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Abstract. Central Asia is located at the confluence of large-

scale atmospheric circulation systems. It is thus likely to be

highly susceptible to changes in the dynamics of those sys-

tems; however, little is still known about the regional pale-

oclimate history. Here we present carbon and hydrogen iso-

topic compositions of n-alkanoic acids from a late Holocene

sediment core from Lake Karakuli (eastern Pamir, Xin-

jiang Province, China). Instrumental evidence and isotope-

enabled climate model experiments with the Laboratoire de

Météorologie Dynamique Zoom model version 4 (LMDZ4)

demonstrate that δD values of precipitation in the region are

influenced by both temperature and precipitation amount. We

find that these parameters are inversely correlated on an an-

nual scale, i.e., the climate has varied between relatively cool

and wet and more warm and dry over the last 50 years. Since

the isotopic signals of these changes are in the same direction

and therefore additive, isotopes in precipitation are sensi-

tive recorders of climatic changes in the region. Additionally,

we infer that plants use year-round precipitation (including

snowmelt), and thus leaf wax δD values must also respond

to shifts in the proportion of moisture derived from westerly

storms during late winter and early spring. Downcore results

give evidence for a gradual shift to cooler and wetter cli-

mates between 3.5 and 2.5 cal kyr BP, interrupted by a warm

and dry episode between 3.0 and 2.7 kyr BP. Further cool and

wet episodes occur between 1.9 and 1.5 and between 0.6 and

0.1 kyr BP, the latter coeval with the Little Ice Age. Warm

and dry episodes from 2.5 to 1.9 and 1.5 to 0.6 kyr BP co-

incide with the Roman Warm Period and Medieval Climate

Anomaly, respectively. Finally, we find a drying tend in re-

cent decades. Regional comparisons lead us to infer that the

strength and position of the westerlies, and wider northern

hemispheric climate dynamics, control climatic shifts in arid

Central Asia, leading to complex local responses. Our new

archive from Lake Karakuli provides a detailed record of

the local signatures of these climate transitions in the east-

ern Pamir.

1 Introduction

Future climate change associated with anthropogenic distur-

bance of the Earth system is expected to go hand in hand

with changes in atmospheric circulation dynamics (Seth et

al., 2011). In this scenario, certain regions of the globe are

thought to be susceptible to severe and likely abrupt changes

in moisture delivery and temperature. One example is Cen-

tral Asia, located at the boundaries of influences from the

midlatitude westerlies, the Siberian high and the limits of

the Indian monsoon (Aizen et al., 2001; Chen et al., 2008).

However, the nature and magnitude of changes in these cli-

matic systems, as well as their Central Asian regional effects,

are still poorly known. Detailed knowledge about past, natu-

rally driven climatic variability in this region can contribute

to a better understanding of the atmospheric dynamics be-

hind those changes, which can in turn help to better predict

possible impacts of future anthropogenically driven climate

changes.
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While a large number of studies have analyzed climate dy-

namics in monsoonal eastern Asia and the north- and south-

eastern Tibetan Plateau (e.g., reviewed in Morill et al., 2003;

An et al., 2006 and Herzschuh, 2006), the density of pale-

oclimate records in continental Central Asia remains com-

parably low. Central Asian records include studies of glacial

extent in the Pamir (e.g., Narama, 2002a and b) and tree-

ring width reconstructions (e.g., Esper et al., 2002; Trey-

dte et al., 2006). Lacustrine sedimentary archives exist from

Kyrgyzstan (Ricketts et al., 2001; Lauterbach et al., 2014;

Mathis et al., 2014), the Aral Sea (Sorrell et al., 2007a and

b; Boomer et al., 2009; Huang et al., 2011), the western

and southern Tarim Basin (Zhao et al., 2012; Zhong et al.,

2007) and the Pamirs/Tajikistan (Mischke et al., 2010c; Lei

et al., 2014; Fig. 1b). Only one of those studies has included

compound-specific hydrogen isotopic analyses (Lauterbach

et al., 2014), which have elsewhere in Asia shown the poten-

tial to provide information about moisture sources, precipi-

tation amount and temperature (Mügler et al., 2010; Aichner

et al., 2010c; Liu et al., 2008).

Climatic patterns in Central Asia are complex due to the

above-mentioned location on the boundary between various

large-scale atmospheric circulation systems, as well as the

varied topography of the area (Fig. 1). While the eastern-

most parts are generally arid and receive most of their precip-

itation during the summer, western regions receive a higher

proportional input from westerly-derived winter precipitation

(Miehe et al., 2001; Machalett et al., 2008; Lauterbach et al.,

2014). Thus, a dense network of paleoclimatic records is re-

quired to fully understand spatial patterns of climate dynam-

ics over time.

To further decipher past climatic processes in our study,

we generated a high-resolution, mid- to late Holocene pa-

leoclimatic record from Lake Karakuli (western China), lo-

cated in the eastern Pamir, at the very westernmost edge

of the Tibetan Plateau. Building upon the work of Liu et

al. (2014), who inferred glacial fluctuations from grain-size

parameters and elemental composition at the same lake, we

use compound-specific carbon (δ13C) and hydrogen (δD)

isotopic compositions of long-chain (> C24) n-alkanoic acids

originating from plant leaf waxes to deduce past climatic

changes in our study area. To evaluate the hydrogen isotopic

data, it is essential to understand what drives the variability

in the isotopic signal which is recorded by the biomarkers

in a specific study area. Therefore, we draw comparisons to

isotope-enabled model experiments using the Laboratoire de

Météorologie Dynamique Zoom model version 4 (LMDZ4)

simulations (Hourdin et al., 2006; Risi et al., 2010, 2012a

and b; Lee et al., 2012). On the basis of these data, we char-

acterize the processes controlling the isotopic composition of

precipitation over Central Asia and discuss the implications

for the interpretation of the biomarker isotopic evidence.

