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ABSTRACT

The sensitivity of assimilating sea ice thickness data to uncertainty in atmospheric forcing fields is examined

using ensemble-based data assimilation experiments with the Massachusetts Institute of Technology General

Circulation Model (MITgcm) in the Arctic Ocean during November 2011–January 2012 and the Met Office

(UKMO) ensemble atmospheric forecasts. The assimilation system is based on a local singular evolutive in-

terpolatedKalman (LSEIK)filter. It combines sea ice thickness data derived from theEuropean SpaceAgency’s

(ESA) Soil Moisture Ocean Salinity (SMOS) satellite and Special Sensor Microwave Imager/Sounder (SSMIS)

sea ice concentration data with the numerical model. The effect of representing atmospheric uncertainty implicit

in the ensemble forcing is assessed by three different assimilation experiments. The first two experiments use a

single deterministic forcing dataset and a different forgetting factor to inflate the ensemble spread. The third

experiment uses 23 members of the UKMO atmospheric ensemble prediction system. It avoids additional en-

semble inflation and is hence easier to implement. As expected, the model-datamisfits are substantially reduced

in all three experiments, but with the ensemble forcing the errors in the forecasts of sea ice concentration and

thickness are smaller compared to the experiments with deterministic forcing. This is most likely because the

ensemble forcing results in a more plausible spread of the model state ensemble, which represents model un-

certainty and produces a better forecast.

1. Introduction

Arctic sea ice is an important component of the local

and global climate system. The rapid decline in extent

and thickness in the last 10 years is also an important

factor for Arctic shipping and marine operations. Accu-

rate numerical prediction of sea ice has already become

an urgent need (Eicken 2013). However, large un-

certainties still exist in the modeled Arctic sea ice thick-

ness and volume (Schweiger et al. 2011). To reduce

uncertainties in sea ice–ocean state estimation and fore-

casts, the obvious way is to combine available sea ice

observations and coupled ice–ocean models with ad-

vanced data assimilation techniques (Lisæter et al. 2003).
In contrast to the successfully observed sea ice con-

centration with satellite-based passive microwave in-

struments (Cavalieri and Parkinson 2012; Stroeve et al.

2012), observing sea ice thickness from space is still a

great challenge (Kwok and Sulsky 2010; Kaleschke et al.
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2012; Tian-Kunze et al. 2014). Because of the sparsely

gridded sea ice thickness observations, there are very few

studies with ice thickness assimilation. Lisæter et al.

(2007) examined the potential for ice thickness assimila-

tion in coupled sea ice–ocean models with an ensemble

Kalman filter (EnKF). Yang et al. (2014) assimilated the

first near-real-time European SpaceAgency’s (ESA) Soil

Moisture Ocean Salinity (SMOS) satellite–based sea ice

thickness data into a coupled sea ice–ocean model using

a local ensemble-based singular evolutive interpolated

Kalman (LSEIK) filter (Pham et al. 1998; Pham 2001).

Their experiments illustrated that SMOS ice thickness

leads to substantially improved first-year sea ice thick-

ness. Both studies used a single set of deterministic at-

mospheric forcing fields and accounted for possible

uncertainties in external forcing by either perturbing the

surface winds (Lisæter et al. 2007) or inflating the forecast
error covariance (Yang et al. 2014) with a so-called for-

getting factor (Pham et al. 1998). However, the realistic

flow-dependent atmospheric uncertainty has not been

taken into account.

Since their introduction in the 1990s, atmospheric

ensemble prediction systems (EPSs) have been under

substantial development (e.g., Houtekamer et al. 1996;

Molteni et al. 1996; Atger 1999; Jung and Leutbecher

2007). The availability of global EPSs from the leading

operational centers through the THORPEX Interactive

Grand Global Ensemble (TIGGE) (Park et al. 2008;

Bougeault et al. 2010) offers an opportunity to test the

sensitivity of existing assimilation systems to the atmo-

spheric uncertainty. Recently, Yang et al. (2015) exam-

ined the impacts of ensemble forcing on LSEIK-based

sea ice concentration data assimilation and prediction

in summer. In their experiments the ensemble-forcing

approach allowed for approximating the atmospheric

model error statistics sufficiently well and outperformed

the deterministic filter in the sea ice concentration anal-

ysis and forecasts. Sea ice thickness forecasts, however,

were not significantly improved over the single forcing

approach.

