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Abstract 

Sea surface temperature (SST) is very important for studies of the Earth’s climate 

system owing to the linkages between SST and various climatic processes. A reliable 

estimation of past SSTs is one of the main goals for paleoclimatologists to improve our 

understanding of oceanic and atmospheric dynamics and their connection to the global 

climate. Furthermore, the tropical SSTs play a key role for rapid climatic changes, 

because large amounts of heat and water vapor were transported from the tropics to 

the high latitudes. Warm SSTs at low latitude result in more evaporation and could thus 

induce increased ice sheet size and decreased temperatures at northern high latitudes. 

Establishing SST evolution in the tropics is crucial for understanding the mechanisms 

behind abrupt climate changes in the past. 

In this thesis, the main objectives are to evaluate the applicability of the UK’
37 

(alkenone unsaturation index) and TEXH
86 (tretraether index of glycerol dialkyl glycerol 

tetraether with 86 carbon atoms) in the tropical Indian Ocean as well as to investigate 

their control mechanisms for reconstructing temperatures in the past. All studies 

presented herein are based on 36 surface sediments, a sediment trap covering an 

annual cycle and a gravity core in the eastern Indian Ocean.  

To assess the applicability, surface sediment samples from the Indonesian 

continental margin off west Sumatra, south of Java, and off the Lesser Sunda Islands are 

measured. In the non-upwelling regions, the results show that the UK’
37 temperature 

estimates are up to 2 °C lower than World Ocean Atlas 2009 (WOA09) during the entire 

year, likely due to the reduced sensitivity of the UK’
37 proxy beyond 28 °C. However, the 

temperatures based on TEXH
86 are consistent with mean annual temperatures from the 

WOA09. In the upwelling areas, the UK’
37-based temperature estimates reflect the SST 

during the upwelling season, whereas the TEXH
86-based temperature estimates are up to 

2 °C lower than UK’
37-based temperature estimates suggesting GDGT export from 

greater and colder water depths around 40-50 m. 

In the following work, an annual time series sediment trap study was conducted in 

the central upwelling region off south of Java. A pronounced seasonality of alkenone 
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flux is observed, whereas GDGT flux displayed a weaker seasonality in comparison.  The 

calculated flux-weighted average UK’
37-based temperature estimate is similar to the SE 

monsoon SST rather than mean annual SST. The average is based on those samples only 

that permitted a reliable SST estimate, i.e., mainly the samples from the SE monsoon 

period. On the other hand, the flux-weighted average temperature based on the TEXH
86 

is consistent with mean annual temperature at 50 m depth, indicating TEXH
86-

temperatures reflect the mean annual subsurface temperature instead of the surface 

temperature. These observations support the findings concluded in the surface 

sediment samples study. 

Based on results from sediment trap and surface sediment samples, the 

application of the two SST indices on samples from a gravity core is in order to 

investigate the climatic evolution covering the past 22,000 years off south of Java. In this 

study, the temperature reconstruction suggest a 3-4 °C cooling during the last glacial 

maximum (LGM) compared to modern conditions. The results also show that the TEXH
86 

temperature estimates are up to 2 °C warmer than SST-UK’
37 during the last 22ka except 

during the LGM and during the late Holocene. The differences between the two SST 

indices are paralleled by G. bulloides percentages as a proxy for upwelling intensity, 

implying that the offset between two temperature proxies could be considered as the 

potential for reconstructing the upwelling intensity in the study area. In addition, the 

initial timing for the deglacial warming of GDGT temperature estimates started at ~18 ka, 

whereas the lowest UK’
37 temperature estimates appeared in the middle of the Younger 

Dryas period (YD, ca. 12 ka) and the late Heinrich Stadial 1 period (HS1, ca. 15 ka). Our 

records reveal that the seasonal SSTs and mean annual subsurface temperatures were 

closely linked to climate changes occurring in both hemispheres, respectively. Thus, the 

combination of UK’
37 and TEXH

86 records and their difference give the complementary 

feedbacks on sea-water temperature developments in the past evolution in the tropical 

eastern Indian Ocean. 
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Kurzfassung 

Die Erfassung und Rekonstruktion von Meeresoberflächentemperaturen (sea 

surface temperatures - SSTs) sind sehr wichtig für Untersuchungen des Erdklimasystems, 

da sie mit unzähligen klimatischen Prozessen gekoppelt sind. Eine zuverlässige 

Abschätzung von SSTs der Vergangenheit ist ein Hauptziel von Paläoklimatologen, um 

damit unser Verständnis der ozeanischen und atmosphärischen Dynamik sowie deren 

Kopplung an das globale Klima zu verbessern. Darüber hinaus spielen tropische SSTs 

eine Schlüsselrolle für abrupte Klimaänderungen, da hier große Mengen an Wärme und 

Wasserdampf von den Tropen in die hohen Breiten transportiert werden. Wärmere SSTs 

in den niedrigen Breiten führen zu einer verstärkten Verdunstung und dies kann zu 

einem verstärktem Wachstum der Eisschilde und damit zu einer Verringerung der 

Temperaturen in den höheren Breiten führen. Das Verständnis der SST-Entwicklung in 

den Tropen ist deshalb entscheidend, um die Mechanismen hinter abrupten 

Klimaveränderungen der Vergangenheit zu verstehen.   

Die Hauptziele der vorliegenden Arbeit sind zum einen die Anwendbarkeit des 

UK’
37 (alkenone unsaturated index) und des TEXH

86 (tetraether index of glycerol dialkyl 

glycerol tetraether with 86 carbon atoms) im tropischen Indischen Ozean zu evaluieren 

und zum anderen ihre Kontrollmechanismen zu untersuchen, um die 

Meeresoberflächentemperaturen der Vergangenheit zu rekonstruieren. Die hier 

präsentierten Studien basieren auf Ergebnissen von 36 Oberflächensedimenten, einer 

Sedimentfalle, die einen kompletten Jahreszyklus abdeckt sowie eines Schwerelots aus 

dem östlichen Indischen Ozean. 

Um die Anwendbarkeit beurteilen zu können, wurden 

Oberflächensedimentproben vom indonesischen Kontinentalrand vor West-Sumatra, 

südlich von Java und vor der Küste der Kleinen Sunda-Inseln analysiert. In den Nicht-

Auftriebsregionen sind die Werte der UK’
37-Temperaturrekonstruktion für den gesamten 

Jahresverlauf bis zu 2°C geringer als im World Ocean Atlas 2009 (WOA09) angegeben, 

was wahrscheinlich an der verminderten Empfindlichkeit des UK’
37-Proxy oberhalb von 
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28°C liegt. Die Temperaturrekonstruktion basierend auf dem TEXH
86-Proxy spiegeln 

jedoch die mittlere Jahrestemperatur des WOA09 wider. In Regionen mit 

Tiefenwasserauftrieb spiegeln die UK’
37-basierten Temperaturrekonstruktionen die SSTs 

während der Auftriebssaison wider, wohingegen die TEXH
86-basierten 

Temperaturrekonstruktionen bis zu 2°C kälter sind als UK’
37-basierten Temperaturen, 

was darauf hinweist, dass GDGTs aus tieferen und kälteren Wassertiefen von circa 40-

50m exportiert werden.  

In der vorliegenden Arbeit wurde eine Sedimentfallenstudie, die eine Zeitserie von 

einem Jahr umfasst, durchgeführt. Für diesen Zeitraum konnte eine starke Saisonalität 

der Alkenonflüsse festgestellt werden, während die GDGT-Flüsse im Vergleich eine 

schwächere Saisonalität zeigten. Der berechnete und Fluss-gewichtete 

Durchschnittswert der UK’
37-basierten Temperaturabschätzung ist eher vergleichbar mit 

den Werten der Südost-Monsun SSTs anstatt mit der mittleren Jahrestemperaturen. Der 

Durchschnittswert beruht nur auf Proben, für die eine zuverlässige SST-Abschätzung 

möglich war und diese stammen größtenteils aus Zeit des Südost-Monsuns. Der  TEXH
86-

basierte Durchschnittswert dagegen stimmt mit der Jahresmitteltemperatur in 50m 

Wassertiefe überein, was darauf hindeutet, dass die TEXH
86-basierte Temperaturen eher 

die mittlere Jahrestemperatur unterhalb der Wasseroberfläche als die 

Meeresoberflächentemperaturen widerspiegeln. Diese Beobachtungen unterstützen die 

Ergebnisse der Oberflächensedimentanalysen.  

Basierend auf den Ergebnissen der Sedimentfallenproben und der 

Oberflächensedimente, wurde die zwei SST-Proxies an Proben aus einem 

Schwerelotkern südlich von Java angewendet, um die dort die klimatische Entwicklung 

während der letzten 22 000 Jahre zu rekonstruieren. In dieser Studie deuten die 

Temperaturrekonstruktionen auf eine 3-4°C Abkühlung während des letzten glazialen 

Maximums (LGM) im Vergleich zu modernen Bedingungen hin. Die Ergebnisse zeigen 

auch, dass die TEXH
86-basierte Temperaturenabschätzungen während der letzten 22 000 

Jahre bis zu 2°C wärmer als die UK’
37-basierten Temperaturabschätzung sind, mit der 
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Ausnahme des Zeitraums des LGMs und Spätholozäns. Die Unterschiede zwischen den 

beiden SST-Proxies gehen einher mit unterschiedlichen prozentualen Anteilen von G. 

bulloides, welche als Anzeiger für die Intensität des Tiefenwasserauftriebs gelten. Das 

deutet darauf hin, dass man den Unterschied zwischen den beiden Temperatur-Proxies 

im Untersuchungsgebiet potenziell für die Rekonstruktion der Auftriebsintensität 

verwenden könnte. Darüber hinaus zeigen die GDGT-basierten Temperaturschätzungen 

eine deglaziale Erwärmung seit ungefähr 18 000 Jahren vor heute (v.h.). Im Gegensatz 

dazu gibt es in den Alkenondaten (UK’
37) zwei Phasen starker Abkühlung während der 

deglazialen Erwärmung, d.h. in der Mitte der Jüngeren Dryas (YD, ca. 12 000 Jahre v.h.) 

und im späten Heinrich Stadial 1 (HS1, ca. 15 000 Jahre v.h.). Unsere Daten zeigen damit, 

dass die saisonalen SSTs sowie die Temperaturen der tieferen Wassersäule sehr eng mit 

den deglazialen Klimaveränderungen auf beiden Hemisphären gekoppelt sind. Die 

Kombination der UK’
37- und TEXH

86-Daten und ihrer Unterschiede erlaubt es uns deshalb 

Rückschlüsse über die vergangene Meereswassertemperaturentwicklung im tropischen 

Indischen Ozean zu ziehen.  
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AIM  Australian-Indonesian Monsoon 

AMS  Accelerator Mass Spectrometry  

BIT Branched and Isoprenoid Tetraether 

ECC   Equatorial Counter Current 

ENSO El Niño-Southern Oscillation  

GDGTs glycerol dialkyl glycerol tetraethers 

IOD Indian Ocean Dipole 

HS1 Heinrich Stadial 1 

IPWP Indo-Pacific Warm Pool 

ITCZ  Intertropical Convergence Zone 

ITF   Indonesian Throughflow 

Ka thousand years before present 

Kyr thousand years 

LC  Leeuwin Current 

LSI   Lesser Sunda Islands 

ma SST  mean annual SST 

NECC    North Equatorial Counter Current 

NW monsoon  northwest monsoon 

OM organic matter 

SE monsoon  southeast monsoon 

SEC   South Equatorial Current 

SJC   South Java Current 

SST  Sea Surface Temperature in degree centigrade (°C) 
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Chapter 1 Introduction 

1.1. General Introduction 

1.1.1. Global climate and sea surface temperature (SST) 

The Earth’s climate is a complex, interactive system consisting of the atmosphere, 

the hydrosphere, the cryosphere, the land surface, and the biosphere. Climate is driven 

or influenced by various external forcing mechanisms, the most important of which is 

the sun (Fig. 1.1.). The atmospheric component of the climate system obviously 

characterizes climate. Climate is often defined as long term “average weather” of 

temperature, precipitation and wind, ranging from months to millions of years (IPCC, 

2001). The hydrosphere is consisted of all surface and subterranean water bodies; both 

fresh water, including rivers, lakes and aquifers, and saline water of the oceans and seas. 

The ocean covers approximately 71 percent of the Earth’s surface and contains 97 

percent of the planet’s water. The atmosphere and oceans are interdependent and the 

two are strongly coupled through complex feedback loops. For instance, ocean currents 

are related to atmospheric wind patterns while air temperatures influence sea surface 

temperature (SST). Oceans and lakes play an integral role in the Earth’s climate due to 

their capacity to store and redistribute large amounts of heat before it is released to the 

atmosphere or radiated back into space (e.g., Rahmstorf, 2002; Thurman and Trujilo, 

1999). In addition, the ocean participates in biogeochemical cycles and exchanges gases 

with the atmosphere, influencing its greenhouse gas content. Warming of the climate 

system is unequivocal in the past two decades, as is evident from the observation of 

increases in global average air and ocean temperatures due to the presence of 

greenhouse gases, i.e., water vapor and carbon dioxide, caused by human activities 

(IPCC, 2007). Moreover, SST variations can influence evaporation as well as controlling 

the water cycle and precipitation patterns (Henderson, 2002). Thus, SST can be linked to 

various climatic processes and is therefore important for studies of the Earth’s climate 

system. A reliable estimation of past SSTs is one of the main goals for 
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paleoclimatologists to improve our understanding of oceanic and atmospheric dynamics 

and their links with global climate.  

 

 

 

 

 

 

 

 

 

Fig. 1.1. Schematic view of the components of the global climate system (bold), their processes 

and interactions (arrows). Figure is after IPCC report (2001). 

The best way to determine past SST is via instrumental temperature records (e.g., 

Oldfield and Thompson, 2004; Peterson and Vose, 1997).  Climatologists rely heavily on 

instrumental records because these records represent direct measurements at exact 

points in space and time, and they have been collected at over 100,000 locations in the 

past two centuries (Peterson and Vose, 1997). However, these instrumental data are 

subject to temporal in homogeneities and spatially too inconsistent to capture short-

term processes. Therefore, instrumental records cannot provide complete pictures of 

past long-term SST changes. Climate and environmental reconstructions rely on proxy 

records, which potentially provide evidence for long-term climatic changes prior to the 

existence of instrumental or historical documentary records. A paleoclimatic proxy is a 

local record that is interpreted using chemical, physical and biological principles to 
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represent some combination of climate-related variation back in time (IPCC, 2001). 

Paleoclimatic reconstruction methods have improved greatly in the past decades. Proxy 

records are complicated by the presence of “noise” in which climate information is 

embedded, and a variety of possible uncertainties of the underlying climate information 

(e.g., Bradley, 1999; IPCC, 2001). The field of paleoclimatology depends heavily on 

careful calibration and cross-verification between proxy records from independent 

sources in order to build confidence in inferences about past climate (IPCC, 2007). To 

this end, accurate proxy records are essential to understand the past climate trends.  

1.1.2. Reconstruction of past SST 

A series of SST proxies have been proposed. These proxies are found mostly in 

marine sediments and can be divided into proxies based on inorganic and organic (lipid 

biomarkers) fossils.  

Commonly used inorganic temperature indicators made use of faunal assemblages, 

stable isotope fractionation of oxygen (�18O), elementary composition (Mg/Ca) in 

planktonic foraminifera, and the �18O and Sr/Ca composition in corals (e.g., Barrows and 

Juggins, 2005; Beck et al., 1992; Emiliani, 1995; Nuernberg, 1995). 

On the other hand, organic geochemical proxies are based on ratios of biomarkers. 

Biomarkers (biological markers) are molecular fossils, meaning that these compound 

originated from living former organisms, which are complex organic compounds 

composed of carbon, hydrogen, and other elements (Peters et al., 2005 and reference 

therein). Over the past 50 years, hundreds of biomarkers have been identified in oceans, 

and sediments, ancient rocks and oils, soils and coals, and in individual fossils (Gaines et 

al., 2008). Biomarkers are useful for climate research because their complex structures 

reveal more information about their origins than other compounds and they can 

provide information on climate history and help us to understand what causes climate 

to change. In general, numerous of lipid biomarkers for have been introduced in the 

past two decades, such as terrestrial vegetation proxy, paleotemperature proxy, 

paleosalinity proxy. 
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Since the 1980s, ratios of unsaturated alkenones have been developed as 

temperature proxies. These molecular proxies are increasingly being utilized to 

reconstruct past SSTs. Comparison with inorganic geochemistry temperature proxies, 

these lipid biomarkers SST proxies have their own advantages. They are not directly 

influenced by the chemistry of ocean water as well as occur over wide oceans and are 

not restricted to specific settings like e.g., corals. Although the molecular proxies have 

different limitations, they still can provide reliable information of past SSTs (Table 1.1.). 

Therefore, this thesis is based on two proxies derived from lipids that are widespread in 

the global ocean. 

Table 1.1. Main paleotemperature proxies based on lipid biomarks. 

 

1.1.3. Organic-geochemical Proxies 

1.1.3.1. Alkenone Paleothermometry 

Alkenone unsaturation index is one of the most commonly used biomarker-based 

proxies for paleoceanographic reconstruction. It is based on a series of C37-C39 di-, tri- 

and tetra-unsaturated methyl and ethyl ketones (long-chain alkenones). The alkenones 

were first discovered in deep-sea sediments from the Walvis Ridge (Boon et al., 1978), 

and their structures were later identified by De Leeuw et al. (1980). The alkenones are 

now known to occur in globally distributed marine sediments (Fig. 1.2.).  A study from 

Proxy Source organisms Limitations/Uncertainties References 

UK’
37(Alkenone 

unsaturation 
ratio) 

Haptophytes 

i) seasonality and depth of habitat 
ii) uncertainty about species 
composition 
iii) preferential degradation of C37:2 
iv) influence of nutrient input and light 
limitation 
v) lateral redistribution of sediment 

Benthienand Müller, 
2000 
Brassell et al., 1986 
Gong andHollander, 
1999 
Prahl et al., 2003 
Prahl et al., 2005 

TEX86(TetraEather 
index of GDGTs 
with 86 carbons) 

Marine 
Thaumarchaeota 

i) seasonality and depth of habitat 
ii) uncertainty about species 
iii) riverine terrestrial input may bias 
TEX86  

 

Herfort et al., 2006 
Hopmans et al., 2004 
Schouten et al., 2002 
Weijers et al., 2006 
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Volkman et al. (1980) reported that alkenones were found in the marine 

cocolithophorid Emiliania huxleyi. Subsequently, the alkenones have been identified in 

other coccolithophorid source e.g., Gephyrocapsa oceanica (e.g., Conte et al., 1998; 

Marlowe et al., 1984).  

 Brassell et al. (1986) introduced UK
37 index as a SST proxy. They applied the index 

on a sediment core and found that the alkenone unsaturation record showed similar 
downcore trends with those of the �18O records. Originally, the UK

37 index reflected the 
proportions of the di-, tri- and tetra-unsaturated ketones with 37 carbon atoms, 
expressed as:  

UK
37=

(C37:2-C37:4)
(C37:2+C37:3+C37:4)

 

 C37:2, C37:3 and C37:4 represent concentrations of di-, tri- and tetra-unsaturated ketones, 
respectively.  

 

 

 

 

 

 

 

Fig. 1.2. Molecular structures of (a) C37:2 alkenone; (b) C37:3 alkenone; (c) C37:4  alkenone. 

Subsequent work found that the C37:4 ketone has no empirical benefit to the 

paleotemperature equation because it was rarely detected in the sediments unless the 

temperature was lower than 10 °C (Prahl and Wakeham, 1987; Fig. 1.3.).   
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Fig. 1.3. Gas chromatograms of the long-chain, unsaturated ketone composition measured in 

cultures of E.huxleyi grown at 10 °C and 25 °C. Individual compounds are identified by carbon 

chain length: number of double bonds. Methyl ketones have C37 and C38 chain lengths; ethyl 

ketones have C38 and C39 chain lengths. Overlapping methyl (Me) and ethyl (Et) ketones with C38 

chain lengths are indicated. Methyl and ethyl ester of a di-unsaturated C36 fatty acid are 

identified by the peak marked with an asterisk. The blue and red peaks represent C37:2 and C37:3, 

respectively. This figure is modified after Prahl and Wakeham, 1987. 

 

Thus, Prahl and Wakeham. (1987) re-defined the UK’
37 index as: 

UK'
37=

(C37:2)
(C37:2+C37:3)

 

Prahl and Wakeham (1987) and Prahl et al. (1988) proposed the first calibration of 

the alkenone unsaturated index to growth temperature using laboratory cultures of a 

single strain of E.huxleyi. Their initial samples of suspended particulate materials 

showed that this calibration reproduced temperatures in the northeast Pacific Ocean. 

The equation of UK’
37 indicates that the index values can vary between 0 and 1, roughly 

corresponding to 0 °C and 28 °C. Subsequently, a number of calibrations have been 

developed based on global core-top sediments, confirming that the UK’
37 values reflect 

mean annual (ma) SSTs (e.g., Conte et al., 2006; Müller et al., 1998). Additionally, these 

alkenone producers are sunlight dependent and thus they are limited to the upper 

euphotic zone reflecting near-surface ocean temperatures. However, a series of regional 
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calibrations of UK’
37 showed convergence with the global core-top temperature 

calibration (e.g., Conte et al., 1998; 2001; 2006; Müller et al., 1998; Sawada et al., 1996; 

Ternois et al., 1997; Volkman et al., 1995). As with any paleoceanographic proxy, 

inherent uncertainties that might affect the accuracy of proxy estimates should be 

evaluated. These proxy uncertainties arise due to genetic, diagenetic factors, 

physiological, and ecological. The genetic composition of haptophytes might influence 

alkenone-derived temperatures, even though its affect on paleotemperature records 

are still under debatable (Conte et al., 1998). UK’
37 estimated temperatures can be 

warm-biased due to the selective degradation of C37:3 (e.g., Hoefs et al., 1998; Gong and 

Hollander, 1999). Furthermore, radiocarbon compositions of alkenones have been used 

to refine age estimates of marine sediments, and in some cases, long-distance transport 

of alkenones by currents has been implied (e.g., Benthien and Müller, 2000; 

Mollenhauer et al., 2007, 2008; Ohkouchi et al., 2002). Some environmental factors that 

could potentially affect the unsaturation ratio of alkenones include light limitation 

(causing warmer SST estimates) and nutrient limitation (causing lower SST estimates) 

(Prahl et al., 2003). Additionally, ecological concerns stem from observations related to 

the depth of maximum alkenone production and seasonal blooming of cocolithophores. 

For example, in sediment traps, alkenone concentrations showed that the highest 

abundance occurred not at the sea surface but in the surface mixed-layer in the North 

Atlantic (Conte et al., 2001) and in the Pacific (Ohkouchi et al., 1999). Some studies 

based on surface sediments and suspended particulates in the water column suggest 

that the alkenone producers are inferred to occur seasonally, it is conceivable that the 

alkenone signals should rather correspond to the season of maximum production, which 

will depend on the location (Rosell-Mel  and Prahl, 2013). For instance, SST-UK'
37 values 

appear lower than mean annual SSTs, which are attributed to the predominant 

production and export of alkeones during winter and spring in the Mediterranean Sea 

(Leider et al., 2010). Thus, UK’
37-derived temperature estimates reflect seasonal 

temperatures instead of the mean annual in some regions(e.g., Popp et al., 2006; Sikes 

and Volkman, 1993, Sikes et al., 1997).  
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1.1.3.2. TEX86 paleotemperature proxy 

Archaea are one of the three domains of single-celled microorganisms, which can 

be subdivided into Crenarchaeota (Marine “Group I”, latter renamed as 

Thaumarchaeota; Brochier-Armanet et al., 2008) and Euryarchaeota (Marine “Group II”) 

(Fig. 1.4.). In the 1980s, biphytanyl (C40) isoprenoid hydrocarbon chains of archaea were 

discovered in sedimentary systems (see review in Pearson et al., 2013). The lipids of 

archaea consist of GDGTs, short for sn-2, 3-di-O-biphytanyl diglycerol tetraethers. The 

archaea were previously thought to exist only in extreme environments, such as those 

with high salinity or high temperature. However, subsequent studies based on more 

advanced molecular biological techniques and lipid analyses suggest they can thrive in 

marine and terrestrial aquatic environments, sediments and soils (e.g., Schouten et al., 

2002). Thaumarchaeota appear to be one of the dominant forms of pelagic picoplankton 

in the oceans, making up approximately 40% of all cells throughout the water column 

(e.g., Delong et al., 1992; Karner et al., 2001; Murray et al., 1998).  