2 Study site

Lake Karakuli (also known as Lake Kala Kule) is a small lake

(ca. 1× 1.5 km) located at the westernmost edge of Xinjiang

Province (PR China) at an altitude of 3650 m, between the

massifs of Kongur Shan and Muztagh Ata, both exceeding

7500 m (Fig. 1a). Those mountains which form the eastern

edge of the Pamir Plateau and the very westernmost edge

of the Tibetan Plateau are directly adjacent to the ranges of

Karakorum and Tien Shan. The climate in this high-altitude

region is cold and dry. At Taxkorgan climate station, 80 km

south of Lake Karakuli (3090 m), average annual tempera-

tures and precipitation amounts are 3.2 ◦C and 69 mm, re-

spectively (1957–1990; Miehe et al., 2001), with June and

July being the wettest months. Climatic data from Bulun Kul

(3310 m), 30 km north of our study area, are in a similar

range (0.6 ◦C and 127 mm), with a precipitation maximum

during spring and summer (1956–1968; Miehe et al., 2001).

At higher altitudes, precipitation amounts increase by oro-

graphic forcing. At the Muztagh Ata, annual rain- and snow-

fall was estimated to account for about 300 mm at the glacier

accumulation zone (at 5919 m; Seong et al., 2009a), while

other studies estimated a water equivalent depth of 605 mm

for snow accumulation at 7010 m (Wu et al., 2008).

Lake Karakuli is an open freshwater lake with a maxi-

mum depth of 20 m. The relatively small catchment com-

prises meltwater mainly derived from glaciers on the western

flank of Mt Muztagh Ata. These form an alluvial fan with

several creeks which discharge into the lake from the south,

while the single outflow drains towards the north (see Fig. 1

and S1 in the Supplement). Most of the glacial runoff derived

from the surrounding massifs, including the main glacier of

Muztagh Ata and Mt Kongur Shan, does currently not dis-

charge into the lake.

The sparse vegetation consists of alpine grasslands, partly

used for pasture (see Fig. S1), with an alpine desert at higher

altitudes. Above 5500 m the landscape is fully glaciated (with

valley glaciers descending to 4300 m; Tian et al., 2006).

Compared to other shallow lakes on the Tibetan Plateau,

where macrophytes are numerous (Aichner et al., 2010b),

there are only a few emergent and submerged macrophytes

on or close to the shores and few indications for submerged

plants in the deeper parts of the lake.

3 Material and methods

3.1 Coring and chronology

A sediment core with a composite length of ca. 820 cm was

taken in September 2008 at 38.43968◦ N and 75.05725◦ E

from a water depth of 16 m, using an UWITEC coring system

and a floating platform (the coring position is shown in the

Supplement S7). The chronology was based on 17 radiocar-

bon ages derived from 14C AMS (accelerator mass spectrom-
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Figure 1. (a) Catchment of Lake Karakuli and coring position (red dot). (b) Location of our study area (red cross) and other paleoclimatic

records mentioned in the text. 1: large Lake Karakul, Tajikistan (Mischke et al., 2010); 2: Lake Sasi Kul (Lei et al., 2014); 3: Kashgar (Zhao

et al., 2012); 4: Tso Kar (Wünnemann et al., 2010); 5: southern Tarim Basin (Zhong et al., 2007); 6: Guliya Ice Core (e.g., Thompson et al.,

1997); 7: Lake Bangong (Gasse et al., 1996); 8: Son Kol (Lauterbach et al., 2014; Mathis et al., 2014), 9: Issyk Kul (Ricketts et al., 2001);

10: Yili section (Li et al., 2011); 11: Kesang Cave (Cheng et al., 2012); 12: Boston Hu (Wünnemann et al., 2006); 13: Lake Balinkun (An et

al., 2012); 14: Ulungur Hu (Liu et al., 2008); 15: Lake Manas (Rhodes et al., 1996); 16: Aral Sea (Sorrell et al., 2007a and b; Boomer et al.,

2009; Huang et al., 2011).

etry) dating conducted on total organic carbon (TOC, Liu et

al., 2014). The 0 cal. year BP (1950 AD) was derived from
210PB/137Cs dating and appeared at ca. 10.5 cm depth. A

reservoir effect of 1880 years was extrapolated from the dat-

ing of core-top samples and assumed to be constant through-

out the core. The 14C ages indicate a nearly constant sed-

imentation rate across 4.2 kyrs. For the calibration of the

ages and construction of the age–depth model, the IntCal09

data set was used (Reimer et al., 2009) applying a Bayesian

method (Blaauw and Christen, 2011); for details see Liu et

al. (2014).

3.2 Lab chemistry

Sediments were extracted with an Accelerated Solvent Ex-

traction system (ASE 350; Dionex, Sunnyvale, USA), under

high pressure (1500 psi) and temperature (100 ◦C) and using

DCM/MeOH (9 : 1) as a solvent. Alkanoic acids were sep-

arated from the total lipid extract using column chromatog-

raphy (5 cm× 40 mm Pasteur pipette, NH2 sepra bulk pack-

ing, 60 Å) and eluting with 2 : 1 DCM/isopropanol, followed

by 4 % formic acid in diethylether, which yielded neutral

and acid fractions, respectively. The acid fraction was ester-

ified with 5 % HCl and 95 % methanol (of known isotopic

composition) at 70 ◦C for 12 h to yield corresponding fatty

acid methyl esters (FAMEs). Lipids were obtained by liquid–

liquid extraction, using hexane as the nonpolar solvent, and

dried by passing through a column of anhydrous Na2SO4.

They were further purified using column chromatography

(5 cm× 40 mm Pasteur pipette, 5 % water-deactivated silica

gel, 100–200 mesh) and eluting with hexane, followed by

FAMEs eluted with DCM.

3.3 Biomarker isotopic analysis

Compound-specific isotopic values were obtained using

gas chromatography isotope ratio mass spectrometry (GC-

IRMS). We used a Thermo Scientific® Trace gas chromato-

graph equipped with an Rxi-5ms column (30 m× 0.25 mm,

film thickness 1 µm) and a programmable temperature va-

porizing (PTV) injector operated in solvent split mode with

an evaporation temperature of 60 ◦C. The GC was con-

nected via a GC Isolink with pyrolysis/combustion furnace

(at 1400/1000 ◦C) and a Conflo IV interface to a DeltaVPlus

isotope ratio mass spectrometer. The H+3 factor (Sessions et

al., 2001) was determined daily to test measurement linearity

of the system and accounted for 5.8 ppm mv−1 on average.