The conditions for assimilating sea ice data are differ-

ent in summer and in winter. In the cold season, most of

the sea ice concentration in the Arctic is near 100%, so

that not only are the thermodynamic processes different,

but also the impact of concentration data on sea ice

thickness in the assimilation can be expected to be

smaller or at least different from what is observed in

summer. Also, since the SMOS data are most reliable for

thin ice, the number of usable SMOS data points de-

creases as ice grows to be thicker in the cold season (Yang

et al. 2014). In this study, we extend the work of Yang

et al. (2015) to the cold season and to assimilate thickness

data derived from SMOS. In contrast to Yang et al.

(2014), we now examine the effect of explicit accounting

for atmospheric uncertainty. We investigate whether the

positive influence of the atmospheric ensemble im-

plementation is similar for the assimilation of SMOS ice

thickness data in the cold season as for the assimilation

of ice concentration data earlier in the year (Yang et al.

2015) and examine whether, and to what extent, the

thickness assimilation shows a different behavior. To

answer this question, an ensemble-based LSEIK filter

is used, following Yang et al. (2014), to assimilate

SSMIS sea ice concentration and SMOS thickness data

into the Massachusetts Institute of Technology General

Circulation Model (MITgcm; Marshall et al. 1997) over

an autumn–winter transition period of 3 months:

1 November 2011–30 January 2012. This period is chosen

because SMOSdata are valid only for the cold season. The

effectiveness of the ensemble forcing is analyzed by

comparing the assimilation results with those from an as-

similation experiment using deterministic control forcing.

2. Forecasting System

a. MITgcm sea ice–ocean model

This study uses theMITgcm sea ice–ocean model (see

Losch et al. 2010) with a viscous-plastic (VP) rheology

solved by line successive relaxation (LSR; Zhang and

Hibler 1997). An Arctic regional configuration with

open boundaries in both the Atlantic and Pacific sectors

(Losch et al. 2010; Nguyen et al. 2011) is used. The

horizontal model grid has an average spacing of 18 km

and is locally orthogonal. The vertical resolution is

highest in the upper ocean, with 28 vertical levels in the

top 1000m. The bathymetry is derived from the

National Centers for Environmental Information [for-

merly the National Geophysical Data Center (NGDC)]

2-minute gridded elevations/bathymetry for the world

(ETOPO2; Smith and Sandwell 1997). The open ocean

boundaries are treated using monthly ocean boundary

conditions provided by a global model configuration

(Menemenlis et al. 2008). Monthly mean river runoff is

based on the Arctic Runoff Data Base [ARDB; see

Nguyen et al. (2011) for more details].

b. UKMO forcing data, TIGGE archive

Following Yang et al. (2015), we use atmospheric en-

semble forecasts of the Met Office (UKMO; Bowler et al.

2008) available in the TIGGE archive. Each of the selected

UKMO forecasts consists of one unperturbed ‘‘control’’

forecast and an ensemble of 23 forecasts with perturbed

initial conditions around the control state. The reader is

referred to Yang et al. (2015) for more details on the sur-

face parameters used and theprocessingof the forcing data.
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c. Sea ice observation data

Daily averaged sea ice thickness data derived from

SMOS brightness temperatures are assimilated into the

forecasting experiment. The SMOS-derived sea ice

thickness product has been generated with an algorithm

that is based on a sea ice thermodynamic model and a

three-layer radiative transfer model (Kaleschke et al.

2010, 2012) that explicitly takes variations of ice tem-

perature and ice salinity into account (Tian-Kunze et al.

2014; http://icdc.zmaw.de). The sea ice thickness data

have a resolution of 12.5 km and are interpolated to the

MITgcm grid. The maximum retrievable SMOS ice

thickness varies from a few centimeters to about 1m de-

pending on ice temperature and ice salinity (Tian-Kunze

et al. 2014). Following Yang et al. (2014), only thick-

nesses below 1.0m, which are mainly located in the

surrounding first-year sea ice area, are assimilated. The

dataset also provides daily error estimates. These are

used as the observation errors in the assimilation. Note

that SMOS underestimates thickness when sea ice con-

centration is below 95% (Tian-Kunze et al. 2014), but

this underestimation is not included in the provided

error estimates, as this influence is still very uncertain

(X. Tian-Kunze 2015, personal communication). In the

cold season, however, the sea ice concentration in most

of the Arctic Ocean is close to 100%, so we have not

considered this systematic error in this study. It is worth

mentioning that assumed statistics of the sea ice thick-

ness affect the analysis of the ice conditions when

combining the observations withmodel prediction. Prior

to using the provided thickness uncertainties, which

has been also done in our previous study (Yang et al.

