Tishkov, 2002). The main human impact in the Khatanga 99 

River region is commercial reindeer herding, which intensified from the 1960s (Pavlov et al., 1996). 100 

The study site is located at 72.40°N and 102.29°E; 60 m a.s.l. The small lake—given the technical 101 

name CH-12—is elliptic in shape with a surface area of around 2.4 hectares and a mean radius of 102 

100 m (Fig. 1). Its maximum depth is 14.3 m. The lake is located in a confined depression on a low-103 

lying plateau in the northern lowlands. It has no inflow streams but drains the surrounding ridges. One 104 

small outflow is present on its western side draining into the Novaya River, which is one of the main 105 

tributaries of the Khatanga River. Our vegetation surveys within the catchment revealed that the low-106 
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growing shrub tundra is dominated by Ericaceae dwarf-shrubs (Cassiope tetragona, Vaccinium vitis-107 

idaea and V. uliginosum) while Betula nana and Alnus fruticosa are more rare and only obtain low 108 

growth heights (< 20 cm). Salix spp. grow predominantly along the river and lake shorelines. 109 

Cyperaceae and Poaceae, as well as herbs such as Dryas octopetala ssp. punctata, are abundant. 110 

Scattered patches of Larix gmelinii trees up to 5 m in height occur in the area. 111 

[figure	1]	112 

3. Material and Methods 113 

3.1. Material collection 114 

Fieldwork was undertaken as part of a joint Russian-German Expedition to the Khatanga region in 115 

2011. Sampling took place at a central lake position at 14.3 m depth, where a 131.5 cm-long core with 116 

a UWITEC gravity corer extended with a hammer action was deployed. The core was subsampled in 117 

Germany at the laboratory of the Alfred Wegener Institute (AWI). To allow for a precise estimation of 118 

the sedimentation rate of the investigated lake, a parallel short core of 32 cm was obtained and sliced 119 

into 0.5 cm thin samples in the field. 120 

3.2. Age determination 121 

The uppermost 10 cm of the short-core were freeze-dried and sent for radiometric dating of lead and 122 

caesium at the Environmental Radioactivity Research Centre of the University of Liverpool, UK 123 

(Appleby et al., 1991 and 2001). Furthermore, material (moss, wood or leaf remains or bulk sediment) 124 

from fifteen samples were freeze-dried and sent to the Poznan Radiocarbon Laboratory, Poland, for 125 

radiocarbon dating  The age-depth model was established using the Bacon package (Blaauw and 126 

Christen, 2011 in the R environment version 3.02 (R Core Team, 2013) , in which the calibrated ages 127 

before present (cal. years BP) are based on IntCal13 (Reimer et al., 2013). 128 

3.3. Pollen analysis	129 

For pollen analysis, 65 fossil sediment samples of 1.5 ml were retrieved using plastic syringes and 130 

prepared following standard procedure (Fægri and Iversen, 1989, HCl, KOH, HF cooking for 2h, 131 

acetolysis). Final samples were mounted in water-free glycerine and examined at 400X magnification. 132 
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Pollen taxonomic determination was based on a regional reference collection and standard literature 133 

(Moore et al., 1991; Reille, 1998; Blackmore et al., 2003; Beug, 2004; Savelieva et al., 2013). Pollen 134 

types are given in the text in CAPTIAL letters to facilitate the differentiation between POLLEN TAXA 135 

and plant taxa (Joosten and de Klerk, 2002). At least 500 terrestrial pollen grains were counted for 136 

each sample. Non-pollen palynomorhps, such as coniferous stomata (Hansen, 1995), were counted 137 

alongside the pollen grains. 138 

3.4.	Sedimentological (geochemical and granulometric) analyses 139 

There were no signs of hiatuses in the record. At 109–111 cm the sediment was offset, possibly due to 140 

the coring process, but no loss of material was indicated in the field or in the laboratory examination. 141 

The core description follows initial analyses and picture scan results. The sediment core was opened in 142 

the laboratory at AWI Potsdam, and one half was directly transported to the laboratory AWI 143 

Bremerhaven to perform line-scanning using the Avaatech XRF scanner using a Rh X-Ray tube at 144 