Reference peaks of H2/CO2 bracket n-alkanoic acid peaks

during the course of a GC-IRMS run; two of these peaks

were used for the standardization of the isotopic analysis,

while the remainders were treated as unknowns to assess pre-

cision. Except for the case of co-elution, precision of these

replicates was better than 0.6 ‰.

Data were normalized to the Vienna Standard Mean

Ocean Water (VSMOW)–Standard Light Antarctic Precip-

itation (SLAP) hydrogen isotopic scale and to the Vienna

Pee Dee Belemnite (VPBD) carbon isotopic scale by com-

paring them with an external standard containing 15 n-
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alkane compounds (C16 to C30) of known isotopic compo-

sition (obtained from A. Schimmelmann, Indiana Univer-

sity, Bloomington). The root mean square error of repli-

cate measurements of the standard across the course of

analyses was below 5 ‰ (hydrogen) and 0.7 % (carbon).

For hydrogen isotopes we further monitored for instrument

drift by measuring the δD values of a C34 n-alkane inter-

nal standard co-injected with the sample (−240.6± 3.0 ‰;

n= 105). The isotopic composition of H and C added

during methylation of alkanoic acids was estimated by

methylating and analyzing phthalic acid as a dimethyl es-

ter (isotopic standard from A. Schimmelmann, Univer-

sity of Indiana), yielding δDmethanol =−198.3± 3.9 ‰ and

δ13Cmethanol =−25.45± 0.42 ‰ (n= 7). Correction for H

and C added by methylation was then made by way of mass

balance.

3.4 LMDZ4 simulations

To understand the control of spatial and seasonal isotopic

variations, we use the climate model LMDZ4 (Hourdin et

al., 2006) to characterize the processes controlling isotopes

of precipitation over our study area. Details of the model and

methodology are described in Risi et al. (2010, 2012a and

b) and Lee et al. (2012). Briefly, the applied model version

incorporates the entire cycle of stable water isotopes and in-

cludes fractionation when phase changes occur. The resolu-

tion of the model is 2.5◦× 3.75◦, with 19 vertical levels in

the atmosphere. To obtain more realistic simulations of the

hydrology and isotope values compared to free-running sim-

ulations and to better reproduce the observed circulation pat-

tern, simulated winds from LMDZ4 are relaxed toward the

pseudo-observed horizontal wind field from the ERA-40 re-

analysis results (Uppala et al., 2005) with a time constant of

1 h. Boundary conditions used observed sea surface tempera-

tures and sea ice fractions from the HadISST (Hadley Centre

Sea Ice and Sea Surface Temperature) data set (Rayner et al.,

2003) from 1958 to 2009.

4 Results

4.1 Lipid concentrations

Due to the sparse vegetation in and around the lake, con-

centrations of leaf wax biomarkers in the sediments were

relatively low. For compound-specific isotopic analysis, we

chose fatty acids (FAs), which showed higher concentra-

tions than alkanes in a set of test samples. Here, C24, C26

and C28 n-alkanoic acids were the most abundant com-

pounds, which average concentrations of ca 1050, 1000 and

750 ng g dw−1 (nanograms per grams dry weight; Fig. S2

in the Supplement). We found that fatty acid concentrations

were relatively constant with depth, suggesting no major

change in productivity, dilution or preservation during the

late Holocene.

Figure 2. Box and whisker plots of δD and δ13C values in sediment

samples by chain length.

4.2 δD and δ13C values of leaf wax lipids and water

samples

In total, we measured 125 core samples for hydrogen iso-

topic composition and 66 samples for carbon isotopic com-

position (S6 in the Supplement). Samples contained C16-

C28 n-alkanoic acids with an even–odd chain length pref-

erence. We report isotopic results for the C24, C26 and C28

n-alkanoic acids, as these are target long-chain compounds

within the dynamic range of isotopic measurement capabili-

ties (S6, Fig. S3 in the Supplement).

δ13C values are generally more depleted with increasing

chain length, with C24 averaging −27.9± 1.4 ‰, C26 av-

eraging −29.3± 1.0 ‰ and C28 n-alkanoic acids averaging

−31.0± 0.9 ‰ (Figs. 2 and S3). For C28 we find no sig-

nificant downcore trend. C24 shows the largest variations in

δ13C values with generally more 13C-depleted values in the

middle of the core (min: −30.7 ‰) compared to the core

base and core top (max: −24.3 ‰; Fig. S3). For hydrogen

isotopes, compounds are also more D-depleted with increas-

ing chain length (C24: −173± 6 ‰; C26: −182± 7 ‰; C28:

−185± 6 ‰; Fig. 2). We observe downcore variations in δD

values for C26 and C28 ranging from −196 to −167 ‰.

Six water samples (two from inflows, two from Lake

Karakuli and two from ponds nearby) have been analyzed

for isotopic composition (Table 1). Both inflows show simi-

lar isotopic signatures (ca. −83 ‰). The lake water averages

+3.5 ‰ (δ18O) and +15 ‰ (δD), enriched relative to the in-

flow due to evaporation. Closed ponds nearby are also evap-

oratively enriched relative to inflow.

Clim. Past, 11, 619–633, 2015 www.clim-past.net/11/619/2015/
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Table 1. δ18O and δD values of water samples collected in September 2008 at Lake Karakuli, its inflows and nearby ponds.