Early on, studies found that the number of cyclopentane rings in GDGTs of hyper-

thermophilic archaea varied with temperature increases (e.g., Delong et al., 1988; 

DeRose and Gambacorta, 1988; Gliozzi et al., 1983; Uda et al., 2001). Subsequently, a 

study demonstrated that the “cold” Thaumarchaeota were found abundantly in the 

marine water column, which can biosynthesize similar GDGTs as found in hyper-

thermophilic archaea (Schouten et al., 2000; Sinninghe Damsté et al, 2002a). 

Thaumarchaeota biosynthesize different structure of GDGTs, including GDGT-0 to GDGT-

3 (the numbers denote internal cyclopentyl rings), crenarchaeol (containing four 

cyclopentyl rings and a cyclohexyl ring) and small quantities of a crenarchaeol regio-

isomer (e.g., Schouten et al., 2000; Sinninghe Damsté et al., 2002a) (Fig. 1.5.). 
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Fig. 1.4. Types of biomarkers and their precursors in the three domains of life. This picture is 

taken from Gaines et al. (2008). 
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Fig. 1.5. Structures of isoprenoid (left) and branched (right) GDGTs. Numbers in italics with the 

structures of GDGTs indicate the masses of the [M+H]+ ions of the GDGTs. This picture is 

modified after Schouten et al., (2009). Cren=Crenarchaeol. 

Based on a positive relationship between temperature and the number of 

cyclopentyl or cyclohexyl rings in GDGTs, Schouten et al. (2002) proposed a temperature 

proxy named TEX86 (TetraEther indeX of tetraether consisting 86 carbon atoms). The 

TEX86 is defined as Eq. (1). 

TEX86=
[GDGT-2]+[GDGT-3]+[Cren']

[GDGT-1]+[GDGT-2]+[GDGT-3]+[Cren']
   Eq.(1) 

where GDGT-1, GDGT-2, and GDGT-3 indicate GDGTs containing 1, 2, and 3 

cyclopentane moieties, respectively and Cren' the crenarchaeol regio-isomer. 

Schouten et al. (2002) developed their calibration based on 44 surface sediment 

from 15 locations, and suggested that TEX86 derived temperatures correspond well with 
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ma SST. More recently, the original proxy has been refined further into TEXH
86 (Eq. (2)) 

and TEXL
86 (Eq. (3)) by Kim et al (2010) for environments with temperatures higher and 

lower than 15 °C, respectively.  

TEX86
H =log(TEX86)  Eq.(2) 

TEX86
L =log(

[GDGT-2]
[GDGT-1]+[GDGT-2]+[GDGT-3]

)  Eq.(3) 

Studies of the �14C value of crenarchaeol in surface sediments suggested that the 

GDGTs are less affected by long-distance lateral transport than the alkenones (e.g., 

Mollenhuauer et al., 2007, 2008). Therefore, GDGT-based proxies are likely primarily 

influenced by local conditions. Likewise, the effects of changing redox conditions on the 

TEX86 are minor (e.g., Huguet al., 2009; Kim et al., 2009; Sinninghe Damsté, 2002b).  

In the past ten years, the TEX86 paleothermometer has been applied on suspended 

particular matter (SPM), surface sediments, and ancient sedimentary archives, e.g., late 

Cretaceous spanning extreme events such as Paleocene-Eocene Thermal Maximum 

(PETM) and Eocene-Oligocene (E-O) boundary (e.g., Huguet et al., 2006; Lee et al., 2008; 

Leider et al., 2010; Schouten et al., 2012; see review in Schouten et al., 2013). However, 

these applications show offsets between the temperature records derived from TEX86 

and those of in-situ temperatures or based on other paleotemperature proxies. A better 

understanding of the physiology and ecology of marine archaea may help to reconcile 

these offsets. It is well known that Thaumarchaeota are distributed throughout the 

entire water column, and can reside in deeper waters (Karner et al., 2001). Although 

TEX86 values correlate well to mean annual surface temperature in some settings, 

several recent studies suggested that TEX86 does not reflect SST, but rather reflect 

temperature at deeper water depth (between 40 m and 150 m) based on surface 

sediments, sinking particles and SPM (e.g., Basse et al., 2014; Chen et al., 2014; Huguet 

et al., 2007; Lee et al., 2008; Lopes dos Santos et al., 2010; Xing et al., 2015). In addition, 

Lengger et al. (2012) found decreasing TEX86 values for surface sediments with depth in 

the Arabian Sea, may potentially be due to a larger addition of GDGTs produced in 
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deeper and colder waters to the surface-derived GDGTs. Other studies have shown that 

TEX86 derived temperatures may be biased from mean annual due to seasonal growth of 

Thaumarchaeota, e.g., towards summer temperature in the eastern Mediterranean 

(Leider et al., 2010) and the South China Sea (Jia et al., 2012), or towards winter 

temperature in the southern North Sea (Herfort et al., 2006). Furthermore, there are 

other factors that require additional caution in interpreting TEX86-derived temperatures, 

such as the competition for nutrients between crenarchaeota and other phytoplankton 

including alkenone producers (e.g., Rommerskirchen et al., 2011; Wuchter et al., 2006), 

nutrient availability (e.g., Turich et al., 2007), or terrestrial OM input (Hopmans et al., 

2004; Weijers et al., 2006, more details see below 1.1.3.3). In addition, pelagic Group II 

Euryarchaeota could bias the interpretation of TEX86 derived temperatures towards 

cooler temperature due to the isoprenoid GDGTs can be synthesized by Eucyarchaeota 

in upper water column (e.g., Turich et al., 2007; Wang et al., 2015). 

1.1.3.3. Terrestrial Organic Matter Proxy (BIT index) 

Branched GDGTs, a group of membrane lipids has been unambiguously identified 

by NMR to be derived from anaerobic soil bacteria containing branched instead of 

isoprenoid alkyl chains (Sinninghe Damsté et al., 2000). Branched GDGTs have been 

found in lacustrine sediments (Power et al., 2004), peat (Sinninghe Damsté et al., 2000), 

soil (Weijers et al., 2006), and in some ocean margin sediments (Hopmans et al., 2004). 

Branched GDGTs differ from the archaeal tetraether lipids, comprising two C28 carbon 

chains bearing two or three methyl and zero to two cyclopentane moieties each.  

Hopmans et al., (2004) presented the Branched and Isoprenoid Tetraether (BIT) 

index, based on the relative abundance of branched GDGTs and defined as follows: 

BIT= ([GDGT-I]+[GDGT-II]+[GDGT-III])
(�GDGT-I]+[GDGT-II]+[GDGT-III�+[Crenarchaeol])

 

The roman numerals refer to the GDGTs indicated in Fig. 1.5. The roman numerals 

indicate GDGTs without cyclic components in the structure.  
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The BIT index serves as a proxy for the relative abundance of terrestrial OM input 

to coastal marine sediments. The definition dictates that the BIT index values reach 0 for 

open marine sediments, and 1 for soils and peats, and variable for marine and lake 

sediments (Hopmans et al., 2004) (Fig. 1.6.). This index is a proxy for the relative 

abundance of fluvial-transported soil OM vs. marine OM, which is different from general 

terrestrial organic proxies (such as �13Corg, C/N, or odd carbon number n-alkanes). This 

may be caused by a lack of soils in the other sources or only a minor amount of 

branched GDGTs is carried by aeolian transport, which is more susceptible to oxic 

degradation than e.g., n-alkanes (see review in Schouten et al., 2013).  

Weijers et al. (2006) found that high terrestrial OM input can potentially bias the 

TEX86 values as terrestrial-derived GDGTs can also contain GDGT1-3.  In order to account 

for this effect, the BIT index should be quantified. The temperature deviations of +1 °C, 

which is the analytical error of the TEX86, correspond to BIT index values of 0.2-0.3, 

whereas the temperature deviation >2 °C is reached at a BIT index of 0.4. 

 

 

 

 

 

 

 

 

 

Fig. 1.6. Bars represent the BIT index analyzed in Holocene sediments from a range of 

environments. Data points are from 30 different locations, detailed in Hopmans et al., 2004. 
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1.2. Study Area 

1.2.1. Regional oceanographic setting 

The Indonesian archipelago, also known as the “Maritime Continent”, lies 

between latitudes 11°S and 6°N, and longitudes 95°E and 141°E, among the Indian 

Ocean and Pacific Ocean and the continents of Asia and Australia (Fig. 1.7.). It consists of 

17,508 islands. The main islands are the Greater Sunda Islands (such as Borneo, Java and 

Sumatra), the Lesser Sunda Islands (also called Nusa Tenggara, a series of islands from 

Lombok to Timor; Fig. 1.7.). 

The Indonesian region is a climate-sensitive location and part of the Indo-Pacific 

Warm Pool (IPWP), which plays a fundamental role in regulating the global climate 

changes by providing the main source of heat and water vapor transported to the high 

latitudes. Small SST changes can result in significant changes in the hydrological systems 

in this region (e.g., Neale and Slingo, 2003). The hydrography of the region is complex, 

i.e. it is influenced by Australian-Indonesian Monsoon (AIM), seasonal migration of the 

Intertropical Convergence Zone (ITCZ), and variable occurrence of El Niño-Southern 

Oscillation (ENSO) and Indian Ocean Dipole (IOD) on inter-annual timescales.  

Because of the monsoonal circulation and seasonal migration of the ITCZ over this 

region, it displays contrasting seasonal characteristics. During austral summer (from 

January to March), strong rainfall with over 30 cm per month (Murgese et al., 2008) and 

huge river run-off to the ocean occur because the southerly position of the ITCZ, which 

brings a lot of moisture over from SE Asian and Indonesian Seas (Gordon, 2005). In 

contrast, during austral winter (from June to September), the SE monsoon caused by the 

high-pressure belt of the southern hemisphere and is relatively dry and cool when 

reaching Indonesia. It gathers moisture from the Indonesian and SE Asian Seas before 

meeting the northerly position of ITCZ and introducing heavy precipitation over the SE 

Asian mainland.  
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During the NW monsoon, the predominant wind is directed towards Asia mainland, 

which forces the South Java Current (SJC), originated from the Equatorial Counter 

Current (ECC), to move southeastward to meet the Leeuwin Current (LC), which carries 

warm and saline water transported from the eastern part of the Indonesian Archipelago 

(e.g., Tapper, 2002; Tomczak and Godfrey, 1994). The mixture of SJC and LC feeds the 

South Equatorial Current (SEC) that moves westward at ~15°S (Fig. 1.7.). In contrast, 

during the SE monsoon period, the SJC takes an opposite direction flowing 

northwestward and joins the SEC with a reduced contribution to the LC. Advection of 

fresher Java Sea water through the Sunda Strait and runoff from Sumatra and Java are 

responsible for the low-salinity “tongue” in the SJC with salinities as low as 32‰.During 

the SE monsoon season, the strongest westward SJC occurs along the southern coast of 

Java, inducing an upwelling and shoaling of the thermocline (Susanto et al., 2001; 

Tomczak and Godfrey, 1994).  

During the SE monsoon, alongshore winds induce coastal upwelling off Java and 

Sumatra. Upwelling generally starts in June and migrates westwards to the equator. It 

reaches a maximum in July and August and reduces at the end of October (Susanto et al., 

2001). The upwelling is characterized by a small SST depression and high chlorophyll-a 

concentration, whereas a uniform SST distribution and relatively low chlorophyll-a 

concentration prevail during the non-upwelling season. In general, the ma SST is over 

28 °C in the Indonesian region. Seasonal SSTs vary between 29 °C in austral summer and 

26 °C in austral winter off southwest Java. The relatively small temperature difference is 

typical for this upwelling system, in contrast to other tropical upwelling system, such as 

off Angola (SST drops by 7 °C) and Peru (SST drops by 5 °C), off Oman (SST drops by 

more than 8 °C) (e.g., Hastenrath and Lamb, 1979; Du et al., 2005; Boyer et al., 2006). 

Previous studies suggested two mechanisms, in terms of internal and external factors, 

to explain the small SST depression. One is the barrier layer, representing an 

intermediate layer that separates the base of the mixed layer from the top of the 

thermocline (Lukas and Lindstrom, 1991). The enhanced stratification caused by the 

large rainfall and runoff sustains a shallow mixed layer. However, a thick barrier layer 
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prevents deeper and more salinity water from below to reach the mixed layer (Sprintall 

and Tomczak, 1992; Qu et al., 2005). 

The other key factor is the Indonesian Throughflow (ITF), a low-latitude inter-

ocean pathway, which connects the upper water of the Pacific Ocean and the Indian 

Ocean. The ITF enters the Indian Ocean in response to the sea level height difference 

due to the wind system. Today, the ITF transports an annual average 16 SV (1 SV��

106m3s-1) of warm, low-salinity water from the Pacific into the eastern Indian Ocean 

(e.g., Gordon and Fine, 1996; You and Tomczak, 1993).  North Pacific thermocline and 

intermediate water masses contribute the througflow water. Two main branches of the 

ITF enter the Indian Ocean through the Makassar Strait: the smaller one is known as the 

Lombok Strait (1.7 SV), while the larger ones can be divided into two passages that 

include the Timor Strait (4.3 SV) and the Ombai Strait (4.5 SV). During the upwelling 

period, the difference in sea level between Java and Australia is the largest, implying the 

maximum strength in the ITF (Tomczak and Godfrey, 1994). The Java upwelling system is 

counterbalanced by the increases in the ITF (e.g., Godfrey, 1996). The ITF flowing 

through the Lombok Strait also neutralizes a significant SST depression off Java at the 

same time. 

Additionally, a few studies suggested that the hydrology in this region is strongly 

associated with the ENSO and the IOD (e.g. Ashok et al., 2001; Du et al., 2008; Halkides 

et al., 2006; Qu and Meyer, 2005; Saji et al., 1999; Susanto et al., 2001; Webster et al., 

1999). During the El Niño periods and positive IOD events, enhanced upwelling with 

higher primary productivity and decreased SST of up to 4 °C are observed. During strong 

El Niño periods, such as in 1997/98, anomalous winds induced a relatively stronger 

upwelling along the coast off Java with enhanced productivity as well as extended in 

time up to three months (e.g. Susanto et al., 2001; 2006). Conversely, reduced upwelling 

intensity, enhanced precipitation, and a uniformly high SST occurred during La Niña 

periods and negative IOD events. 
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Fig. 1.7. Sea surface temperature in the tropical Eastern Indian Ocean for a) austral summer 

monsoon season; b) austral winter monsoon season; c) mean annual. (from WOA 2009, 

Locarnini et al., 2010), solid arrows indicate oceanographic surface currents: SJC: South Java 

Current; ECC: Equatorial Counter Current; SEC: South Equatorial Current; NECC: North Equatorial 

Counter Current; ITF: Indonesian Throughflow; LC: Leeuwin Current. 
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1.2.2. Sediment Records in Eastern Indian Ocean 

Since the early 1980s our knowledge of the paleoceanography of the Indo-Pacific 

region has grown exponentially. Paleoceanographic reconstructions suggest that glacial-

interglacial climate changes in the Indonesian Archipelago are dominated by the AIM. 

Many quantitative proxy methods have been applied in and around Indonesian 

Archipelago to reconstruct glacial-interglacial SST variations (Fig. 1.8.). Published SST 

records indicate that uniform postglacial SSTs increased in the entire eastern Indian 

Ocean. For example, deglacial warming of ~3.0 °C in the Timor Sea, ~2.3 °C in Sulu Sea, 

~2.8 °C on the Ontong Java Plateau, ~2.7 °C in the SW Sumatra, ~3.0 °C in the northern 

and central Sumatra, and ~3.3 °C in the Makassar (Table 1.2., references therein). The 

synchronous initial warming at both the surface and intermediate water depths during 

the early deglaciation corresponds to that in other southern mid- to high-latitude SSTs 

and the deglacial risein global CO2 levels (e.g., Lamy et al., 2007; Loulergue et al., 2007). 

However, the previously published paleo SST studies show distinct amplitudes among 

SST records derived from different proxies in this region, likely due to differences in the 

production seasonality and the depth habitat of the source organisms. For example, SST 

estimates based on Mg/Ca on foraminifera reveal a ~2.7 °C increase in the SW Sumatra, 

whereas SST increases by ~1.7-2 °C according to alkenone-based estimates in the SW 

Sumatra (Table 1.2.). Therefore, multi-proxy reconstructions of SST from the same 

sediments are needed for a better understanding of paleotemperature changes in this 

region. 

Furthermore, numerous of paleo-monsoon studies suggest a weaker austral 

winter monsoon and a stronger austral summer monsoon during the LGM (e.g., Wang et 

al., 2005). By using Globigerina bulloides percentages as a proxy for austral winter 

monsoon and upwelling intensity, Mohtadi et al. (2011) found the strongest austral 

winter monsoon during the early Holocene and stronger upwelling during HS1 and YD. 

In addition, Lückge et al. (2009) demonstrated that the enhanced marine 

paleoproductivity was directly related to strengthening of coastal upwelling during 
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periods of increased boreal summer insolation and was associated with the SE monsoon 

strength with a precessional cyclicity. On the other hand, peaks in abundance of 

coccolithophores, Umbellosphaera irregularis and the ratio of EhuxGeric (combined 

record of E.huxleyi and G.ericsonii) to Gephyrocapsa oceanica as well as distinct minima 

of TOC and G.oceanica abundance, reveal a weaker upwelling and oligotrophic 

conditions during every 20,000 to 25,000 years in the past 300 kyrs (Andruleit et al., 

2008). Likewise, diatom paleoproductivity was higher during interglacials, primarily due 

to the input of lithogenics and nutrients following the rise in sea level after full glacial 

conditions, as well as the boreal summer insolation forcing (Romero et al., 2012). 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8. Overview of the locations of previously published paleoceanographic records in and 

around the Indonesian Archipelago. 
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Table 1.2. Overview of the past SST reconstruction studies in and around the Indonesian 

Archipelago. 

Stations Type of Proxy LGM-Holocene References 

MD01-2378 Mg/Ca SST 3.2 °C Xu et al., 2008 

GeoB10038-4 
Mg/Ca SST 

Alkenone-based SST 

2.3 °C 

2 °C 
Mohtadi et al., 2010a,b 

GeoB10029-4 Mg/Ca SST 2.7 °C Mohtadi et al., 2010b 

SO139-74KL Alkenone-based SST 1.7 °C Lückge et al., 2009 

SO189-119KL 
SO189-144KL 
SO189-39KL 

Mg/Ca SST 3.0 °C Mohtadi et al., 2014 

MD98-2165 Mg/Ca SST 3.0 °C Levi et al., 2007 

MD9821-62 Mg/Ca SST 3.3 °C Visser et al., 2003 

MD9721-41 Mg/Ca SST 2.3 °C Rosenthal et al., 2003 

MD9821-81 Mg/Ca SST 2.0 °C Stott et al., 2002 

Ontong Java 
Plateau Mg/Ca SST 2.8 °C Lea et al., 2000 

 

 

1.3. Objectives of this thesis 

Since the two organic-geochemical proxies were developed, the exact meaning of 

temperatures derived from alkenones and GDGTs are still under debate. The mainly 

open questions are: 1) the seasonal production of alkenones and GDGTs and 2) export 

and the water depth of their habitats. Furthermore, the tropical SSTs play a key role for 

rapid climatic changes during the last deglacial terminations. The aim of this thesis is to 

evaluate the distribution and application of the two SST proxies in the eastern Indian 

Ocean region against today’s environmental conditions to improve the understanding of 

past climate variations as well as to investigate the hydrological evolution in the eastern 

Indian Ocean to shed light on potentially mechanisms behind past climate changes in 

the tropics. 
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The key objectives of this thesis are:  

i). To evaluate the controlling factors of UK’
37- and TEX86-derived SST estimates in 

the upwelling and non-upwelling areas of the eastern Indian Ocean. 

ii). To investigate when and how the alkenone and GDGT signals produced in the 

water column are transport to the surface sediments. 

iii). To study the evolution of sea-surface temperature over the time intervals of 

climate change (last deglaciation, Holocene) and to determine what affects the different 

SST proxies during the past 22,000 years in the eastern Indian Ocean as well as to 

illustrate what controls the climate changes in the tropics. 

 

1.4. Thesis Outline 

The main objectives of this thesis, as proposed in Section 1.3, are addressed in 

three first-author manuscripts, presented as Chapter 3 to 5. Chapter 2 is an overview of 

the materials and methods used in this study. 

Chapter 3. Organic-geochemical proxies of sea surface temperature in surface 

sediments of the tropical Eastern Indian Ocean 

Wenwen Chen, Mahyar Mohtadi, Enno Schefuß, Gesine Mollenhauer 

In this chapter, we reconstruct SSTs using UK’
37 and TEXH

86 in 36 surface sediment 

samples from the Indonesian continental margin off west Sumatra, south of Java and 

the Lesser Sunda Islands. The assessment of the suitability of UK’
37 and TEXH

86 is based 

on two approaches, i) comparing the proxy data to modern SSTs (WOA 2009); and ii) 

evaluating the difference between the two indices used. We investigate the applicability 

of these two indices in the upwelling and non-upwelling areas of the Indonesian region, 

taking into consideration preferential degradation, lateral transport and other potential 

biases. 
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Chapter 4. Concentrations and abundance ratios of long-chain alkenones and glycerol 

dialkyl glycerol tetraethers in sinking particles south off Java 

Wenwen Chen, Mahyar Mohtadi, Enno Schefuß, Gesine Mollenhauer 

To investigate the seasonal production of alkenones and GDGTs as well as the 

depth of production of GDGTs in the water column, we present results from a one-year 

sediment trap (12.2001-11.2002) in the upwelling area south of Java. In this study, a 

series of published data including total flux as well as flux of lithogenic, opal, carbonate 

and organic carbon are involved. Our results provide important information to interpret 

alkenone- and GDGT-based temperature signals in the sediments for the past SST 

reconstruction. 

 

Chapter 5. Sea surface and subsurface temperature variations in the upwelling area of 

the eastern Indian Ocean during the last 22,000 years 

Wenwen Chen, Mahyar Mohtadi, Enno Schefuß, Gesine Mollenhauer 

This study addresses the evolution of hydrological changes in the eastern Indian 

Ocean of the past 22,000 years. This is conducted on a sediment core in the central 

upwelling area off south Java. In this study, two organic-geochemical SST proxies (UK’
37 

and TEXH
86) are applied. In comparison of the difference between the two proxies and G. 

bulloides percentages suggests that the difference in temperatures is tied to upwelling 

intensity. We also determine what controls the contrasting cooling and warming trends 

registered in the two temperature proxies during the abrupt climate events. 

 

1.5. Contributions to publications 

This thesis includes the complete versions of three manuscripts as first-author 

publications (chapter 3-5). Chapter 3 is an already published manuscript. Chapter 4 

includes a submitted manuscript. Chapter 5 is a draft of a manuscript. 
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Chapter 3 Organic-geochemical proxies of sea surface temperature in surface 

sediments of the tropical Eastern Indian Ocean 

Wenwen Chen, Mahyar Mohtadi, Enno Schefuß, Gesine Mollenhauer 

In this chapter, extraction of 36 samples, lipids fraction purification and analysis 

were performed by Wenwen Chen. Wenwen Chen wrote this manuscript with input 

from all co-authors. Published in Deep-Sea Research I, vol. 88, page 17-24, 

doi:10.1016/j.dsr.2014.03.005. 

Chapter 4 Concentrations and abundance ratios of long-chain alkenones and glycerol 

dialkyl glycerol tetraethers in sinking particles south off Java 

Wenwen Chen, Mahyar Mohtadi, Enno Schefuß, Gesine Mollenhauer 

In this chapter, extraction of 21 samples, lipids fraction purification and analysis 

were performed by Wenwen Chen. Wenwen Chen wrote this manuscript with input 

from all co-authors. This manuscript has been submitted to Deep-Sea Research I. This 

chapter includes the revised manuscript based on reviewers' comments. 

Chapter 5 Sea surface and subsurface temperature variations in the upwelling area of 

the eastern Indian Ocean during the last 22,000 years 

Wenwen Chen, Mahyar Mohtadi, Enno Schefuß, Gesine Mollenhauer 

In this chapter, extraction of 154 samples, lipids fraction purification and analysis 

were performed by Wenwen Chen. Wenwen Chen wrote this manuscript with input 

from all co-authors. The manuscript is in the form of a draft for submission to Earth and 

Planetary Science Letters.  
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Chapter 2 Study Material and Methods 

2.1. Study Material 

Analyses were done on marine surface sediments, a sediment core and materials 

collected in a sediment trap.  Marine surface sediments (GeoB10008 to -69) and the gravity 

core (GeoB10053-7) were retrieved during PABESIA RV Sonne Cruise SO-184 in 2005 along 

the eastern IO (Hebbeln et al., 2005). Surface sediments represent the top 1 cm of 

multicore samples from 36 sites collected off west Sumatra, south Java and LSI. The 

materials are stored at -20  °C in the MARUM core repository and kept at this temperature 

until geochemical processing. Core GeoB10053-7 (8°40.56’S, 112°50.33’E, at 1372m water 

depth) was collected off south Java. Samples are taken every 5 cm intervals and started at 

3 cm depth. The sediment trap (8°17.5’S, 108°02.0’E, at 2200m water depth) has been 

deployed off south Java between December 2001 and November 2012. Sampling intervals 

varied in general every 16 days.  