2014), we conducted a series of sensitivity experiments.

In these experiments, the thickness standard error of

different values was considered spatially constant or

spatially variable based on relative estimates depending

on the thickness itself. The last approach had already

demonstrated encouraging results. The system’s pre-

diction skills, nevertheless, had been further improved

with the use of the uncertainties provided with SMOS

thickness data.

Additionally, to the SMOS-derived sea ice thickness

data, observations of sea ice concentration are assimilated.

These observations are derived from DMSP F17 SSMIS

passive microwave data, processed by the NSIDCwith the

NASA team algorithm (Cavalieri and Parkinson 2012;

Cavalieri et al. 1996), and interpolated to the model grid.

The system performance is assessed with different ob-

servational data. For concentration, data from European

Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT) Ocean and Sea Ice Satellite

Application Facility (OSISAF) (Eastwood et al. 2011;

http://www.osi-saf.org)—in particular, the near-real-time

OSISAF data provided on a 10-km polar stereographic

grid—are used. Note that the OSISAF concentration

product for this period is derived from a different passive

microwave sensor, SSM/I, on board a different satellite,

DMSP F15, and processed with a different algorithm

than the assimilated concentration data. Strictly speaking,

these differences do not make the OSISAF and NSIDC

products independent data because both are derived

from passive microwave instruments, but wemay assume

that they are sufficiently different to be treated as

independent.

Independent ice thickness observations are provided

by measurements of sea ice draft from Beaufort Gyre

Exploration Project (BGEP) upward-looking sonar

(ULS) moorings located in the Beaufort Sea (http://

www.whoi.edu/beaufortgyre) and sea ice thickness data

obtained from autonomous ice mass balance (IMB)

buoys (Perovich et al. 2013). The error in ULS mea-

surements of ice draft is estimated as 0.1m (Melling et al.

1995). Drafts are converted to thickness by multiplying

by a factor of 1.1 (Nguyen et al. 2011). The accuracy of

the IMB sounders is 5mm (Richter-Menge et al. 2006).

The reader is referred to Fig. 1 in Yang et al. (2014) for

the location of the moorings BGEP_2011A, BGEP_

2011B, and BGEP_2011D, and the tracks of the ice mass

balance buoys IMB_2011K.

d. Data assimilation

The data assimilation is performedwith the ensemble-

based SEIK filter (Pham 2001). In analogy to the im-

plementation used by Yang et al. (2014, 2015), the filter

method is coded within the Parallel Data Assimilation

Framework (PDAF; Nerger andHiller 2013; http://pdaf.

awi.de). In the SEIK filter an ensemble of model states x

represents the state estimate (as ensemble mean) and

the error estimate (the ensemble covariance matrix P)

of this state. The data assimilation is performed by al-

ternating forecast phases in which the model propagates

the ensemble and error covariance in time, xfk and Pf
k,

respectively, and analysis steps at time k in which the

model states are updated with current observations yk,

xak 5 xfk 1K
k
(y

k
2H

k
xfk) ,

K
k
5Pf

kH
T
k (Hk

Pf
kH

T
k 1R

k
)21 .

Here a and f denote analysis and forecast, respectively.

Term K is the so-called Kalman gain. Term H is the

observational operator, which computes the model

counterpart of the observations. Term R is the obser-

vational error covariance matrix. With the SEIK filter

as a reduced-rank square root approach, the updated
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ensemble xak samples the analyzed model uncertainties

according to leading empirical orthogonal functions

(EOFs), which allows for approximating the updated

model error statistics Pa
k with a minimum ensemble size.

The SEIK analysis applies a localization by assimi-

lating the observational information only within a radius

of 126km (;7 grid points) around a surface grid point.