1 mA and a 10 s count time at 10 kV without a filter, and at 30 kV for heavier elements, with a “PD 145 

thick” filter. The resolution of logging was set to 5 mm. This study presents the geochemical results of 146 

the aluminium, titanium, silicon, rubidium, strontium, bromine, iron, and manganese counts (252 147 

observations). For statistical analysis we used the log-ratios of the elements (Weltje and Tjallingii, 148 

2008). The relatively heavy element titanium, showed stable count results with low Х² errors (mean 149 

Х² = 0.97). It had the highest correlation to biogenic components, with a Pearson correlation 150 

coefficient of 0.72 for total organic carbon (TOC) and 0.69 for total nitrogen (TN). Consequently, 151 

titanium could be used to normalise the other elements and counteract the dilution effect of high 152 

organic material content to some extent (Löwemark et al., 2011; Shala et al., 2014). Prior to the 153 

analysis extreme outliers were excluded, e.g. those from the edges of the core or those around 154 

inclusions and at the offset at 109 cm. To allow numerical correlation with other sedimentological 155 

proxies the running means of 2 cm window-size of the scanning data were calculated. 156 

The gravimetric water content (WT) was measured for 66 samples of the sediment core to infer the 157 

compaction of the sediment calculated as the difference between wet and dry weight of the material. A 158 

Vario EL III carbon-nitrogen-sulphur analyser was used to measure total carbon and TN content; and a 159 
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Vario MAXC analyser was employed for TOC measurements. Total inorganic carbon (TIC) was 160 

calculated as difference between the total carbon and TOC. The elemental ratio of the weight 161 

percentages of TOC and TN was calculated to check for possible variation in the sedimentary origin of 162 

the organic matter (Meyers and Lallier-Vergés, 1999), hereafter referred to as C/N ratio. 163 

Sediment particle sizes of 65 samples were measured. A minimum of 2.5 g sediment was first treated 164 

with 35% hydrogen peroxide for four weeks to remove the organic components. Second, 10% acetonic 165 

acid was used to remove calcium carbonate within the remaining sample. Last, the volume percentage 166 

of 86 particle size classes between 0.3 and 1000 μm particle diameter were measured with a 167 

COULTER LS 200 Laser Diffraction Particle Analyser. The reported volume percentages were 168 

calculated from the particle diameter classes: 0.0625–1 mm, 2–62.5 μm, and 0.3–2 μm. 169 

3.5. Data analysis	170 

Pollen percentage calculation was based on the total terrestrial pollen count and pollen concentrations 171 

were calculated using Lycopodium marker spores (Stockmarr, 1971). Ordination analyses of the pollen 172 

data were based only on those 31 taxa that occurred in at least five samples of the core. The 173 

stratigraphically constrained cluster analysis (CONISS) was based on the Bray-Curtis dissimilarity 174 

matrix (Grimm, 1987), and to assess the significance of the obtained clusters the broken-stick model 175 

was used (Bennett, 1996). Principle component analysis (PCA) was based on square-root transformed 176 

pollen data. To reconstruct past climate variation, a previously established pollen-climate transfer 177 

function for mean July temperature (TJuly) based on pollen spectra exclusively from lake surface-178 

sediments from northern Siberia (Klemm et al., 2013) was applied to the fossil pollen spectra from 179 

CH-12. Fifteen modern surface samples from the Khatanga expedition 2011 were added following the 180 

same protocol so that the calibration set consisted of 111 modern spectra in total. The included modern 181 

TJuly data ranges between 7.5 and 18.5°C, this data was retrieved from MODIS satellite imagery from 182 

the years between 2007 and 2010. The inclusion of these surface samples into the modern pollen 183 

dataset slightly improved the performance of the weighted-average partial least squares model, for 184 

which one component was employed, resulting in a root mean square error of prediction of 1.66°C and 185 

maximum bias of 4.1°C for TJuly. The significance of the final reconstructed TJuly was tested against 186 
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possible reconstructions derived from random environmental data (using 1000 reconstructions; Telford 187 

and Birks, 2011). The complete modern and fossil datasets are available from: PANGAEA link (follows 188 

upon publication). 189 

The grain size data was analysed with the end-member modelling algorithm using a W-transformation 190 

described in Dietze et al. (2012, accessible through the EMMAGeo R-package). With this approach, 191 

the contribution of robust end-members (EM) to all the different size classes as well as the quantitative 192 

EM contribution throughout the sediment core can be identified (Weltje, 1997; Weltje and Prins, 193 

