1	Vegetation and Climate Change during Marine Isotope Stage 3 in China
2	Zhao et al.
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	a
18	*Corresponding author at:
19	Phone: +86 (0)10 6488-9938
20	Fax: +86 (0)10 6488-9938
21	Email: zhaoyan@igsnrr.ac.cn
22	Abstract

23	Fossil pollen records from 45 sites across China, mostly with poor chronology and coarse
24	resolution, were used to document MIS 3 vegetation and climate change and to understand the
25	large-scale controls. During MIS3, vegetation type was mostly forest in the eastern part of
26	China, and forest steppe/meadow in the north and Tibetan Plateau, while in the arid China the
27	vegetation was steppe desert. The Vegetation scale change shows higher values in MIS3 than
28	in LGM, especially for the period of 53-40 ka. Our results also indicate that MIS 3 vegetation
29	was not as good as during Holocene optimum, suggesting less warm and wet climate;
30	however, probably similar to the modern vegetation. The close relationship between
31	vegetation and insolation and summer monsoon intensity suggests that climate variations,
32	probably both temperature and precipitation, are the primary cause of regional vegetation
33	change. Additional well-dated, high-resolution paleoclimate records from many locations
34	across China will be needed, in order to understand the vegetation change on millennial and
35	centennial scale within MIS 3 and climate control mechanisms.
36	
37	Keywords: Fossil pollen; MIS 3; vegetation change; climatic controls; China
38	
39	
40	
41	
42	
43	
44	1. Introduction

45	MIS 3 has drawn lots of attention across the world due to its special interstadial climate
46	during the last glacial (e.g., Brandefelt et al., 2011; Allen et al., 1999; Hughen et al., 2006;
47	Barron and Pollard, 2002; Lambeck et al., 2002; Wright et al., 1995; Meerbeeck et al., 2009;
48	Voelker et al., 2002; Huntley et al., 2003). Greenland ice core oxygen isotope records
49	(Dansgaard et al., 1993; North Greenland Ice Core Project Members, 2004) indicate that
50	climate varied between cold (stadial) and mild (interstadial) conditions during MIS 3,
51	approximately 60-30 ka. Voelker et al. (2002) compiled global terrestrial and marine sites in
52	order to provide an overview on the spatial distribution of centennial-resolution climate
53	records of MIS 3 glacial. The results show that in general, climate conditions were warmer
54	and more humid during interstadials, and colder and more arid during stadials. Based on
55	equilibrium climate simulations, Van Meerbeeck et al. (2009) suggested that enhanced
56	northern Hemisphere seasonality, insolation difference and freshwater forcing could have
57	contributed to the climate difference between Marine Isotope Stage 3 and the Last Glacial
58	Maximum. In China, many studies have revealed the possible warm and humid climate during
59	MIS 3. Herzschuh (2006) reviewed 75 palaeoclimatic records (including 14 records covering
60	part of MIS 3) and found MIS 3 (50-25 ka) is a relatively wetter period than MIS 2. Shi et al.
61	(2002; 2003) and Yang et al. (2004) suggested that a warm and wet climate occurred during
62	late MIS 3 (40-30 ka) mainly based on ice core, lacustrine sediments, pollen and
63	paleoentology, loess/paleosol sequence and cave oxygen isotope, mostly from northwestern
64	China and the Tibetan Plateau. Yu et al. (2002; 2007) used 19 coarse resolution pollen records
65	at 40-30 ka and applied a biomization method to reconstruct the vegetation types. The
66	reconstructions show that forest in southeastern China extended northwards into the present

67	northwestern steppe region, while the northern boundary of tropical forest in southern China
68	was shifted to the north of 24°N. However, the vegetation change during the entire MIS 3 in
69	China and climate controls are still poorly understood due to limited records and few
70	synthesis studies. In addition, some important questions are still not clear, mainly including:
71	(1) When was the best vegetation period during the MIS 3? (2) Was the vegetation during
72	MIS 3 similar to the Holocene? (3) Did precipitation change or temperature change cause
73	the vegetation change?
74	
75	In this paper, we review the pollen data from 44 sites across China (see the locations and site
76	information in Fig. 1 and Table 1). The objectives of this paper are to document the
77	vegetation change during MIS 3 and to understand the vegetation response to climate change
78	and attempt to address the scientific questions above-mentioned. This synthesis would not
79	only bring together existing pollen data but also assist the design of paleoecological and
80	paleoenvironmental studies in the future.
81	
82	2. Data sources and methods
83	Fourty-five pollen records of various time spans and data quality in China are available;
84	however, in general very few records have good age controls, high temporal resolution and
85	mostly are discontinuous. Nonetheless, we include all the data for our synthesis in this study
86	(see Table 1 for information and reference) due to lack of the recods spanning MIS 3. We
87	chose 7 pollen records with relatively good age controls and continuous sediments for
88	detailed description. Pollen data of these 7 sites were digitized from pollen diagrams in the

89 publications.

90

91	For each site, we attempted to recalibrate radiocarbon dating with the program Calib Rev
92	6.1.0 using IntCal09 calibration data set (Reimer et al., 2009). Our calibration shows that the
93	calibrated age is usually 300-500 years older than radiocarbon age during the MIS 3 stage.
94	Some Thermoluminescence (TL) and Optical Stimulated Luminescence (OSL) ages at some
95	sites were also used in this study, which were indicated in Table 1. Unfortunately, the
96	chronologies for most sites are based on only one radiocarbon date or through regional
97	correlation, which caused lots of uncertainties.
98	
99	We review the pollen data by seven regions: South China, Southwestern China, Central China,
100	North China, Loess Plateau, Northwestern China and the Tibetan Plateau, based on the
101	modern vegetation types (Hou, 2001) and for the conveniences of discussion. For each site,
102	we assigned a vegetation score from 1-3 based on the different vegetation types inferred from
103	pollen data, some of which are only based on the description of the original papers due to the
104	lack of detailed figures. We generated a synthesized curve by averaging for the interval of
105	every 2000 years.
106	
107	3. Pollen records of vegetation changes
108	We here present seven records in detail for various regions in China. We also describe other

109 records in general in each region.

110 **3.1. South China**

111	Tianyang Lake provides a representative pollen record (Zheng and Lei, 1999) in South China.
112	The pollen assemblages were dominated by <i>Castonopsis</i> and <i>Quercus</i> at >47,770–29,000 14 C
113	yr BP (>48.4-33.2 ka; 1 ka=1000 cal yr BP) and the vegetation was evergreen forest with
114	montane conifers and then temperate forest elements. The pollen zone is characterized by a
115	strong increase in Poaceae (28–55%) and Artemisia (7–10%) at ca. 29,000–15,000 14 C yr BP
116	(33.2-19 ka), indicating dense forests were transformed to grassland or savanna vegetation.
117	<15,000 ¹⁴ C yr BP (19 ka), the pollen assemblage show the resurgence of montane forest
118	typified by Taxodiaceae, Pinus and Altingia and the disappearance of savanna.
119	
120	Pollen records from Shenzhen (Zhang and Yu, 1999), Caitang (Zheng Z., 1990; cite from
121	Huang et al., 2003), Henglan (Huang et al., 1982; cite from Huang et al., 2003), Lingtingyang
122	(Chen et al., 1994) and Hongkong in South China (Yan, 1998) revealed that the pollen
123	assemblages were mostly dominated by Cyathea, evergreen Quercus, Castanopsis and
124	Elaeocarpus and tropical Sonneraia at ca. 40-30 ka, though the age controls were very poor
125	and pollen data information was fragmentary for these records. The pollen data suggest the
126	vegetation around these sites was tropical evergreen forest at MIS 3. However, a core from
127	Continental shelf of the South China Sea (Sun et al., 2000), which had three radiocarbon dates
128	to bracket MIS 3 stage shows that the pollen assemblages were dominated by Pinus, montane
129	conifers (<i>Picea</i> , <i>Abies</i> and <i>Tsuga</i>) and herb <i>Artemisia</i> pollen at 40-18 ka (cal.) and Late MIS 3
130	(40-28.8 ka) and LGM are quite similar in climate.
131	