Latitude Longitude Altitude Description δ18O δD

[◦ N] [◦ E] [m] [‰] 1σ [‰] 1σ

38.41933 75.05995 3684 inflow1 −12.1 0.05 −83.2 0.2

38.42021 75.05008 3688 inflow2 −12.1 0.01 −84.4 0.2

38.43968 75.05725 3657 Karakuli – core position surface water −9.4 0.04 −67.8 0.2

38.43968 75.05725 3657 Karakuli – core position above sediment −9.2 0.03 −67.2 0.2

38.46294 75.02928 3658 pond near Karakuli 5.45 0.02 13.5 0.4

38.46334 75.04267 3676 pond near Karakuli −3.6 0.02 −37.1 0.5

5 Discussion

5.1 Origin of organic compounds and implications for

source water

5.1.1 Molecular abundance distribution

Organic compounds in lake sediments originate from a mix-

ture of terrestrial and aquatic organisms, with molecular

abundance distributions and isotopic compositions that may

be diagnostic of source. Most plants contain a broad range

of biomarkers (e.g., n-alkanes or fatty acids), but the finger-

prints of the different compound classes are often dominated

by compounds of a specific chain length. Terrestrial and

emergent aquatic plants, for instance, produce higher pro-

portional abundances of long-chain n-alkanes (e.g., C29 and

C31), while submerged macrophytes contain higher amounts

of mid-chain n-alkanes (e.g., C23 and C25 Ficken et al., 2000;

Aichner et al., 2010b). n-Alkanoic acids show a less distinct

pattern (Ficken et al., 2000), but long-chain compounds (e.g.,

C28 FAs) are mostly interpreted as originating from terres-

trial sources here as well (e.g., Kusch et al., 2010; Feakins et

al., 2014).

In the sediments of Lake Karakuli, the contribution of

aquatic plants to the lipid pool is considered to be relatively

low compared to other Tibetan high-altitude lakes. A sub-

merged aquatic plant sample collected close to the shore-

line (ca. 20 cm water depth) shows a dominance of C16 and

C18 FAs and minor relative amounts of C20 to C30 even-

chain FAs (see Fig. S4 in the Supplement). This fatty-acid

pattern is in agreement with published fingerprints of other

aquatic plants collected on the Tibetan Plateau (Wang and

Liu, 2012). Hence, the low relative abundance of C16 and C18

FAs in our sediment samples suggests a relatively low con-

tribution of plant material derived from aquatic macrophytes

to the sedimentary organic matter in Lake Karakuli.

5.1.2 Carbon isotopic signal

An additional indication for the source of compounds comes

from their carbon isotopic signature. Lipids of terrestrial C3

plants usually show values around −30 to −35 ‰, while

compounds derived from terrestrial C4 plants and from sub-

merged aquatic macrophytes can reach significantly higher

values, in the range of −15 to −20 ‰ (Chikaraishi and

Naraoka, 2005; Aichner et al., 2010a). The difference be-

tween C3 and C4 plants can be explained by different iso-

topic fractionation in the carbon assimilation of those two

plant types, while the higher values of submerged aquatic

plants are due to the uptake of different carbon sources, i.e.,

isotopically enriched bicarbonate instead of dissolved CO2

(Allen and Spence, 1981; Prins and Elzenga, 1989).

In our sediment core from Lake Karakuli, δ13C values of

the C28 FA are similar to that of terrestrial C3 plants without

a clear trend (Fig. 2; S3). Thus, we conclude that this com-

pound is predominantly derived from terrestrial C3 grasses in

the lake catchment. δ13C values of C24 and C26 n-alkanoic

acids are slightly higher than for C28, indicating an increas-

ing contribution of submerged aquatic plant material and/or

lipids derived from C4 plants with decreasing chain lengths.

δ13C values of C24 n-alkanoic acids are controlled by rel-

ative contributions of aquatic macrophytes and/or macro-

phyte productivity, with higher productivity leading to higher

δ13C values (Aichner et al., 2010b). We hypothesize that a

higher proportional input of aquatic material to the sedimen-

tary organic matter is indicative of warmer and possibly also

drier conditions. Longer ice-free periods and a lower lake

level could be the driving factors behind enhanced macro-

phyte growth during warmer years.

C4 plants are widely absent on the central and eastern Ti-

betan Plateau at present, but they are widespread in Central

Asian deserts and some Chenopodiaceae which use the C4

pathway have occasionally been observed in high-altitude

alpine deserts of the Pamir (Sage et al., 2011). Thus, we can-

not totally exclude the contribution of C4-derived lipids to the

sedimentary organic matter of Lake Karakuli; however, we

consider these sources to be of secondary importance. Nev-

ertheless, if we underestimated the input of alkanoic acids

derived from C4 plants, this would not bias the overall inter-

pretation because higher abundances of C4 plants resulting in

higher sedimentary δ13C would indicate a drier and warmer

climate, which is similar to the hypothesis that drying and

warming leads to increased macrophyte productivity.

www.clim-past.net/11/619/2015/ Clim. Past, 11, 619–633, 2015
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5.1.3 Hydrogen isotopic signal

Hydrogen isotopes provide further evidence for the origins

of C24 and C26 or C28 n-alkanoic acids. The average δD val-

ues of C24 are ca. 9–12 ‰ higher than those of C26 and C28

(Fig. 2). A different water source, i.e., isotopically enriched

lake water (see Table 1) instead of water derived from precip-

itation or snowmelt, could explain this. We assume that C24

is derived from mixed aquatic and terrestrial sources, while

C28 and also C26 can be considered to be of mainly terrestrial

origin.

The δD values of these terrestrial biomarkers are repre-

sentative of the hydrogen isotopic composition of the source

water. For terrestrial plants this could be expected to be

spring and summer precipitation during the growing season

(Sachse et al., 2012), although a contribution of D-depleted

meltwater from snow in the early spring growth period is

highly likely (Fan et al., 2014). The fractionation factors

between source water and lipids are variable, but previous

studies found that for terrestrial C3 grasses they average

−149± 28 ‰ (n= 47) for the C29 n-alkane, while they are

ca. −134± 28 ‰ (n= 53) for C4 grasses and in a similar

range for forbs (Sachse et al., 2012). In arid ecosystems, soil-

water evaporation (for grasses; Smith and Freeman, 2006)

and transpiration from the leaf, lead to isotopic enrichment

of leaf water above the meteoric water (Feakins and Ses-

sions, 2010; Kahmen et al., 2013a and b). Recent results

from the central Tibetan Plateau, a similar environmental set-

ting to our study, quantified the apparent isotopic fraction

between meteoric water and n-alkanes as being ca. −95 ‰

due to ca. +70 ‰ evapotranspirational isotopic enrichment

above meteoric water (Günther et al., 2013). This is in agree-

ment with the average fractionation from Feakins and Ses-

sions (2010), who suggested ca. −95 ‰ as a net fractiona-

tion factor between meteoric water and leaf wax n-alkanes

in an arid ecosystem (southern California) and found similar

values for n-alkanoic acids in a later study from that region

(Feakins et al., 2014).