2007). The selection of the minimal potential number of end-members was based on a minimal 194 

cumulative explained variance of at least 0.9% of the total dataset variance. The value of the mean 195 

coefficient of determination (r²) was used to determine the maximum number of EMs. The robustness 196 

of the EMs was tested and the final robust EM and the residual member were calculated. Furthermore, 197 

the elementary ratios and the grain size data were jointly analysed to retrieve patterns in the sediment 198 

signal of the lacustrine archive via cluster and ordination analyses. The constrained cluster analysis 199 

and final ordination followed the same approach as described for the pollen data analysis but 200 

employed a Euclidean distance matrix to standardised and log(x+1) transformed data of every second 201 

centimetre (Legendre and Gallagher, 2001). 202 

To test whether the sediment signal and the pollen signal followed similar trends over the core, the 203 

ordination results of both PCAs, using the first two axes scores, were compared with a Procrustes 204 

rotation and associated PROTEST with 1,000 permutations (Jackson, 1995; Wischnewski et al., 2011). 205 

The Procrustean superimposition approach scales and rotates the ordination results to check for a 206 

maximal fit of a superimposition between ordination results (Gower, 1971; Peres-Neto and Jackson, 207 

2001). 208 

All statistical data analyses were performed in the R environment version 3.02 (R Core Team, 2013) 209 

using the analogue (Simpson and Oksanen, 2014), rioja (Juggins, 2014), palaeoSig (Telford, 2015) and 210 

vegan (Oksanen et al., 2015) packages. 211 
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4. Results 212 

4.1. Age-depth model 213 

The 131.5 cm-long lake sediment core covers the time from 7,100 cal. years BP to the present-day 214 

(Fig. 2 and Table 1). 210Pb/137Cs results indicate a relatively stable, recent sedimentation rate of about 215 

0.03 cm/a (Table 2). The age-depth model based on radiocarbon dates shows a similar and stable 216 

accumulation rate over nearly the whole core of around 0.025 cm/a. However, between the depths of 217 

87 and 61 cm, corresponding to a time between 5,400 and 2,600 cal. years BP, a lower accumulation 218 

rate of ~0.01 cm/a is inferred. The comparison of radiocarbon dates based on terrestrial wood and 219 

moss samples with nearby bulk samples does not reveal any offset. However, the bulk sediment date 220 

of the top part of the sediment, at 5.5 cm, dates to about 1,280 14C years, whereas radiometric dates of 221 

lead and caesium for the uppermost samples show that these sediments are clearly of more recent 222 

origin given that the timing of nuclear weapon testing in the 1950s and early 1960s is captured within 223 

the core’s uppermost three centimetres, the ‘true’ radiocarbon ages of those samples are most likely 224 

affected by nuclear activities (Manning et al., 1990). In the final age-depth model, the radiocarbon 225 

result of this upper sample is disregarded. 226 

[figure	2,	table	1	and	2]	227 

4.2. Pollen data 228 

All pollen spectra are dominated by shrub pollen of BETULA NANA type and ALNUS VIRIDIS type, 229 

and POACEAE and CYPERACEAE contributions are also high throughout the core spectra (Fig. 3). 230 

LARIX is present only at low percentages ranging between 0.3 and 9.9% showing a decreasing trend 231 

throughout the record. The depth-constrained cluster analyses reveals two significant pollen zones, 232 

which were further subdivided on visual inspection. The lower zone (PZ I: 131-53 cm, 7.1-233 

2,200 cal. years BP) is characterised by high LARIX, BETULA NANA type and ALNUS VIRIDIS type, 234 

while the upper zone (PZ II 52-0 cm, the last 2,200 years) is rich in POACEAE and CYPERACEAE. 235 

The first PCA-axis (Sup. Fig 1A) explains 70% of the total variance; high 1st axis scores are correlated 236 

with high LARIX and ALNUS VIRIDIS type percentages, whereas negative scores are correlated with 237 
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POACEAE, CYPERACEAE and PINUS percentages. The second axis explains only 7% of the variance 238 

within the dataset and is positively correlated to BETULA NANA type and negatively to ERICACEAE 239 

and some herb taxa, such as CHENOPODIACEAE and BRASSICACEAE. 240 

A transfer function-based estimate of July temperature for the upper sample yields 14.5°C, which is in 241 

close agreement with the modern satellite-based temperature inference of 14.2°C for the Khatanga 242 

region (mean over n=15). The test of the significance of the transfer-function indicated that the pollen-243 

inferred TJuly reconstruction was statistically significant (p=0.037). The pollen-based climate 244 

reconstruction of TJuly revealed a cooling trend over the last ~7,100 cal. years with an absolute change 245 

of about 2 °C. Relative to the overall Holocene cooling trend, periods of variable summer temperature 246 

occurred between 1,500 and 1,000 cal. years BP (4 samples) as well as between 900 and 247 