Surface sediments and the gravity core ages were established by ten and nineteen 

accelerator mass spectrometry (AMS) 14C dates on planktic foraminifera, respectively 

(Mohtadi et al., 2011a, b). The age determinations show that the surface sediments are 

modern.  The gravity core covers the past ca. 22,000 years. 

2.2. Methods 

In this study, standard organic geochemical techniques were employed. All 

samples were freeze-dried and homogenized before being subjected to extraction using 

organic solvents. 

2.2.1. Lipid extraction 

Lipid extraction was carried out following the protocol described by Müller et al. 

(1998) and Leider et al. (2010) (Fig. 2.1.). About 5 g sediments were extracted three 

times using an ultrasonic probe with methanol (MeOH), MeOH: dichloromethane (DCM) 

1:1 (v:v) and DCM (25 mL each). Before extraction known amounts of C19 ketone and C46 
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GDGT were added as internal standards. The combined extracts were washed with 50 

mL deionized water. The DCM: MeOH phase was separated, dried over anhydrous 

sodium sulphate, and the solvent was evaporated by rotary evaporation under vacuum. 

The lipid extract was saponified for 2 hours at 80 °C with 300 μL of 0.1M KOH in 90:10 

MeOH/H2O, and fractionated into three polarity fractions using silica gel column 

chromatography. The fractions containing the alkenones and GDGTs were obtained by 

eluting with DCM: hexane 2:1 (v:v) and MeOH, respectively, and dried using a Silli-

Therm at 50 °C under a stream of  nitrogen (Fig. 2.1.). 

 

 

 

 

 

 

 

 

 
Fig. 2.1.a). Schematic view of the integrated organic geochemical lab procedures in lipid 

biomarker fractions; b).Schematic of silica column chromatography to separate a mixture of 

organic compounds into different fractions prior to analysis. 

 

2.2.2. Alkenone analysis  

The alkenone fraction was re-dissolved in 25 μL MeOH: DCM 1:1 (v:v) prior to 

capillary gas chromatography (GC). Analyses were performed using an HP5890 series GC 

equipped with a flame ionization detector, using Helium as carrier gas with a constant 
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flow rate of 2.0 mL/min. Initial oven temperature was 60 °C, held for 1 min, 

subsequently increased to 150 °C at a rate of 10 °C/min, then raised to 310 °C at a rate 

of 4 °C/min with a total run-time of 75 min.  

Peak identification of di- and tri-unsaturated C37 alkenones (C37:2 and C37:3) was 

based on retention time and comparison with parallel GC runs of extracts of a lab-

internal standard sediment. Quantification was achieved by peak integration relative to 

the internal standard C19 ketone and by assuming the same response factor as C36 n-

alkane measured as external standard. The instrumental precision for alkenone analysis 

is estimated to be 0.15 °C based on duplicate measurements.  

2.2.3. GDGTs analysis  

The polar fraction containing the isoprenoid and branched GDGTs was dried under 

a stream of nitrogen, weighed, re-dissolved in n-hexane: isopropanol 99:1 (v/v) with a 

concentration of 2 mg/mL (Schouten et al., 2009), and filtered using a 0.45 μm PTFE 

filter prior to analysis as described by Hopmans et al. (2000, 2004). 

Analyses were performed as described in Leider et al. (2010) using an Agilent 1200 

Series high performance liquid chromatography system with an Agilent 6210 mass 

spectrometer (HPLC -MS). 20 μL aliquots were injected onto an Alltech Prevail Cyano 

column (2.1×150 mm, 3 μm; Grace) maintained at 30 °C. GDGTs were eluted using the 

following gradient with solvent A (n-hexane) and solvent B (5% isopropanol in n-hexane): 

80% A: 20% B for 5 min, linear gradient to 36% B in 45 min. The flow rate was 0.2 

mL/min. After each analysis the column was cleaned by back-flushing with n-hexane: 

isopropanol 90:10 (v/v) at 0.2 mL/min for 8 min.  The instrumental precision of GDGT 

analysis is estimated to be 0.18 °C depended on duplicate measurements.  
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3.1. Abstract 

In this study we reconstruct sea surface temperatures (SSTs) using two lipid-based 

biomarker proxies (alkenone unsaturation index UK’
37 and TEX86 index based on glycerol 

dibiphytanyl glycerol tetraethers) in 36 surface sediment samples from the Indonesian 

continental margin off west Sumatra and south of Java and the Lesser Sunda Islands. 

Comparison of measured temperatures (World Ocean Atlas 09) to reconstructed 

temperatures suggests that SST estimates based on UK’
37 reflect the SE monsoon SST in 

the upwelling area south of Java and the Lesser Sunda Islands. Estimates based on TEX86 

using the calibration for temperatures >20 °C (TEXH
86) are up to 2 °C lower than UK’

37-

based SSTs. This offset is possibly related to either one or a combination of two factors: i) 

the depth habitats of the source organisms; ii) different seasonal production and/ or 

seasonality of export associated with phytoplankton blooming triggered by primary 

productivity. In the non-upwelling area off west Sumatra, the alkenone-based SSTs are 

cooler than measured temperatures during the entire year, likely reflecting the 

limitation of the UK’
37 proxy beyond 28 °C, while reconstructed temperatures based on 

TEXH
86 are consistent with mean annual SST. 

3.2. Introduction 

Accurate SST reconstructions are an important prerequisite for understanding the 

climate system. Two organic-geochemical proxies, namely UK’
37 (alkenone unsaturation) 

and TEX86 (tretraether index of glycerol dibiphytanyl glycerol tetraether with 86 carbon 

atoms), are widely employed to reconstruct surface water temperatures in the oceans 

and in lakes. 

Alkenones, di- and tri-unsaturated C37 methyl ketones, are synthesized by 

prymnesiophyte algae (Brassell et al., 1986). The coccolithophores Emiliania huxleyi and 

Gephyrocapsa oceanica are the two major source organisms of alkenones (Conte et al., 

1998; Volkman et al., 1980). A range of alkenone studies in surface waters and cultures 

have demonstrated the close linkage between the alkenone unsaturation ratio and 
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growth temperatures of the precursor organisms (Conte et al., 1992, 1994; Conte and 

Eglinton, 1993; Marlowe, 1984; Prahl et al., 1988; Volkman et al., 1995; Yamamoto et al., 

2000).  

For temperature estimation, the unsaturation is generally expressed as the UK’
37 

ratio (Prahl and Wakeham, 1987). Since its introduction in 1987, determination of 

alkenone unsaturation has become a widespread technique to reconstruct past SST 

from marine sediments. Previous calibration studies showed linear relationships 

between global marine core-top UK’
37 and mean annual surface water temperature 

(Conte et al., 1998, 2006; Müller et al., 1998). The temperature range of the calibration 

spans from 2 to 28 °C. Sedimentary records of UK’
37 correlate well with mean annual SST 

(ma SST) in the surface waters and have proven reliable and robust for reconstructing 

past SST changes (Herbert, 2003). However, occasionally observed deviations between 

global calibrations and sedimentary alkenone temperature are still contentious. 

Discrepancies between UK’
37 and ma SST have been explained by physical factors such as, 

for instance, lateral redistribution of sediments (Benthien and Müller 2000), ecological 

factors like export production originating from below the euphotic zone (Prahl et al., 

1993, 2001; Ternois et al., 1997), influence of nutrients (Versteegh et al., 2001), and the 

thriving of alkenone-producers in specific seasons (Popp et al., 2006). In addition, 

species composition (Conte et al., 1998) and differential degradation of alkenones 

(Conte et al., 1992; Prahl et al., 1989) could also affect the temperature-estimates 

derived from UK’
37.  

Schouten et al. (2002) introduced another organic proxy, TEX86, based on the 

relative distribution of glycerol dialkyl glycerol tetraethers (GDGT). These GDGTs are 

membrane lipids produced by marine Crenarchaeota, re-named Thaumarchaeota 

(Brochier-Armanet et al., 2008). The relative distribution of the GDGTs is suggested to 

vary with growth temperature, similar to the UK’
37 (Schouten et al., 2013b and reference 

therein). In the last decade, several calibration studies using core-top sediments and 

archaeal cultures have been conducted, and linear as well as non-linear regressions with 
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SST have been proposed (Liu et al., 2009; Kim et al., 2008; Schouten et al., 2002; 

Wuchter et al., 2006). More recently, the original proxy has been refined further into 

TEXH
86 and TEXL

86 by Kim et al (2010) for temperatures higher and lower than 15 °C, 

respectively. The TEX86 proxy is expected to reflect the temperature in the upper parts 

of the water column (Schouten et al., 2002; Wuchter et al., 2006). Although the GDGT-

based proxy has already been widely used, it remains uncertain as to how well it reflects 

ma SST. For example, some studies suggested that TEX86 does not reflect SST, but rather 

subsurface temperature due to additional production of GDGTs below the mixed layer 

(Huguet et al., 2007; Lee et al., 2008; Lopes dos Santos et al., 2010). Other studies have 

shown that the TEX86 may be biased due to seasonality in growth or export of 

Thaumarchaeota, e.g., towards summer temperature in the eastern Mediterranean 

(Leider et al., 2010) and the South China Sea (Jia et al., 2012), or towards winter 

temperature in the southern North Sea (Herfort et al., 2006). Additionally, it has been 

suggested that the TEX86 signal reflects other temperatures than annual mean SST 

because Thaumarchaeota are outcompeted by and phytoplankton including alkenone 

producers e.g., during upwelling events, and thus thrive during seasons or at depths less 

favourable for phytoplankton producers (Rommerskirchen et al., 2011; Wuchter et al., 

2006, Lee et al., 2008; Turich et al., 2007). Another complication arises from input of 

terrestrially derived isoprenoid GDGTs (Weijers et al., 2006).  

Hopmans et al. (2004) proposed the Branched and Isoprenoid Tetraether (BIT) 

index, a proxy for the relative abundance of terrestrial soil organic matter in the marine 

environment, which could bias the TEX86 (Herfort et al., 2006). The BIT index represents 

the ratio between crenarchaeol and three branched GDGT lipids in marine and 

lacustrine sediments, and is expected to be near 1 in soils and approach 0 in deep sea 

sediments with negligible contribution o soil-derived terrestrial organic matter 

(Hopmans et al., 2004).  The proxy can potentially be used to assess whether a bias of 

the TEX86 index by input of soil-derived isoprenoid GDGTs is to be expected, and cut-off 

values of BIT <0.3 or <0.2 have been suggested (Weijers et al., 2006; Zhu et al., 2011). 
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These values are not to be regarded globally reliable, as on the one hand potential 

impact of terrestrially derived isoprenoid GDGTs, depends not only on the relative 

contribution to total isoprenoid GDGTs in marine sediments but also on the relative 

abundance of those GDGTs that are relevant for TEX86 in the soils of the source area. 

The latter parameter in most cases is complicated to determine. On the other hand, BIT 

index determinations are not directly comparable between different laboratories 

(Schouten et al., 2013a), which is further complicating the use of BIT.  

Generally, all temperature proxies have their uncertainties. To better understand 

the significance of each proxy, multiple proxies have been applied to the same sediment 

material. Comparison of UK’
37 and TEX86 data for sediments and suspended particles has 

been reported in several publications (e.g., Huguet et al., 2006; Jia et al., 2012; Lee et al., 

2008; Leider et al., 2010; Lopes dos Santos et al., 2010; Rommerskirchen et al., 2011). 

These studies attributed a significant potential source of uncertainty to different 

seasonal production and/or depth habitats of the source organisms. 

In this study, we investigate the applicability of the UK’
37 and TEXH

86 indices in the 

upwelling and non-upwelling areas of the eastern tropical Indian Ocean. We present 

alkenone and GDGT data from 36 surface sediment samples and compare the 

reconstructed temperatures to temperatures from the World Ocean Atlas 2009 in order 

to evaluate the factors influencing these proxies in the study area.  

3.3. Study area 

The eastern tropical Indian Ocean south of Java and the Lesser Sunda Islands (LSI) 

is strongly affected by the Australian-Indonesian Monsoon (AIM) system and the 

seasonal shifting of the Inter-Tropical Convergence Zone (ITCZ), which cause opposite 

seasonal characteristics at the sea surface (Tomczak & Godfrey, 1994; Webster et al., 

1998). During the austral winter (Fig. 3.1b.), the ITCZ is in the Northern Hemisphere and 

the southeast (SE) monsoon (July – September) winds are such that the southeast trades 

from Australia induce dry conditions off Java and the LSI. During the austral summer 
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(January – March, Fig. 3.1a.), the ITCZ migrates to northern Australia and the northwest 

(NW) monsoon is associated with the opposite wind direction from the Indonesian Seas 

and Asian continent carrying warm and moist air to the region. The precipitation rates 

over this region during NW monsoon are among the highest in the world resulting in 

maximum riverine discharge (Milliman et al., 1999). During this time, the predominant 

winds force the South Java Current (SJC) to flow from northwest to the southeast, 

before turning southward to eventually join the South Equatorial Current (SEC) (Fig. 

3.1a.). Advection of fresher Java Sea waters through the Sunda Strait and run-off from 

Sumatra and Java are responsible for the low-salinity “tongue” in the SJC (Qu et al., 

2005). 

During the SE monsoon (Fig. 3.1b.), the SJC and its prolongation, the SEC, flow 

westward along the southern coast of Java, when costal upwelling off Java and the LSI 

occurs (Tomczak & Godfrey, 1994). The upwelling is associated with higher chlorophyll-a 

concentration (Fig. 3.1f, g.), higher salinities and SSTs that are 1-2 °C lower compared to 

the non-upwelling season (Gordon et al., 2005, Susanto et al., 2006). In contrast, the 

area off W and NW Sumatra does not show any significant seasonality in SST and 

precipitation and is considered a non-upwelling, ever-wet tropical region (Fig. 3.1a, b, c; 

Aldrian and Susanto, 2003).  

The Indonesian Throughflow (ITF) connects the upper water masses of the Pacific 

and Indian Oceans and substantially influences the salinity and heat exchange between 

these oceans (Gordon and Fine, 1996). During the SE monsoon season (Fig. 3.1b.), the 

sea level difference between the Western Pacific and the Eastern Indian Ocean is largest, 

implying maximum strength in ITF (Tomczak & Godfrey, 1994). It is suggested that the 

Java upwelling system is counterbalanced by the ITF and, consequently, except for brief 

periods, fails to bring subsurface nutrients to the surface (Godfrey, 1996). In this case, 

the ITF branch through the Lombok Strait counteracts a significant SST depression off 

Java during the upwelling season. 
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Fig. 3.1. Sea surface temperature around Java reflecting a) the NW monsoon season (white 

boxes mark areas presented in d) and e)); b) the SE monsoon season; c) mean annual SST (from 

World Ocean Atlas 2009). Black dots show the position of the core-top samples, solid arrows 

indicate oceanographic surface currents: SJC: South Java Current; ECC: Equatorial Counter 

Current; SEC: South Equatorial Current; NECC: North Equatorial Counter Current; ITF: Indonesian 

Throughflow; LC: Leeuwin Current. Maps d) and e) indicate the station numbers (GeoB100xx). 

Mean seasonal chlorophyll-a concentration (mg m-3) around Indonesia (SeaWiFs 1997-2010; 

http://oceancolor.gsfc.nasa.gov/); f) mean values during NW monsoon seasons; g) mean values 

during SE monsoon seasons. 
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3.4. Material and Methods 

3.4.1. Surface samples 

In this study, we use the top 1 cm of multicore samples from 36 sites collected 

during PABESIA RV Sonne Cruise SO-184 in 2005 off west Sumatra and south Java and 

the LSI (Hebbeln et al., 2005) (Table 3.1, Fig. 3.1.).  

A set of UK’
37 temperature estimates for the same samples has been published by 

Mohtadi et al. (2011). Most of the data reached the upper limit of this proxy, i.e. close 

or above 28 °C. Six of the samples analyzed here have been included in the global GDGT 

core-top calibration study of Kim et al. (2010), but for reasons of consistency have been 

re-analyzed in this study. 

Modern surface sediment ages have been confirmed at nine selected stations by 

accelerator mass spectrometry (AMS) 14C dates on planktic foraminifera (Mohtadi et al., 

2011; Table. 3.1). The age determinations show that surface sediments are modern. 

Two samples from off Sumatra show older ages implying that sedimentation rates are 

lower at these locations (cores GeoB10008-4 and GeoB10016-2). 

3.4.2. Lipid extraction 

Lipid extraction for GDGT and alkenone analyses was carried out following the 

protocol described by Müller et al. (1998). About 5 g of freeze-dried and homogenized 

samples were extracted three times using an ultrasonic probe with successively 

methanol (MeOH), MeOH: dichloromethane (DCM) 1:1 (v:v) and DCM (25 mL each). 

Before extraction known amounts of C19 ketone and C46 GDGT were added as internal 

standards. The combined extracts were washed with 50 mL deionized water to remove 

salts. The DCM: MeOH phase was separated, dried over anhydrous sodium sulphate, 

and the solvent was evaporated by rotary evaporation under vacuum. The lipid extract 

was saponified for 2 hours at 80 °C with 300 μL of 0.1M KOH in 90:10 MeOH/H2O, and 

fractionated into three polarity fractions using silica gel column chromatography. The 
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fractions containing the alkenones and GDGTs were obtained by eluting with DCM: 

hexane 2:1 (v:v) and MeOH, respectively, and dried using a Silli-Therm at 50 °C under a 

stream of  nitrogen. 

3.4.3. Alkenone analysis and UK’
37 SST 

The alkenone fraction was re-dissolved in 25 μL MeOH: DCM 1:1 (v:v) prior to 

capillary gas chromatography. Analyses were performed using a HP5890 series gas 

chromatograph (GC) equipped with a flame ionization detector, using Helium as carrier 

gas with a constant flow rate of 2.0 mL/min. Initial oven temperature was 60 °C, held for 

1 min, subsequently increased to 150 °C at a rate of 10 °C/min, then raised to 310 °C at a 

rate of 4 °C/min with a total run-time of 75 min.  

Peak identification of di- and tri-unsaturated C37 alkenones (C37:2 and C37:3) was 

based on retention time and comparison with parallel GC runs of extracts of a lab-

internal standard sediment. Quantification was achieved by peak integration relative to 

the internal standard C19 ketone and by assuming the same response factor as C38 n-

alkane measured as external standard. Concentrations of di- and triunsaturated C37 

alkenones are given as sum in μg/g total organic carbon (TOC). The TOC contents 

determined for core-tops of parallel multi-corer subcores were taken from Baumgart et 

al., 2010. 

UK’
37 was calculated as: UK’

37 = (C37:2)/(C37:2+C37:3). UK’
37 values were converted to 

temperature estimates by applying the calibration of Conte et al. (2006):  

T = 29.876 x (UK’
37) - 1.334  
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3.4.4. GDGT analysis and TEX86 temperature 

The polar fraction containing the GDGTs was dried under a stream of nitrogen, 

weighed, re-dissolved in n-hexane: isopropanol 99:1 (v/v) with a concentration of 2 

mg/mL (Schouten et al., 2013a), and filtered using a 0.45 μm PTFE filter prior to analysis 

as described by Hopmans et al. (2000, 2004). 

Analyses were performed as described in Leider et al. (2010) using an Agilent 1200 

Series high performance liquid chromatography system with an Agilent 6210 mass 

spectrometry (HPLC -MS). 20 μL aliquots were injected onto an Alltech Prevail Cyano 

column (2.1×150 mm, 3 μm; Grace) maintained at 30 °C. GDGTs were eluted using the 

following gradient with solvent A (n-hexane) and solvent B (5% isopropanol in n-hexane): 

80% A: 20% B for 5 min, linear gradient to 36% B in 45 min. The flow rate was 0.2 

mL/min. After each analysis the column was cleaned by back-flushing with n-hexane: 

isopropanol 90:10 (v/v) at 0.2 mL/min for 8 min. GDGTs were identified using single ion 

monitoring (SIM) as described in Schouten et al., (2007).  

TEX86 was calculated on the basis of the relative peak areas of GDGTs as follows 

(Schouten et al., 2002):  

TEX86= (GDGT2+GDGT3+GDGT4’)/(GDGT1+GDGT2+GDGT3+GDGT4’) 

where the numbers 1-4 indicate the number of cyclopentane rings in the isoprenoid 

molecules, and GDGT4’ is the region-isomer of crenarchaeol. TEXH
86 is the log-

transformed original TEX86 and has been introduced by Kim et al. (2010) for 

reconstruction of SSTs in (sub) tropical oceans (>15 °C): 

TEXH
86=log(TEX86) 

in which ‘H’ stands for high temperature regions. The TEXH
86 values relate to 

temperature estimates according to the following relationship (Kim et al., 2010): 

SST = 68.4 x TEXH
86 + 38.6 
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GDGT concentrations were calculated from the respective peak areas relative to 

the peak area of the C46-GDGT used as internal standard and assuming equivalent 

response factors. To examine the potential influence of terrestrial GDGTs we analyzed 

the BIT index. The samples were analyzed in duplicate. BIT index was calculated based 

on the relative peak areas of branched GDGTs and crenarchaeol as defined by Hopmans 

et al. (2004). 

3.4.5. Analytical reproducibility 

To determine the analytical reproducibility of the UK’
37 and TEX86 SST estimates, a 

series of subsamples from a homogenized batch of a standard sediment was extracted 

independently and measured along with the surface sediment samples. The standard 

deviation of the UK’
37 and TEX86 SST estimates of these subsamples was 0.27 °C and 

0.60 °C, respectively, and better than 20% and 10% for concentrations of alkenones and 

total isoprenoid GDGTs, respectively. Furthermore, the 36 surface sediment samples 

were measured in duplicate. The reproducibility of the UK’
37 and TEX86 SST estimates was 

0.15 °C and 0.18 °C, respectively. 

3.5. Results 

3.5.1. Alkenone-based temperatures 

The alkenone-based temperatures (SST-UK’
37) range from 24.2 °C to 28.1 °C at 

stations off Sumatra and from 24.0 °C to 27.4 °C at upwelling stations off Java and the 

Lesser Sunda Islands (J-LSI; Fig. 3.2a.). The average alkenone temperature estimates is 

27.3 °C and 26.6 °C off Sumatra and off J-LSI, respectively. The SST-UK’
37 is up to 2 °C 

lower than the satellite-based ma SST, and closely resembles SE monsoon SST (Fig. 3.3.).  
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Fig. 3.2. Temperature estimates for surface sediments in the study area, a) alkenone-based 

temperature (SST-UK’
37,  °C); b) GDGT-based temperature (Temp-TEXH

86,  °C); c) BIT index value. 

 



Chapter 3 

56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Difference between reconstructed temperature based on UK’
37 and seasonal satellite 

derived SST, a) UK’
37 temperature estimates minus mean annual SSTs ( °C); b) UK’

37 temperature 

estimates minus SE monsoon SSTs ( °C). 
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3.5.2. GDGT-based temperatures 

The GDGT-based temperature estimates (Temp-TEXH
86) range from 26.4 °C to 

28.9 °C at stations off Sumatra and from 25 °C to 28.6 °C at upwelling stations off J-LSI 

(Fig. 3.2b.). The average GDGT-based temperature off Sumatra (28.1 °C) is warmer than 

the average temperature off J-LSI (25.9 °C). There is also a decreasing trend with 

longitude as observed in SST-UK’
37 (Fig. 3.2a, b.). The difference between temperatures 

based on alkenones and GDGTs ��	
��������at Temp-TEXH
86 is higher than SST-UK’

37 at 

stations in the non-upwelling area by up to 3 °C (Fig. 3.2a, b.). In contrast, Temp-TEXH
86 

is lower than SST-UK’
37 at stations in the upwelling area by up to 2 °C (Fig. 3.2a, b.). The 

Temp-TEXH
86 matches the ma SST at the stations off Sumatra. As there is little or no 

seasonality in SST off Sumatra, Temp-TEXH
86 is also in agreement with SE monsoon SST. 

Off Java, Temp-TEXH
86 is in agreement with SE monsoon SST (Fig. 3.4, 5.). Furthermore, 

the Temp-TEXH
86 is slightly colder than SE monsoon SST at the stations off LSI (Fig. 3.4b, 

5.).  