While the fractionation was not directly determined on

modern plant n-alkanoic acids in this catchment, based on

core-top δDlipid values of ca. −190 ‰ and a knowledge of

hydrogen isotope values of modern precipitation and waters

in the catchment, we can infer a reasonable catchment aver-

age apparent fractionation (Fig. 3). Summer precipitation in

the catchment averages ca. −45 ‰ at Lake Karakuli, com-

pared to a mean annual precipitation average of ca. −90 ‰

(derived from the Online Isotopes in Precipitation Calculator,

OIPC; Bowen and Revenaugh, 2003; Fig. 4b). If the summer

precipitation is indicative of source water, and given the mea-

sured sedimentary value of C28 n-alkanoic acids (−190 ‰),

we would compute an apparent fractionation of ca. −150 ‰

(Fig. 3; see the Supplement S5 for formula to calculate iso-

topic fractionation factors). Whereas if we use mean an-

nual precipitation, then the calculated apparent fractionation

would be ca. −110 ‰, which is closer to the reported frac-

Figure 3. Calculated isotopic fractionation factors (ε) between sum-

mer and mean annual precipitation and modern lipids, as well as

calculated source water δD based on published fractionation factors

in arid ecosystems (ca. −95 ‰, according to Feakins and Sessions,

2010; Günther et al., 2013).

tionation factors for arid ecosystems (Feakins and Sessions,

2010; Günther et al., 2013).

The δD values of the two lake inflows sampled in Septem-

ber 2008 (average −83 ‰; Table 1) provide a reasonable

constraint on catchment average water isotopic composi-

tion in September, presumably including a mix of contribu-

tions from precipitation runoff, groundwater and snowmelt

from winter precipitation and higher elevations. A calculated

source water δD value based on published fractionation fac-

tors mentioned above (ca.−95 ‰) would be−110 ‰ (Fig. 3)

which is in the range of late-winter and early-spring precip-

itation in the study area according to OIPC data (Fig. 4b).

These are helpful constraints on the proxy; however, regard-

less of knowing the exact season of source water and the

appropriate fractionation which are needed for absolute iso-

topic conversions, we can infer relative variations in δD val-

ues of the C28 n-alkanoic acid downcore from variations in

the δD of precipitation. We therefore use the δD values of the

C28 and C26 n-alkanoic acids to reconstruct past variations in

the isotopic composition of precipitation.

5.2 Controls on the isotopic signature of precipitation

in the eastern Pamir

5.2.1 Monthly signal

The isotopic composition of precipitation is influenced by

multiple isotope effects including those associated with

precipitation amount, condensation temperature or vapor

source (Gat, 1996). In subtropical and tropical latitudes, the

“amount effect” has usually been identified as the most rel-

evant controlling factor, with lower δD values reflecting
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Figure 4. (a) Monthly isotopic and climate data from Taxkorgan climate station (Yao et al., 2013), located ca. 80 km south of Lake Karakuli

(altitude ca. 3100 m). (b) Average monthly climate (Miehe et al., 2001) and isotopic (OIPC; Bowen and Revenaugh, 2003) data from Bulun

Kul climate station, located ca. 30 km northeast of Lake Karakuli (altitude ca. 3300 m). Shaded area indicates summer, i.e. wet season.

more humid episodes in sedimentary records (Schefuss et al.,

2005; Tierney et al., 2008, Lee and Fung, 2008). At mid- and

high latitudes, temperature and vapor sources have mostly

been interpreted as being the dominant factors (Dansgaard,

1964; Thompson, 2000; Rach et al., 2014). In addition, large-

scale circulation changes or a shift in the balance of two or

more different moisture sources and transport trajectories can

result in isotopic shifts over time (Dansgaard, 1964; Thomp-

son, 2000; Rach et al., 2014).

By evaluating isotopes of precipitation in the context of

climatic parameters in Asia, Araguas-Araguas et al. (1998)

and Yao et al. (2013) came to the conclusion that the amount

effect is the dominant factor in monsoonal east Asia, while in

arid Central Asia temperature mainly controls δD and δ18O

values of precipitation. The closest meteorological stations to

Lake Karakuli are the station at Bulun Kul (ca. 30 km north-

east) and Taxkorgan (ca. 80 km south). Both stations record

low winter precipitation and slightly enhanced amounts dur-

ing the summer (Fig. 4a and b). Higher isotopic values in

the summer compared to the winter (Yao et al., 2013; Bowen

and Revenaugh, 2003) suggest that monthly values are in-

deed driven by temperature. If these seasonal controls also

determine interannual variations in the isotopic composition

of precipitation then temperature is likely to be a major factor

explaining the reconstructed hydrogen isotopic variability.

We also observe amount effect modulation of the sum-

mer season precipitation isotopes associated with increased

precipitation totals in June 2004 and – to a greater extent –

in June 2005 (Fig. 4a), which lowers the δ18O values. This

amount effect lowers the summer precipitation isotopic com-

position, dampens the seasonality of the mean precipitation

of isotopic values and lowers the integrated annual precip-

itation isotopic composition. Hence, in drier years average

δD values will be D-enriched relative to wetter years, and

likewise warmer years will be D-enriched relative to colder

years (Fig. 4b). Given the low precipitation amounts in this

arid region today, the amount effect is likely to remain sec-

ondary to the temperature controls on isotopic composition

apparent in the seasonal cycle.

5.2.2 Annual and seasonal signal

To further establish the connections between climate anoma-

lies and isotopic signatures of precipitation in Central Asia,

we compare instrumental data and climate model simula-

tions. At Taxkorgan meteorological station, we find a neg-

ative correlation between annual temperature and the precip-

itation amount over a period of 44 years (1957–2000; Fig. 5;

data provided from Tian at al., 2006). Similar trends can

be observed when comparing simulated data over a period

of 52 years (1958–2009; Fig. 5). We use the LMDZ4 cli-

mate model (Hourdin et al., 2006) to characterize the cli-

matic processes in our study area (as described in Lee et

al., 2012). We find higher annual precipitation amounts in

the LMDZ4 model simulations compared to instrumental ob-

servations at Taxkorgan meteorological stations. This is re-

lated to the scale of the model resolution of 3.75◦× 2.5◦

(Lee et al., 2012), which includes the relatively high precip-

itation amounts in higher altitudes during winter (Seong et

al., 2009a and b; Wu et al., 2008) within the grid box. Sig-

nificant negative correlations (r = 0.58; p < 0.0001) between

temperature and precipitation amount can be inferred for the

summer months (April–September), while comparisons over

the winter or whole year deliver nonsignificant correlations

(p > 0.01; Fig. 5).