700 cal. years BP (3 samples). 248 

	[figure	3,	Sup.	Fig	1A]	249 

4.3. Sedimentological data 250 

Total organic carbon (TOC) varied between 0.9 and 17.8 wt% and total nitrogen (TN) ranged between 251 

0.1 and 1.5 wt% (Fig. 4). Both element curves show generally similar variations, still C/N varied 252 

between 1 and 16. Bromine counts correlated well with the organic components (Pearson correlation 253 

index: 0.6–0.65). Over the whole core, the water content varied between 15 and 85 wt%. In the bottom 254 

ten centimetres, high values are measured followed by a drop around 120 cm depth and then by a 255 

steady gradual increase of the water content towards the surface sediments. The geochemical 256 

components expressed as the ratios Al/Ti, Si/Ti, Rb/Sr, and Fe/Mn show relatively small variations 257 

throughout the core, with the highest variability in the lower 45 cm (7,100–5,500 cal. years BP, Fig. 258 

4). Iron and manganese show similar trends throughout the core, however Fe shows more variation, 259 

particularly since 2,700 cal. years BP. 260 

The minerogenic sediment component mainly consists of fine to medium silts with occasional sections 261 

of fine sands with a mean grain size of ~11 µm and maximum sample means of 75 µm. The chosen 262 

EM model explains a mean of 79% of the total variance over the sediment core. The model error is 263 
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largest in the lowermost section of the core. EM1 has its main maximum in the medium-to-fine sand 264 

fraction. EM2 displays its maximum at the silt-to-clay transition (Sup. Fig 2A). 265 

Depth-constrained cluster analysis of the various sedimentological datasets reveals a significant split at 266 

115 cm depth (~6,600 cal. years BP). Based on the clustering and visual inspection, the upper zone 267 

was further divided into six subzones (Fig. 4). The first and second PCA axes explain 50% and 15% of 268 

the variance, respectively (Sup. Fig 3A). The first axis was positively correlated to EM1 and Rb/Sr 269 

and negatively correlated to EM2 values and Al/Ti. The second axis separated TOC and C/N, which 270 

spanned the positive side, from Fe/Mn on the negative side. 271 

[figure	4,	Sup.	Figure	2A	and	3A]	272 

4.4. Numerical comparison of pollen and sedimentological data 273 

Generally, the sedimentological parameters show higher variability than the pollen data, however the 274 

overall trends of the two datasets are significantly correlated as revealed by Procrustes rotation 275 

(r=0.49, p<0.001). The goodness of fit between the ordinations is shown in figure 5 with periods of 276 

higher agreement having lower residuals. However, a simple inspection of the two cluster analyses 277 

shows that the respective clusters of each dataset do not completely overlap. First, the main division of 278 

the sediment dataset, which separates the bottom section from the remaining core (the last 6,500 279 

years), is not indicated in the pollen zonation at all. This section has high concentrations of stomata 280 

and MENYANTHES TRIFOLIATA. Second, periods of major change in the sedimentological data 281 

during the last 6,500 cal. years BP always slightly preceded periods of major change in the 282 

palynological data (Fig. 5). For example, major change in the sedimentological data between 2,500 283 

and 2,300 cal. years BP finds a counterpart in the pollen data around 2,200 cal. years BP. Likewise, a 284 

sedimentological regime shift recorded for the period between 1,500 and 1,000 cal. years BP may 285 

correspond to an abrupt change in the pollen data around 700 cal. years BP. 286 
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[figure	5]	287 

5. Discussion 288 

5.1. Assessment of investigated parameters as proxies for regional vegetation and climate, and lake 289 

catchment development 290 

With the selection of the study site we aimed at capturing a regional-scale pollen signal. Because CH-291 

12 lacks any inflowing streams, the portion of fluvial pollen input should be minimal; also only a 292 

minor proportion of pollen may be introduced to the small lake via slopewash (Crowder and Cuddy, 293 