132 Another feature of vegetation change inferred from pollen data in South China is the

133	distribution change of <i>Dacrydium</i> , which is an indicator of warmer climate. The Chinese
134	mainland flora today is totally devoid of <i>Dacrydium</i> , except that a single species (<i>D. pierrei</i>)
135	is represented in the montane rainforests of Hainan Island (extreme southern of China). Zheng
136	(1991) reviewed the distribution of <i>Dacrydium</i> during the late Quaternary and found that the
137	fossil pollen grains, morphologically comparable to that of <i>D. pierrei</i> , were discovered from
138	the Tertiary and Quaternary sediments in an extensive area of China. Even in the last
139	interglacial of Wurm (40-20 ka), its distribution might extend to 22 ° -24 ° north latitude.
140	
141	3.2. Southwestern China
142	Tang (1992) presented the results from two lakes in Menghai Region, Yunnan. At Manyang
143	Lake Section, at 42000-38000 14C yr BP (>42-42 ka), pollen assemblages were dominated by
144	evergreen tree pollen (Fig. 2), including Castanopsis, Cyclobalanopsis, llex, Myrica,
145	Myrtaceae, Rutaceae, with deciduous Quercus, Salix, Euphorbiaceae, Alnus. At 38000-29000
146	14C yr BP (42-33.2 ka), Dacrydium appeared and pollen included evergreen Cyclobalanopsis,
147	Myrica, llex, Rulaeeae, Rhododendron, Engelhardtia and deciduous Alnus, Betula, Ulmus,
148	Salix, Quercus, while herb decreased. At 29-27 (33.2-31.6 ka), evergreen tree was still
149	dominant, but decreased. At Manxing Lake core, at 27000-25000 14C yr BP (32.1-24.7 ka),
150	evergreen Cyclobalanopsis, Castanopsis and Quercus pollens were dominant. At
151	20700-11900 14C yr BP (24.7-13.8 ka), Pinus increased. The pollen data show that vegetation
152	changed from evergreen tropical and subtropical forest at 42000-20700 14C yr BP (>42-24.7
153	ka) to evergreen and deciduous forest at 20700-11900 14C yr BP (24.7-13.8 ka).

155	The pollen records from Heqing (Yang et al., 1998), Tengchong (Qin, 1992), Dianchi Lake
156	(Wu et al., 1991) and Dianchang Mountian (Kuang et al., 2002) in the southwestern China
157	only had one radiocarbon date or no date during the MIS 3. In general, the pollen assemblages
158	are dominated by Keteleeria, Castnopsis, evergreen Quercus with conifer Tsuga, Picea and
159	Pinus around 45 ka. The vegetation changed from evergreen dominated forest at MIS3 to
160	conifer and broad-leaved mixed forest at LGM.
161	
162	3.3. Central China
163	There are three pollen records from Central China. In Poyang Lake region, there are 3 TL age
164	(67.7±8.3ka; 44.8±4.5ka and 9.5±2.5ka) for PHZ section (Wu et al., 1997). At 76-55 ka, the
165	pollen assemblages were dominated by Artemisia and Poaceae. At around 55-25 ka, more
166	evergreen tree pollen appeared, mainly from Quercus, Castaneae, Cyclobalanopsis, and
167	Castanopsis. At 25-16 ka, tree pollen decreased whileas herb pollen Artemisia increased.
168	After 16 ka, evergreen tree pollen disappeared. Vegetation changed from evergreen and
169	deciduous mixed forest at MIS 3 to deciduous forest at LGM.
170	
171	At Tai Lake region, a coarse resolution pollen record for a 101.8 m long core was shown by
172	Zhou et al. (2001). There is one radiocarbon date at 23098 ± 1770 ¹⁴ C yr BP (ca. 27.3 ka).
173	Evergreen tree of Quercus, Castaneae, Pterocarya, Ulmus, Carpinus was abundant during
174	approximately MIS 3 period. After 27 ka, herb pollen dominated. Two peat sites at Fujian
175	seaside for pollen analysis has one radiocarbon date (41745 ± 4.955 14 C yr BP , ca. 43.5 ka;

176 31430±l 510 ¹⁴C yr BP, ca. 36.1 ka) respectively during MIS 3 (Yang, 1992). Tree pollen,

177	mainly broad-leaved Quercus and Fagaceae covered 77-95% of the total pollen assemblages
178	at 45-35 ka. At 21 740 \pm 520 ¹⁴ C yr BP (26.2 ka), the pollen assemblages were dominated by
179	herbs (44.2%) with fewer subtropical trees, with some Pinus, Ulmus. Both the lake and peat
180	sites show that vegetation changed from evergreen and deciduous mixed forest to forest
181	steppe.
182	
183	3.4. North China
184	There are few MIS 3 pollen records in north China. The pollen data in the Beijing area since
185	30000 ¹⁴ C yr BP (34.2 ka) show the vegetation change (Kong and Du, 1980). About 30000
186	years ago (34.2 ka), the coniferous forests (Picea and Abies) grew on the plain of Beijing;
187	during the period 23000-12000 14 C yr BP (27.5-14 ka), the vegetation was dominated by
188	Artemisia, Chenopodiaceae, Poaceae, suggesting a cold dry steppe.
189	
190	In the Songnen desert land between Songhua River and Nen River, Jie and Lu (1995) used the
191	relationship between surface pollen and climate and reconstructed the precipitation based on
192	the fossil pollen records in this region. Their results show that during MIS 3, the precipitation
193	reached 660 mm, but decreased to 370 mm at LGM; however, the age was not well
194	constrainted. The pollen record from the sediment core in the Yellow River Mouth has no age
195	bracket for MIS 3 (Xu et al., 2006). Based on the extrapolation age, at MIS 3 the pollen
196	assemblages were dominated by Pinus, Quercus and Artemisia, while by Pinus, Picea and
197	Chenopodiaceae at LGM, indicating the vegetation transition from mixed forest steppe to
198	coniferous forest steppe.