Within the radius, the observations are weighted with a

quasi-Gaussian weight function (Gaspari and Cohn

1999) of the distance from the analyzed grid point (see

Janjić et al. 2011). To stabilize the assimilation process, a

forgetting factor (Pham et al. 1998) can be applied that

inflates the forecast error covariance matrix to increase

the model uncertainty and to avoid a too-small ensem-

ble spread. The covariance matrix is implicitly multi-

plied by the inverse of the forgetting factor. Hence, the

background (and previously assimilated data) is down-

weighted with respect to new data by the forgetting

factor. For more details on the local SEIK filter and its

implementation, the reader is referred to Nerger et al.

(2006), Janjić et al. (2011), Losa et al. (2012), and Yang

et al. (2014).

The variability of a MITgcm integration driven by the

24-h UKMO control forecasts over the period from

October to December 2011 is used to generate the initial

ensemble. The trajectory of daily snapshots of the sea ice

concentration and thickness simulation is decomposed into

EOFs. The ensemble states are then obtained by multi-

plying the leading EOFs with a random matrix that pre-

serves the standard deviation in the set of EOFs and

ensures that the mean of the resulting vectors is zero

(second-order exact sampling; Pham 2001). The ensemble

mean is defined by adding the model state from a model

run without assimilation. This study uses 23 ensemble

states to match with the ensemble size of the UKMO

perturbed forcing. In the forecast phase of the SEIK filter,

all ensemble states are dynamically integrated with the

nonlinear sea ice–ocean model driven by atmospheric

forcing. Every 24h, the analysis step combines the pre-

dictedmodel statewith the observational information. This

analysis step computes a corrected state of sea ice con-

centration and thickness and updates the state error co-

variancematrix that has been estimated from the ensemble

of model states. If used, the aforementioned inflation with

the forgetting factor allows one to account for possible

errors in the forcing and inner model parameterizations.

e. Experiment design

The data assimilation behavior is assessed in assimi-

lation experiments in which the LSEIK filter is applied

every day over the period of 1 November 2011–

30 January 2012. For the assessment the model states

after each 24-h forecast are examined.

Three assimilation experiments are performed. They

differ only in the used atmospheric forcing and the ap-

plication of the forgetting factor:

1) LSEIK-FF99: The forecasts are initialized from ana-

lyses obtained by assimilating dailyNSIDCSSMIS sea

ice concentration and SMOS ice thickness data and

using the UKMO atmospheric control forecasts as

forcing. A forgetting factor of 0.99 is applied to inflate

the ensemble spread by 1%.

2) LSEIK-FF97: Similar to LSEIK-FF99, except a

forgetting factor of 0.97 is applied to inflate the

ensemble spread by 3%.

3) LSEIK-EF: Similar to LSEIK-FF99 and LSEIK-FF97,

except the UKMO atmospheric ensemble forecasts

are used as the forcing during the forecast phases.

The forgetting factor was set to 1. Thus, no ensemble

inflation is applied.

3. Results

a. Sea ice concentration

Figure 1 shows the temporal evolution of the root-

mean-square error (RMSE) of ice concentration fore-

casts over the simulation periodNovember 2011–January

2012 for the three assimilation experiments and a model

forecast without data assimilation. The RMSEs are

computed with respect to the independent OSISAF

concentrations. Following Lisæter et al. (2003) and

Yang et al. (2014), the RMSEs are computed only at

grid points where either the model or the observations

have ice concentrations larger than 0.05.

The data assimilation substantially reduces the de-

viations of the modeled sea ice concentration from

the satellite-based concentrations compared to the

MITgcm forecast without assimilation. Averaged over

the 3-month simulation period, the mean RMSE reduces

FIG. 1. Temporal evolution of RMSE differences between the

independent OSISAF ice concentration data andMITgcm forecast

(green solid), LSEIK-FF99 24-h forecast (blue solid), LSEIK-FF97

24-h forecast (magenta solid), and LSEIK-EF 24-h forecast (red

solid) over the period 1 Nov 2011–30 Jan 2012.
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from 0.15 for MITgcm without data assimilation (DA)

to 0.12 in both LSEIK-FF99 and LSEIK-FF97, and 0.09

in LSEIK-EF. During the entire study period, the

LSEIK-FF99 and LSEIK-FF97 concentrations are very

similar, while the LSEIK-EF is closer to the OSISAF

observations than both LSEIK-FF99 and LSEIK-

FF97 concentrations. Hence, the influence of chang-

ing the forgetting factor on the ice concentration

forecast is very small, while the impact of the assimi-

lation is larger when the atmospheric uncertainty is

explicitly taken into account by the ensemble forcing.