3.5.3. BIT index 

Although the core-top sediments were all derived from the continental margin, 

they all contain low amounts of branched GDGTs, resulting in BIT values consistently 

below 0.30. The BIT index values show a decreasing trend from northwest to southeast. 

The BIT index varies between 0.01 and 0.22 with the highest values close to the Sunda 

Strait (Fig. 3.2c.). The lowest BIT index values are observed in the upwelling area off LSI. 

There is a decreasing trend from the coastal to the deeper ocean near the Sunda Strait.  

3.5.4. Alkenone and GDGT concentrations 

The bulk sedimentary concentrations of alkenones and GDGTs could be affected 

by the high lithogenic content in this area (Baumgart et al., 2010).  To compensate for 

this effect, we calculated the concentrations relative to the TOC content from Baumgart 

et al. (2010). The total alkenone concentrations vary between 9.9 and 38.3 μg/g TOC at 

stations off Sumatra and between 6.2 and 48.8 μg/g TOC at stations off J-LSI (Fig. 3.6a.). 
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The total GDGT concentrations range from 58.1 to 410.3 μg/g TOC at stations off 

Sumatra and from 57.8 to 491.5 μg/g TOC at stations off J-LSI (Fig. 3.6b.). Crenarchaeol 

is the predominant GDGT, accounting for 69-75% of the total GDGTs. The GDGT 

concentrations cannot be regarded absolutely accurate due to the lack of an external 

GDGT standard which could be used to quantify the relative response factors of the C46 

internal standard and the respective GDGTs used for the calculation of TEX86.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 3.4. Difference between reconstructed temperature based on TEXH
86 and seasonal satellite 

derived SST, a) TEXH
86 temperature estimates minus mean annual SSTs (°C); b) TEXH

86 

temperature estimates minus SE monsoon SSTs (°C). 
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Fig. 3.5. Residuals for: a) GDGT-based temperature estimates minus mean annual SST (SE 

monsoon SST); b) GDGT-based temperature estimates minus mean annual SST at 30 m (50m) 

water depth, plotted versus longitude of the sample locations. 
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Fig. 3.6. Concentrations of a) alkenones per gram TOC (μg/gTOC); b) GDGTs per gram TOC 

(μg/gTOC) in surface sediments (TOC content published by Baumgart et al., 2010). 

 

3.6. Discussion 

3.6.1. Temperature calibrations  
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We discuss temperature estimates based on the linear calibration of Conte et al. 

(2006) for UK’
37 and based on the TEXH

86 calibration from Kim et al. (2010). These 

authors have demonstrated that for tropical setting like our study area, these are the 

best calibration for surface sediments.  

The aforementioned deviations of TEXH
86-based SST estimates from measured 

SSTs are within calibration error of the method. There is, however, a systematic pattern 

in deviations within our study area, which appears to be related to the prevailing 

oceanographic conditions. Moreover, regional calibrations for TEX86 (Shevenell et al., 

2011) tend to display lower residuals than the global calibration. Thus we believe that 

the offsets we observe are significant and can be interpreted in context with the 

environmental conditions observed in the sub-regions of our study area.  

3.6.2. Non-upwelling region off Sumatra 

Alkenone-derived SST estimates are by 2 °C lower than the ma SST (World Ocean 

Atlas 2009 (WOA); Loncarnini et al., 2010) in the non-upwelling area (Fig. 3.5.). Off 

Sumatra, the seasonal SST variations are small (less than 2 °C). The discrepancy between 

measured and reconstructed temperatures is significant in the equatorial region, as the 

mean standard error of temperature estimation for the calibration is 1.1 °C (Conte et al., 

2006). However, the ma SST is warmer than 28 °C in this area, beyond the defined 

temperature range of the UK’
37 method. Thus the alkenone-based SST estimates 

underestimate SST in the tropical regions with ma SST exceeding 28 °C. Our results are 

in agreement with previous studies (e.g., Conte et al., 1998; Mohtadi et al., 2011; 

Pelejero and Grimalt, 1997; Sikes and Volkman, 1993; Sonzogni et al., 1997). In order to 

explain this, several studies have argued that the slopes of SST-UK’
37 calibrations are 

non-linear or show reductions at high growth temperatures (Pelejero and Grimalt, 1997; 

Sikes and Volkman, 1993; Sonzogni et al., 1997). Conte et al. (1998) suggested that the 

cell's limited physiological adjustment to temperature via alkenone biochemistry would 

introduce a reduction in the slope of the relationship at high growth temperatures. 
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Mohtadi et al. (2011) reported up to ~1.0 °C higher UK’
37 SST estimates than our 

data for the same core top samples, with the alkenone index measurements being 

performed in another laboratory. The authors report that the alkenone temperature 

estimates correspond to modern mean annual SST rather than seasonal temperatures in 

the study area. However, they noted that a seasonal signal might be masked by the fact 

that the alkenone proxy is at its limit of temperature response. Nevertheless, a clear and 

strong seasonal signal in alkenone-based temperature estimates is observed in a 

downcore study off SW Sumatra during glacial periods (e.g., Lückge et al., 2009). Rosell-

Melé et al. (2001) estimated that differences between UK’
37 temperature estimates from 

the analysis of oceanic sediment samples, between any two laboratories, may be as high 

as 2.1 °C (at 95% confidence level) owing to analytical uncertainties. Therefore we 

refrain from discussing these discrepancies but rather interpret differences between 

data obtained in one single laboratory. 

In contrast to the alkenone-derived SST estimates, Temp-TEXH
86 agrees well with 

ma SSTs in the non-upwelling area (Fig. 3.4, 5.). The high SSTs in the region are well 

within the range of calibration of TEX86 and TEXH
86, and our results suggest that Temp-

TEXH
86 might reflect ma SST in the non-upwelling areas in the eastern tropical Indian 

Ocean.  

3.6.3. Java-Lesser Sunda Islands Upwelling System 

At the upwelling sites, the UK’
37 and TEXH

86 temperature estimates are up to 2 °C 

lower than ma SST (Fig. 3.3, 4.). The alkenone-based and GDGT-based temperatures 

agree better with SE monsoon SST within analytical error at the Java sites, whereas at 

the LSI sites SST-UK’
37 is approximately 1 °C higher and TEXH

86 temperature estimates are 

up to 2 °C lower than SE monsoon SST, respectively. We thus observe an offset between 

the two indices in the upwelling area off LSI, showing up to ~2 °C warmer SST-UK’
37 than 

Temp-TEXH
86, whereas the SST-UK’

37 is equivalent to the Temp-TEXH
86 off Java (Fig. 3.7.). 

Generally, reconstructed temperatures derived from alkenones and GDGTs are expected 



Chapter 3 

63 

 

to represent the temperatures of the upper parts of the water column, because both 

indices correlate well with ma SST in most settings (Kim et al., 2008; Prahl et al., 2000; 

Schouten et al., 2002). Offsets between the two temperature estimates could be caused 

by different seasonal production of source organisms and/ or depth habitats, or 

processes like degradation, transport, or terrestrial input. In upwelling regions it is also 

conceivable that upwelled water carries with it archaeal cells originally thriving in 

deeper habitats and carrying the respective Temp-TEX86. Offset between SST-UK’
37 and 

Temp-TEX86 have been found in several previous studies, particularly in upwelling 

settings (Huguet et al., 2006; Lee et al., 2008; Leider et al., 2010; Lopes dos Santos et al., 

2010; Rommerskirchen et al., 2011).  

 

 

 

 

 

Fig. 3.7. Difference between reconstructed temperatures based on alkenones and GDGTs in the 

upwelling area. 

3.6.3.1. Effect of terrestrial input, degradation and lateral transport 

As described above, the BIT index can potentially be used assess whether or not 

input of terrestrial isoprenoidal GDGTs could bias the TEX86 and TEX86 at sites with BIT 

index values above 0.2 or 0.3 are potentially unreliable (Weijers et al., 2006; Zhu et al., 

2011). The BIT index at our sites varies between 0.01 and 0.22, suggesting a low relative 

soil organic matter contribution. This indicates that the TEXH
86 is likely not strongly 

biased by terrigenous material at most sites. This assumption is also supported by the 
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low concentration of terrestrial organic matter in the study area ��������� ���� �13C 

compositions of TOC (Baumgart et al., 2010). 

A preferential degradation of the tri-unsaturated alkenone relative to the di-

unsaturated alkenone under oxic bottom water conditions could result in a warm bias in 

alkenone SST estimates (Gong and Hollander, 1999; Hoefs et al., 1998; Kim et al., 2009a). 

However, other studies suggest that differential degradation has a minor effect on UK’
37 

temperature estimates (up to 1.2 °C) (Kim et al., 2009a; Huguet et al., 2009). On the 

other hand, several studies demonstrated no significant effect of differential 

degradation on GDGT distributions under oxic or anoxic conditions (Kim et al., 2009a; 

Schouten et al., 2004). In our study area, the average bottom water oxygen 

concentration is 2.98 mL/L off Java, which is slightly higher than 2.64 mL/L off LSI 

(Baumgart et al., 2010). If differential degradation played an important role, a stronger 

effect creating a warm bias would be expected off Java. In contrast, we observe a 

slightly warmer SST-UK’
37 off LSI than off Java. This suggests that preferential 

degradation is not a significant factor for UK’
37 temperature estimates in the study area 

and preferential degradation can thus not account for the observed differences 

between temperature estimates between the sites off Java and the LSI. 

Organic proxy signals in marine sediments are not always derived solely from the 

overlying water column but may originate also from remote regions. In particular, fine-

grained particles are susceptible to resuspension and lateral advection by strong 

currents (e.g., Ohkouchi et al., 2002). Organic matter in marine sediments is often 

associated with the fine grain size fraction. Previous studies recognized that alkenone 

SST records are affected by laterally advected allochtonous input (e.g., Sachs and 

Anderson, 2003; Sicre et al., 2005). SST- UK’
37 have been found to be at odds with in situ 

SST in some areas due to lateral transport (Benthien and Müller, 2000; Rühlemann and 

Butzin, 2006). However, magnitude and direction of the deviations between alkenone-

based temperatures and in situ SST caused by lateral transport depend on the SST and 

productivity in the source region where advected particles might originate. In our study 
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region, the ITF presently transports an annual average of ~16SV (1 SV=106m3s-1) of warm, 

low-salinity surface water from the Western Pacific Warm Pool (WPWP) and Indonesian-

Malaysian archipelago in to the eastern Indian Ocean (Gordon and Fine, 1996; You and 

Tomczak, 1993), and thus is the likely source for advected material. The average surface 

temperature of the WPWP is over 28 °C, slightly warmer than the average SST off Java 

and the LSI, and the productivity is lower. Our SST-UK’
37 estimates are ca.1.5 °C lower 

than ma SST and ca. 1 °C higher than SE monsoon SST off LSI. If lateral advection is 

considered as a main cause, a source region would be required with a ma SST similar to 

our alkenone temperature estimates. Moreover, previous studies suggested that GDGTs 

are less affected by long-distance lateral transport than alkenones (Mollenhauer et al., 

2007; Shah et al., 2008). Kim et al. (2009b) found that isoprenoid GDGTs are less 

refractory than alkenones. So, GDGT-based proxies are likely primarily influenced by 

local conditions and less subject to long-distance lateral transport (Kim et al., 2010). It is 

thus unlikely that advected alkenones, or GDGTs should dominate the signal recorded in 

the sediment. 

3.6.3.2. Depth habitat of prymnesiophyte and Thaumarchaeota  

The offset between the two temperature estimates might relate to the water 

depth in which the source organisms live. Prymnesiophyte algae are photoautotrophic 

which means they live within the euphotic zone. Thaumarchaeota are distributed 

throughout the entire water column, and can reside in deeper waters (Karner et al., 

2001). Several studies have suggested that TEX86 temperature estimates reflect slightly 

deeper waters, i.e. just below the surface mixed layer (e.g., Huguet et al., 2007; Lee et 

al., 2008; Lopes dos Santos et al., 2010). Huguet et al. (2007) suggested that the GDGTs 

were derived from a deeper and colder water mass (100-150m) instead of surface 

waters. Lee et al. (2008) measured TEX86 in suspended matter samples from surface 

water and roughly the upper 80 m of the water column in the Benguela upwelling 

system and found that the Temp-TEX86 was colder than in situ temperature. They 

supposed that the GDGT producers thriving below the mixed layer (<40 m) were 
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transported upward by upwelling resulting in a cold bias. The surface sediments 

analyzed in the same study revealed that TEX86 reflect deeper water (>40 m) 

temperature better than SST. Lopes dos Santos et al. (2010) investigated surface 

sediments located near the equatorial upwelling in the Atlantic Ocean and found that 

the TEX86 temperature estimates reflect subsurface temperature, likely around the 

thermocline, rather than ma SST. However, in contrast to the above studies, Schouten et 

al. (2012) analyzed the GDGTs in suspended particles in the water column of the Arabian 

Sea and observed relatively low TEX86 values in surface waters and an increase between 

170 and 450 m depth. Basse et al. (submitted manuscript) analyzed suspended 

particulate matter samples and surface sediment samples off Cape Blanc (NW Africa) 

and found that the GDGTs transported to the sediment likely originated from 

approximately 60m water depth. The potential deeper depth habitat suggested for 

GDGT producers could thus be between 40 and 100 m.  

In the upwelling area off LSI comparison between estimated temperatures based 

on alkenones, GDGTs and WOA 09 (Loncarnini et al., 2010) suggests that alkenone SST 

estimates might reflect mean annual temperature of 26.5-27.5 °C at 30 m water depth 

or SE monsoon temperature at 0 m depth (Fig. 3.8.). The predominant production of 

alkenones occurs in SE monsoon (more details discussed below). Hence, alkenones in 

surface sediments likely reflect SE monsoon surface temperature. In contrast, GDGT-

based temperatures seem to record SE monsoon temperature at 30-50 m water depth 

ranging from 25-27 °C off J-LSI. Taken together, our results from the upwelling area off 

LSI suggest that TEXH
86 may often be more reflective of deeper waters at 30-50 m, while 

UK’
37 correlates well to SST.  

 

 

 

 



Chapter 3 

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. Alkenone- and GDGT-based temperatures vs. longitude. Solid, dashed, and dotted lines 

indicate upper water column temperatures at 0 m, 30 m and 50 m, respectively, black for mean 

annual temperatures, grey for the SE monsoon season; temperatures were averaged for each 

depth in the study area using the WOA 09 database (Loncarnini et al., 2010). 

 

3.6.3.3. Seasonal prymnesiophyte and Thaumarchaea production 

SST-UK’
37 is lower than ma SST but consistent with SE monsoon SST in the 

upwelling area (Fig. 3.5.). Although it is generally assumed that UK’
37 reflects ma SST, it 

has been reported that the abundance of prymnesiophyte algae varies throughout the 
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annual cycle. The lower UK’
37 temperature could indicate that SST-UK’

37 might be biased 

toward the colder season if the source organisms thrive in the colder seasons. This 

scenario has been invoked to account for lower SST-UK’
37 than ma SST in surface 

sediments (e.g., Lee et al., 2008; Leider et al., 2010).  

Primary production is strongly associated with upwelling dynamics and monsoon 

cycles along the coast of Java/Lombok Basin. Satellite derived chlorophyll-a 

concentration in the upwelling area displays a distinct seasonality with maxima between 

June and September (data from SeaWiFS between 1997 and 2010, Fig. 3.1f, g.). E. 

huxleyi and G. oceanica occur in high abundance during the SE monsoon season in the 

investigated region (Andruleit et al., 2007). Chlorophyll-a concentration and the 

concentration of alkenones appear higher at the stations off Java than LSI, suggesting a 

higher primary productivity for this region (Table, 3.1.; Fig. 3.6.). This suggests that 

alkenones are mainly derived from alkenone producers thriving during the SE monsoon, 

and that SST-UK’
37 possibly reflects SE monsoon season alkenone production in the 

upwelling area.  

Although a strong relationship between TEX86 and ma SST is observed in several 

surface sediments studies, TEX86 does not necessarily reflect ma SST at each location. 

The abundance of Thaumarchaeota varies with seasonality (Murray et al., 1998; Pitcher 

et al., 2011). Besides the production of Thaumarcheaota in specific seasons, the mode 

of transport of GDGTs is likely another crucial process for controlling the sedimentary 

TEX86 signal. It is known that the cells of archaea are very small and neutrally buoyant 

and thus cannot sink by themselves (Schouten et al., 2013b and reference therein). They 

have to be transported by an efficient process i.e., by aggregation with phytoplankton 

cells and other suspended matter, in order for the GDGTs to reach the sea floor. Thus, 

export of the GDGT signal likely occurs primarily during the season of elevated primary 

productivity (Huguet al., 2007; Wuchter et al., 2005). In the upwelling area, Temp-TEXH
86 

is more than 3 °C colder than satellite SST during the entire year except for the SE 

monsoon season (Fig. 3.6.). Temp-TEXH
86 matches SE monsoon SST at sites off Java, 
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whereas it is slightly colder than SE monsoon SST off LSI. This could suggest that the 

production of planktonic archaea and/or export of their lipids to the sediments 

predominantly take place during the cooler seasons, leading to the hypothesis that their 

seasonality or at least the seasonality of their export is similar to that of the 

prymnesiophytes. High fluxes of GDGTs associated with high abundance of 

Thaumarchaeota have been observed to be seasonal (Herfort et al., 2006; Huguet et al., 

2007; Wuchter et al., 2005). Wuchter et al. (2005) observed a positive correlation 

between chlorophyll-a and archaeal lipids in surface waters from Bermuda. At those 

sites, wind-induced convective mixing results in nutrient enrichment of surface waters, 

which promotes production during winter and possibly also the growth of planktonic 

archaea. In the Arabian Sea, the flux of GDGTs to the sediments was higher during the 

upwelling season than in the non-upwelling season (Wakeham et al., 2002). The Arabian 

Sea shows a similar environmental setting as our study area. Hence, we propose that off 

J-LSI the Temp-TEXH
86 possibly reflects planktonic archaea production during the SE 

monsoon season. Our relatively cold TEXH
86 temperature signal suggests that production 

of GDGTs predominantly takes place during the high productivity season related to 

upwelling. However, the difference between the two sub-areas of the upwelling system, 

i.e., off Java and the LSI, remains unexplained by a simple seasonality scenario.  

3.6.3.4. Timing of export production  

The offset between SST-UK’
37 and Temp-TEXH

86 is smaller at lower TOC sites off 

Java than at sites with high TOC off LSI (Baumgart et al., 2010) (Fig. 3.9a.). This suggests 

that the temperature offset (�	
���������������������������������������������������

in the surface water. Coincidently, the same pattern has been observed in the Benguela 

upwelling system (Rommerskirchen et al., 2011). Additionally, the �	�������������2=0.59, 

P<0.05) with the concentration of GDGTs (Fig. 3.9b.), but shows a weaker correlation 

with concentration of alkenones (R2=0.25, P<0.1; Fig. 3.9c.), suggesting that the offsets 

depend on GDGT production. We notice that the weaker correlation between �	� ����

TOC than with GDGT concentration could be explainable by other factors that influence 
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TOC content in sediments such as dilution by other components and diagenetic 

preservation (Meyers et al., 1999). However, �T is negatively correlated with the BIT 

index (R2=0.67, P<0.001; Fig. 3.9d) suggesting that off Java a small bias towards warmer 

Temp-TEXH
86 might indeed be caused by input of terrigenous isoprenoid GDGTs, 

potentially during the wet NW monsoon season. On the other hand, several studies has 

pointed out that BIT index might also reflect variations in productivity of marine 

Thaumarchaeota rather than changes in the input of terrigenous GDGTs (e.g., Smith et 

al., 2012), which would be in line with higher GDGT production off LSI than off Java. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.9. a) TOC content published by Baumgart et al. (2010) against the offset between SST-UK’
37 

and Temp-TEXH
86 (�	
!�"
�#�������������GDGTs per g TOC against the �	!��
�#�������������

alkenones per g TOC against �	  ; d) BIT index against the �	$� Open circles represent sites off 

Java, filled dots refer to sites off LSI. 
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The alkenone producers may not occur at maximum abundance during peak 

upwelling, either, but could be outcompeted by other phytoplankton. For instance, in 

the Arabian Sea, living diatoms typically dominate in the centre of upwelling, whereas 

the abundance of coccolithophores increases towards more nutrient-depleted and 

stratified surface water (Schiebel et al., 2004). The observation of warmer UK’
37 

temperature estimates off LSI than off Java suggests that the alkenone-based 

temperatures may not reflect the coldest upwelling SSTs. 

As detailed above, the potential seasonal bias of GDGT-based temperatures may 

also be caused by seasonal variation in the export of GDGTs, which may depend on the 

timing of export productivity, i.e. the time of highest carbon flux to the sediment, which 

is high during increased phytoplankton productivity (Schouten et al., 2013b and 

reference therein). The timing of highest particle flux could be different between the 

areas off Java and LSI. In contrast to the alkenones, GDGTs off LSI could be primarily 

exported by aggregates produced by phytoplankton during peak upwelling, the TEXH
86-

based temperatures might be reflective of peak upwelling conditions, which is 

associated with the highest export flux. During non-upwelling times, GDGTs produced in 

the water column might not be exported and potentially degrade, while rapid 

aggregation might result in selective preservation of the lipids incorporated in sinking 

particles. As a result, the sinking GDGTs could be dominated by material produced 

during this coldest time period, irrespective of whether or not Thaumarchaeota 

productivity is highest during this time. We suggest this scenario to be at work off LSI, 

while off Java, where productivity in general is higher, high vertical fluxes might prevail 

for a longer time period, resulting in inclusion of more GDGTs produced during warmer 

time periods. 

Recent investigations on a sediment trap time-series off Java between 2001 and 

2003 observed that fluxes of diatoms, opal and particulate organic carbon were also 

enhanced during the rainy and warm season during the NW monsoon, defining a 

secondary peak in productivity (Rixen et al., 2006; Romero et al., 2009). Elevated 

riverine nutrient discharges following the rainy season might play an important role in 
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detected fluxes and consequent additional phytoplankton blooms. Thus, the warmer 

Temp-TEXH
86 off Java than off LSI could also be attributed to additional export of GDGTs 

occurring during the NW monsoon season and carrying a warm signal. A warm bias of 

Temp-TEXH
86 during the NW monsoon season caused by supply of terrigenous 

isoprenoid GDGTs is regarded less likely, as the BIT index values for all stations off Java 

are very low (\^$_`{�	�"��� 3.1.). Further support for our interpretation comes from the 

precipitation rates on the Java and LSI. The rainfall rates derived from the Tropical 

Rainfall Measuring Mission (TRMM) from 1998 to 2007 show that higher rainfall rates 

are observed off Java than off LSI (Bissutti et al., 2012), suggesting a higher riverine 

discharge off Java than LSI. On the other hand, river supplied nutrients might stimulate a 

prymnesiophyte bloom during NW monsoon, resulting in export of alkenones carrying a 

warm SST signature, which could impact the sedimentary UK’
37 values, an effect which 

cannot be seen in our data. 

3.7. Conclusions 

Analysis of our data set of combined UK’
37 and TEXH

86-based temperature 

estimates off the coasts of Sumatra, Java and the Lesser Sunda Islands supports the 

following conclusions, partly corroborating previous findings: 

1. Alkenone-based temperature estimates probably underestimate tropical SST 

due to the limitations of the UK’
37 proxy at SST beyond 28 °C in the equatorial non-

upwelling area off western Sumatra. In contrast, GDGT-based temperature estimates off 

Sumatra are in agreement with mean annual and/or SE monsoon temperatures within 

the upper 50 m of the water column. 

2. In the upwelling region, SST-UK’
37 matches well with SE monsoon SST, which can 

be attributed to predominant production of alkenones during upwelling conditions in 

the SE monsoon season. 
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Lower Temp-TEXH
86 than mean annual SST in the upwelling areas can be explained 

by maximum abundance and export of Thaumarchaeota during highest upwelling-

induced surface water productivity and a predominant habitat at 30-50 m water depth. 

3. The offset between the temperature estimates derived from the two indices is 

larger in the upwelling area off LSI than off Java. This might be interpreted by either one 

or a combination of the following factors: Predominant export of GDGTs occurs during 

peak upwelling with alkenones not reflecting the peak upwelling conditions off LSI, 

while exported GDGTs off Java include a higher relative contribution of GDGTs produced 

during warmer times due to overall higher vertical particle fluxes. Moreover, off Java 

GDGTs carrying a warm temperature signal might be exported to the sediment following 

a secondary flux maximum caused by high river runoff in the NW monsoon season. 