200 3.5. Loess Plateau

201 There are more high-resolution pollen records with good age controls in the Loess Plateau. 202 The age model for Suancigou Section has been constructed based on 13 AMS dates (Feng et 203 al, 2007). At 47210-33370 14C yr BP (ca. >47 ka-38.3 ka), the pollen assemblages were 204 dominated by Pinus and Picea (up to 80%). The herb component (e.g., Chenopodiaceae, 205 Artemisia, Asteraceae, Poaceae and Cyperaceae) accounted for 20% of the pollen sum with a very small amount of deciduous tree pollen. At 33370-28280 14C yr BP (ca. 38.3-32.5 ka), 206 207 Pinus and Picea (up to 90%) were dominant, with very low herb component. At 28280-22480 208 14C yr BP (32.5-27.1 ka), the pollen assemblages were characterized by a rise in the herb 209 pollen percentage as well as by a marked increase in the deciduous tree pollen percentage 210 (e.g., Betula, Quercus, Rosaceae and Ulmaceae). At 22480-13090 14C yr BP (27.1-15.8 ka), 211 both herb pollen (up to 70%) and in the deciduous tree pollen (up to 30%) increased greatly at 212 the expense of the coniferous tree pollen percentage. The pollen data from Suancigou show 213 that vegetation changed from a coniferous woodland at 47210-33370 14C yr BP (ca. >47 214 -38.3 ka) and 33370-28280 14C yr BP (ca. 38.3-32.5 ka) (with very low herb), forest steppe at 215 28280-22480 14C yr BP (32.5-27.1 ka), to steppe at 22480-13090 14C yr BP (27.1-15.8 ka). 216 217 Fanjiaping Loess Section (Jiang et al., 2011) and Weinan Section (Sun et al., 1997) provide 218 other two relatively higher resolution pollen records from the Loess Plateau. The pollen data 219 from Fanjiaping show that the vegetation changed from deciduous-conifer mixed forest at

220 60.6-46.0 ka, conifer-dominated forest at 46-39 ka, to steppe forest at 39-27 ka. At Weinan,

221	the vegetation changed from steppe with sparse forest at 65.3-54.5 ka, meadow-steppe at
222	54.5-34.1 ka, Artemisia dominated steppe at 34.1-25.0 ka, steppe with Corylus woodland at
223	25.0-21.1 ka, to Asteraceae steppe at 21.2-13.7 ka.
224	
225	Pollen records from Luochuan (Li and Sun, 2004), Fu County (Ke, 1993), Qishan (Zhao,
226	1995), Beizhuang (Ke, 1991) and Linxia (Tang, 1991) sections in the Loess Plateau suggest
227	that the vegetation changed from steppe at 75-54 ka, through forest steppe at 54-36 ka, steppe
228	36-32 ka, forest steppe at 32-23 ka, to dry steppe at 23-13 ka. The pollen assemblages from a
229	paleosol layer (paleosol#6) on the floor of a loess gully from Loess Plateau (Li et al., 1988)
230	dated to 35390 ± 1600 yr BP (39.8 ka) mainly included Pinus (48%), Picea (23%) and Abies
231	(3%), suggesting conifer forest. Another pollen sequence from Yuanbao in the Loess Plateau
232	(Ma et al., 1995; Tang et al., 1998) shows that the vegetation changed from mixed forest of
233	coniferous and broad-leaved trees at 53-36 ka to coniferous forest at 23-15 ka.
234	
235	3.6. Northwestern China
236	Pollen records covering MIS 3 are rare in northwestern China. Duantouliang Section provides
237	a high-resolution pollen record in this region (Ma et al., 1998; Zhang et al., 2002). The
238	chronology was controlled by 8 radiocarbon dates of organic matter between 42000 and
239	18000 ¹⁴ C yr BP (~47-22 ka). Three major pollen zones were identified on the basis of pollen
240	assemblages. At ca. 40,500–34,660 14 C yr B.P (44.6-39.5 ka), the most abundant taxa were
241	Cupressaseae, Juniperus, Nitraria, and Chenopodiaceae. Needle-leaf tree pollen accounted
242	for 12.4% to 46.2% of the total sum, and the percentage of broadleaf tree pollen was low. At

243 ca. 34,660–21,260 ¹⁴C yr B.P (39.5-25.3 ka), pollen concentration in this zone was generally

244	high, and the number of species was the highest in the entire DTL section. At ca.
245	21,260–19,010 14 C yr B.P. (25.3-22.6 ka), the percentages for both needle-leaf and broadleaf
246	trees were lower than in the previous period and the number of species, especially the taxa of
247	broadleaf trees and shrubs, also decreased. The herbs, such as Artemisia and Chenopodiaceae,
248	dominated the pollen assemblages during this period. The pollen record from Duantouliang
249	indicates that the vegetation on the mountains changed from coniferous forest dominated, to
250	coniferous-broad leaf mixed forest and steppe forest at ca. $40,500-34,660$ ^{14}C yr B.P
251	(44.6-39.5 ka) , ca. 34,660–21,260 $^{14}\mathrm{C}$ yr B.P (39.5-25.3 ka) and ca. 21,260–19,010 $^{14}\mathrm{C}$ yr
252	B.P (25.3-22.6 ka).
253	
254	Pollen data from Manas Lake (Rhodes et al., 1996), Chaiwopo Lake (Shi and Qu, 1989) and
255	Lop Nor (Yan et al., 1998) in Xinjiang are fragmentary. Vegetation was desert or steppe-desert
256	at ca. 42-30 ka, but with more Artemisia, while vegetation was desert with more
257	Chenopodiaceae or Ephedra during LGM. Pollen from Milanggouwan Section, Salawusu in
258	Inner Mongolia (Wen et al., 2009) show that the vegetation landscape can be interpreted as
259	warm-humid sparsely wooded steppe at late MIS3 (around 29 ka) changed to a cool -
260	temperate steppe at LGM.
261	
262	3.7. Tibetan Plateau
263	Shen et al. (2005) showed a pollen sequence for the last 180 ka at the Zoige Basin in the
264	Tibetan Plateau. There are three radiocarbon dates to bracket MIS 3: 21600±1500,

33140±2350 and >40000 ¹⁴C yr BP. At 60-43 ka, the pollen assemblages were dominated by

266	Cyperaceae, with some Poaceae, Asteraceae and Ranunculaceae. Tree pollens were mainly
267	from Picea, Pinus, Abies. At 43-39 ka, Cyperaceae decreased abruptly (<10%), and Picea
268	became dominant, with some Pinus, Abies, Quercus. At 39-32 ka, Poaceae (up to 33%) and
269	Cyperaceae (up to 21.5%) were dominant and Picea decreased sharply. At 32-18 ka, similar
270	to 39-32 ka, but with a very low pollen concentration. At 18-15 ka, Picea and Abies forest
271	appeared. At 15-7 ka, tree pollen was very high. The vegetation changed from forest meadow
272	and meadow at early MIS 3 to steppe at 43.3-21.6 ka, forest meadow /steppe after then.
273	
274	At Qinghai Lake (Shan et al., 1993), Dabuxun Lake (Chen, 1996), Gonghe (Tang et al., 1988;
275	cited from Tang et al., 1998), Maerguo Chaka (Huang et al., 1983), Zabuye Salty Lake (Xiao
276	et al., 1996) and Zalun Chaka (Huang et al., 1983), the vegetation inferred from pollen
277	records showed change from conifer forest or steppe forest at MIS 3 (mostly at 40-30 ka) to
278	steppe or desert steppe at LGM. At Banggong Co (Huang et al., 1989) and Chaerhan Lake
279	(Du and Kong, 1983), vegetation type was desert or desert steppe at MIS 3 (44-30 ka),
280	showing similar type to LGM; however, the desert contained more Artemisia or aquatic plants.
281	The highstand lacustrine sediments from Nam Co and North Tibet Palaeolake (Zhu et al.,
282	2004) provide fragmentary but in a sequence pollen data. Around 51 ka, 40 ka and 36.5 ka,
283	tree pollen is high (up to 80-90%) dominated by Abies, Picea, Tsuga, Pinus and Betula, while
284	tree decreased after 32.7 ka and Tsuga disappeared.
285	
286	4. Synthesis and discussion