During the simulation period, the sea ice concentra-

tion tends toward uniform values of 100% in most of

the Arctic Ocean. While this situation leads to an in-

creasing trend of the RMSE in LSEIK-FF99 and

LSEIK-FF97 of about 25%–30% starting from

14 November 2014 to 30 January 2015, the RMSE in

LSEIK-EF does not show any trend but varies be-

tween values of 0.08 and 0.1.

b. Sea ice thickness

The temporal evolution of the RMSE of the ice

thickness forecast with respect to the assimilated

SMOS ice thickness (,1.0m) over the simulation pe-

riod is shown in Fig. 2. The joint assimilation of sea ice

concentration and SMOS sea ice thickness reduces the

deviation from the thickness data for all three LSEIK

forecasts. Similar to the RMSE in the sea ice concen-

tration forecasts, the RMSE of the thickness grows

during the simulation period. The total RMSEs of the

run without data assimilation, the LSEIK-FF99,

LSEIK-FF97, and LSEIK-EF 24-h forecasts, are 0.73,

0.25, 0.2, and 0.20m, respectively. From the lowest er-

ror of 0.17m, the LSEIK-FF99 error approximately

doubles until the end of the experiment. However, the

LSEIK-FF99 RMSE remains to be significantly lower

than in theMITgcm forecast without DA.With a larger

artificially inflated spread, the LSEIK-FF97 thickness

is a little closer with the SMOS observations. Using

ensemble forcing, the LSEIK-EF thickness agrees

better with the observations than both the LSEIK-

FF99 and LSEIK-FF97 thickness. This improvement in

LSEIK-EF increases from November to January and

reaches about 0.1m at the end of January 2012. Yang

et al. (2014) related the increase in RMSE over time to

the fact that the number of observed grid points with

ice thickness below 1.0m decreases gradually. As only

these observations have a sufficiently small error to be

assimilated, the number of observations in the DA

decreases over time. Although the RMSE in LSEIK-

EF also shows an increase over time, it is much smaller

than in both LSEIK-FF99 and LSEIK-FF97 by only

about 62%.

The spatial distributions of the mean deviation of

predicted sea ice thickness from the valid SMOS data

are similar for the three LSEIK experiments (Fig. 3). In

particular, the LSEIK-FF99 and LSEIK-FF97 are very

close to each other. However, the LSEIK-EF shows a

much smaller error inmost of the area with valid SMOS

data, and this is consistent with the lower RMSEs

shown in Fig. 2.

The comparison of the simulated ice thickness fore-

casts with in situ ULS and IMB buoy observations is

shown in Fig. 4. All four forecasts show the gradually

increasing ice thickness at BGEP_2011A, BGEP_

2011B, and BGEP_2011D. Without ice thickness data

assimilation, however, the model shows a bias of more

than 1.0m relative to observations. The sea ice data

assimilation in all three LSEIK forecasts corrected

most of the thickness bias. The RMSEs of the experi-

ments with respect to the in situ measurements are

summarized in Table 1. At BGEP_2011A and BGEP_

2011D, the assimilation reduced the RMSE by 0.56–

0.99m, which is a reduction of the error by up to 79%.

The improvements are smaller at BGEP_2011B, with

only 0.2m. This is caused by the fact that BGEP_2011B

is closer to the central Arctic (;788N), where the ice is

thicker and in winter there are almost no SMOS ob-

servations to constrain the model by the assimilation

(Yang et al. 2014). With regard to the ULS data of

IMB_2011K, all four forecast solutions captured the

increasing ice thickness found in the data. The three

LSEIK forecasts are very close to each other and all

show large improvements over the MITgcm forecast

without DA. For the in situ data, the RMSEs for

LSEIK-FF99, LSEIK-FF97, and LSEIK-EF in Table 1

are very similar except for BGEP_2011D, where

LSEIK-EF with ensemble forcing leads to a smaller

RMSE. The smaller deviation from the observations is

also visible in Fig. 4c, where LSEIK-EF is closer to the

FIG. 2. Temporal evolution of RMSE differences between

SMOS ice thickness (,1.0m) and MITgcm forecast (green solid),

LSEIK-FF99 24-h forecast (blue solid), LSEIK-FF97 24-h forecast

(magenta solid), and LSEIK-EF 24-h forecast (red solid) over the

period 1 Nov 2011–30 Jan 2012.
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data than LSEIK-FF99 and LSEIK-FF97 after 13 De-