1973; Fall, 1992). Consequently, most of the deposited pollen grains are of aerial origin. As a function 294 

of the lake size, the relevant source area of pollen (RSAP; Sugita, 1994) is expected to encompass an 295 

area with a radius of hundreds of metres to a few kilometres. An estimation of its actual size depends 296 

not only on lake size but also on surrounding vegetation, namely its composition, spatial structure and 297 

openness (Sugita et al., 1999; Bunting et al., 2004, Poska et al., 2011). Today the lake is surrounded by 298 

tundra with a high portion of arctic herbs characterised by low pollen productivity. The background 299 

pollen loading is high and the spatial scale of vegetation reflected in the pollen source is quite large 300 

(Pitkänen et al., 2002; Broström et al., 2005; von Stedingk et al., 2008). The RPSA is possibly above 301 

ten to twenty kilometres in radius as suggested by the high value of 25 km published for the modern 302 

vegetation in the Khatanga River region (Niemeyer et al. 2015). The RSAP was probably much 303 

smaller in times of denser forests during the mid-Holocene compared with today. This theoretical 304 

consideration is supported by the observation that PINUS values vary contrarily to LARIX. We regard 305 

pine pollen as an indicator of landscape openness, because no modern or fossil presence of pine trees 306 

in the regional vegetation is documented. Reported modern and fossil occurrences of Pinus are at least 307 

200 km away, east and south of the study site (Hultén and Fries, 1986; Kremenetski et al., 2000). 308 

PINUS grains are well known for their long-distance transport particularly in open landscapes (Birks 309 

and Birks, 2003; Hicks, 2006, Ertl et al., 2012). Awareness of such changes in landscape openness and 310 

RSAP is needed when pollen signals are compared with other environmental variables. 311 

It is well-known that LARIX is underrepresented in the pollen spectra compared to its abundance in the 312 

vegetation, because it is a medium-to-low pollen producer and has a low pollen dispersion (Clayden et 313 
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al., 1996; Binney et al., 2011; Klemm et al., 2013). Being a deciduous tree, its foliage production is 314 

high and, therefore the interpretation of pollen records with respect to treeline changes can be aided by 315 

Larix stomata concentrations in the sediment (Ammann et al., 2014; Birks, 2014). Still the estimation 316 

of larch cover remains a challenge, and LARIX percentages of around as little as 0.5% may indicate its 317 

local presence in the vegetation (Lisitsyna et al., 2011). Modern sediment studies from northern 318 

Siberia indicate that northern larch forests are typically reflected by 2% LARIX in the pollen spectra 319 

(Klemm et al., 2013). 320 

The pollen-based quantitative mean July temperature reconstruction is highly correlated to PCA1 and 321 

the reconstructed changes are larger than the error ranges. The significance of the TJuly reconstruction 322 

for this core also supports that TJuly may be the driving force of pollen changes. Therefore, the trend 323 

and the absolute temperature offset between the middle and late Holocene can be considered reliable. 324 

The absolute values, however, may be rather biased towards the mean of the trainings set (see e.g. 325 

‘edge-effect’ as discussed by Birks et al., 2012). The absolute values are slightly higher than the 326 

Khatanga climate station measurements of 12.5°C, because the transfer function is built upon MODIS 327 

satellite images deriving from the relatively warm summers between 2007 and 2010 (Klemm et al., 328 

2013). 329 

Lake CH-12’s catchment is without fluvial inflows and well-confined within a few hundred metres of 330 

the lake’s edge; consequently the scale captured by sedimentological proxies is relatively local. C/N is 331 

indicative of the relative contributions of aquatic and terrestrial organic matter to the lacustrine 332 

sediment. The obtained C/N ratios mostly range between 10 and 15 suggesting a mixture of both 333 

sources (Meyers and Teranes, 2001). We assume that high C/N values, for example at the bottom of 334 

the core, relate to low water levels which cause high amounts of terrestrial material to reach the coring 335 

position at the centre of the lake. Based on the C/N ratios we assume that relative TOC content at this 336 

lake likewise mirrors the relative changes in organic and minerogenic material supplies but is also 337 

affected by the within-lake productivity (Briner et al., 2006). The Fe/Mn ratio is assumed to represent 338 

the level of lake-water mixing at the water-sediment interface (e.g. Haberzettl et al., 2007; Och et al., 339 