287 4.1. General pattern of MIS 3 vegetation and climate changes

288	Vegetation showed different changes in various regions during MIS 3 as inferred from pollen
289	data. In South China, evergreen forest was abundant. In southwestern China, evergreen or
290	mixed forest dominated. In eastern-central China, vegetation was evergreen and deciduous
291	forest. In North China, vegetation was dominated by conifer forest or conifer and deciduous
292	forest. On the Loess Plateau, vegetation was mostly forest steppe and conifer or mixed forest.
293	In northwestern China, desert or steppe desert dominated the vegetation, except at
294	Duantouliang with broadleaf and conifer mixed forest, which is related to nearby mountain
295	vegetation origin. On the Tibetan Plateau, forest steppe and conifer forest were dominant. The
296	MIS 3 vegetation showed difference from the other glacial period, particularly from LGM.
297	The vegetation at LGM was conifer forest/mixed forest in the south China, evergreen and
298	deciduous forest/conifer forest in southwestern China, deciduous forest in the eastern-central
299	China, , steppe/conifer forest in north China, steppe in the Loess Plateau, desert in the
300	northwestern China, and desert/steppe on the Tibetan Plateau. Although the vegetation change
301	sequence was different in various regions, all the vegetation became worse from MIS 3 to
302	LGM (Fig. 3). The vegetation scale shows that the vegetation at early MIS 3 was better than
303	the later stage, suggesting warmer and wetter climate (Fig. 4). The tree percentages from
304	almost all the sites, except in extremely arid regions with very low tree percentages, show
305	obviously higher values during the entire MIS 3 or fragmentary periods (see examples in Fig.
306	2).
307	
308	The different vegetation features at MIS 3 from glacial period have also revealed by

309 numerous paleoclimatic records across the world. Voelker et al. (2002) used a database of

310	global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3, including
311	pollen data and concluded that in general, climate conditions were warmer and more humid
312	during interstadials, colder and more arid during stadials. Huntley et al. (2003) synthesized
313	the pollen data from Europe and found that the inferred vegetation differs in character and
314	spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits
315	contrasts between warm and cold intervals, consistent with other evidence for stage-3
316	palaeoenvironmental fluctuations. The pollen record from Camel Lake, USA, showed that
317	40-29 ka was a time of forests with abundant pine, oak, and diverse mesic tree species, while
318	29-14 ka was a species-poor pine forest (Watts et al., 1992). Anderson et al. (2000) reviewed
319	the pollen records from 7 sites in the Colorado Plateau and found that during MIS 3, mixed
320	conifers covered middle-elevation while at MIS 2, boreal conifers replaced the mixed conifer
321	association. Pollen records from western Oregon, Alaska and eastern Cascade Range also
322	suggest that MIS 3 vegetation was better than MIS 2, but also with millennial variations
323	(Anderson et al., 1994; Anderson, 1988; Whitlock and Bartlein, 1997; Anderson et al., 2000;
324	Grigg et al., 2001). Four pollen records from equatorial mountains Africa revealed the
325	vegetation change over the last 40 ka (Bonnefile and Chalié, 2000) and indiated arboreal
326	pollen at 40-30 ka was generally higher than LGM. At Lake Mikata, central Japan, arboreal
327	pollen was more abundant in MIS 3 than in LGM (Nakagawa et al., 2002). Carbon isotopes in
328	fossil emu (Dromaius novaehollandiae) eggshell from Lake Eyre, South Australia
329	demonstrate that between 45,000 and 65,000 years ago, there was an expansion of C_4 grasses,
330	which was affected by warm-season precipitation (Johnson et al., 1999). In the meantime,
331	these records mostly revealed the millennial vegetation change during MIS 3. However, the

- 332 age control and sample resolution from the pollen records from China made it impossible to
- 333 make discussion on millennial variations in vegetation and climate.
- 334

335	4.2. Comparison of MIS 3 vegetation and Holocene vegetation
336	Only 20 records since MIS 3 for this synthesis have coarse pollen data during Holocene
337	optimum and provided a basis for the direct vegetation comparison between these two periods
338	(Fig. 3). MIS 3 vegetation at 8 sites show similar vegetation types to the ones during
339	Holocene optimum, only 3 sites show better vegetation, while 9 sites show worse vegetation.
340	Compared to the present, 20 sites show similar vegetation type and 5 sites show worse
341	vegetation, while 17 sites show slightly better vegetation. These 17 sites are mainly located on
342	the Tibetan Plateau and Loess Plateau. Our results indicate that MIS 3 vegetation was not as
343	good as during Holocene optimum, suggesting less warm and wet climate; however, probably
344	similar to the modern vegetation, but with uncertainties.
345	
346	Herzschuh (2006) reviewed 75 palaeoclimatic records (including 14 records covering part of
347	MIS 3) and found MIS 3 (50-25 ka) is a relatively wetter than MIS 2. 42-37 ka is the wettest
348	period, during which moisture is still lower than Holocene optimum, but probably higher than
349	the late Holocene. The reconstruction of the late Quaternary climate changes around Lake
350	Mikata, central Japan, shows that the summer and winter temperatures were 5°C lower than
351	the present around 40 ka (uncalibrated) (Nakagawa et al., 2002). The pollen records from
352	Colorado Plateau suggest that MIS 3 was warmer than MIS 2, but colder than the present
353	(Anderson et al., 2000). In northwestern Alaska, mixed woodland was established during