cember. The reason for this difference will be exam-

ined in the following section.

4. Effect of the ensemble forcing

In this part we examine how the improvements of the

state estimates in the three LSEIK experiments are

induced. In particular, we evaluate the ensemble spread

as it approximates the uncertainty in the sea ice con-

centration and thickness fields.

The evolution of spatially averaged sea ice concen-

tration spread measured by the ensemble standard

deviations (STDs) of the 24-h forecasts are shown in

Fig. 5a. As for the RMSEs, the spread is computed only

at grid points where either the modeled or observed ice

FIG. 3. Mean deviation between (a) LSEIK-FF99, (b) LSEIK-FF97, and (c) LSEIK-EF 24-h

sea ice thickness forecast and the SMOS ice thickness (,1.0m) averaged over the period 1 Nov

2011–30 Jan 2012. White shows the area of no valid SMOS observations.

FIG. 4. Evolution of sea ice thickness (m) at (a) BGEP_2011A, (b) BGEP_2011B, (c) BGEP_

2011D, and (d) IMB_2011K from 1 Nov 2011 to 30 Jan 2012. Black solid lines show the ice

thickness observations. MITgcm free run, LSEIK-FF99, LSEIK-FF97, and LSEIK-EF 24-h

mean ice thickness forecasts are shown as green, blue, magenta, and red solid lines,

respectively.
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concentrations are larger than 0.05. The initial mean

STD is about 0.035 for the three LSEIK forecasts.

During the assimilation experiments, the STD de-

creases gradually because of the assimilation of ob-

servations every 24 h and because the ice concentration

tends toward uniform values of 100% in the Arctic

Ocean for all members. While at the beginning the

ensemble spreads of three assimilation experiments are

equal, the spatially averaged spread of the LSEIK-

FF97 24-h forecasts of sea ice concentration is slightly

larger than LSEIK-FF99, and the LSEIK-EF is 2 times

larger than both the LSEIK-FF99 and LSEIK-FF97

forecasts during the course of the experiment. Aver-

aged over the 3-month period, the STDs are 0.005

for LSEIK-FF99, 0.006 for LSEIK-FF97, and 0.013

for LSEIK-EF. Thus, compared to LSEIK-FF99 and

LSEIK-FF97, the ensemble spread of LSEIK-EF re-

mains larger with ensemble forcing; hence, the model

uncertainty is larger and allows the model ensemble to

react more effectively to the observations in the

analysis steps.

Figure 6 shows spatial maps of the ensemble spread

(STD) of 24-h ice concentration forecasts of LSEIK-

FF99, LSEIK-FF97, and LSEIK-EF for 30 January 2012.

All LSEIK forecasts have their highest STDs in the sea

ice edge area. Accordingly, the analysis corrections

mainly occur in the sea ice edge area and the updates in

the central multiyear sea ice area (with nearly 100%

concentration) are very small. The STDs are a little

larger for LSEIK-FF97 than for LSEIK-FF99, and are

largest for LSEIK-EF. This is consistent with the mean

ensemble spread shown in Fig. 5a, and it further shows

that the estimated model uncertainty is largest in

LSEIK-EF. The larger uncertainty estimate gives more

weight to the data in the analysis step. Accordingly,

LSEIK-EF provides a closer fit to concentration obser-

vations, as is visible in Fig. 1.

The evolution of spatially averaged ensemble STDs

of sea ice thickness is shown in Fig. 5b. For the sea ice

area with valid SMOS observations, all three LSEIK

forecasts have an initial STD of about 0.09m. Over time,

the spread again decreases to about 0.02m during a

transient phase of the data assimilation of about 20 days.