2012; Naeher et al., 2013; see supplementary material for details). 340 
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According to our field observations the sediments within the small catchment are rather homogeneous. 341 

Changes in the grain-size composition and selected elemental ratios of the minerogenic component 342 

therefore predominately represent variations in the transportation and sedimentation processes in the 343 

direct vicinity of the coring position rather than changes in the material source (Dearing and Jones, 344 

2003). The grain-size data of this lake core indicate the occurrence of two main sedimentation regimes 345 

within the last 7,100 years. Sections of clay-to-silt sediments, and higher Rb/Sr values, can be 346 

assumed to represent times of deep lake conditions, because a large distance between the coring 347 

position and the lake shore causes the sedimentation of a rather fine fraction. In contrast, sections of 348 

higher grain size variability and high sand contributions represent unstable lake conditions and an 349 

influx of less sorted sediment from near-by lake shores. These grain size signals correspond well to 350 

changes in elemental ratios, among them Al/Ti that likewise reflects the transport of coarser 351 

minerogenic material to the lake centre. (A detailed discussion of the applicability of these ratios is 352 

provided in the supplementary material). 353 

5.2.Vegetation and climate change in Arctic Siberia over the last ~7,000 years 354 

Our palynological investigation reveals a general larch forest decline during the last ~7,100 years. The 355 

mid-Holocene vegetation was characterised by open Larix taiga with Alnus shrubs in the understorey. 356 

Modern vegetation conditions, i.e. shrub tundra, dominated by sedges and grasses with only sparse 357 

Larix stands, became established at approximately 2,200 cal. years BP. This observed general 358 

Holocene vegetation trend confirms earlier investigations from north-eastern Siberia using pollen 359 

and/or macrofossils analyses (e.g. Prentice and Webb, 1998; Hahne and Melles, 1997; Tarasov et al., 360 

1998, 2007; MacDonald et al., 2000a, 2008; Andreev et al., 2011 and references therein) or modelling 361 

approaches (Monserud et al., 1998, Kleinen et al., 2011). Our record reveals that the strong turnover 362 

occurred between 3,000 and 2,000 years ago; a similar timing of strong change has also been reported 363 

from other sites in the Taymyr region (fig. 6) and or throughout most circumarctic environments 364 

(Kaufman et al., 2004; Salonen et al., 2011; Luoto et al., 2014). 365 
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[figure	6]	366 

5.3. Catchment and lake development 367 

The initial lake development started from a small water-hole in a boggy environment. High terrestrial 368 

organic input together with the presence of large macrofossils supports a conclusion of very local 369 

sedimentation of plant material into a small wet depression. Additionally, the presence of pollen from 370 

the semi-aquatic Menyanthes trifoliata is typical for a shallow water-logged environment. Initial 371 

lacustrine sedimentation started around 7,000 cal. years BP during the late phase of the regional 372 

climate optimum that occurred from 9,000 to 6,800 cal. years BP (Andreev et al., 2011). Thermokarst 373 

processes are assumed to be more active in times of warming and accordingly strong thermokarst 374 

activity has been reported for Siberia during the early and mid-Holocene (Romanovskii et al., 2004; 375 

Grosse et al., 2006). During that time, high temperatures and high humidity together with poor 376 

drainage may have promoted the formation of a small water-filled depression at the study site lasting 377 

for around 500 years. 378 

The following subsidence of the initial depression may have been rapid due to internal feedback 379 

mechanisms (Czudek and Demek, 1970; Murton, 2001). In modern Yakutia, fast subsidence rates of 380 

5–10 cm/a (Brouchkov et al., 2004) and 17–24 cm/a (Fedorov and Konstantinov, 2003) are reported. 381 

Our sedimentological data from the period following the initial lake formation show high variability 382 

from 6,500 until around 5,200 cal. years BP, indicating processes of a deepening water body and relief 383 

formation. Thaw slumps and instable lake margins might have led to a mix of fine and coarse material 384 

accumulating in a shallow, well-ventilated lake. Our reconstruction suggests that lake sedimentation 385 

stabilised, probably because of the formation of a deeper lake after about 5,200 cal. years BP. Over the 386 

last 5,200 years the lake experienced two short-term changes in the sedimentological regime, at about 387 