354	Holocene, different from the shrub tundra at MIS 3 (Anderson, 1988). In northwestern Florida,
355	oak-dominated forest developed during the Holocene, while pine-dominated forest in MIS 3
356	(Watts et al., 1992). The vegetation scale inferred from pollen data from Carpe Lake from
357	Cascade Range show that the forest value was higher during the entire Holocene than MIS 3.
358	The reconstructed precipitation in MIS 3 in the equatorial highlands of Africa, based on
359	pollen data, was ca. 150 mm dryer than the Holocene (Bonnefille and Chalié, 2000). However,
360	the Australian monsoon was most effective between 45,000 and 65,000 years ago, least
361	effective during the Last Glacial Maximum, and moderately effective during the Holocene
362	(Johnson et al., 1999). Therefore, more pollen records with higher resolution and good control
363	across different regions are required to understand whether the climate is warmer and wetter
364	in MIS 3 than during late Holocene.
365	
365 366	4.3. Possible forcing mechanisms for MIS 3 vegetation change
	4.3. Possible forcing mechanisms for MIS 3 vegetation change The vegetation scale change in China generally agrees with the oxygen isotope from Hulu
366	
366 367	The vegetation scale change in China generally agrees with the oxygen isotope from Hulu
366 367 368	The vegetation scale change in China generally agrees with the oxygen isotope from Hulu Cave, with lower values in MIS 3, which indicates the summer monsoon intensity (Wang et
366 367 368 369	The vegetation scale change in China generally agrees with the oxygen isotope from Hulu Cave, with lower values in MIS 3, which indicates the summer monsoon intensity (Wang et al., 2001), which followed summer insolation. The oxygen isotope from Guliya ice core aslo
 366 367 368 369 370 	The vegetation scale change in China generally agrees with the oxygen isotope from Hulu Cave, with lower values in MIS 3, which indicates the summer monsoon intensity (Wang et al., 2001), which followed summer insolation. The oxygen isotope from Guliya ice core aslo shows that temperature at 60-30 ka was higher (Thompson et al., 1997). Our review on peat
 366 367 368 369 370 371 	The vegetation scale change in China generally agrees with the oxygen isotope from Hulu Cave, with lower values in MIS 3, which indicates the summer monsoon intensity (Wang et al., 2001), which followed summer insolation. The oxygen isotope from Guliya ice core aslo shows that temperature at 60-30 ka was higher (Thompson et al., 1997). Our review on peat initiation age in China demonstrates that 45-25 ka was a period with high peat initiation
 366 367 368 369 370 371 372 	The vegetation scale change in China generally agrees with the oxygen isotope from Hulu Cave, with lower values in MIS 3, which indicates the summer monsoon intensity (Wang et al., 2001), which followed summer insolation. The oxygen isotope from Guliya ice core aslo shows that temperature at 60-30 ka was higher (Thompson et al., 1997). Our review on peat initiation age in China demonstrates that 45-25 ka was a period with high peat initiation frequency, suggesting ideal climate (Zhao et al., in preparation). At MIS 3, the biogenic Silica

375 marine stack both indicate the higher temperature during MIS 3. The correlation between

376	vegetation change and the above-mentioned proxies suggest that probably both temperature
377	and precipitation contributed to the MIS 3 vegetation change in China.

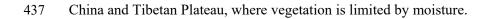
379	The notion that the MIS 3 vegetation change was driven by large scale climate change was
380	confirmed by the evidence from America and Europe. Pollen data from Carp Lake from the
381	eastern Cascade Range disclose alternations of forest and steppe that are consistent with
382	variations in summer insolation and global ice-volume, and vegetational transitions correlate
383	well with the marine isotope-stage boundaries (Whitlock and Bartlein, 1997). The close
384	relationship between vegetation and climate beyond LGM provides evidence that climate
385	variations are the primary cause of regional vegetation change on millennial timescales, and
386	that non-climatic controls are secondary. In Europe, the pollen-inferred vegetation was
387	compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic
388	conditions simulated using a regional climate model (RegCM2) nested within a coupled
389	global climate and vegetation model (GENISS-BIOME) (Huntley et al., 2003). The results
390	show that European vegetation appears to have been an integral component of millennial
391	environmental fluctuations during MIS 3 and vegetation responded to this scale of
392	environmental change, mainly induced by insolation, SST, ice volume and through feedback
393	mechanisms may have had effects upon the environment.
394	
395	Based on syntheses of geological evidence and the AGCM+SSiB modeling, Yu et al. (2007)
396	presented climate simulations focused on 35 ka for East China, using forcing of insolation,
397	glaciation and land surface conditions (Yu et al., 2007) and made some preliminary

398	concluding remarks that a decreased heat gradient from the Pacific Ocean to East Asia would
399	reduce vapor transport from sea to land and lead to both winter and whole year precipitation
400	decreases in East Asian lowlands. However, where the temperature gradient between inland
401	Asia and low latitude sea was enlarged, vapor transport rate from the sea to the continent
402	would strengthen; thus increasing precipitation for inland China, e.g., northwestern China and
403	Tibetan Plateau, during late MIS 3, which was revealed by Shi et al. (2002; 2003).
404	
405	In the mean time, CO ₂ at MIS 3 was averagely ca. 20 ppmv higher than LGM. Probably CO ₂
406	also contributed to the vegetation change, especially in northwestern China and Tibetan
407	Plateau, which is limited by moisture. Lower CO ₂ during LGM could amplify the effect of an
408	arid climate on plants through their effects on leaf conductance and water-use efficiency, as
409	suggested by the modeling study in tropical Africa (Wu et al., 2007). Herzschuh et al. (2011)
410	proposed that the replacement of drought-resistant alpine steppes (that are well adapted to
411	lowe CO ₂ concentrations) by mesic Kobresia meadows on the Tibetan Plateau can, at least, be
412	partly interpreted as a response to the increase of CO ₂ concentration since 7000 years due to
413	fertilization and water-saving effects, based on BIOM4 global vegetation model. The higher
414	CO ₂ could also amplify the vegetation change, especially in northwestern China and Tibetan
415	Plateau. At most sites, vegetation became worse at 40-30 ka; however, the vegetation in the
416	northwestern China and the Tibetan Plateau was still relatively prosperous. In these two
417	moisture limited regions, still high CO ₂ at that time might have contributed to the vegetation
418	growth, though summer insolation decreased. However, our hypothesis needs to be based on

419 more high-resolution pollen records to investigate the millennial change in MIS 3 and further

420 to be testified by climate modeling.

421


422 5. Concluding remarks

423	(1) Vegetation during MIS3 in China shows different types from LGM, suggesting the
424	vegetation is better than the other periods of last glacial over the last 60 ka. During MIS3,
425	vegetation type was mostly forest in the eastern part of China, and forest steppe/meadow in
426	the north and Tibetan Plateau, while in the arid China the vegetation was steppe desert. The
427	Vegetation scale change shows higher values in MIS3 than in LGM, especially for the period
428	of 53-40 ka. Our results also indicate that MIS 3 vegetation was not as good as during
429	Holocene optimum, suggesting less warm and wet climate; however, probably similar to the
430	modern vegetation.
431	
432	(3) Vegetation change in MIS 3 based on fossil pollen data correlates well with insolation, sea
433	surface temperature, monsoon intensity, ice core oxygen isotope and peat initiation. The close

434 relationship between vegetation and climate provides evidence that climate variations,

435 probably both temperature and precipitation, are the primary cause of regional vegetation

436 change. CO₂ probably also contributed to the vegetation change, especially in northwestern

438

(3) Our review and synthesis indicate that high-resolution records with robust chronology for
vegetation and climate reconstructions are lacking across the entire China. There were almost

441 no high quality (with continuous sediment, good age control and high analysis resolution)

442	pollen records covering the entire 60 ka. Our review only provides a general framework of
443	MIS 3 vegetation change. Future work will require additional well-dated, high-resolution
444	paleoclimate records from many locations across China, in order to understand the vegetation
445	change on millennial and centennial scale within MIS 3 and climate control mechanisms .
446	
447	Acknowledgements
448	We thank Wenwei Zhao and Huan Li for digitizing pollen data and plotting some figures.
449	This research was supported by the National Natural Science Foundation of China (Grants
450	#41125006 and 41071126), the National Basic Research Program of China (973 Program,
451	grant #2012CB956102 and 2010CB950202), and 100 Talents Programme of the Chinese
452	Academy of Sciences.
453	
454	References
455	Anderson, P.M., 1988. Late Quaternary pollen records from the Kobuk and Noatak River
456	drainages, northwestern Alaska. Quaternary Research 29, 263-276.
457	Anderson, P.M., Bartlein, P.J., Brubaker, L.B., 1994. Late Quaternary history of tundra
458	vegetation in northwestern Alaska. Quaternary Research 41, 306-315.
459	Anderson, R. S., Betancourt, J.L., Mead, J.I., Hevly, R.H., Adam, D.P., 2000. Middle- and
460	late-Wisconsin paleobotanic and paleoclimatic records from the southern Colorada
461	Plateau, USA. Palaeoclimatology, Palaeogeography, Palaeoecology 155, 31-57.
462	Bard E., 2002. Abrupt climate changes over millennial time scales: climate shock. Physics
463	Today 55 (12), 32-38.
464	Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years.