Acknowledgements 

The sediment samples from the eastern Indian Ocean were collected during the 

PABESIA Cruise with RV Sonne (SO-184). We thank the participating crews and scientists 

for collecting the cores used in this study. We would like to thank Ralph Kreutz and 

Maria Winterfeld for laboratory assistance. This study was supported by the German 

Bundesministerium für Bildung und Forschung (PABESIA), the Helmholtz Association 

through a Young Investigators Group Award to GM and the China Scholarship Council 

(CSC) with support to Wenwen Chen. The data presented in this study are archived in 

PANGAEA (http://www.pangaea.de). We thank Carme Huguet and two anonymous 

reviewers for constructive and detailed reviews that greatly helped to improve the 

manuscript. 

 

 

 

 



Chapter 3 

74 

 

3.8. References 

Aldrian, E., Susanto, R.D., 2003. Identification of three dominant rainfall regions within 

Indonesia and their relationship to sea surface temperature.  International Journal 

of Climatology, 23, 1435-1452. 

Andruleit, H., 2007. Status of the Java upwelling area (Indian Ocean) during the 

oligotrophic northern hemisphere winter monsoon season as revealed by 

coccolithophores. Marine Mircopaleontology, 64, 36-51. 

Basse, A., Zhu, C., Versteegh, G.J.M., Fischer, G., Hinrichs, K.-U., Mollenhauer, G., 2013.  

Implications for community structure or metabolism of marine Thaumarchaeota 

and the TEX86 SST proxy. Organic Geochemisty, 72, 1-13. 

Baumgart, A., Jennerjahn, T., Mohtadi, M., Hebbeln, D., 2010. Distribution and burial of 

organic carbon in sediments from the Indian Ocean upwelling region off Java and 

Sumatra, Indonesia. Deep-Sea Research I, 57, 458-467. 

Benthien, A., Müller, P.J., 2000. Anomalously low alkenone temperatures caused by 

lateral particle and sediment transport in the Malvinas Current region, western 

Argentine Basin. Deep-Sea Research I, 47, 2369-2393. 

Biasutti, M., Yuter, S.E., Burleyson, C.D., Sobel, A.H., 2012. Very high resolution rainfall 

patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. 

Climate dynamics, 39(1-2), 239-258. 

Brassell, S.C., Eglinton, G., Marlowe, I.T., Plaumann, U., Sarnthein, M., 1986. Molecular 

straigraphy: A new tool for climatic assessment. Nature, 320,129-133. 

Brochier-Armanet, C., Boussau, B., Gribaldo, S., Forterre, P., 2008. Mesophilic 

Crenarchaeota:  Proposal for a third archaeal phylum, the Thaumarchaeota. 

Nature Reviews Microbiology, 6 (3), 245-252.  

Bryden, H.L Imawaki, S., 2001. Ocean Heat Transport, Chapter 6.1, pp. 455-474 in Ocean 

Circulation and Climate, G. Siedler, J. Church and J. Gould, eds. Academic Press. 

Conte, M.H., Eglinton, G., Madueira, L.A.S., 1992. Long-chain alkenones and alkyl 

alkenoates as paleotemperature indicators: Their production, flux and early 



Chapter 3 

75 

 

sediment diagenesis in the eastern North Atlantic. in Advances in Organic 

Geochemistry 1991, edited  by C. B. Eckardt and S. R. Larter, Organic Geochemistry, 

19, 287-298. 

Conte, M.H., Thompson A., Eglinton G. 1994.  Primary production of lipid biomarker 

compounds by Emiliania huxleyi: Results from an experimental mesocosm study in 

Korsfjorden, southern Norway. Sarsia, 79, 319-332. 

Conte, M.H., Thompson, A., Lesley, D., Harris, R. P., 1998.  Genetic and physiological 

influences on the alkenone/alkenoate versus growth temperature relationship in 

Emiliania huxleyi and Gephyrocapsa oceanica. Geochimica et Cosmochimica Acta, 

62, 51-68. 

Conte, M.H., Sicre, M.-A., Rühlemann, C., Weber, J.C., Schulte, S., Schulz-Bull, D., Blanz, 

T., 2006. Global temperature calibration of the alkenone unsaturation index (UK’
37) 

in surface water and comparison with surface sediments. Geochemistry 

Geophysics Geosystems, 7, Q02005, doi:10.1029/2005GC001054. 

Du, Y., Qu T., Meyers G., 2008. Interannual variability of sea surface temperature off 

Java and Sumatra in a global GCM. Journal of Climate, 21(11), 2451-2465, 

doi:10.1175/2007JCLI1753.1. 

Epstein, B.L., D'Hondt, S., Quinn, J.G., Zhang, J., Hargraves, P.E., 1998. An elect of 

dissolved nutrient concentrations on alkenone-based temperature estimates. 

Paleoceanography 13(2), 122-126. 

Gong, C. Hollander D.J. 1999. Evidence for differential degradation of alkenone under 

contrasting bottom water oxygen conditions: implication for paleotemperature 

reconstruction. Geochimica et Cosmochimica Acta, 63, 405-411. 

Goñi, M.A., Hartz, D.M., Thunell, R.C., Tappa, E., 2001. Oceanographic considerations for 

the application of the alkenone-based paleotemperature UK’
37 index in the Gulf of 

California. Geochimica et Cosmochimica Acta, 65, 545-557. 

Gordon, A.L., Fine R.A., 1996. Pathways of water between the Pacific and Indian oceans 

in the Indonesian seas. Nature, 379, 146-149. 



Chapter 3 

76 

 

Gordon, A.L., Susanto R.D., Ffield A.L., 1999. Throughflow within Makassar Strait. 

Geophysical Research Letters, 26, 3325-3328. 

Gordon, A.L., 2001. Interocean Exchange, Chapter 4.7, pp. 455-474 in Ocean Circulation 

and Climate, G. Siedler, J. Church and J. Gould, eds. Academic Press. 

Gordon, A.L., Susanto R.D., Vranes, K., 2003. Cool Indonesian throughflow as a 

consequence of restricted surface layer flow. Nature, 425, 824-828. 

Hebbeln, D., et al. 2005. Report and preliminary results of RV SONNE cruise SO-184, 

PABESIA, Durban (South Africa)-Cilacap (Indonesia)-Darwin (Australia), July 8th-

September 13th, 2005, Rep. 246, 142 pp., Univ. Bremen, Bremen, Germany. 

Hendiarti, N., Siegel, H., Ohde, T., 2004. Investigation of different coastal processes in 

Indonesian water using SeaWiFS data. Deep-Sea Research II, 51, 85-97. 

Herbert, T.D., Schuffert, J.D., Thomas, D., Lange, C., Weinheimer, A., Peleo-Alampay, A., 

Herguera, J.-C., 1998. Depth and seasonality of alkenone production along the 

California margin inferred from a core top transect. Paleoceanography, 13(3), 263-

271. 

Herbert, T.D., Heinrich, D.H., Karl, K.T., 2003. Alkenone paleotemperature 

determinations. Treatise on Geochemistry. Pergamon, Oxford, pp. 391-432. 

Herfort, L., Schouten S., Boon J.P., Sinninghe Damsté J.S., 2006. Application of the TEX86 

temperature proxy in the southern North Sea. Organic Geochemistry, 37, 1715-

1726. 

Hirst, A.C., Godfrey, J.S., 1993. The role of Indonesian throughflow in a global ocean 

GCM. Journal of Physical Oceanography, 23, 1057-1086. 

Hoefs, M.J.L., Klein-Breteler G.J.M., Schouten S., Grossi V., de Leeuw J.W. Sinninghe 

Damsté J.S., 1998. Postdepositional oxic degradation of alkenones: implications 

for the   measurement of palaeo sea surface temperatures. Paleoceanography, 13, 

42-49. 

Hopmans, E.C., Schouten, S., Pancost, R.D., van der Meer, M.T.J., Sinninghe Damsté, J.S., 

2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by 

high performance liquid chromatography/atmospheric pressure chemical 



Chapter 3 

77 

 

ionization mass spectrometry. Rapid Communications Mass Spectrommetry, 14, 

585-589. 

Hopmans, E.C., Weijers, J.W.H., Schefuß, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, 

S., 2004. A novel proxy for terrestrial organic matter in sediments based on 

branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 

224, 107-116. 

Huguet, C., Kim, J.-H., Sinninghe Damsté, J.S., Schouten, S., 2006. Reconstruction of sea 

surface temperature variations in the Arabian Sea over the last 23 kyr using 

organic proxies (TEX86 and UK’
37), Paleoceanography, 21, PA3003. 

Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L.J., Sinninghe Damsté, J.S., 

Schouten, S., 2007. A study of the TEX86 paleothermometer in the water column 

and sediments of the Santa Barbara Basin, California. Paleoceanography, 22, 

PA3202.  

Huguet, C., Kim, J. H., de Lange, G. J., Sinninghe Damsté J. S., Schouten, S., 2009. Effects 

of long term oxic degradation on the UK'
37, TEX86 and BIT organic proxies. Organic 

Geochemistry, 40(12), 1188-1194. 

Jia, Guodong, Zhang, Jie, Chen, Jianfeng, Peng, Ping’an, Zhang, Chuanlun L., 2012. 

Archaeal tetraether lipids record subsurface water temperature in the South China 

Sea. Organic Geochemistry, 50, 68-77.  

Karner, M. B., DeLong, E.F., Karl, D.M., 2001. Archaeal dominance in the mesopelagic 

zone of the Pacific Ocean. Nature, 409, 507-510. 

Kim, J.H., Schouten, S., Hopmans, E.C., Donner, B., Sinninghe Damsté, J.S., 2008. 

Globalsediment core-top calibration of the TEX86 paleothermometer in the ocean. 

Geochimica et Cosmochimica Acta, 72(4), 1154-1173. 

Kim, J.H., Huguet, C., Zonneveld, K.A.F., Versteegh, G.J.M., Roeder, W., Sinninghe 

Damsté, J. S., Schouten, S., 2009a. An experimental field study to test the stability 

of lipids used for the TEX86 and UK’
37 palaeothermometers, Geochimica et 

Cosmochimica Acta, 73(10), 2888-2898. 



Chapter 3 

78 

 

Kim J.-H., Crosta X., Michel E., Schouten S., Duprat J. Sinninghe Damsté, J.S., 2009b. 

Impact of lateral transport on organic proxies in the Southern Ocean. Quaternary 

Research, 71, 246-250.  

Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., 

Hopmans, E.C., Sinninghe Damsté, J.S., 2010. New indices and calibrations derived 

from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for 

past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta, 

74, 4639-4654. 

Kirst, G.J., Schneider, R.R., Müller, P.J., von Storch, I., Wefer, G., 1999. Late Quaternary 

temperature variability in the Benguela Current system derived from alkenones. 

Quaternary Research, 52, 92-103. 

Lee, K. E., Kim, J.-H., Wilke, I., Helmke, P., Schouten, S., 2008. A study of the alkenones, 

TEX86, and planktonic foraminifera in the Benguela Upwelling System: Implication 

for past sea surface temperature estimates. Geochemistry Geophysics Geosystems, 

9, Q10019, doi:10.1029/2008GC002056. 

Leider, A., Hinrichs, K.-U., Mollenhauer, G., Versteegh, G.J.M., 2010. Core-top calibration 

of the lipid-based UK’
37 and TEX86 temperature proxies on the southern Italian shelf 

(SW Adriatic Sea, Gulf of Taranto). Earth and Planetary Science Letters, 300, 112-

124. 

Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie 

R.M. Pearson, A., 2009. Global cooling during the Eocene-Oligocene climate 

transition. Science, 323, 1187-1190. 

Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., 

Zweng, M.M., Johnson, D.R., 2010. World Ocean Atlas 2009, Volume 1: 

Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 68, U.S. Government Printing 

Office, Washington, D.C., 184 pp. 

Lopes dos Santos, R., Prange, M., Castaneda, I.S., Schefuß, E., Mulitza, S., Schulz, M., 

Niedermeyer, E.A., Sinninghe Damsté, J.S., Schouten, S., 2010. Glacial-interglacial 

variability in Atlantic meridional overturning circulation and thermocline 



Chapter 3 

79 

 

adjustment in the tropical North Atlantic. Earth and Planetary Science Letters, 300, 

407-414.  

Marlowe, I.T., 1984. Lipids as palaeoclimatic indicators, 273 pp., Ph.D thesis, Univ. of 

Bristol, Bristol, UK.  

Meyers, P.A., and Doose., H. 1999. Sources, preservation, and thermal maturity of 

organic matter in Pliocene-Pleistocene organic-carbon-rich sediments of the 

western Mediterranean Sea. In: R. Zahn, M.C. Comas, A. Kraus et al., Proceedings, 

Ocean Drilling Program, Scientific Results, 161. Pages 383-390. 

Milliman, J.D., Farnsworth, K.L., Albertin, C.S., 1999.  Flux and fate of fluvial sediments 

leaving large islands in the East Indies. Journal of Sea Research, 41(1-2), 97-107. 

Mohtadi, M., W. Oppo, D., Lückge, A., DePol-Holz, R., Steinke, S., Groeneveld, J., Hemme, 

N., Hebbeln, D., 2011. Reconstructing the thermal structure of the upper ocean: 

Insights from planktic foraminifera shell chemistry and alkenones in modern 

sediments of the tropical eastern Indian Ocean. Paleoceanography, 26, PA3219. 

Mollenhauer, G., Inthorn, M., Vogt, T., Zabel, M., Sinninghe Damsté, J.S., Eglinton, T.I., 

2007. Aging of marine organic matter during cross-shelf lateral transport in the 

Benguela upwelling system revealed by compound-specific radiocarbon dating. 

Geochemistry Geophysics Geosystems, 8, Q09004, doi:10.1029/2007GC001603 

Murray, A.E., Preston, C.M., Massana, R., Taylor, L. T., Blakis, A., Wu, K., DeLong, E.F., 

1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the 

coastal waters near Anvers Island, Antarctica. Applied and Environmental 

Microbiolgy, 64, 2585-2595. 

Murray, A.E., Blankis, A., Massana, R., Strawzewski, S., Passow, U., Alldredge, A., DeLong, 

E.F., 1999. A time series assessment of planktonic archaeal variability in the Santa 

Barbara Channel. Aquatic Microbial Ecology, 20, 129-145. 

Müller, P.J., Kirst, G., Ruhland, G., von Storch, I., Rosell-Melé, A., 1998. Calibration of the 

alkenone paleotemperature index UK’
37based on core-tops from the eastern South 

Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta, 62, 

1757-1772. 



Chapter 3 

80 

 

Müller, P.J., Fischer, G., 2001. A 4-year sediment trap record of alkenones from the 

filamentous upwelling region off Cape Blanc, NW Africa and a comparison with 

distributions in underlying sediments. Deep-Sea Research I, 48, 1877-1903. 

Ohkouchi, N., Eglinton, T.I., Keigwin, L.D., Hayes, J.M., 2002. Spatial and temporal offsets 

between proxy records in a sediment drift. Science, 298, 1224-1227. 

Pelejero, C., Grimalt, J.O., 1997. The correlation between the UK’
37 index and sea surface 

temperatures in the warm boundary: The South China Sea. Geochimica et 

Cosmochimica Acta, 61, 4789-4797. 

Pitcher, A., Wuchter, C., Siedenberg, K., Schouten, S., Sinninghe Damsté, J.S., 2011.  

Crenarchaeol tracks winter blooms of planktonic, ammonia-oxidizing 

Thaumarchaeota in the coastal North Sea. Limnology and Oceanography, 56, 

2308-2318. 

Popp, B.N., Prahl, F.G., Wallsgrove, R.J., Tanimoto, J., 2006. Seasonal patterns of 

alkenone production in the subtropical oligotrophic North Pacific. 

Paleoceanograpy, 21, PA1004. 

Potemra, J.T., Hautala, S.L., Sprintall J., 2003. Vertical structure of Indonesian 

throughflow in a large-scale model. Deep-Sea Research II, 50, 2143-2161. 

Prahl, F.G., Muehlhausen, L.A., Zahnle, D.L. 1988. Further evaluation of long-chain 

alkenones as indicators of paleoceanographic conditions. Geochimica et 

Cosmochimica Acta, 52, 2303-2310. 

Prahl, F.G., Muehlhausen, L.A., Lyle, M., 1989. An organic geochemical assessment of 

oceanographic conditions at MANOP Site C over the past 26,000 years. 

Paleoceanography, 4(5), 495-510. 

Prahl, F.G., Collier, R.B., Dymond, J., Lyle, M., Sparrow, M. A., 1993. A biomarker 

perspective on prymnesiophyte productivity in the northeast Pacific Ocean. Deep-

Sea Research I, 40, 2061-2076. 

Prahl, F.G, Herbert, T., Brassell, S.C., Ohkouchi, N., Pagani, M., Repeta, D., Rosell-Melé, 

A.,E. Sikes., 2000. Status of alkenone paleothermometer calibration: Report from 

Working Group 3. Geochemistry Geophysics Geosystems, 1, 1034. 



Chapter 3 

81 

 

Prahl, F.G., Pilskaln, C.H., Sparrow, M.A., 2001. Seasonal record for alkenones in 

sedimentary particles from the Gulf of Maine. Deep-Sea Research I, 48, 515-528. 

Prahl, F.G., Popp, B.N., Karl, D.M., Sparrow, M.A., 2005. Ecology and biogeochemistry of 

alkenone production at Station ALOHA. Deep-Sea Research I, 52, 699-719. 

Prahl, F.G., Mix, A.C., Sparrow, M.A., 2006. Alkenone paleothermometry: Biological 

lessons from marine sediment records off western South America. Geochimica et 

Cosmochimica Acta, 70, 101-117. 

Qu, T., Meyers, G., 2005. Seasonal characteristics of circulation in the southeastern 

tropical Indian Ocean. Journal of Physical  Oceanography, 35(2), 255-267. 

Rixen, T., Ittekkot. V., Herunadi, B., Wetzel, P., Maier-Reimer, E., Gaye-Haake, B., 2006. 

ENSO-driven carbon see saw in the Indo-Pacific. Geophysical Research Letters, 33, 

L07606, doi:10.1029/2005GL024965. 

Romero, O.E., Rixen, T., Herunadi, B., 2009. Effects of hydrographic and climate forcing 

on   diatom production and export in the tropical southeastern Indian Ocean. 

Marine Ecology Progress Series, 384, 69-82, doi: 10.3354/meps08013. 

Rommerskirchen, F., Condon T., Mollenhauer, G., Dupont, L., Schefuss, E., 2011. 

Miocence to Pliocene development of surface and subsurface temperature in the 

Benguela Current System. Paleoceanography, 26, PA3216. 

Rosell-Melé, A., Bard, E., Emeis. K.-C., Müller, P. and Schneider, R., Bouloubassi, I., 

Epstein, B., Fahl, K., Fluegge, A., Freeman, K., Goñi, M., Güntner, U., Hartz, D., 

Hellebert, S., Herbert, T., Ikehara, M., Ishiwatari, R., Kawamura, K., Kenig, F., de 

Leeuw, J., Lehman, S., Mejanelle, L., Ohkouchi, N., Pancost, R.D., Pelejero, C., Prahl, 

F., Quinn, J., Rontani, J.-F., Rostek, F., Rullkötter, J., Sachs, J., Blanz, T., Sawada, K., 

Schulz-Bull, D., Sikes, E., Sonzogni, C., Ternois, Y., Versteegh, G., Volkman, J.K., 

Wakeham, S., 2001. Precision of the current methods to measure the alkenone 

proxy UK’
37 and absolute alkenone abundance in sediments: Results of an 

interlaboratory comparison study. Geochemisry Geophysics Geosystems, 2, 

10.1029/2000GC000141.  



Chapter 3 

82 

 

Rühlemann, C., Butzin, M., 2006. Alkenone temperature anomalies in the Brazil-

Malvinas Confluence area casued by lateral advection of suspended particulate 

material. Geochemistry Geophysics Geosystems, 7, 10.1029/2006GC001251. 

Sachs, J.P., Anderson, R.F., 2003. Fidelity of alkenone paleotemperatures in southern 

Cape Basin sediment drifts. Paleoceanography, 18, 1082.  

Saji, N.H., Yamagata, T., 2003. Possible impacts of Indian Ocean Dipole mode events on 

global climate. Climate Research, 25, 151-169. 

Schiebel, R., Zeltner, A., Treppke, U.F., Waniek, J.J., Bollmann, J., Rixen, T., Hemleben, C., 

2004. Distribution of diatoms, coccolithophores and planktic foraminifers along a 

trophic gradient during SW monsoon in the Arabian Sea. Marine 

Micropaleontology, 51, 345-371. 

Schouten, S., Hopmans, E.C., Schefuss, E., Sinninghe Damsté, J.S., 2002. Distributional 

variations in marine crenarchaeotal membrane lipids: a new tool for 

reconstructing ancient sea water temperatures? Earth and Planetary Science 

Letters, 204, 265-274. 

Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2004. The effect of maturity and 

epositional redox conditions on archaeal tetraether lipid palaeothermometry. 

Organic Geochemistry, 35(5), 567-571. 

Schouten, S., Huguet, C., Hopmans, E.C., Kienhuis, M.V.M., Sinninghe Damsté, J.S., 2007.  

Analytical methodology for TEX86 paleothermometry by High-Performance Liquid 

Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry. 

Analytical Chemistry, 79, 2940-2944, doi:10.1021/ac062339v. 

Schouten, S., Pitcher, A., Hopmans, E.C., Villanueva, L., van Bleijswijk. J., Sinninghe 

Damsté, J.S., 2012. Intact polar and core glycerol dibiphytanyl glycerol trtraether 

lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and 

degradation in the water column and consequences for the TEX86. Geochimica et 

Cosmochimica Acta, 98, 228-243. 

Schouten, S., Hopmans, E.C., Rosell-Melé, A., Pearson, A., Adam, P., Bauersachs, T., Bard, 

E., Bernasconi, S.M., Bianchi, T.S., Brocks, J.J., Carlson, L.T., Castañeda, I.S., 



Chapter 3 

83 

 

Derenne, S., Selver, A.D., Dutta, K., Eglinton, T., Fosse, C., Galy, V., Grice, K., 

Hinrichs, K.-U., Huang, Y., Huguet, A., Huguet, C., Hurley, S., Ingalls, A., Jia, G., 

Keely, B., Knappy, C., Kondo, M., Krishnan, S., Lincoln, S., Lipp, J., Mangelsdorf, K., 

Martínez-García, A., Ménot, G., Mets, A., Mollenhauer, G., Ohkouchi, N., Ossebaar, 

J., Pagani, M., Pancost, R.D., Pearson, E.J., Peterse, F., Reichart, G.-J., Schaeffer, P., 

Schmitt, G., Schwark, L., Shah, S.R., Smith, R.W., Smittenberg, R.H., Summons, R.E., 

Takano, Y., Talbot, H.M., Taylor, K.W.R., Tarozo, R., Uchida, M., van Dongen, B.E., 

Van Mooy, B.A.S., Wang, J., Warren, C., Weijers, J.W.H.,  Werne, J.P., Woltering, 

M., Xie, S., Yamamoto, M., Yang, H., Zhang, C.L., Zhang, Y., Zhao, M., Damsté, J.S.S., 

2013a. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, 

and standard mixtures. Geochemistry, Geophysics, Geosystems, 14 (12), 5263-

5285. 

Schouten. S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013b. The organic geochemistry of 

glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54, 19-

61. 

Schlitzer, R., 2012. Ocean Data View, http://odv.awi.de 

Shah, S. R., Mollenhauer, G., Ohkouchi, N., Eglinton, T. I., Pearson, A., 2008. Origins of 

archeal tetraether lipids in sediments: insights from radiocarbon analysis. 

Geochimica et Cosmochimica Acta, 72, 4577-4594. 

Shevenell, A.E., Ingalls, A.E., Domack, E.W., Kelly, C., 2011. Holocene Southern Ocean 

surface temperature variability west of the Antarctic Peninsula. Nature, 470, 250-

254. 

Sicre, M.A., Labeyrie, L., Ezat, U., Duprat, J., Turon, J.L., Schmidt, S., Mazaud, A., Michel, 

E., 2005. Mid-latitude Southern Indian Ocean response to Northern Hemisphere 

Heinrich events.  Earth and Planetary Science Letters, 240, 724-731. 

Sikes, E.L., Volkman, J.K., 1993. Calibration of alkenone unsaturation ratios (UK’
37) for 

paleotemperature estimation in cold polar waters. Geochimica et Cosmochimica 

Acta, 57, 1883-1889. 



Chapter 3 

84 

 

Sikes, E.L., O’Leary T., Nodder, S.D., Volkman J.K., 2005. Alkenone temperature records 

and biomarker flux at the subtropical front on the Chatham Rise, SW Pacific Ocean. 

Deep-Sea Research I, 52, 721-748. 