As a consequence of the negative correlation between

temperature and precipitation amount, we observe positive

and negative correlations between precipitation isotopes and

those climatic parameters for our larger study area (Fig. 6).

Considering temperature, we found a positive correlation

(0.4 < r < 0.6) for both winter and summer over large parts

of Central Asia. For the summer, no correlations are seen

in India and SE Asia, where distinct monsoonal circulation

and precipitation patterns exert independent controls on the

isotopic values of precipitation (Morill et al., 2003; Yao et
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Figure 5. Correlations of temperatures with precipitation amounts

based on instrumental data from Taxkorgan meteorological station

(1957–2000; annual averages) and model data using LMDZ4 simu-

lations (1958–2009; summer: April–September; winter: October–

March). Bold correlation coefficients are significant at the 0.01

level.

al., 2013). Considering precipitation amount, negative cor-

relations (−0.6 < r <−0.2) can be deduced for the summer

months for a large region around Lake Karakuli, from SW to

NE and covering parts of Iran, Central Asia and NW China.

During winter, no correlation can be observed directly at the

location of the lake; however, precipitation isotopes seem to

negatively correlate with precipitation amounts located west

of our study area (Fig. 6).

In a recent study, Tian et al. (2006) found a positive cor-

relation between δ18O in the local Muztagh Ata ice core

(which covers the period 1957–2003) and annual tempera-

tures from Taxkorgan climate station. In contrast, they found

no significant relationship between ice core δ18O and an-

nual precipitation amounts at Taxkorgan (Tian et al., 2006).

Different precipitation dynamics between middle and high

altitudes and/or seasonal differences, as supported by our

LMDZ4 data, could explain this discrepancy. Elevation dif-

ferences may play a role in different precipitation patterns,

and these may be associated with isotope effects. The Muz-

tagh Ata glacier accumulation zone receives higher annual

precipitation amounts and also a higher proportional input

from winter precipitation compared to lower altitudes (Seong

et al., 2009a and b). Whilst instrumental and modeling data

inferred a slight increase of precipitation amount through-

out the last 50 years in the westernmost part of China (Yao et

al., 2012; Zhang and Cong, 2014), a decreasing accumulation

Figure 6. Spatial correlation coefficients (r) of summer (April–

September) and winter (October–March) δ18Oprecip at the Karakuli

site (marked as K in the plots) with temperatures and precipitation

amounts at each grid point from 1958 to 2009 (LMDZ4 simulations;

Lee et al., 2012).

rate at the Muztagh Ata ice core since 1976 was measured by

Duan et al. (2007). Even if the instrumental data from Taxko-

rgan do not show a significant trend in precipitation amounts

between 1957 and 2000, this does not rule out changes of

snowfall at higher altitudes. Increasing temperatures could

have further contributed to the lower observed accumulation

rates.

Since temperature and precipitation amounts are anticor-

related on an interannual timescale (Fig. 5), we interpret low

δD values to indicate both relatively cool and wet conditions.

In addition to fluctuations in mean annual precipitation iso-

topes, snowmelt and delivery to plants may vary. We suggest

that a high proportional contribution of water derived from

snowmelt, after relatively long and wet winters with high

amounts of snowfall, can further lead to more negative δD

leaf wax values.

5.3 Paleoclimatic interpretation of downcore data

δD and δ13C values from the Lake Karakuli sediment core

suggest relatively warm and dry conditions between ca. 4

and 3.5 kyr BP (Fig. 7). δ13C values are highest for C24 dur-

ing this interval, and even C28 shows slightly enriched val-

ues (>−30 ‰; Fig. S3). Also, δD shows maximum values

during this episode. Even though an increased input from

C4 plants or enhanced productivity of aquatic macrophytes

could have biased δD values slightly towards a more positive

signal, we infer that this period probably was the warmest

and driest in our studied time interval. After 3.5 kyr a grad-

ual cooling trend started (interrupted by a warmer and drier

period between ca. 3.0 and 2.7 kyr BP), peaking in coolest

and wettest conditions around 2.5 kyr BP. Between ca. 2.5

and 1.9 kyr BP, we observe a reversal to a slightly warmer

and drier climate, based on δD evidence. We note that the

δ13C values are rather variable and inconclusive in this core
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Figure 7. Summary of organic geochemical results from this study

in the context of silt contents of the same sediment core (Liu et al.,

2014; orange line: five-point weighted average) and data of local

glacier advances inferred from 10Be dating (Seong et al., 2009a;

centers and widths of boxes mark the mean age and the error ranges

of the events). Biomarker hydrogen isotopic data are presented as

mean of triplicate measurements with 1σ error bars for the C26

(blue line) and C28 n-alkanoic acids (red line), as well as un-

weighted average of the two (thick black line). Shaded areas are

relatively cool and wet episodes, based on leaf wax isotopic data.

section, and we observe an offset between δD-C26 and δD-

C28 (these are normally within analytical error of each other).

We hypothesize that warming influenced precipitation iso-

topes but that the change was not intense and stable enough

to trigger a large-scale ecosystem response to be recorded in

the δ13C values. Between ca. 1.9 and 1.4 kyr BP, cool and wet

conditions occurred again before returning to a warm and dry

episode from ca. 1.4 to 0.6 kyr BP (possibly interrupted by a

cooling event around 1 kyr BP). The last 0.6 kyr have been

mainly cool and wet again, except for the last ca. 100 years,

where the topmost three samples of the sediment core indi-

cate another reversal to relatively warm and dry conditions.