Quaternary Science Reviews 10, 297-317.

- 466 Bonnefille, R., Chalie, F., 2000. Pollen-inferred precipitation time-series from equatorial
- 467 mountains, Africa, the last 40 kyr BP. Global and Planetary Change 26, 25-50.
- 468 Bonnefille, R., Roeland, J.C., Guiot, J., 1990. Temperature and rainfall estimates for the
- 469 40,000 yr in Equatorial Africa. Nature 14, 917-936.
- 470 Chen, M.H., Zhao, H.T., Wen, X.S., Zhang, Q.M., Song, C.J., 1994. Quaternary Foraminiferal
- 471 group and sporopollen zones in cores L2 and L16 in the Lingdingyang Estuary. Marine
- 472 Geology & Quaternary Geology 14, 11-22 (in Chinese with English abstract).
- 473 Chen, W.R., Lan, D.Z., Chen, C.H., Yu, Y.F., 1998. Sporopollen assemblages and
- 474 climatic-environmental changes in Jiulongjiang Estuarine Plain during late Quaternary.
- Journal of Oceanography in Taiwan Strait 17, 34-42 (in Chinese with English abstract).
- 476 Dansgaard, W., Johnsen, S.J., Claussen, H.B., Dahl-Jensen, D., Grundestrup, N.S., Hammer,
- 477 C., Hvidberg, C., Steffensen, J., Sveinbjoernsdottir, A., Jouzel, J., Bond, G., 1993.
- 478 Evidence for general instability of past climate from a 250 year ice-core. Nature 364,
- 479 218-220.
- 480 Dorale, J.A., Edwards, R.L., Ito, E., González, L.A., 1998. Climate and Vegetation History of
- 481 the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri,
- 482 USA. Science 282, 1871-1874.
- 483 Du, N.Q., Kong, Z.C., 1983. Palynoflora of the Qarhan saline lake and its significance in
- 484 geography and botany-the sporo-pollen assemblages from CK2022 drilling core at the
- 485 Bieletan. Acta Botanica Sinica 25, 275-282 (in Chinese with English abstract).
- 486 Feng, Z.D., Tang, L.Y., Ma, Y.Z., Zhai, Z.X., Wu, H.N., Li, F., Zou, S.B., Yang, Q.L., Wang,

487	W.G., Derby	shire, E.,	Liu, K.B.	, 2007.	Vegetation	variations	and a	ssociated	Environmer	ıtal

488 changes during marine isotope stage 3 in the western part of the Chinese Loess Plateau.

489 Palaeogeography, Palaeoclimatology, Palaeoecology 246, 278-291.

- 490 Grigg, L.D., Whitlock, C., 2001. Evidence for millennial-scale climate change during marine
- 491 isotope stages 2 and 3 at Little Lake, Western Oregon, USA. Quaternary Research 56,
- 492 10-22.
- 493 Grimm, E.C., Jacobson, G.L., Watts, W.A., Hansen, B.C.S., Maasch, K.A., 1993. A
- 494 50,000-year record of climate oscillations from Florida and its temporal correlation with
- 495 Heinrich events. Science 261, 198-200.
- 496 Han, S.T., Yuan, Y.J., 1990. The sequence of paleoclimatic variation of Balikun Lake of
- 497 Xinjiang in the past 35000 years. Acta Geographica Sinica 45, 350-362 (in Chinese with
 498 English abstract).
- 499 Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last
- 500 50,000 years. Quaternary Science Reviews 25, 163-178.
- 501 Herzschuh, U., Liu, X., 2007. Vegetation evolution in arid China during Marine Isotope
- 502 Stages 3 and 2 (~65-11 ka). In Madsen, D., Chen, F., Gao, X. (Eds.): Late Quaternary
- 503 Climate Change and Human Adaption in Arid China. Developments in Quaternary
- 504 Science, Vol. 9.
- 505 Herzschuh, U., Ni, J., Birks, H.J.B., Boehner, J., 2011. Driving forces of mid-Holocene
- 506 vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric
- 507 CO₂ concentrations. Quaternary Science Reviews 30, 1907-1917.
- 508 Huang, C.X., Zhang, Q.S., 1989. A preliminary study of paleovegetation and paleoclimate in

- 509 the later period of late Pleistocene in the Bangongcuo Lake region of Xizang. Journal of
- 510 Natural Resouces 4, 247-253(in Chinese with English abstract).
- 511 Huang, Z.G., Zhang, W.Q., Jiang, L.M., 2003. Climatic characteristics in tropic areas of China
- 512 during MIS-3. Quaternary Sciences 23, 77-82.
- 513 Huntley, B., Alfano, M.J., Allen, J.R.M., Pollard, D., Tzedakis, P.C., de Beaulieu, J-L.,
- 514 Grueger, E., Watts, B., 2003. European vegetation during Marine Oxygen Isotope Stage-3.
- 515 Quaternary Research 59, 195-212.
- 516 Jiang, H.C., Ding, Z.L., 2005. Temporal and spatial changes of vegetation cover on the
- 517 Chinese Loess Plateau through the last glacial cycle: evidence from spore-pollen records.
- 518 Review of Palaeobotany and Palynology 133, 23-37.
- Jiang, H.C., Mao, X., Xu, H.Y., Thompson, J., Wang, P., Ma, X.L., 2011. Last glacial pollen
- 520 record from Lanzhou (Northwestern China) and possible forcing mechanisms for the MIS
- 521 3 climate change in Middle to East Asia. Quaternary Science Reviews 30, 769-781.
- 522 Jie, D.M., Lu, J.F., 1995. The time-space change of precipitation and aridity degree of
- 523 Songnen sandland since last glacial age. Scientia Geographica Sinica 15, 337-343 (in
- 524 Chinese with English abstract).
- 525 Johnson, B. J., Miller, G. H., Fogel, M. L., Magee, J. W., Gagan, M. K., Chivas, A. R., 1999.
- 526 65,000 Years of Vegetation Change in Central Australia and the Australian Summer
- 527 Monsoon. Science 284, 1150-1152.
- 528 Kong, Z.C., Du, N.Q., 1980. Vegetational and climatic changes in the past 30,000-10,000
- 529 years in Beijing. Acta Botanica Sinica 22, 330-338 (in Chinese with English abstract).
- 530 Kuang, M.S., Xie, S.Y., Zeng, Y., Li, L.L., Feng, S.G., Zhang, Y.Z., 2002. Study on the