Smith, R.W., Bianchi, T.S., Li, X., 2012. A re-evaluation of the use of branched GDGTs as 

terrestrial biomarkers: Implications for the BIT Index. Geochimica et 

Cosmochimica Acta, 80 (0), 14-29. 

Sonzogni, C., Bard, E., Rostek, F., Dollfus, D., Rosell-MeleH, A., Eglinton, G., 1997. 

Temperature and salinity effects on alkenone ratios measured in surface 

sediments from the Indian Ocean. Quaternary Research, 47, 344-355. 

Susanto, R.D., Gordon, A.L., Zheng Q., 2001. Upwelling along the coasts of Java and 

Sumatra and its relation to ENSO. Geophysical Research Letters 28, 1599-1602. 

Susanto, R.D., Moore II, T.S., Marra, J., 2006. Ocean color variability in the Indonesian 

Seas during the SeaWiFS era. Geochemistry Geophysics Geosystems, 7, Q05021 

doi:10.1029/2005GC001009. 

Ternois, Y., Sicre, M.-A., Boireau, A., Conte, M.H., Eglinton, G., 1997. Evaluation of long- 

chain alkenones as paleo-temperature indicators in the Mediterranean Sea. Deep-

Sea Research I, 44, 271-286. 

Tomczak, M., Godfrey, J.S., 1994.  Regional oceanography: an introduction. Elsevier, 

New York. 

Turich, C., Freeman K.H., Bruns M.A., Conte M., Jones A.D. Wakeham S.G., 2007. Lipid of 

marine Archaea: Patterns and provenance in the water-column and sediments. 

Geochimica et Cosmochimica Acta, 71, 3272-3291, doi:10.1016/j.gca.2007.04.013. 

Verschuren, D., Sinninghe Damsté, J.S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M., 

Haug, G.H., 2009. Half-precessional dynamics of monsoon rainfall near the East 

African Equator. Nature, 462, 637-641. 

Versteegh, G.J.M., Riegman, R., de Leeuw, J.W., Jansen, J.H.F., 2001. UK’
37 values for 

Isochrysis galbana as a function of culture temperature, light intensity and 

nutrient concentrations. Organic Geochemistry, 32, 785-794. 



Chapter 3 

85 

 

Volkman, J.K., Eglinton, G., Corner, E.D.S., Forsberg, T.E.V., 1980. Long-chain alkenes and 

alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry, 19, 

2619-2622. 

Volkman, J.K., Barrett S.M., Blackburn S.I., Sikes, E.L., 1995. Alkenones in Gephyrocapsa 

oceanica: Implications for studies of paleoclimate. Geochimica et Cosmochimica 

Acta, 59, 513-520. 

Wakeham, S.G., Peterson, M.L., Hedges, J.I., Lee, C., 2002. Lipid biomarker fluxes in the   

Arabian Sea: With a comparison to the equatorial Pacific Ocean. Deep-Sea 

Research II, 49, 2265-2301. 

Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T., 

1998. Monsoons: Processes, predictability, and the prospects for prediction. 

Journal of Geophysical Research: Oceans (1978-2012), 103(C7), 14451-14510. 

Weijers, J.W.H., Schouten, S., Spaargaren, O.C., Sinninghe Damsté, J.S., 2006. 

Occurrence and distribution of tetraether membrane lipids in soil: Implications for 

the use of the TEX86 proxy and the BIT indeed. Organic Geochemistry, 37, 1680-

1693. 

Wuchter, C., Schouten, S., Wakeham, S.G., Sinninghe Damsté, J.S., 2005. Temporal and 

spatial variation in tetraether membrane lipids of marine Crenarchaeota in 

particulate organic matter: Implications for TEX86 paleothermometry. 

Paleoceanography, 20, PA3013. 

Wuchter, C., Schouten, S., Wakeham, S.G., Sinninghe Damsté, J.S., 2006. Archaeal 

tetraether membrane lipid fluxes in the northeastern Pacific and the Arabian Sea: 

implications for TEX86 paleothermometry. Paleoceanography, 21, PA4208. 

Wyrtki, K., 1961. Physical oceanography of Southeast Asian waters, NAGA Rep.2, Scripps 

Institution of Oceanography, University of California, San Diego, 195pp. 

Yamamoto, M., Shiraiwa, Y., Inouye, I., 2000.  Physiological responses of lipids in 

Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status 

and their implications for alkenone paleothermometry. Organic Geochemistry, 31, 

799-811. 



Chapter 3 

86 

 

You, Y., Tomczak, M., 1993. Thermocline circulation and ventilation in the Indian Ocean 

derived from water mass analysis. Deep-Sea Research I, 40, 13-56. 

Zhu, C., Weijers, J.W.H., Wagner, T., Pan, J.-M., Chen, J.-F., Pancost, R.D., 2011. Sources 

and distributions of tetraether lipids in surface sediments across a large river-

dominated continental margin. Organic Geochemistry, 42 (4), 376-386. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4  

87 
 

 

 

Chapter 4 Concentrations and abundance ratios of long-chain 
alkenones and glycerol dialkyl glycerol tetraethers in sinking 

particles south of Java 

 

Wenwen Chen1 , Mahyar Mohtadi2 , Enno Schefuß2 , Gesine Mollenhauer1,2,3* 

 

1 Department of Geosciences, University of Bremen, Bremen, Germany 

2 MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, 

Germany 

3 Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven Germany 

*corresponding author: gesine.mollenhauer@awi.de 

 

Deep Sea Research I, in press 

 

 

 

 

 

 

 



Chapter 4  

88 
 

4.1. Abstract 

In this study, we obtained concentrations and abundance ratios of long-chain 

alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in a one-year time-series of 

sinking particles collected with a sediment trap moored from December 2001 to 

November 2002 at 2200m water depth south of Java in the eastern Indian Ocean. We 

investigate the seasonality of alkenone and GDGT fluxes as well as the potential habitat 

depth of the Thaumarchaeota producing the GDGTs entrained in sinking particles. The 

alkenone flux shows a pronounced seasonality and ranges from 0.3 μg m-2 d-1 to 8.6 μg 

m-2 d-1. The highest alkenone flux is observed in late September during the Southeast 

monsoon, coincident with high total organic carbon fluxes as well as high net primary 

productivity. Flux-weighted mean temperature for the high flux period using the 

alkenone-based sea-surface temperature (SST) index UK’
37 is 26.8 °C, which is similar to 

satellite-derived Southeast (SE) monsoon SST (26.4 °C). The GDGT flux displays a weaker 

seasonality than that of the alkenones. It is elevated during the SE monsoon period 

compared to the Northwest (NW) monsoon and intermonsoon periods (approximately 

2.5 times), which is probably related to seasonal variation of the abundance of 

Thaumarchaeota, or to enhanced export of GDGTs by aggregation with sinking 

phytoplankton detritus. Flux-weighted mean temperature inferred from the GDGT-

based TEXH
86 index is 26.2 °C, which is 1.8  °C lower than mean annual (ma) SST but 

similar to SE monsoon SST. As the time series of TEXH
86 temperature estimates, however, 

does not record strong seasonal amplitude, we infer that TEXH
86 reflects ma upper 

thermocline temperature at approximately 50 m water depth. 

4.2. Introduction 

Two biomarker-based temperature proxies, UK’
37 and TEX86, are commonly used in 

paleoclimate studies (e.g., Huguet et al., 2006; Rommerskirchen et al., 2011; Wang et al., 

2013). UK’
37 quantifies the relative abundance of di- and tri-unsaturated C37 alkenones, 

which are produced by certain prymnesiophytes, including coccolithophorids Emiliania 

huxleyi and Gephyrocapsa oceanica (Marlowe, 1984; Prahl and Wakeham, 1987; 



Chapter 4  

89 
 

Volkman et al., 1980). TEX86 is another organic geochemical proxy suggested to reflect 

sea surface temperature (SST), which is based on glycerol dialkyl glycerol tetreathers 

(GDGTs) and defined as the abundance ratio of specific types of GDGTs with variable 

numbers of cyclopentane rings (Schouten et al., 2002). These compounds are 

synthesized as membrane lipids by the ubiquitous marine Thaumarchaeota (formerly 

named Crenarchaeota; Brochier-Armanet et al., 2008; Schouten et al., 2002; Sinninghe 

Damsté et al., 2002). Although core-top calibrations established robust correlations 

between UK’
37 and TEX86 with mean annual SST (ma SST) (e.g., Conte et al., 1998, 2006; 

Kim et al., 2008, 2010; Müller et al., 1998; Schouten et al., 2002), some studies have 

shown that deviations of both proxy temperature estimates from ma SST can be 

attributed to seasonal production and/or a subsurface depth habitat of the source 

organisms (e.g., Huguet et al., 2007; Jia et al., 2012; Kim et al., 2012; Lee et al., 2008; 

Leider et al., 2010; Prahl et al., 2005; Rommerskirchen et al., 2011; Seki et al., 2007; 

Wuchter et al., 2006).  

Seasonal production and flux of biomarkers has the potential to bias a proxy signal 

towards the seasonal of maximum production. It is debated in the literature whether or 

not a seasonally variable flux of alkenones results in a seasonal bias of the UK’
37 signal in 

sediments, or if preserved alkenones reflect mean annual conditions (e.g., Conte et al., 

2006, Leduc et al., 2010, Schneider et al., 2010). For GDGTs, the ongoing debate relates 

not only to the season of export but also to the production depth of the lipids 

constituting the sedimentary TEX86 record (e.g., Herfort et al., 2006; Lopes dos Santos et 

al., 2010, Kim et al., 2012). Thaumarchaeota are known to thrive throughout the water 

column and are reported to occur at maximum abundance at a depth of 100-200 m (e.g., 

Tolar et al., 2013). Seasonality and production depth effects of alkenones and GDGTs 

likely depend on the different oceanic settings and thus, it is necessary to investigate 

their respective response in individual regions for a better interpretation of local 

sedimentary records. 
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 Sediment trap studies are an excellent tool to shed light on the seasonality and 

depth of alkenone and GDGT production exported to the sediment. Rosell-Melé and 

Prahl (2013) recently compiled published sediment trap time series data for alkenones 

from 34 sampling locations and found that the seasonality of alkenone flux varies 

strongly between sites and depends on the local oceanographic settings. The seasonal 

patterns of export production are complex, resulting from the interplay of seasonality in 

production and particle flux. No clear biogeographic or latitudinal pattern in alkenone 

flux seasonality could be deduced from the existing data set. The seasonality is not 

necessarily coupled to bulk export primary productivity and varies markedly across the 

oceans. Moreover, UK’
37 of flux-weighted averages in sediment traps is not always 

biased by seasonality but instead resembles global trends in surface sediments. Notably, 

approximately ninety percent of thesites complied by Rosell-Melé and Prahl (2013) are 

located in the northern hemisphere. Only two studies are from the southern 

hemisphere and only one study was performed in the Indian Ocean. According to this 

synthesis, our record is the second sediment trap record for alkenone from the Indian 

Ocean. 

The ecology of GDGT producers, i.e. the seasonality of their production and/or 

export, and the depth of their habitat, is still poorly constrained. Thaumarchaeota occur 

throughout the year and the abundance of Thaumarchaeota varies seasonally (Schouten 

et al., 2013 and reference therein). However, there are thus far only seven seasonal 

TEX86 records from sediment traps available. To date, published records exist from the 

northeastern Pacific and the Arabian Sea (Wuchter et al., 2006), the Santa Barbara Basin 

(Huguet et al., 2007), the Mozambique Channel (Fallet et al., 2011), the western North 

Pacific (Yamamoto et al., 2012), the Gulf of California (McClymont et al., 2012), the 

Cariaco Basin (Turich et al., 2013) and Cape Blanc, Mauritania (Mollenhaueret al., 2015). 

In several studies it was observed that TEX86 temperature estimates reflect the 

temperature of specific seasons and were explained by either seasonality in 

Thamarchaeota growth or seasonal variation in export of GDGTs (e.g., Mollenhauer et 

al., 2015 Turich et al., 2013; Yamamoto et al., 2012). On the other hand, some 
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sediment trap records suggest that the TEX86-derived temperatures reflect the 

temperature of subsurface water (McClymont et al., 2012 Wuchter et al., 2006). This 

conclusion was also reached by some recent studies investigating suspended matter 

samples (Nakanishi et al., 2012) and shallow water surface sediments (Xing et al., 2015). 

In contrast, TEX86 temperature variations in the sediment trap from the Santa Barbara 

Basin was not coupled to changes in SST or deep-water temperatures, which was 

attributed to a complex contribution of GDGTs produced at different depths and 

hydrologic conditions (Huguet et al., 2007).  

So far, there are only four published sediment trap records for both indices 

including the interpretation of difference between the two proxies (Fallet et al., 2011; 

McClymont et al., 2012; Mollenhauer et al., 2015; Turich et al., 2013). The observations 

made in these studies differ between the regions. While as expected alkenones in most 

of these studies are in close agreement with satellite SST, TEX86-based temperature 

estimates are more similar to subsurface temperatures or display reduced seasonal 

temperature amplitudes. 

In this study, we present a one-year time-series record of alkenones and GDGTs 

from samples obtained with a sediment trap deployed in the eastern Indian Ocean off 

Java. The aim of this study is to investigate the seasonality of production and export of 

biomarkers, and to test the hypothesis of sub-surface production of GDGTs in the 

upwelling environment off southern Java. 

4.3. Study area 

The Australian-Indonesian Monsoon (AIM), displaying contrasting seasonal 

features, is the dominating climate feature in the Eastern Indian Ocean (Fig. 4.1.), 

influencing wind and precipitation patterns and, consequently, surface ocean 

hydrography and currents. During the NW monsoon season (January-March), northwest 

winds from the Asian continent cause a rainy season with increased precipitation over 

Indonesia resulting in maximum fluvial discharge, and in low chlorophyll-a concentration 
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(and hence, productivity) in the adjacent ocean (Jennerjahn et al., 2004). The SE 

monsoon season (July-September) is associated with easterlies from Australia that carry 

warm and dry air over this region. In June, the easterly alongshore wind starts to 

intensify causing upwelling along the southern coast of Java and the Lesser Sunda 

Islands (LSI) leading to low SST (Susantoet al., 2001). Upwelling of nutrient-rich, cold 

subsurface waters results in high primary production and high particle fluxes (Rixen et 

al., 2006).  

The hydrography in the study area is additionally affected by the El Niño-Southern 

Oscillation (ENSO) and the Indian Ocean Dipole (IOD) phenomena on inter-annual 

timescales. During the El Niño periods and positive IOD events, enhanced upwelling with 

higher primary productivity and decreased SST up to 4 °C relative to the ma are 

observed. During the strong El Niño periods, such as 1997/98, anomalous winds induced 

a relatively stronger and by up to three months longer upwelling period along the coast 

of Java with enhanced productivity (Susanto et al., 2001; Susanto and Marra, 2005). 

Conversely, the upwelling intensity is reduced during La Niña periods and negative IOD 

events. 

The variable wind regime of the Eastern Indian Ocean also influences the ocean 

currents of the region. The South Java Current (SJC), originating from the Equatorial 

Counter Current (ECC) (Fig. 4.1.; Tomczak and Godfrey, 1994 Wyrtki, 1973), plays an 

important role in distributing freshwater into and out of the southeast Indian Ocean. It 

is a south-eastward flow with strong semi-annual and intraseasonal variability near the 

coast of Sumatra and Java. The SJC transports warm and fresh waters from the high 

rainfall, warm pool region into the eastern equatorial Indian Ocean (Sprintall et al., 2010 

and references therein). It meets with the Leeuwin Current (LC) at the southeastern part 

of the Indonesian Archipelago, and feeds into the South Equatorial Current (SEC), the 

steady branch of the regional circulation, which flows westward between about 10° and 

20° S (Donguy and Meyers, 1995 Wyrtki, 1961). In the NW monsoon season, the SEC is 

at its southernmost position, and the SJC flows eastward along the coast of Java. During 
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the SE monsoon season, the flow of the SJC reverses, flows westward along the coast of 

Java and feeds into the SEC without contribution of the LC (Fig. 4.1.).  

 

 

 

 

 

 

Fig. 4.1. a) Map of the study region showing the surface currents (solid arrows) and subsurface 

currents (dashed arrows). The black triangle shows the position of the sediment trap. Ocean 

currents are denoted as: ECC: Equatorial Counter Current; ITF: Indonesian Throughflow; LC: 

Leeuwin Current; SEC: South Equatorial Current; SJC: South Java Current. Double arrows of SJC 

indicate the change of direction of SJC during the NW (eastward) and SE monsoon 

(northwestward), respectively. b) the depth profiles of temperature in differnt seasons at the 

Jam 2 site  (data extracted from World Ocean Atlas 2005 (Locarnini et al., 2006).  

The Indonesian Throughflow (ITF; Fig. 4.1.), the only low-latitude inter-ocean 

pathway from the Pacific to the Indian Ocean, plays an important role in global 

thermohaline circulation and directly impacts both the regional circulation and thermal 

structure of the upper water column at our study site (Qu and Meyers, 2005; Wijffels, 

2001). The ITF is composed mainly of North Pacific Intermediate Water flowing through 

the Makassar Strait (Gordon and Fine, 1996; Fig. 4.1.). Some of the Makassar 

Throughflow directly enters into the Indian Ocean via the Lombok Strait, while most of 

the throughflow turns eastward to enter the Banda Sea. Within the Banda Sea, these 

water masses are modified by mixing with South Pacific Intermediate Water entering 

the Banda Sea, upwelling and air-sea fluxes before flowing into the Indian Ocean (Ffield 

and Gordon, 1992; Koch-Larrouy et al., 2008; Sprintall et al., 2003). From the Banda Sea, 
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the ITF exits to the eastern Indian Ocean through the Ombai Strait and Timor passages. 

During the SE monsoon season, the sea level difference between Java and the western 

Pacific is largest with maximum strength of the ITF, which facilitates the transfer of 

cooler, fresher thermocline waters of the ITF into the Indian Ocean (Gordon, 2005; 

Tomczak and Godfrey, 1994).  

4.4. Material and Methods 

4.4.1 Sediment trap mooring 

The sediment trap JAM1-2 (8°17.5S, 108°02.0E) was deployed off South Java 

between November 2000 and November 2002 at a water depth of approximately 2200 

m. The sediment trap was located about 800 m above the seafloor. Details of the 

sediment trap mooring are described in Mohtadi et al. (2009). We analyzed samples 

from JAM2 with a sampling interval of 16 days between December 2001 and November 

2002. 

4.4.2 Lipid extraction and analysis 

Long-chain alkenones and GDGTs were extracted from freeze-dried and 

homogenized sediment trap material (50-330 mg). Total lipids were extracted with, 

successively, methanol (MeOH), MeOH:dichloromethane (DCM) 1:1 (v:v) and DCM (25 

mL each, each for 5min) with an ultrasonic probe. Before extraction known amounts of 

C19 ketone and C46 GDGT were added as internal standards. After each extraction, the 

suspensions were centrifuged and the supernatants combined. The combined extracts 

were washed with 50 mL deionized water to remove salts, dried over Na2SO4, and 

concentrated using a rotary evaporator. The lipid extract was saponified at 80 °C for 2 h 

with 300 μL of 0.1M KOH in 9:1 MeOH/H2O. After saponification, each sample was 

separated into an apolar, a ketone and a polar fraction via silica gel column 

chromatography using hexane, a mixture of DCM and hexane (2:1, v:v) and MeOH, 

respectively.  
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Alkenone analyses for UK’
37 were performed on the kentone fraction using an 

HP5890 series gas chromatograph (GC) equipped with a flame ionization detector. 

Details of alkenone analyses have been described in Chen et al. (2014).  

UK’
37 was calculated as: UK’

37 = (C37:2)/(C37:2+C37:3). UK’
37 values were converted to 

temperature estimates by applying the calibration of Conte et al. (2006):  

T= -0.957 + 54.293 X (UK’
37) - 52.894 X (UK’

37)2 + 28.321 X (UK’
37)3 

The compound concentrations (C37:2 and C37:3) were determined by relating 

chromatogram peak areas to the concentration of the internal standard. The error in 

quantification was less than 10%. Based on duplicate analysis, the analytical precision of 

determinations for alkenone unsaturation was better than 0.03 UK’
37 units (0.62 °C). 

Polar fractions containing GDGTs were dissolved in a 99:1 (v:v) hexane: 

isopropanol solvent mixture, and filtered using a 0.45 μm PTFE filter, before analyses 

using an Agilent 1200 series high performance liquid chromatography system with an 

Agilent 6210 mass spectrometer (HPLC-MS). Aliquots of 20μL were injected onto a 

Prevail Cyano column (2.1 x 150mm, 3 μm) maintained at 30 °C. GDGTs were eluted 

using the following gradient: 99:1 hexane: isopropanol (v:v) for 5 min followed by a 

linear gradient to 1.8% isopropanol for 45 min. Flow rate was 0.2 ml/min.  

A surface sediment study from the eastern Indian Ocean confirmed that as 

recommended by Kim et al. (2010) the TEXH
86 corresponds best to near-surface water 

temperatures in our study area (Chen et al., 2014). It is calculated from the respective 

peak areas according to: 

 

where the numbers 1-4 indicate the number of cyclopentane rings in the isoprenoid 

molecules, and GDGT-4’ is the regio-isomer of crenarchaeol. The TEXH
86 values can be 
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converted to temperature estimates according to the following relationship (Kim et al., 

2010).  

SST = 68.4 x TEXH
86+ 38.6 

Replicate analysis of samples determined that the average analytical 

reproducibility of this procedure is 0.01 TEX86 units or 0.41 °C. Concentrations of GDGTs 

were calculated semi-quantitatively relative to the internal standard. It has to be noted, 

though, that no correction for differences in response factors of the individual GDGTs 

has been made due to the unavailability of a pure C86 GDGT standard at the time of the 

analyses.  

The BIT index, a proxy for soil versus marine organic matter input to sediments 

(Hopmans et al., 2004), is calculated using the peak areas of branched GDGTs with 4 

(branched GDGT-I), 5 (branched GDGT-II) and 6 (branched GDGT-III) methyl moieties, 

respectively and GDGT-4 (crenarchaeol), according to the following formula (Hopmans 

et al., 2004): 

 

4.5. Results 

4.5.1. Fluxes 

Alkenone and GDGT concentrations, fluxes, indices as well as temperature 

estimates derived from UK’
37 and TEXH

86 for JAM2 are listed in Table 4.1. Concentration 

and flux data (both relative to dry weight and relative to TOC) are presented for total 

C37-alkenones and isoprenoid GDGTs, including GDGT-0, GDGT-1, GDGT-2, GDGT-3, 

crenarchaeol and crenarchaeol regio-isomer (Table 4.1.). 
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The average of absolute alkenone concentrations is 6 μg g-1sediment, ranging from 

1.2 μg g-1 to 22.7 μg g-1 sediment (Table 4.1.). However, in most samples the tri- 

unsaturated alkenone (C37:3) could not be quantified reliably due to small peak areas. 

Thus, for these samples, total alkenone concentration and flux data are expressed as 

concentration and flux of di-unsaturated alkenone (C37:2) (Table 4.1.). The bulk 

concentrations of biomarkers could be affected by high lithogenic content in this area. 

To compensate for this effect, we calculated the concentrations relative to TOC content 

determined by Rixen et al. (2006, Table 4.1.). The total alkenone concentrations vary 

between 34 μg per g C and 427 μg per g C, with an average of 134 μg per g C (Fig. 4.2b.). 

The alkenone flux shows a strong seasonality with an average flux of 2 μg m-2 day-1, 

ranging from 0.3 μg m-2 day-1 to 8.6 μg m-2 day-1 (Fig. 4.2b.). The highest alkenone flux 

(8.6 μg m-2 day-1) occurred in late September during the SE monsoon. A secondary 

maximum in alkenone flux (~2 μg m-2 day-1) is observed in March at the end of the NW 

monsoon. 
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Fig. 4.2. a) local SST from AVHRR at the trap site (black) and temperature estimates from UK’
37 

(black squares) and TEXH
86 (grey dots). Black and grey dashed lines indicate flux-weighted 

average temperatures for UK’
37 from the high-flux period and annual flux-weighted average 

temperatures for TEXH
86, respectively; b) alkenone concentration relative to TOC (μg/g C, black 

line) and alkenone flux (white bars); c) GDGT concentration relative to TOC (μg/g C, grey line) 
and GDGTs flux (grey bars); d) satellite-based net primary production (NPP) estimates at the trap 
site (http://web.science.oregonstate.edu/ocean.productivity; blackdashed line). Flux of total 
mass, lithogenic, opal, organic carbon and carbonate in mg m-2 day-1 are taken from Rixen et 
al.2006.  
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The average concentration of isoprenoidal GDGTs is 10 μg g-1 sediment and is 

dominated by crenarchaeol (GDGT-4) accounting for 52 - 58% and GDGT-0 representing 

19 - 24% (Table 4.1.). The total GDGT concentration ranges from 107 μg per g C to 374 

μg per g C (Fig. 4.2c.). The GDGT flux shows a weaker seasonality than that of the 

alkenones, varying between 2 μg m-2 day-1 and 6 μg m-2 day-1 (Fig. 4.2c.). 