Enhanced precipitation, rather than lower temperatures,

has been argued to be the main driving force behind the

growth of glaciers in Asian high-altitude regions (Seong et

al., 2009b). The cool and wet episodes deduced from our

organic geochemical record match reconstructed glacial ad-

vances at Mts Muztagh Ata and Kongur Shan relatively well.

Based on 10Be dating of erratic boulders, Seong et al. (2009a)

estimated maximal glacial advances at 4.2± 0.3, 3.3± 0.6

and 1.4± 0.1 kyr and a few hundred years before present

(Fig. 7). Further, the δD data are in good agreement with

silt contents in the same sediment core (Fig. 7). These have

been interpreted as having been influenced by glacial input

and thus higher contents indicating cooler and wetter condi-

tions (Liu et al., 2014).

Our interpretation of lower δD values indicating both rel-

atively cool and wet conditions fits results from other late

Holocene records in arid Central Asia well (Fig. 8c, e and g).

The Little Ice Age (LIA) corresponds to the cool and hu-

mid period between 0.6 and 0.1 cal. ka BP at Lake Karakuli

and has been well documented as a widely humid episode

in arid Central Asia (paleoclimatic data compiled in Chen

et al., 2010; Fig. 8c). For instance, the Guliya ice core, lo-

cated ca. 630 km SE from Lake Karakuli, shows relatively

high accumulation rates during that period (Fig. 8e), indi-

cating that higher precipitation amounts and not just higher

effective moisture (induced by decreased evaporation during

cooler conditions) represented the main driving force behind,

e.g., higher lake levels. This very much contrasts with the sit-

uation in eastern, monsoonal Asia, where many records show

a relatively dry LIA due to a weakened summer monsoon

(Chen et al., 2010, and references therein).

Similarly, a number of records have shown a pronounced

warm and dry period during the Medieval Climate Anomaly

(MCA; Fig. 8c, e; Chen et al., 2010; Lauterbach et al.,

2014; Esper et al., 2002), also seen in our record from Late

Karakuli. At ca. 1 cal. ka BP, we observe a ca. 100-year inter-

ruption of this event indicated by three samples with lower

δD values. Recently, Lei et al. (2014) observed a similar

spike in carbonate δ18O values from Lake Sasi Kul, which

is located ca. 190 km west of our study site (Fig. 8b). Thus,

we hypothesize that this interruption was not just a local phe-

nomenon. Warm and dry conditions during the MCA have

also been observed at Kashgar (western Tarim Basin; just ca.

150 km north of Lake Karakuli; Zhao et al., 2012) and Lake

Bangong Co on the western Tibetan Plateau (Gasse et al.,

1996) and large Lake Karakul in the Tajik Pamir (Mischke et

al., 2010).

Applying these findings to the complete record, we see

fluctuating climatic conditions throughout the late Holocene

with clearly identifiable warmer and drier and cooler and

wetter episodes (Figs. 7 and 8). During the oldest sec-

tion of our record (ca. 4.2–3.4 kyr BP), average conditions

appear to have been warmer and drier than during the

medieval period and today, followed by a general (even

though non-continuous) cooling trend until ca. 2.4 kyr BP.

A cool and wet phase of roughly 1000 years starting at ca.

3.5 kyr BP has been observed in numerous global climate

records (Mayewski et al., 2004). At the nearby oasis of Kash-

gar, relatively wet conditions prevailed from ca. 4.0 until ca.

2.6 kyr BP (Zhao et al., 2012). At the large Lake Karakul

in Tajikistan, a rapid drop in TOC contents occurred at ca.

3.5 cal. ka BP, indicating a drop in lake productivity proba-

bly induced by low temperatures and eventually associated

with shorter ice-free periods in the summer (Mischke et al.,

2010; Fig. 8h). At Lake Balikun (northeastern Xinjiang), a

reversal to wetter conditions occurred after a pronounced dry

event lasting from 4.3 to 3.8 kyr BP (An et al., 2012). In Lake

Manas (northern Xinjiang), a wet episode was reconstructed

for 4.5–2.5 kyr BP, interrupted by a short dry period between
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Figure 8. Comparison to local and northern hemispheric paleo-

records. Shaded areas indicate relatively cool and wet episodes

at Lake Karakuli; (a) δD of C26 and C28 n-alkanoic acids Lake

Karakuli (this study); average values as in Fig. 8; red line: five-

point weighted average. (b) δ18O Sasi Kul, Pamir, Tajikistan (Lei

et al., 2014). (c) Central Asian wetness index (Chen et al., 2010).

(d) δ15N TN, Son Kol, Central Tien Shan, Kyrgyzstan (Lauterbach

et al., 2014). (e) Guliya ice core accumulation rate (Thompson et

al., 1997). (f) North Atlantic Oscillation index (Trouet et al., 2009).

(g) 30-year average of compiled temperature deviations in Asia

(Pages 2k Network, 2013). (h) TOC contents large Lake Karakul,

Pamir, Tajikistan (Mischke et al., 2010). (i) K+ GISP2 ice core

(Mayewski et al., 1997). (j) North Atlantic (NA) hematite grains in-

dicating northern hemispheric cooling events (“Bond events”; Bond

et al., 2001).

3.8 and 3.5 kyr BP (Rhodes et al., 1996). Low δ18O values

in the Guliya ice core between 3.5 and 3.0 kyr BP also give

evidence for low temperatures on the northwestern Tibetan

Plateau (Thompson et al., 1997), while in the southern Tarim

Basin, a rapid shift to wetter conditions at ca. 3.0 kyr BP has

been observed (Zhong et al., 2007).

After a ca. 500-year slight warming (ca. 2.4–1.9 kyr BP;

synchronous with the Roman Warm Period, RWP), another

reversal into cool and wet conditions occurred, peaking at

ca. 1.8–1.6 kyr BP (often referred to as the Dark Ages Cool

Period, DACP, or Migration Period). Both of these events

have also been observed in the nearby Kashgar (Zhao et al.,

2012). Afterwards the climatic trend gradually transitioned

into the abovementioned warm period during the medieval

period, followed by the LIA and the current warming period

(CWP), the latter indicated by increased δD values in the

topmost three samples of the sediment core.