- 531 palaeovegetation and palaeoclimate since late Pleistocene in the Dianchang Mountain
- 532 Area in Dali of Yunnan Province. Journal of Southwest China Normal University (Natural
- 533 Science) 27, 759-765 (in Chinese with English abstract).
- 534 Li, B.C., Sun, J.Z., 2004. Vegetation and climate environment during the late Pleistocene in
- 535 Loess Plateau, China. Geographical Research 23, 641-648.
- Li, J.J., Feng, Z.D., Tang, L.Y., 1988. Late Quaternary monsoon patterns on the Loess Plateau
- of China. Earth Surface Processes and Landforms 13, 125-135.
- 538 Lisieki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed
- benthic δ^{18} O records. Paleoceanography 20, PA1003, doi: 10.1029/2004PA001071.
- 540 Luo, Y.L., Sun, X.J., 1999. Millennial-scale climatic fluctuations in pollen record of deep sea
- deposit from South China Sea. Quaternary Sciences 6, 536-540 (in Chinese with Englishabstract).
- 543 Ma, Y.Z., Zhang, H.C., Li, J.J., 1998. On the evolution of the palynoflora and climatic
- 544 environment during late Pleistocene in Tengger Desert, China. Acta Botanica Sinica 40,
- 545 871-879 (in Chinese with English abstract).
- 546 Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B.,
- 547 Stocker, T. F., Morse, D. L., Barnola, J. M., Bellier, B., Raynaud, D., Fischer, H., 2004.
- 548 Evidence for substantial accumulation rate variability in 32 Antarctica during the
- 549 Holocene, through synchronization of CO₂ in the Taylor Dome, 33 Dome C and DML
- 550 ice cores. Earth and Planetary Science Letters 224, 45-54.
- 551 Nakagawa, T., Tarasov, P.E., Nishida, K., Gotanda, K., Yasuda, Y., 2002. Quantitative
- 552 pollen-based climate reconstruction in central Japan: application to surface and Late

553	Quaternary spectra.	Quaternary Science	Reviews 21, 2099-2113.
-----	---------------------	--------------------	------------------------

554	North Greenland Ice Core Project Members, 2004. High resolution record of Northern
555	Hemisphere climate extending into the last interglacial period. Nature 431, 147-151.
556	Prokopenko, A.A., Hinnov, L.A., Williams, D.F., Kuzmin, M.I., 2006. Orbital forcing of
557	continental climate during Pleistocene: a complete astronomically tuned climatic record
558	from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 3431-3457.
559	Qin, Y., Fei, A.W., Jin, K.L., Han, D.L., Jin, X.Y., 1992. Late Pleistocene sporopollen
560	assemblages and evolution of palaeovegetation, palaeoclimate and palaeoenvironments in
561	Tengchong Basin, western Yunnan. Marine Geology & Quaternary Geology 12, 109-118
562	(in Chinese with English abstract).
563	Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk
564	Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M.,
565	Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer,
566	B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R.,
567	Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., 2009. INTCAL 09 and
568	MARINE09 aadiocarbon age calibration curves, 0-50,000 years Cal BP. Radiocarbon 51,
569	1111-1150.
570	Rhodes, T.E., Gasse, F., Lin, R.F., Fontes, J-C., Wei, K.Q., Bertrand, P., Gibert, E., Melieres,
571	F., Tucholka, P., Wang, Z.X., Cheng, Z.Y., 1996. A late Pleistocene-Holocene lacustrine
572	record from Manas, Zunggar (northern Xinjiang, western China). Palaeogeography,

- 573 Palaeoclimatology, Palaeoecology 120, 105-121.
- 574 Shan, F.S., Du, N.Q., Kong, Z.C., 1993. Vegetation and environmental change. Lake Science

575 5, 9-17.

- 576 Shao, Y.J., 1987. Pollen component and palaeo-climate and palaeo-vegetation in
- 577 Sjara-Osso-Gol River since the later Pleistocene Epoch. Journal of Desert Research 7,
- 578 22-27 (in Chinese with English abstract).
- 579 Shen, C.M., 2003. Millennial-scale variations and centennial-scale events in the Southwest
- Asian monsoon: pollen evidence from Tibet. PhD Dissertation, Louisana State University,
 Banta Rouge.
- 582 Shi, Y.F., Qu, Y.G., 1989. Water resources and Environment in Chaiwobu-Dabancheng Region.
- 583 China Science Press, Beijing, pp. 1-10 (in Chinese).
- 584 Shi, Y.F., Yu, G., 2003. Warm-humid climate and transgressions during 40-30 ka B.P. and their 585 potential mechanisms. Quaternary Sciences 23, 1-11 (in Chinese with English abstract).
- 586 Sun, X.J., Li, X., Luo, Y.L., Chen, X.D., 2000. The vegetation and climate at the last glaciation
- on the emerged continental shelf of the South China Sea. Palaeogeography,
 Palaeoclimatology, Palaeoecology 160, 301-316.
- 589 Sun, X.J., Song, C.Q., Wang, F.Y., Sun, M.R., 1997. Vegetation history of the Loess Plateau
- of China during the last 100,000 years based on pollen data. Quaternary International 37,
- 591 25-36.
- 592 Tang, L.Y., 1992. Vegetation and climate history at Menghai, Yunnan during the past 42 000
- 593 years. Acta Micropalaeontologica Sinica 9, 433-455 (in Chinese with English abstract).
- 594 Tang, L.Y., Shen, C.M., Kong, Z.C., Wang, F.B., Liu, K.B., 1998. Pollen evidence of climate
- 595 during the last glacial maximum in Eastern Tibetan Plateau. Journal of Glaciology and
- 596 Geocryology 20, 133-140 (in Chinese with English abstract).

597	Thompson, L.G., Yao, T., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, PN.,
598	Beer, J., Synal, HA., Cole-Dai, J., Bolzan, J.F., 1997. Tropical climate instability: The
599	Last Glacial Cycle from a Qinghai-Tibetan ice core. Science 276, 1821-1825.
600	Van Meerbeeck, C.J., Renssen, H., Roche, D.M., 2009. How did Marine Isotope Stage 3 and
601	Last Glacial Maximum climates differ? –Perspectives from equilibrium simulations.
602	Climate of Past 5, 33-51.
603	Voelker, A.H.L., workshop participants, 2002. Global distribution of centennial-scale records
604	for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21,
605	1185-1212.
606	Watts, W.A., Hanssen, B.C.S., Grimm, E.C., 1992. Camel Lake: a 40,000-yr record of
607	vegetatioal and forest history from northwest Florida. Ecology 73, 1056-1066.
608	Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A
609	high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China.
610	Science 294, 2345-2348.
611	Wen, X.H., Li, B.S., Zheng, Y.M., Zhang, D.D., Ye, J.P., 2009. Climate variability in the
612	Salawusu River valley of the Ordos Plateau (Inner Mongolia, China) during Marine
613	Isotope Stage 3. Journal of Quaternary Science 24, 61-74.
614	Whitlock, C., Bartlein, P.J., 1997. Vegetation and climate change in the northwest America

- 615 during the last 125 kyr. Nature 388, 57-61.
- 616 Wu, H.B., Guiot, J., Brewer, S., Guo, Z.T., Peng, C.H., 2007. Dominant factors controlling
- 617 glacial and interglacial variations in the treeline elevation in tropical Africa. Proceedings
- of the National Academy of Sciences 104, 9720-9724.