Branched GDGTs have also been analyzed in this study. The total concentration 

and flux of branched GDGTs ranges from 63 μg per g C to 207 μg per g C and from 0.9 μg 

m-2 day-1 and 3.5 μg m-2 day-1, respectively (not shown). The BIT index is very low (below 

0.08) throughout the entire sampling period. 

4.5.2. Biomarker based temperatures 

Over the period from December 2001-November 2002, extremely low C37:3 

concentrations were observed in the samples collected during the NW monsoon and 

intermonsoon season. As a consequence we observe a large scatter in UK’
37 values when 

the amounts of C37:3 were below a threshold value of 2000 units (Fig. 4.3.). Therefore, no 

UK’
37-SST estimates could be obtained for the samples from the low-flux period, as the 

low alkenone concentrations did not permit a reliable quantification of the triple 

unsaturated C37 alkenone.  

 

 

 

 

 

 

Fig. 4.3. Cross plot of UK’
37 value and peak areas of C37:3 for sediment trap samples, which shows 

larger scatter with lower peak areas.   
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We thus only report alkenone based temperature estimates from the season 

where alkenone abundances allowed a reliable determination of C37:3 concentration, i.e., 

the SE monsoon season. UK’
37-based temperatures from the SE monsoon season vary 

between 26.2 °C and 27.5 °C (Table 1, Fig. 4.2a.). The analytical error based on duplicate 

measurements of these samples range from 0.5 to 1.1 °C (av. 0.8 °C; Table 4.1.). The 

flux-weighted mean for the high flux period with reliable UK’
37-based estimates is 26.7 °C, 

which is close to the average SE monsoon satellite-based SST of 26.4 °C as determined 

by the Advanced Very High Resolution Radiometer (AVHRR at 8°17.5S, 108°02.0E, data 

obtained from http://www.ncdc.noaa.gov/oa/ncdc.html).  

The TEXH
86-based temperature estimates are cooler than satellite-based 

temperatures throughout the entire year except during the SE monsoon (September-

November). The TEXH
86 temperature estimates range from 25.2 °C in August to 27.7 °C 

in March. The annual flux-weighted averageTEXH
86 temperature estimate is 26.2 °C, only 

slightly cooler than UK’
37-based temperatures (Table 4.1., Fig. 4.2a.). The flux-weighted 

average TEXH
86 temperature estimate of 26.2 °C is also cooler than satellite-based ma 

SST of 28 °C.  

4.6. Discussion 

4.6.1. Alkenones 

4.6.1.1. Fluxes 

Total alkenone flux off Java as recorded in sediment trap JAM 2 is not uniform 

throughout the year (Fig. 4.2.). Instead, we observe a pronounced seasonality during the 

sampling period with an elevated flux from August to October during the SE monsoon 

upwelling season. The higher total alkenone flux is associated with maxima in total flux, 

fluxes of TOC, carbonate, lithogenic particles and opal (Rixen et al., 2006) as well as net 

primary productivity (NPP, Mohtadi et al., 2009). In the study area, prymnesiophyte 

production is dominated by E. huxleyi and G. oceanica and occurs throughout the entire 

year with maximum abundance during the upwelling season (Andruleit and Rogalla, 
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2002; Andruleit, 2007). Romero et al. (2009) observed in the same trap that maximum 

diatom flux occurred early in the SE monsoon upwelling season. Upwelling of cold and 

nutrient-rich water is the main factor promoting phytoplankton growth. Similar 

alkenone flux maxima associated with upwelling have also been observed in trap studies 

from other upwelling areas (Müller and Fischer, 2001; Turich et al., 2013). 

Several published sediment trap studies reported that the seasonal variation in 

alkenone flux tracks seasonal variations in alkenone production (Rosell-Melé and Prahl, 

2013 and reference therein). Although the alkenone flux is paralleled with the mass flux, 

it does not mean that the highest alkenone production must occur during the period of 

highest primary productivity. A series of studies show that the highest alkenone flux is 

associated not only with their highest concentration in the particles but can be due to 

elevated total particle flux (e.g., Rosell-Melé and Prahl, 2013). Notably, the flux of 

alkenones is strongly correlated with the flux of carbonate (r2=0.71), TOC (r2=0.62) and 

opal (r2=0.77) (Fig. 4.4a, b, c.). In this respect, our findings are in agreement with some 

sediment trap time series reporting that alkenone export varies seasonally, for instance, 

in the Gulf of Maine (Prahl et al., 2001), in the northwestern North Pacific Ocean 

(Harada et al., 2006) and off Cape Blanc, Mauritania (Mollenhauer et al., 2015). 

A secondary peak of alkenone flux in March during the NW monsoon occurs 

coevally with enhanced fluvial discharge during the rainy season. The secondary peak of 

alkenone flux is in accordance with elevated fluxes of lithogenic and biogenic 

components (opal, TOC and carbonate) (Fig. 4.2.). Romero et al. (2009) observed an 

elevated flux of total diatoms in the same sediment trap during the early NW monsoon 

season possibly due to riverine nutrient input. Diatom flux providing the bulk of opal is 

enhanced in late March/early April (Fig. 4.2e.), coeval with the second maximum in 

alkenone flux. As mentioned above, alkenone flux co-varies with the lithogenic flux, 

which moderately increases from late February/early March to late March/early April 

(Fig. 4.2e.). However, a better correlation exists between the fluxes of alkenones and 

carbonate, and alkenones and TOC, than alkenones and lithogenic particles (r2=0.11, Fig. 
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4.4d.). The weaker correlation with lithogenic particles indicates that the lithogenic 

“ballasting effect” in this area likely is not the dominant control on the export of 

alkenones. Thus, the secondary peak of alkenones could be related to coccolithophorid 

blooms triggered by increased riverine nutrient discharge following the rainy season in 

Java (Hendiarti et al., 2004). 

 

 

 

 

 

 

 

 

Fig. 4.4. Correlations of carbonate (a, e) flux, TOC flux(b, f), opal flux (c, g) and lithogenic flux (d, 

h) with lipids fluxes for trap Jam 2 and coefficients of determination.  

Overall, the observation of a strong coupling between alkenone fluxes and fluxes 

of carbonate, opal and lithogenic particles suggests a mechanistic link between them. 

The export of alkenones is thus likely controlled by the formation of sinking particles, i.e., 

fecal pellets or aggregates, during the high flux season and does not necessarily mirror 

the seasonality of alkenone production. A comparison of UK’
37 temperature estimates 

with observed SST at the trap site might help understand the seasonality of production.  

4.6.1.2. Alkenone temperature estimates 

UK’
37 temperature estimates from the trap samples differ from satellite-derived 

SST estimates. The satellite-derived SST estimates show a large seasonal variability with 
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temperature minima near 25 °C during the SE monsoon, while the UK’
37 temperature 

estimates are rather constant at 26.8 °C (Fig. 4.2.). Before making any interpretations 

from SST records, it is important to consider the reliability of the temperature estimates 

based on proxy data. Rosell-Melé et al. (1995) reported that the value of the UK’
37 index 

could be affected by alkenone concentration, especially at extremely low C37 tri-

unsaturated alkenone concentration. At our trap site, the concentrations of C37:3 

alkenone for the low-flux period are extremely low (below 10 |��������#
{��������}������

therefore impossible to detect, which is likely due to the prevalent surface waters 

temperature of more than 26-28 °C (Pelejero and Calvo, 2003).  

As discussed above, we could not obtain a full annual cycle of UK’
37 temperature 

estimates. Instead, we have data for a short time period during the high flux season. The 

flux-weighted mean UK’
37-SST for the high-flux period is 26.7 °C, which is close to the 

satellite-derived SE SST of 26.4 °C. A hypothetical weighted mean value of 26.7 °C is also 

calculated from the observed alkenone flux (Table 1) assuming that during each time 

period, the UK'
37-based temperature estimate is equal to the satellite observed SST. 

Similarly, the alkenone-based temperature estimates in two core-tops GeoB10044 and 

GeoB10047 located 112 km and 158 km away from the trap site, respectively, are 

26.9 °C (Chen et al., 2014). We thus infer that the total annual flux and the signals that 

will be recorded in the sediments are dominated by the SE monsoon season, with 

negligible proportions contributed during the rest of the year. 

The UK’
37 temperature estimates from the individual sediment trap cup samples 

collected during the high-flux period in the SE monsoon season do not, however, reflect 

the seasonal evolution of SST. Instead, the UK’
37 temperature estimates are up to 2 °C 

higher than satellite-derived SST during the SE monsoon period in 2002.  

Several potential factors may account for alkenone-based temperature estimates 

differing from satellite-derived SST estimates, including delayed export of particles, or 

lateral sediment transport by currents. In the following evaluation, we will discuss which 
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process most likely caused the observed temperature deviation of the UK’
37 temperature 

from the satellite-derived SST. 

Those samples that contained sufficient alkenones to allow for a reliable 

calculation of UK’
37 were collected in the middle and at the end of upwelling period. 

However, the alkenone SST estimates fail to reproduce the observed minimum in SST 

but rather record a value similar to the average of the entire upwelling season, or to the 

SST observed at the onset and end of the upwelling season. It is known that alkenone 

producers may be outcompeted, e.g., by diatoms during the strong upwelling of silicate-

rich deep water (Mitchell-Innes and Winter, 1987). A further study by Schiebel et al. 

(2004) reported that the coccolithophore number increased towards the more nutrient 

depleted areas across the upwelling area off the Oman coast to the central Arabian Sea. 

The coccolithophores are adapted to low turbulence and stratified surface water as well 

as being limited by thresholds of nitrate and phosphate (Schiebel et al., 2004). We 

observe that highest alkenone fluxes occur slightly after the highest total fluxes and the 

period of strongest upwelling (Fig. 4.2.), suggesting that the peak in alkenone 

production possibly occurs at the end of the upwelling season off Java. This is in 

agreement with previous studies suggesting that the alkenone production during the 

peak upwelling is reduced (e.g., Mollenhauer et al., 2015; Silva et al., 2008).  

The upwelling off Java generally starts in June and reaches a maximum in July-

August (Susanto et al., 2001). However, during the trap period, the weak La Niña 

conditions turned into weak El Niño conditions in early 2002, which cause a 

strengthening of the upwelling and an extension of the upwelling period until November 

(Susanto et al., 2001). If the peak in alkenone production occurs at the end of the 

upwelling season, the question is where the slightly warm alkenone temperature signal 

during the peak upwelling period derives from. One scenario that could lead to a warm 

bias in the reconstructed temperature is increased export of alkenones during the 

period of highest primary production due to upwelling. Those alkenones could have 

been produced during the early upwelling with lower nutrient conditions. Alkenone 
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bearing particles can remain suspended in surface waters for weeks or even months 

until they sink down to the seabed via scavenging by marine aggregates or within faecal 

pellets (e.g., Iversen and Ploug, 2010; Moran and Smith, 2003; Schmidt et al., 2002). The 

increased particle abundances of phytoplankton during the peak upwelling could lead to 

a more effective scavenging of alkenones from the surface waters, resulting in a delayed 

export. The relatively higher abundances of alkenones produced during the early 

upwelling period would effectively overprint the signal produced during the peak 

upwelling period when coccolithophores are not competitive and thus less abundant. 

Additionally, the flux-weighted temperature estimates of the available samples is 

26.7 °C, which corresponds to temperatures observed at the onset and end of the 

upwelling season, and at the same time is similar to satellite-derived SE monsoon SST 

(26.4 °C). Taken together, the alkenone ratio indicates the temperature at the onset and 

end of upwelling season, but is still pretty close to the average temperature over the 

entire upwelling season.  

The apparent temperature difference between satellite-derived SST and alkenone-

based temperature estimates could also derive from supply of laterally transported 

alkenones from remote regions. Previous publications suggest that anomalously cold or 

warm alkenone temperatures can be caused by lateral particle and sediment transport 

in some settings (Benthien and Müller 2000; Müller and Fischer, 2003; Sicre et al., 2005). 

The offsets between UK’
37 temperature estimates and satellite-derived SST depend on 

the region where advected particles derive from. In our study region, the Western 

Pacific Warm Pool (WPWP) and Indonesian seas are considered as the predominant 

water source of the eastern Indian Ocean and are thus the likely source region for 

potentially advected material via the ITF and/or the SJC. The average surface water 

temperature of the WPWP is over 28 °C, slightly warmer than the average SST of our 

study area, and the productivity is lower. The average of our SST-UK’
37 estimates is 

26.9 °C. In addition, the main pathways of the ITF enters into the Indian Ocean are 

characterized by a high average SST (ca. 27.5  °C, Sprintall et al., 2003). We performed a 

simple mass balance calculation for the time interval from late September 2002 to mid 
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October 2002 (Jam-2, D19; Table 1) assuming local SST of ca. 25 °C  and corresponding 

UK'
37 of 0.875, and a UK'

37 of 1 for advected particles. In order to explain the observed 

UK'
37 of 0.94 by mixing of these two pools alone, the lateral contribution would amount 

to 48% of the total flux. If advected alkenone inputs were a dominant factor affecting 

the UK’
37-based SST estimates, a source region would be required with high productivity 

and a SST similar to or higher than our alkenone temperature estimates. Since 

productivity in the source area is rather low compared to the upwelling region we 

sampled in, we infer that the lateral advection is unlikely to be the main cause for the 

observed temperature discrepancy. 

4.6.2. GDGTs 

4.6.2.1. Fluxes 

The GDGT flux record off Java shows less pronounced seasonality throughout the 

year than that of the alkenones. GDGT fluxes increased during the SE monsoon period 

compared to NW monsoon and intermonsoon periods (approximately 2.5 times). The 

highest GDGT flux occurs at the same time as the highest flux of alkenones and higher 

total and TOC fluxes (Fig. 4.2.). The observed seasonality of GDGT flux could thus be 

caused either by seasonal production, or by seasonally varying efficiency of GDGT export. 

 The season of GDGT production in the marine environment is still contentious. 

Earlier studies showed that the abundance of Thaumarchaeota varies seasonally and is 

mainly higher when phytoplanktonic productivity is low (Schouten et al., 2013 and 

references therein). Moreover, some studies suggested that the seasonal variations in 

GDGT fluxes might be caused by seasonal variations in the export of GDGTs, which 

depends on the phytoplankton productivity (e.g., Huguet et al., 2007; Wuchter et al., 

2005).  

Like alkenone fluxes, the flux of GDGTs to our trap correlates better with fluxes 

ofcarbonate (r2=0.54), TOC (r2=0.49), and opal (r2=0.72) than with lithogenic particles 

(r2=0.06) (Fig. 4.4e, f, g, h.). This indicates that GDGTs were transported to deeper 
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waters together with marine aggregates, in particular with opal. Variations in sinking 

fluxes of TOC, carbonate, opal and GDGTs are consistent with variations in chlorophyll 

concentration and NPP. Thus, the observed seasonality in GDGT flux might not directly 

be indicative of seasonal production of Thaumarchaeota. Rather, it could result from 

more efficient export of GDGTs during the upwelling season, which is characterized by 

strongly increased phytoplankton production and resulting particle flux.  

Thaumarchaeota cells are neutrally buoyant, i.e., they do not sink by themselves 

but instead require packaging to sink through the water column (Schouten et al., 2013 

and references therein). Packaging could occur in faecal pellets or by aggregation, 

enhanced by mineral ballasting (Passow and De La Rocha, 2006). In the Arabian Sea, 

Wuchter et al. (2006) observed an apparent seasonality of GDGT flux in the shallow trap 

(ca. 500 m), whereas the GDGT flux is insensitive to seasonality in the deeper traps at 

1500 m and 3000 m. The authors concluded that the maximum in GDGT flux during the 

highest productivity was caused by more efficient export of the lipids rather than by 

higher production of Thaumarchaeaota. A similar observation was made by Yamamoto 

et al. (2012) in the western North Pacific. 

The concentrations of GDGTs in our samples are variable, but do not co-vary with 

GDGT flux. If the seasonality of GDGT flux was caused solely by the seasonality of total 

flux, we would expect decreased GDGT concentration during upwelling. In contrast, we 

do not observe decreased concentrations of GDGTs during high flux periods. Therefore, 

we infer that the elevated GDGT flux likely relates to both, the seasonal variation in the 

abundance of Thaumarchaeaota combined with more efficient export of GDGTs by 

aggregation with phytoplankton detritus during the SE monsoon. 

4.6.2.2. TEXH
86 temperature estimates 

The time series of TEXH
86 temperature estimates does not record the strong 

seasonal amplitude observed in the satellite-based SST (Fig. 4.2a.). The flux-weighted 

average TEXH
86-based temperature of 26.2 °C is similar to that based on UK’

37 and to the 

average SE monsoon SST. However, a hypothetical flux weighted temperature calculatd 
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from observed SST and GDGT fluxes (see above for the alkenones), would be 27.5 °C, 

significantly higher than the observed temperature estimate. This results from the 

observed weaker seasonality in GDGT flux than that of alkenones, and argues against 

flux-weighted average TEXH
86 recording upwelling SST. Instead, a subsurface origin of 

the signal could explain the observed value. 

Colder TEXH
86 temperature estimates than SST might relate to the habitat of GDGT 

producers. It is known that Thaumarchaeota occur throughout the water column with 

maximum relative abundance in the deep ocean (Karner et al., 2001). Although the 

TEXH
86 is expected to reflect the temperature in the upper parts of the water column, 

previous studies from suspended particle material (SPM) and surface sediments 

suggested that TEXH
86 does not record SST but rather subsurface temperature (Huguet 

et al., 2007; Lee et al., 2008; Lopes dos Santos et al., 2010; Nakanishi et al., 2012; 

Rommerskirchen et al., 2011; Schouten et al., 2002; Wuchter et al., 2006; Xing et al., 

2015). Maximum GDGT concentrations in water column studies have been reported for 

depths of 50-200 m (e.g., Basse et al., 2014; Nakashini et al., 2012; Xie et al., 2014), and 

have been discussed to near the depth of the thermocline (e.g., Lopes dos Santos et al., 

2010). The thermocline in the study area is observed between 40 and 70 m (Fig. 4.1.). 

The annual average temperature at 50m water depth for the past ~40 years (World 

Ocean Atlas, 2005; Locarnini et al., 2006) is 26.7 °C, similar to and well within calibration 

error (±2.5 °C, Kim et al., 2010) of the flux weighted average TEXH
86-temperature of 

26.2 °C, and, similar to our data, it shows small seasonal variations (Fig. 4.5.). 

Considering the analytical error, the flux-weighted GDGT temperature estimates are also 

similar to the TEXH
86 temperature estimates of core-tops in the vicinity (GeoB10044 and 

GeoB10047, 27.0 °C and 26.3 °C, respectively; Chen et al., 2014). Thus a predominant 

export from approximately 50 m water depth at our study site seems plausible. 

This conclusion is consistent with previous studies. For instance, Lee et al. (2008) 

observed that Temp-TEX86 was colder than in-situ temperature in SPM from the 

Benguela upwelling system and supposed that the GDGT producers blooming below the 
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mixed layer (>40m) were transported upward by upwelling resulting in this cold bias. A 

similar depth range of approximately 75 to 100 m water depth was identified as 

dominant habitat of GDGT producers for the East China Sea (Nakanishi et al., 2012). 

Further support for our interpretation comes from the results from a sediment trap in 

the Arabian Sea, where TEX86 temperature estimates are slightly lower than SST, 

possibly suggesting addition of GDGTs from subsurface waters (Wuchter et al., 2006). In 

the Yellow Sea, a study using surface sediment and suspended particles suggested that 

the highest concentration of GDGTs occurred in the bottom layer, at 70 m (Xing et al., 

2015). Nakanishi et al. (2012) demonstrated that the maximum GDGTs concentration 

appeared at 74-99 m depth in the water column at slope and shelf locations in the 

northern East China Sea. Our trap data are also in agreement with other settings, as 

discussed by Huguet et al. (2007) in the Santa Barbara Basin and by Lopes dos Santos et 

al. (2010) in the eastern tropical Atlantic.  

 

 

 

 

 

 

 

 

Fig. 4.5. Comparison between TEXH
86-based temperatue estiamtes (Temp-TEXH

86, black circles) 

and the monthly mean temperatures at different depths (black lines) for the past 40 years at the 

sediment trap site (WOA 2005; Loncarnini et al., 2006). 
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TEXH
86 temperature estimates could be influenced by fluvial input of soil-derived 

isoprenoid GDGTs (Weijers et al., 2006). Previous studies suggested that TEX86 

temperatures at sites with BIT indices lower than 0.3 are potentially reliable (Weijers et 

al., 2006; Zhu et al., 2011), although these values are not to be regarded globally 

applicable. In our sediment trap, the BIT index is extremely low and ranges between 

0.01 and 0.06, suggesting a low contribution of soil organic matter. Considering these 

values the TEXH
86 is unlikely biased by terrestrial input. Therefore, terrestrial GDGT input 

cannot explain the offset between TEXH
86 temperature estimates and satellite-derived 

SST. 

 

4.7. Summary and Conclusion 

This study provides insight into seasonality and depth of production of alkenones 

and GDGTs in the coastal upwelling system of the eastern Indian Ocean.  

Alkenone fluxes show a pronounced seasonality and their maximum flux is 

associated with highest primary production. A secondary alkenone flux maximum during 

the NW monsoon, likely related to increased production stimulated by riverine input of 

nutrients, does not strongly contribute to the total annual flux. The calculated flux-

weighted average UK’
37-based temperature estimate is similar to the SE monsoon SST 

rather than mean annual SST. This average is based on those samples only that 

permitted a reliable SST estimate, i.e., mainly the samples from the SE monsoon period. 

Alkenone based temperature estimates yield temperatures warmer than satellite-

derived temperature during the SE monsoon period. This observation suggests that the 

predominant alkenone production probably occurs at the onset and end of the 

upwelling season. The UK’
37 signal of these samples records a value similar to the 

average of the entire upwelling season.  

Our data show less pronounced seasonality of GDGT flux with only a small peak 

during the upwelling season, which may be attributed to seasonal variation in the 
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abundance of Thaumarchaeaota or more efficient export of GDGTs by aggregation with 

phytoplankton detritus during the SE monsoon. The flux-weighted average TEXH
86-based 

temperature estimate is cooler than ma SST and in agreement with water temperature 

at around 50m depth. Our results show no pronounced seasonal cycle in TEX86, 

suggesting that the TEX86 in sediments reflects an integrated mean annual upper 

thermocline temperature at 50 m depth. 
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5.1 Abstract 

We present a multi proxy study of sea-water temperatures based on UK’
37 

(alkenones unsaturation index) and TEXH
86 (tetraether index of GDGTs with 86 carbon 

atoms) in sediment core GeoB10053-7, which provides new insights into the variability 

of the sea surface and subsurface temperatures off south Java covering the past 22,000 

years. Our results show that TEXH
86 temperature estimates are consistently warmer than 

SST-UK’
37 up to 2°C in most of the records except during the last glacial maximum (LGM) 

and late Holocene. A previous study suggested that the UK’
37-based temperature 

estimates represent past changes in the SE monsoon SST in the upwelling region off 

south Java, while TEXH
86 reflects mean annual temperature at 50 m depth. In comparing 

the two temperature indices, we consider the potential for upwelling intensity to be 

recorded. In addition, the initial timing for the deglacial warming of GDGT temperature 

estimates started at ~18 ka, whereas the lowest UK’
37 temperature estimates appeared 

in the middle of the Younger Dryas period (YD, ca. 12 ka) and the late Heinrich Stadial 1 

period (HS1, ca. 15 ka). Our data reveal that the seasonal SSTs and mean annual 

subsurface temperatures are closely linked to climate changes occurring in both 

hemispheres. Thus, by combining UK’
37 and TEXH

86 records and their difference allow a 

more comprehensive reconstruction of sea-water temperature developments and its 

controls in the tropical eastern Indian Ocean. 