After this period, the STD shows a small decrease for

LSEIK-FF99 and LSEIK-FF97, although the STD for

LSEIK-FF97 is a little larger than LSEIK-FF99, while

the STD shows a small increase for LSEIK-EF. Aver-

aged over the 3-month period, the STDs are 0.016m for

LSEIK-FF99, 0.019m for LSEIK-FF97, and 0.024m for

LSEIK-EF. For the sea ice area without valid SMOS

data (dotted lines in Fig. 5b), all three LSEIK forecasts

have an initial STD of about 0.15m. Over time the

spread of LSEIK-FF99 and LSEIK-EF are very close to

each other; both decrease to about 0.06m after about

20 days and then fluctuate around 0.06m. In contrast, the

spread of LSEIK-FF97 increases rapidly after an initial

drop and is even higher than 0.14mby the end of January.

Figure 7 depicts the spatial distribution of the ice

thickness ensemble spread on 30 January 2012 for the

three LSEIK forecasts. The high STDs are mainly found

in the central multiyear sea ice area, and the spread in

TABLE 1. RMSE of the four forecasting experiments from in situ measurements by the ULS moorings BGEP_2011A, BGEP_2011B, and

BGEP_2011D, and the IMB buoy IMB_2011K.

BGEP_2011A BGEP_2011B BGEP_2011D IMB_2011K

1 MITgcm 1.25m 1.03m 0.97m 1.15m

2 LSEIK-FF99 0.26m 0.83m 0.41m 0.10m

3 LSEIK-FF97 0.28m 0.81m 0.41m 0.10m

4 LSEIK-EF 0.27m 0.83m 0.35m 0.10m

FIG. 5. Temporal evolution of areamean spread from 1Nov 2011

to 30 Jan 2012. Spread (STDs) of LSEIK-FF99, LSEIK-FF97, and

LSEIK-EF 24-h forecasts are shown as blue, magenta and red lines,

respectively. (a) Ice concentration (solid lines) and (b) ice thick-

ness forecasts over valid SMOS (0–1.0m) area (solid lines), and ice

thickness forecasts over sea ice area without valid SMOS data

(dotted lines).
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the surrounding first-year ice area is much smaller. This

pattern results from the fact that the SMOS thickness

data assimilation mainly influences the surrounding

first-year ice area, and that it has little effect on the

central thick, multiyear sea ice (that SMOS cannot de-

tect reliably). There are notable differences between

LSEIK-FF99, LSEIK-FF97, and LSEIK-EF. In partic-

ular, the spread in the central sea ice area is largest in

LSEIK-FF97. The large spread in LSEIK-FF97 in this

area, however, indicates that the experiment with a strong

forgetting factor of 0.97 cannot constrain the ice thickness

in the absence of direct thickness observations; the cor-

relations between thickness and concentration, if present

at all, are also too weak to fill the data gap. The spread in

the surrounding first-year ice area is largest in LSEIK-EF

(Fig. 7). The larger ensemble spread in the first-year ice

area gives more weight to the SMOS ice thickness data

and less weight to the model in the analysis step. Ac-

cordingly, LSEIK-EF is closer to the SMOS observations

(Fig. 2). In contrast, the ensemble spread is much smaller

for LSEIK-FF99; thus, the ice thickness data have a

smaller influence in the data assimilation. This influence

of the larger ensemble spread causes also the better es-

timate of the sea ice thickness at the location of BGEP_

2011D visible in Fig. 4c. The spread of LSEIK-EF

appears to be appropriate both in areas where there are

valid SMOS data, because the model-data misfit is

smallest, and in areas where there are not valid SMOS

data, because the estimated model uncertainty (i.e., the

spread) is small. No uniform forgetting factor could be

found to reach a similar result.

As discussed in Yang et al. (2015), the LSEIK-EF ex-

periment with ensemble forcing is much easier to imple-

ment than the LSEIK experimentwith single forcing. The

forgetting factor used in LSEIK-FF99 and LSEIK-FF97

requires calibration in a series of sensitivity experiments

with different values of the forgetting factor. In our ap-

plication, the inflation is applied uniformly over the

whole assimilation domain and for both the ice concen-

tration and the thickness, where a different forgetting

factors may have been necessary for regions with and

without valid SMOS data. In this situation, the attempt to

increase the inflation to improve the model-data misfit in

the area of thin ice leads to the unrealistically growing

ensemble spread in the area of the multiyear sea ice

thickness as found in LSEIK-FF97 (Fig. 5b).