619	Wu, Y.H., Yang, X.D., Wang, S.M., 1997. Environmental change in the Poyang Lake Area
620	during late-Pleistocene. Journal of Geomechanics 3, 69-76 (in Chinese with English
621	abstract).

- Wu, Y.S., Chen, Y.S., Xiao, J.Y., 1991. A preliminary study on vegetation and climate changes
- 623 in Dianchi Lake area in the last 40000 years. Acta Botonica Sinica 33, 450-458 (in

624 Chinese with English abstract).

- Kiao, J.Y., Wu, Y.S., Zheng, M.P., 1996. A preliminary study on lake Quaternary flora in
- 626 Chabyer Caka Salt Lake, Xizang (Tibet). Acta Micropalaeontologica Sinica 13, 395-399
- 627 (in Chinese with English abstract).
- 628 Xu, J.S., Meng, Y., Zhang, X.L., Liu, D.W., 2006. Palaeogeographic environmental evolution
- 629 in the Huanghe River Estuary since late Pleistocene. Quaternary Sciences 26, 327-333 (in
- 630 Chinese with English abstract).
- 431 Yan, G., Wang, F.B., Shi, G.R., Li, S.F., 1999. Palynological and stable isotopic study of
- palaeoenvironmental changes on the northeastern Tibetan Plateau in the last 30,000 years.

633 Palaeogeography, Palaeoclimatology, Palaeoecology 153, 147-159.

- 434 Yan, S., Mu, G.J., Xu, Y.Q., Zhao, Z.H., 1998. Quaternary environmental evolution of the Lop
- 635 Nur region, China. Acta Geographica Sinica 53, 333-340 (in Chinese with English
- 636 abstract).
- 637 Yang, B., Shi, Y.F., Braeuning, A., Wang, J.X., 2004. Evidence for a warm-humid climate in
- arid northwestern China during 40-30 ka BP. Quaternary Science Reviews 23, 2537-2548.
- 639 Yang, J.M., 1992. The phases of peat formation and their relationships to climatic and
- sea-level changes in coastal area of Fujian during late Quaternary. Tropical Oceanology 11,

- 641 45-51 (in Chinese with English abstract).
- 642 Yang, X.D., Wang, S.M., Tong, G.B., Wu, J.L., Jiang, X.Z., 1998. The late Pleistocene pollen
- record in the lake sediments from ancient Heqing Lake and its significance for
- palaeoclimate. Quaternary Sciences 4, 335-343 (in Chinese with English abstract).
- 645 Yu, G., Xue, B., Wang, S.M., 2002. Reconstruction of Asian palaeomonsoon patterns in China
- over the last 40 kyrs: a synthesis. The Quaternary Research 41, 23-33.
- 647 Yu, G., Gui, F., Shi, Y.F., Zheng, Y.Q., 2007. Late marine isotope stage 3 palaeoclimate for
- 648 East Asia: A data-model comparison. Palaeogeography, Palaeoclimatology, Palaeoecology
- 649 250, 167-183.
- 50 Zhang, H.C., Wuennemann, B., Ma, Y.Z., Peng, J.L., Pachur, H.J., Li, J.J., Qi, Y., Chen, G.J.,
- Fang, H.B., 2002. Lake level and climate changes between 42,000 and 18,000 ¹⁴C yr B.P.
- in the Tengger Desert, Northwestern China. Quaternary Research 58, 62-72.
- 653 Zhang, Y.L., Yu, S.H., 1999. Palynological assemblages of late Quaternary from the Shenzhen
- region and its paleoenvironment evolution. Marine Geology & Quaternary Geology 19,
- 655 109-114 (in Chinese with English abstract).
- 556 Zhen, Z.G., Zhong, W., Xue, J.B., Zheng, Y.M., Liu, W., 2008. Progress in the studies of
- 657 climatic features in different areas of China during the MIS-3. Journal of Glaciology and
- 658 Geocryology 30, 814-823 (in Chinese with English abstract).
- 659 Zheng, Z., Joel, G., 1999. A 400 000-year paleoclimate reconstruction in tropical region of
- 660 China. Acta Scientiarum Naturalium Universitas Sunyatseni 38, 94-98 (in Chinese with
- 661 English abstract).
- 662 Zheng, Z., Lei, Z.Q., 1999. A 400,000 year record of vegetaitonal and climatic changes from a

- 663 volcanic basin, Leizhou Peininsula, southern China. Palaeogeography, Palaeoclimatology,
- 664 Palaeoecology 145, 339-362.
- ⁶⁶⁵ Zheng, Z., Li, Q.Y., 2000. Vegetation, climate, and sea level in the past 55,000 years,
- 666 Hanjiang Delta, Southeastern China. Quaternary Research 53, 330-340.
- 667 Zheng, Z., Zhou, K.S., 1995. Discovery of Sonneratia pollen in the late Pleistocene sediments
- along Guangdong Coasts. Acta Scientiarum Naturalium Unversitatis Sunyatseni 34,88-92.
- 670 Zhou, S., Zou, S.M., Liu, Z.P., Jiang, M.L., Zhu, Z.Y., Liu, J.L., Zhong, S.L., Li, X.X., Mu,
- K.N., Han, H.Y., Li, S.F., 2001. Quaternary pollen analysis and paleo-environmental
- evolution in the northern part of Taihu Plain, Jiangsu. Acta Micopalaeontologica Sinica 18,
- 673 70-75 (in Chinese with English abstract).
- 674 Zhu, D.G., Meng, X.G., Zhao, X.T., 2004. Evolution and climate change of Nam Co of Tibet
- and an ancient large lake in the northern Tibetan Plateau since the late Pleistocene.
- 676 Geology in China 31, 269-277 (in Chinese with English abstract).
- 677
- 678
- 679
- 680
- 681
- 682
- 683

685	Figure	captions
-----	--------	----------

Figure 1. Map showing the location of fossil pollen sites in China reviewed in this paper (seeTable 1 for site information and reference).

688

Figure 2. Selected pollen curves at seven typical sites in various vegetation regions acrossChina.

691

```
692 Figure 3. Summary of vegetation types derived from fossil pollen records in China. A. MIS 3
```

- optimum; **B.** LGM; **C.** Holocene optimum; **D.** The present. The vegetation types show the
- 694 optimum intervals during these four periods.

	696	Figure 4.	Correlation of	vegetation	scales with	summer	insolation	and other	paleoc	lima	tic
--	-----	-----------	----------------	------------	-------------	--------	------------	-----------	--------	------	-----

- 697 records. A. Vegetation scales inferred from fossil pollen records; **B.** δ^{18} O of Hulu Cave
- 698 (Wang et al., 2001); C. δ^{18} O of Guliya ice core (Thompson et al., 1997); D. Summer
- 699 insolation at 30°N and 60°N latitudes (Berger and Loutre, 1991); E. SST at Northern Atlantic
- 700 (Bard, 2002); F. Benthic δ¹⁸O of marine LR04 stack (Lisieki and Raymo, 2005); G. Biogenic
- 701 Silica percentage at Baikal Lake; **H.** Global CO₂ concentrations (Monnin et al., 2004);
- 702
- 703