2,500 cal. years BP and about 1,500 cal. years BP, where strong inputs of unsorted material to the lake 388 

basin occurred. Such inputs may indicate either a change in the hydrologic regime of the lake's 389 

catchment leading to an increased water inflow from the surrounding slopes or represent the input due 390 

to slumps from instable margins. 391 
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5.4. Assessment of the reconstruction 392 

The pollen-based climate reconstruction of our study yields a summer temperature change of about 393 

2 °C over the last 7,100 years. This magnitude of Holocene temperature change is in general 394 

agreement with other studies from the Taymyr region and throughout northern Siberia (Miller et al., 395 

2010; Andreev et al., 2011) and has been attributed to a decrease in solar radiation in summer over the 396 

high-northern latitudes (Berger and Loutre, 1991) and related high-latitude feedback mechanisms 397 

(Kerwin et al., 1999; Wanner et al., 2008; Marcott et al., 2013). Some distinct short-scale variations 398 

are obvious within the last 2,000 years of the reconstruction (fig. 6). A warm phase around 1,500–399 

1,000 cal. years BP may reflect the Medieval Climate Anomaly (MCA, defined after Mann et al., 2009 400 

between 1,050–750 years ago in northern Europe). A possible MCA is also indicated by tree-ring 401 

chronologies from the nearby Khatanga region (Briffa et. al., 2008; McKay and Kaufman, 2014). Also 402 

regional lacustrine summer temperature reconstructions based on pollen and diatoms indicate a warm 403 

MCA (e.g. Lama Lake: Andreev et al., 2004; Kumke et al., 2004). This warm interval was followed by 404 

a rapid cool period in the Northern Hemisphere known as the Little Ice Age (Overpeck et al., 1997; 405 

Briffa and Osborn 1999; Briffa, 2000; MacDonald et al., 2008). At Lake CH-12, a cooling is indicated 406 

around 900 cal. years BP, as is also found in the 100 km-distant Labaz Lake region (Andreev et al., 407 

2002). 408 

The general similarity in the proxies for local lake and catchment changes and regional vegetation 409 

change probably originates from a joint driver, which most likely is climate variation. Earlier studies 410 

found that, compared to vegetation changes, changes in the within-lake sedimentation or catchment 411 

erosion are captured in sediments mostly with short time-lags (Dearing and Jones, 2003). Other 412 

possible factors that would result in similar changes in the proxies are disturbances through, for 413 

example, fire, insects, or humans. In this pristine setting human disturbance can be considered 414 

minimal, as can major effects from insects (Hauck et al., 2008; Dulamsuren et al., 2010). However, 415 

fire is a frequent feature in the forest-tundra ecotone (Berner et al., 2012) and may have affected the 416 

study site to some extent. A charcoal analysis, however, was not included in this approach. 417 

This comparison of the environmental development at two spatial scales yielded that the local changes 418 

within the lake and its catchment possibly preceded the regional vegetation changes by several 419 
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decades. However, more detailed inferences about vegetation lag-times are not possible because of the 420 

limited temporal resolution of the reconstruction results. Accordingly, only the general trends of 421 

pollen-based reconstructed climate, i.e. variations on millennial time-scales are reliable while short-422 

term changes may be biased by lagged responses. Still, we assume that pollen is the most reliable 423 

proxy for climate reconstruction because all limnological proxies potentially respond non-linearly to 424 

climate change. 425 

6. Conclusions 426 

An overall cooling of summer temperature by about 2 °C since 7,000 cal. years BP was reconstructed 427 

by the application of a pollen-based transfer function to a sediment record from a lake located at the 428 

present-day northern larch limit on the southern Taymyr Peninsula. This trend is significant and adds 429 

to information to the Taymyr region especially due to the good resolution of the lacustrine core for the 430 

last 2,000 years. The temperature decrease mainly reflects the density decrease of larch forests 431 

supporting the high sensitivity of this ecosystem to climate variations.. Regional vegetation change 432 

generally matches the lake system development and is probably driven by climate-related thermokarst 433 

processes. However, the sub-millennial scale changes and variability differ for each proxy dataset, i.e. 434 

we inferred a lagged vegetation response and a non-linear lake system response to climate. This 435 

studies approach combining the regional vegetation signal and the more local lake catchment signal 436 

helps to understand the resolution of both reconstructed signals and highlights that a careful 437 

consideration of the scale of the reconstruction has to be made. 438 
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