5.4 Implications for Central Asian climate dynamics

The sequence of relatively cool/wet and warm/dry episodes

displays coherency with other Northern Hemisphere climate

records. There is a similarity between the cyclicity of cooling

events at Lake Karakuli, northern Atlantic ice-rafting events

(Fig. 8j; Bond et al., 2001) and strengthening phases of

the Siberian high (the anticyclonic high-pressure ridge over

Siberia), the latter recorded by [K+] increases in the GISP2

(Greenland Ice Sheet Project) ice core between ca. 3.5–2.8

and 0.5–0.2 kyr BP (Fig. 8i; Mayewski et al., 1997). Further,

throughout the last ca. 1000 years, δD values of leaf waxes in

Lake Karakuli are correlated with the mode of the North At-

lantic Oscillation (NAO), showing more positive values dur-

ing the current and medieval positive mode and more nega-

tive values during the LIA negative mode (Fig. 8f; Trouet et

al., 2009).

The interplay between the dominant atmospheric circula-

tion systems in Central Asia – the Siberian high, the midlati-

tude westerlies and, partly, the Indian summer monsoon – as

well as orographic influences lead to complex climatic pat-

terns. Trajectory studies in the modern atmosphere, as well as

inventories of dust particles in ice cores, suggest the midlati-

tude westerlies as a primary source of moisture during winter

and spring, with the North Atlantic, the Mediterranean, and

the Black and Caspian seas as possible regions of origin (Lei

et al., 2014; Seong et al., 2009a and b; Wu et al., 2008). The

Siberian high delivers cool but also relatively dry air during

winter. The absence of sea salt, i.e., in the Muztagh Ata ice

core (Aizen et al., 2001; Seong et al., 2009b), provides fur-

ther evidence for a minor importance of the Indian monsoon

and for midlatitude westerlies and local convection to be the

most important moisture sources during the summer.

Even though Lake Karakuli receives some moisture in

spring (Fig. 4), regions which are located as close as 190 km

westwards at a similar altitude, such as Lake Sasi Kul and

other parts of the central and western Pamirs, receive much

higher proportions and amounts of winter and spring precip-

itation (Lei et al., 2014; Miehe et al., 2001). Variations in

strength and tracks of the westerlies and the related move-

ment of the polar front (Machalett et al., 2008) could have

influenced the amount of winter and spring moisture which

has reached the Karakuli region in the past. Lei et al. (2014)

suggested that during negative NAO modes (e.g., during the

LIA) the storm tracks were moving further southwards, lead-
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ing to wetter conditions in the Mediterranean and higher

amounts of moisture being transported into Central Asian

areas of the same latitude. In contrast, other authors pro-

posed a more complex interplay between the Eurasian and

Pacific circulation systems on the basis of modeling data and

a generally higher delivery of moisture into Central Asia dur-

ing episodes of strengthened westerlies (i.e., positive NAO

modes; Syed et al., 2010; Syed, 2011). Recently, a possi-

ble negative correlation between lower winter precipitation

in the Mediterranean (positive NAO mode) and higher win-

ter precipitation at Son Kol (central Tien Shan; ca. 400 km

north of Lake Karakuli) was also suggested by Lauterbach et

al. (2014) based on δ15N data on total nitrogen (Fig. 8d).

Based on our data, we hypothesize that the relatively wet

episodes recorded in our sediment core from Lake Karakuli

were mainly caused by increased late-winter and spring

precipitation derived from midlatitude westerlies. Cooling

and wetting periods at 3.5 cal. ka BP and between 1.9 and

1.5 kyr BP (DACP) are simultaneous with increased winter

precipitation at Son Kol (Fig. 8d), indicating common cli-

matic variations in the eastern Pamirs and the central Tien

Shan. For the LIA, this connection is less pronounced. In-

stead, for the last ca. 1.5 kyr BP, we see a close similar-

ity to isotopic trends in the central Pamirs (Fig. 8b), which

in turn drift apart between 1.5 and 2.5 kyr BP. An explana-

tion for this could be the increased influence of the signifi-

cantly strengthened Siberian high during the LIA (Fig. 8i).

This possibly either weakened the midlatitude westerlies or

pushed their tracks further to the south, resulting in compa-

rably drier conditions in more northern regions, such as the

Tien Shan, but wetter conditions in the central and eastern

Pamirs (Lei et al., 2014). A similar mechanism could explain

the climatic pattern in the eastern Pamirs at present, with low

winter and spring precipitation at low altitudes during the

current positive NAO mode and westerlies penetrating more

to the north, while the central Pamirs still receive high winter

precipitation.

Despite a slight increase in total precipitation amount over

the last 50 years in the dry areas of western China (Yao et

al., 2012; Zhang and Cong, 2014), effective moisture in our

study area has decreased due to rising temperatures. The two

closed ponds and Lake Karakuli itself show clear geomor-

phological evidence for recent shrinking (field observations)

and isotopic evidence for evaporative enrichment above me-

teoric waters (Table 1). This is in contrast to several en-

dorheic lakes in Central Asia, whose lake levels are rising

due to the currently increased meltwater input from receding

glaciers (e.g., Bosten Lake; Wünnemann et al., 2006; or large

Lake Karakul in Tajikistan, Mischke et al., 2010).

6 Conclusions

The biomarker isotopic record from Lake Karakuli, eastern

Pamir, shows distinct episodes of relatively cool and wet as

well as warmer and drier climates over the last 4200 years.

Variations in the North Atlantic conditions and Siberian high

both appear to show similarities with isotopic variability in

our biomarker record, including notable excursions around

3.5 kyr, the MCA and the LIA. However, there are also in-

dications of complex responses of regional climate, i.e., dif-

ferent responses between the western (e.g., western and cen-

tral Pamir), eastern (e.g., eastern Pamir) and northern (e.g.,

Tien Shan) parts of Central Asia. This regional variability is

thought to arise from changes in the dynamics and interplay

of the large-scale atmospheric circulation systems involved,

especially the strengths and pathways of the westerlies. Our

data provide evidence that the transition between regions of

summer-only and winter- and spring-dominated precipitation

could have been a key factor for local climate in the past.

They further show a rapid aridification in the eastern Pamir

during the last 50–100 years.

The Supplement related to this article is available online

at doi:10.5194/cp-11-619-2015-supplement.
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