5. Summary and conclusions

In taking Yang et al. (2015) further, UKMO ensemble

atmospheric forecasts of the TIGGE archive is used to

simulate atmospheric uncertainty in the ensemble

forecasts of sea ice thickness data assimilation with a

LSEIK filter. While Yang et al. (2015) considered the

assimilation of sea ice concentration data during sum-

mer, this study examines the assimilation of sea ice

concentration and the SMOS ice thickness data in the

cold season. We carry out two kinds of ensemble DA

FIG. 6. Sea ice concentration STD for the individual grid cells as calculated from (a) LSEIK-

FF99, (b) LSEIK-FF97, and (c) LSEIK-EF 24-h ensemble forecasts on 30 Jan 2012.
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experiments to examine the sensitivity of the results on

the atmospheric forcing. The first kind (LSEIK-FF99

and LSEIK-FF97) is driven by the deterministic control

forcing and uses a forgetting factor to artificially inflate

the ensemble error covariance, while the second kind

(LSEIK-EF) is forced byUKMOensemble atmospheric

forecasts during the data assimilation cycle. As the en-

semble forcing explicitly represents atmospheric model

errors, there is no need to use and tune the forgetting

factor in the LSEIK-EF experiment. This simplification

reduces the tuning effort and hence the configuration

of the LSEIK-EF experiment is significantly easier to

implement than the LSEIK-FF99 and LSEIK-FF97

experiments. With regard to the influence of using en-

semble forcing, the comparisons show first that both

approaches largely improve the sea ice concentration

and thickness. However, both sea ice concentration and

thickness forecasts based on LSEIK-EF with ensemble

forcing agree better with the observation than those

based on LSEIK-FF99 and LSEIK-FF97. In Yang et al.

(2015), it was shown that the LSEIK-EF with ensemble

forcing approach is more suitable than LSEIK-FF99

with single forcing for the sea ice concentration DA in

summer. This study shows that the ensemble forcing

provides a similar advantage also during the cold season

and for the assimilation of sea ice thickness data.

A particular issue during the cold season is that the sea

ice concentration tends toward uniform values of 100%

in the Arctic Ocean for all ensemble members (Yang

et al. 2014) because of the growing sea ice in the cold

season. In addition, the number of SMOS thickness

observations that can be used in the assimilation de-

creases gradually because thickness grows beyond the

range that SMOS can detect reliably. In the LSEIK-

FF99 and LSEIK-FF97 experiments, this situation re-

sults in a gradual decrease of the assimilation impact on

the prediction skills improvement. However, with a

more realistic ensemble spread in the LSEIK-EF ex-

periment with ensemble forcing, the error in the sea ice

concentration forecasts is kept stable. Moreover, the

increase of estimation errors for the sea ice thickness

over the central Arctic (where there are no valid SMOS

observation) pronounced in LSEIK-FF97 is signifi-

cantly reduced for LSEIK-EF.

The data assimilation shows that there is considerable

sensitivity to the explicit representation of forcing un-

certainty by applying ensemble forcing. The forecasts

and uncertainty estimates of both sea ice concentration

and thickness are improved with ensemble forcing;

therefore, we recommend this ensemble implementa-

tion for Arctic sea ice–ocean state estimation and real-

time operational forecasts.

Finally, this study shows that the major impact of

SMOS sea ice thickness data assimilation is on the sur-

rounding first-year sea ice area, and that the improve-

ment in the central Arctic is very small. With the

FIG. 7. Sea ice thickness STD for the individual grid cells as calculated from (a) LSEIK-FF99,

(b) LSEIK-FF97, and (c) LSEIK-EF 24-h ensemble forecasts on 30 Jan 2012.
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availability of near-real time Cryosat-2 ice thickness data

from April 2015 onward (http://www.cpom.ucl.ac.uk/

csopr/seaice.html), it is now possible to address this is-

sue, because Cryosat-2 covers a thickness range (Laxon

et al. 2013; Ricker et al. 2014) that is very much com-

plementary to that of SMOS.
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