5.2. Introduction 

The tropical oceans provide the main source of heat and water vapor transfer to 

the high-latitudes and play a crucial role in modulating centennial- to millennial-scale 

global climate change (e.g., Cane and Clement, 1999; Clement et al., 2001; Lea et al, 

2000; Visser et al., 2003). Reconstructing sea surface temperatures (SSTs) is essential to 

understand the mechanisms behind the climate changes in the past from the glacial to 

interglacial terminations. The last deglaciation is characterized by abrupt climate 

changes of millennial duration such as Heinrich Stadial 1 (HS1) and the Younger Dryas 

(YD) cold events, the Bølling-Allerød (B-A) warm phase in the north hemisphere, and the 
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Antarctic Cold Reversal (ACR) cold event in the southern hemisphere (e.g., Alley and 

Clark, 1999; Jouzel et al., 1995). Two different mechanisms, i.e., the so-called bipolar 

seesaw, and increased atmospheric CO2 concentration, are invoked in interpreting SST 

reconstructions. The so-called bipolar seesaw hypothesis is typically attributed to 

changes in reorganizations of the ocean’s thermohaline circulation. The changes in 

Atlantic meridional overturning circulation (AMOC) strength is responsible for much of 

total oceanic heat redistribution in the Atlantic and thus cause the bipolar seesaw 

behavior (e.g., Broecker 1998 Clark et al., 2002). In contrast, the other hypothesis 

focuses on changes in tropical atmosphere-ocean dynamics, such as increased 

atmospheric CO2 concentration (e.g., Stott et al., 2007; Visser et al., 2003). This 

hypothesis is also supported by Shakun et al. (2010; 2012), who synthesized archive 

proxy temperature records and model simulations.  

The Indonesian Archipelago is a climate-sensitive location and is of major 

importance to atmospheric state, not only over the region itself, but globally (Qu et al., 

2005). Previous studies demonstrate that the small variability in SSTs results in an 

important influence on Indonesia’s marine hydrological systems (e.g., Neale and Slingo, 

2003). However, recent studies of past SST changes in and around Indonesia show 

obvious discrepancies of last deglacial SST records based on different proxies. Some 

studies ������ ����� ���� ��	� ����������"����� �����#�� ���� �18O co-vary with Antarctic 

temperature (e.g., Lea et al., 2000; Levi et al., 2007; Mohtadi et al., 2010a; Visser et al., 

2003; Xu et al., 2008). Some studies suggest that UK’
37 temperature estimates from 

south of Sumatra are related to strengthening of upwelling during periods of increased 

boreal summer insolation over the past 300 ka and 140 ka (Lückge et al., 2009; Mohtadi 

et al., 2010b). Mohtadi et al., (2011) inferred that upwelling intensity and hence, the 

Australian-Indonesian austral winter monsoon variation was closely linked to northern 

hemispheric summer insolation. Hence, establishing the timing of climate changes in 

different proxies for surface or subsurface temperature is necessary for understanding 

of controls over the Indonesian region climate change. 
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Here we present a high-resolution record of sea water temperature estimates 

from the eastern Indian Ocean based on UK’
37 and TEXH

86 from a marine sediment core 

(GeoB10053-7) retrieved off south Java and covering the last 22 ka. The temperature 

variability in the past 22 ka is compared with the deglacial temperature evolution in the 

northern and southern hemispheres in order to assess the linkage between UK’
37 (TEXH

86) 

and northern (southern) hemisphere climate change.   

5.3. The Java Upwelling System (JUS) 

Climate conditions in the eastern Indian Ocean south of Java display a strong, 

monsoon-related seasonal variability. The mean annual SST off Java ranges from 26 to 

28°C (WOA 09, Locarnini et al., 2010). During the austral summer (from January to 

March, henceforth summer), the predominant winds are northwest trades (Fig. 5.1.), 

which force the South Java Current (SJC, originated from the Equatorial Counter Current 

(ECC)) to move towards the southeast to meet the Leeuwin Current (LC), which carries 

warm and saline water transported from the eastern part of the Indonesian Archipelago 

(e.g., Tapper, 2002; Tomczak and Godfrey, 1994). The mixing of the SJC with the LC gives 

origin to the South Equatorial Current (SEC) that flows towards the west. In this season, 

the NW monsoon carries warm and moist air from the Asian continent and is associated 

with a southerly position of Intertropical Convergence Zone (ITCZ), causing heavy rainfall 

over Indonesia. The rainfall offshore off south Java is over 30 cm per month 

(http://trmm.gsfc.nasa.gov). In contrast, in the SE monsoon season (austral winter, from 

July to September, henceforth winter), the strong southeast trade winds cause the SJC 

to flow in an opposite direction and join the SEC. The ITCZ is located in a northerly 

position. In this season, the winds induce upwelling along the coast of south Java 

(Wyrtki, 1961). The upward movement brings cool, high-nutrient water from the 

thermocline into the euphotic layers where phytoplankton develops. Compared with 

the surrounding eastern Indian Ocean, i.e., Timor and Banda Sea, where the amplitude 

of the seasonal temperature variability exceeds 4°C, a smaller range of SST variability of 

depression of SSTs (~2 °C) is found off Java (Qu et al., 2005). Two mechanisms are 
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proposed to explain the small SST depression in the JUS. One is the so-called barrier 

layer, representing an intermediate layer that separates the base of the mixed layer 

from the top of the thermocline (Lukas and Lindstrom, 1991). It can prevent the 

thermocline water from entering the mixed layer (Qu and Meyers, 2005; Sprintall and 

Tomczak, 1992). The other potential mechanism is related to the Indonesian 

Throughflow (ITF), which transfers a large amount of water from the Pacific to the 

Indian Ocean through several passages of the Indonesian Archipelago (Fig. 5.1., Gordon 

and Fine, 1996; Gordon, 2005). It has been suggested that the cooling of the sea surface 

due to upwelling is counterbalanced by intrusion of the relatively warm ITF (Sprintall et 

al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Location of sediment core GeoB10053-7 (Black star). Arrows show the winds direction 

in the austral summer (a) and the austral winter (b).  
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In addition to the monsoon, at least two other inter-annual climate phenomena, 

i.e., the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) could 

strongly affect the hydrography of the equatorial Indian Ocean (e.g., Gordon, 2005; 

Meyers et al., 2007; Susanto et al., 2001). The El Niño episodes and positive IOD years 

are characterized by an intensified SE monsoon with strong SST depressions that can 

reach as much as 5°C and an increased primary production off Java and Sumatra. In 

contrast, during La Niña and negative IOD years, the pattern of SST is reversed, including 

enhanced westerly winds, and increased precipitation in the study area. 

5.4. Material and Methods 

5.4.1. Sediment Core 

Gravity core GeoB10053-7 (8°40.56’S, 112°50.33’E, at 1372m water depth, 760 cm 

core length) was collected off Java during the PABESIA Cruise SO-184 with R/V Sonnein 

2005 (Hebbeln et al., 2005; Fig. 5.1.). The core was sampled at 5 cm intervals. The age 

model was established by Mohtadi et al., (2011) using nineteen accelerator mass 

spectrometry (AMS) 14C dates from mixed planktonic foraminifera. 

5.4.2. Analytical Methods 

Aliquots of 3 g of freeze-dried and homogenized samples were ultrasonically 

extracted three times with successively methanol (MeOH), MeOH: dichloromethane 

(DCM) 1:1 (v:v) and DCM (25 mL each), and all extracts were combined. Before 

extraction, a known amount of C19 ketone and C46 GDGT were added as internal 

standards. The total lipid extract was saponified for 2 hours at 80 °C with 300 μL of 0.1M 

KOH in 90:10 MeOH/H2O. The neutral fraction was recovered by liquid-liquid extraction 

using hexane and separated into apolar, intermediate polarity and polar fractions via 

silica gel column chromatography, eluting with hexane, DCM: hexane 2:1 (v:v) and 

MeOH, respectively.  
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Seventeen marine sediment standard subsamples were extracted independently 

and measured at regular intervals during the analysis of our samples. 

5.4.2.1. Alkenone analysis and UK’
37 SST 

The alkenone fraction was re-dissolved in 25 μl MeOH: DCM 1:1 (v:v) prior to 

capillary gas chromatography (GC). For quantification of alkenones, samples were 

analysed using an HP5890 series GC equipped with a flame ionization detector, using 

Helium as carrier gas with a constant flow rate of 2.0 ml/min.  The oven temperature 

initiated at 60 °C, was held for 1 min, subsequently increased to 150 °C at a rate of 

10 °C/min, then raised to 310 °C at a rate of 4 °C/min with a total run-time of 75 min.  

Lipid concentrations were calculated with reference to the internal standard C19 ketone. 

The UK’
37 index was defined as the relative concentration of the di- and tri-unsaturated 

C37 alkenones:  

UK’
37 = (C37:2)/(C37:2+C37:3) 

UK’
37 values were converted to temperature values by applying the calibration of 

Conte et al. (2006):  

T= 29.876 * (UK’
37) -1.334 

The reproducibility of the analysis is 0.27 °C based on repeated analyses of the 

marine bulk sediment standard.  

5.4.2.2. GDGT analysis and TEX86 temperature 

The polar fraction containing the GDGTs for TEX86 and BIT was dried under N2 and 

re-dissolved in mixture of 99:1 (v:v) n-hexane and isopropanol with a concentration of 2 

mg/ml (Schouten et al., 2013), and filtered through 0.45 μm PTFE filters prior to analysis 

as described by Hopmans et al. (2000; 2004). 

GDGT fractions were analyzed using an Agilent 1200 Series high performance 

liquid chromatography mass spectrometry system (HPLC-MS). Procedures described by 

Leider et al. (2010) were applied. HPLC-MS analyses were conducted using a Prevail 
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Cyano column (2.1×150 mm, 3 μm; Alltech, Grace) maintained at 30 °C. GDGTs were 

eluted using the mixture of solvent A (n-hexane) and solvent B (5% isopropanol in n-

hexane): 80% A: 20% B for 5 min, linear gradient to 36% B in 45 min. Flow rate was 0.2 

ml/min. After each analysis the column was cleaned by back-flushing with n-hexane: 

isopropanol 90:10 (v/v) at 0.2 ml/min for 8 min. GDGTs were identified using single ion 

mode (SIM) as described in Schouten et al. (2007).  

The TEX86 index was calculated based on the peak areas of the respective GDGTs. 

The TEX86 is defined as follows (Schouten et al., 2002):  

TEX86= (GDGT2+GDGT3+cren’)/(GDGT1+GDGT2+GDGT3+cren’) 

where GDGT1, GDGT2, GDGT3 and cren’ indicate GDGTs containing 1, 2, 3 cyclopentane 

moieties and the crenarchaeol regio-isomer, respectively. TEXH
86 is the log-transformed 

original TEX86 and has been introduced by Kim et al. (2010) for reconstruction of SSTs in 

(sub) tropical oceans (>15°C): 

TEXH
86=log(TEX86) 

A surface sediment study in the eastern Indian Ocean confirmed that TEXH
86 is the 

appropriate index for our study area (Chen et al., 2014). The TEXH
86 values relate to 

temperature according to the following calibration equation (Kim et al., 2010): 

SST=68.4 * TEXH
86+ 38.6 

Based on standard sediment extracts that were independently measured along 

with our samples, the standard deviation of TEXH
86 is better than 0.6 °C. 

The BIT index (Branched and Isoprenoid Tetraether) is a measure of the relative 

terrestrial organic matter input to marine sediments of branched GDGTs from soil 

bacteria (Hopmans et al., 2004) and was calculated according to the relative 

concentrations of the branched GDGTs and crearchaeaol as defined by Hopmans et al. 

(2004). 
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5.5. Results 

5.5.1. Alkenone temperature estimates 

UK’
37 SST estimates range from 22.2 °C to 27.1 °C for the past 22,000 years (Fig. 

5.2b.). The SST-UK’
37 varies between 22.9 °C and 24.9 °C during the LGM (22-19 ka) and 

22.9 °C and 24.9 °C during the early deglaciation (19-17.5 ka), respectively. SST 

decreased from 23.9 °C to 22.2 °C during HS1 period (17.3-14.7 ka) followed by a 

gradual increase of UK’
37-SST estimates from 22.3 °C to 23.6 °C during the B-A period 

(14.7-12.9 ka). The UK’
37-derived temperature estimates decrease rapidly from 23.6 °C to 

22.2 °C during the older part of the YD, (12.9-11.5 ka; older part ca.12.9-12.0 ka), 

followed by a warming during the younger part of the YD period. Subsequently, SST-

UK’
37 increased gradually from ~22.9 °C at 11.5 ka towards the present-day with the core 

top value of ~26.9 °C. The overall amplitude of SST-UK’
37 amounts to about 5 °C.  

5.5.2. GDGT temperature estimates and BIT index 

The TEXH
86-based temperature estimates (Temp-TEXH

86) vary between 20.9 °C and 

27.8 °C (Fig. 5.2b.). The Temp-TEXH
86 range from 20.9 °C to 22.9 °C between 22 ka BP 

and 17.5 ka BP, about 2.5 °C lower compared to the SST-UK’
37 during the same period. 

Subsequently, the value sin creased rapidly from 22.1 °C to 24.9 °C during the HS1 

period, remain constant during the B-A period, and increased from 24.7 °C to 25.8 °C 

during the YD period until 6 ka. After 6 ka, the temperatures based on TEXH
86 remained 

rather constant until the present-day. The total amplitude of Temp-TEXH
86 data amounts 

to about 7°C, generally larger than that of the UK’
37. 

The BIT index is extremely low, recording values of 0.03-0.11 (not shown) with 

highest values in the latest Holocene (1.5 ka BP to modern).   
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Fig. 5.2. a) temperature reconstruction of GISP 2 ice core (Greenland, Alley, 2004, pink); b) UK’
37 

and TEXH
86 index estimated temperatures in this study, the blue and purple areas correspond to 

the errors of the temperature calibration equations for UK’
37 (±1.1 °C) and TEXH

86 (±2.5 °C)); c) �	�

calculated by SST-UK’
37 minus Temp-TEXH

86 (grey); d) relative contribution of G. bulloides 

�������������${��^__{������
!��
���� �����������#������#� �������� ����������!����#�{��^^�{�

black). The grey bars correspond to the HS1 and YD period. Triangles denote AMS 14C dating 

points (Mohtadi et al., 2011). 
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5.6. Discussion 

5.6.1. Temperature Proxy Implication 

Two different approaches are used to estimate the magnitude of temperature 

changes across the last glacial-interglacial transition. Although both the proxies seem to 

record mean annual SST, the discrepancy between the two indicates are commonly 

reported in previous studies (e.g., Huguet et al., 2006; McClymont et al., 2012; Wang et 

al., 2013).  

A one-year sediment trap and a surface sediment study of UK’
37 and TEXH

86 in this 

region have revealed that UK’
37 records the upwelling season, while TEXH

86 is inferred to 

represent mean annual (ma) temperature at 50 m depth (i.e., the top of the thermocline; 

Chen et al., 2014 and submitted). The UK’
37 and TEXH

86 based temperature for surface 

sediment at the core location are 26.9 °C and 25.6 °C, respectively, which agree with SE 

monsoon SST (26.5 °C) and ma temperature at 50 m depth (26.0 °C) from World Ocean 

Atlas 2009 (WOA 09, Locarnini et al., 2010), supporting this interpretation. Therefore, 

we infer that the UK’
37 in this core reflects past changes in the SE monsoon SST in the 

upwelling region off south Java, while TEXH
86 records ma temperature at 50 m depth. 

5.6.2. Overall temperature changes 

The magnitude of temperature variations and absolute temperature values 

between the two indices are different in the study area. The average UK’
37-based SST 

and TEXH
86-based temperature estimates during the LGM (defined according to EPILOG 

as 19-22 ka; Mix et al., 2001) are 24.0 °C and 21.9 °C, respectively, showing cooling of 

2.9 °C and 3.8 °C compared to present-day temperature based on alkenone and GDGT, 

respectively. In accordance with our estimates, the MARGO project reconstruction 

suggested an approximate 2 °C cooling for the LGM in the eastern Indian Ocean 

(MARGO Project Members, 2009) and Barrows and Juggins (2005) inferred up to 4°C 

cooling in the on Mg/Ca ratios of planktonic foraminifera in the eastern Indian Ocean. In 

addition, Analyses of Mg/Ca ratios of planktonic foraminifera in the eastern Indian 
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Ocean show 2° - 3 °C cooler SSTs during the LGM than during the Holocene (Mohtadi et 

al., 2010). Taken together, the amplitudes of last glacial-interglacial temperature 

variations in our records are in good agreement with those of published records from 

the eastern Indian Ocean.  

5.6.2.1 UK’
37 SST changes 

As aforementioned, the UK’
37 temperature estimates reflect SE monsoon SST. In 

the study area, visual comparison of variations in alkenone-based SST estimates and the 

G. bulloides percentages as a proxy for upwelling intensity which shows that the two 

records covary well, indicating that wind-driven upwelling was an important factor for 

SST variability during last 22,000 years. Similar observations were made in the southern 

Sumatra approximately located 1000 km away from our site over the past 300,000 years 

and 130,000 years, respectively, where the authors hypothesized that alkenone-based 

SST changes were related to the monsoon-controlled seasonal upwelling (Lückge et al., 

2009; Mohtadi et al., 2010).  

The UK’
37 record shows pronounced decreasing trends during the HS1 and the YD 

periods and a slow rate of temperature rise during the B-A period, respectively (Fig. 5.2.). 

The lowest UK’
37 temperature estimates appeared in the middle of the YD (ca. 12 ka) and 

the late HS1 (ca. 15 ka). These events were nearly synchronous with important 

palaeoclimate changes recorded in the Greenland isotope records, possibly implying a 

coupling to the deglacial development of the North Atlantic region (Fig. 5.2.). What are 

the broader implications of our findings concerning the seasonal SST change in this 

region during the last glacial-interglacial transition?  

The tropical SSTs are sensitive to Northern hemisphere high-latitude climate 

changes has been documented in several paleoclimate records (e.g., Kienast et al., 2006; 

Muller et al., 2012). Two basic scenarios may have contributed to these variations, 

including: (1) a slowdown or potentially a shutdown of the AMOC with a southward 
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displacement of the ITCZ (e.g., Chiang and Bitz, 2005; McManus et al., 2004; Zhang and 

Delworth, 2005); (2) variations in cross-equatorial surface winds. 

There is a widespread paleoclimatic evidence for the variability of the tropical 

climate in the Indian Ocean responds to the North Atlantic deglacial climate oscillations 

that were accompanied by the variations in the AMOC (e.g., Naidu et al., 1996). A series 

of abrupt events occurred vgenerally through the ocean by a slowdown or potentially a 

shutdown of the AMOC and through the atmospheric circulation (e.g., Griffiths et al., 

2009; McManus et al., 2004). Several studies suggest that a reduction AMOC in the past 

including a southward shift of the ITCZ during the HS1 and the YD events (e.g., Griffiths 

et al., 2009; McManus et al., 2004). It is well known that the position of the ITCZ is 

closely tied to hemispheric energy budgets through its role in cross-equatorial 

atmospheric heat transport. Changes in ITCZ position provide insight into the past 

changes in heat transport by the AMOC. Regards to HS1 as an example, a southward 

shift of the ITCZ during the HS1 would increase atmosphere heat transport into the 

northern hemisphere, compensating for a reduction or shutdown of the AMOC (McGee 

et al., 2014 and reference therefore). Moreover, a simulation experiment in the study 

area recently, which suggested that the northern hemisphere cooling by generating 

anomalous heat transport from the southern hemisphere to the northern hemisphere is 

driven by a reorganization of the Hadley circulation (Mohtadi et al., 2014).  

Several studies on the wind field and SST of the Indian Ocean suggested that the 

intensity of the trade winds in the Indian Ocean is significantly correlated to the inter-

hemispheric temperature gradients (e.g., Naidu et al., 1996 and reference therein). 

Previous studies demonstrated that increased evaporation (latent heat flux from ocean 

to atmosphere), increased southern hemisphere trade winds, increased cross-equatorial 

transport of latent heat and strong austral summer monsoon winds over the eastern 

Indian Ocean (Clemens et al., 1991 and reference therein). Furthermore, results by 

Clemens et al. (1991) based on biological, biogeochemical and lithogenic evidence over 
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the past 350,000 years corroborated the mechanisms of the inter-hemispheric pressure 

gradients in the Indian Ocean.  

Our data suggest that a weak SE monsoon during the LGM and a strong SE 

monsoon during the YD and HS1 periods. An increased cross-equatorial heat transport is 

accompanied by increased southern trade winds would be expected during times of 

northern hemisphere cooling, such as the HS1 and the YD periods, indeed the SE 

monsoon was strong, vice versa. This mode of explanation has recently been proven by 

a modeling study (McGee et al., 2014). The authors suggested that a small ITCZ shifts is 

associated with relatively large changes in northward cross-equatorial atmospheric heat 

transport due to a weakened AMOC during the HS1, indicating modestly stronger SE 

monsoon. 

In summary, the last glacial-interglacial variations of UK’
37-based temperature 

estimates provide strong evidence that they reflect variations in the strength of large-

scale cross-equatorial winter monsoon winds, probably in response to ocean-

atmosphere heat transport owing to changes to AMOC. 

5.6.2.2. TEXH
86 temperature changes 

As discussed above, TEXH
86 likely reflects shallow subsurface water ma 

temperatures (i.e., the top of thermocline). During the last glacial-interglacial cycle, 

temperature fluctuations were much more pronounced at the thermocline depth (up to 

6°C, Fig. 5.2a.). The TEXH
86 record shows a continuous deglacial warming, starting at 

around 18 ka, but punctuated by a decreasing temperature during the B-A period, 

coeval with the ACR found in the Antarctic ice cores (EPICA, 2004; Fig. 5.2.). An early 

onset of sea-water temperature increase at about 18-19 ka has been observed in 

several records from the eastern Indian Ocean and the Western Pacific Warm Pool 

region (Lea et al., 2000; Levi et al., 2007; Mohtadi et al., 2010a; Rosenthal et al., 2003; 

Stott et al., 2007; Visser et al., 2003; Xu et al., 2006;). These records point to uniform, 

stable and warm deglaical SST variations in the low latitude, which is roughly coincide 
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with southern high latitude climate changes and the rising global CO2 level, suggesting 

that the warming of surface waters in these regions during the deglaciation would be 

attributed to the flux of CO2 into the atmosphere (e.g., Shakun et al., 2010; Stott et al., 

2007; Visser et al., 2003). Although there is similarity in the timing and magnitude of 

subsurface water temperature changes compared to previous SSTs in the eastern Indian 

Ocean and the Western Pacific Warm Pool region, the relationship between CO2 

concentration and subsurface water temperature changes is not obvious.  

In general, thermocline temperatures are controlled by two factors. One is that 

the upwelling intensity during the SE monsoon that injects cooler waters from deeper 

depths. Our data show that a strong SE monsoon during the HS1 and the YD periods. 

Cooler TEXH
86 temperature estimates would be expected during the two periods. 

Contrary to this assumption, however, warmer TEXH
86-based temperatures are not 

observed. Moreover, warmer TEXH
86-based temperatures reflect mean annual 

temperatures that could probably be compensated by the temperature signals from 

other seasons. Thus, our data suggest that an overall insignificant impact of upwelling 

intensity on mean annual conditions. 

Alternatively, our study area is an upwelling area, feeding by subsurface and 

intermediate waters originated in the Southern Ocean. Another important factor is that 

changes in the subsurface temperatures are remotely forced by changes in the 

temperature of the source. Deep-water temperatures reflect a globally average record 

of Earth’s radiative-�����"������$���������"���������������������18O, Stott et al. (2007) 

documented that the increased austral-spring insolation over the Southern Ocean is 

responsible for deglacial warming and atmospheric CO2 increase around 18.5 ka. Our 

records show that the warming subsurface waters began at around 18 ka, indicating 

~500 years lag between the high and low latitudes. A study by Matsumoto and key 

(2004) using conventional 14C ages of dissolved carbon showed that the transport of 

Southern Ocean intermediate and deep water to the eastern tropical Indian Ocean takes 

approximately ~300-400 years. Considering to this time lag, our data suggest the 
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changes in subsurface waters are related to the changes in atmospheric CO2 

concentration. This finding is in agreement with the thermocline temperature 

reconstruction based on Mg/Ca ration in the Timor Sea during the Termination I by Xu 

et al. (2008). Therefore, the variation of temperature estimates based on GDGT that 

represents subsurface water temperature during the last glacial-interglacial period is 

presumably attributed to CO2 forcing.  

Our results suggest that the UK’
37 and TEXH

86 temperatures are closely linked to 

climate changes in both hemispheres due to their response to seasonal and mean 

annual temperature, respectively (Fig. 5.2.). The same pattern has been observed in 

other parts of the tropical Indian Ocean, i.e., in the western Indian Ocean, in the Arabian 

Sea, between different proxies, suggesting seasonal effect on SSTs is a prevailing picture 

during terminations (e.g., Saher et al., 2009; Wang et al., 2013). 

5.6.3. Difference between UK’
37 and TEXH

86 records 

Our UK’
37 and TEXH

86 temperature estimates show a different pattern for the entire 

period: The Temp-TEXH
86 record shows an overall warming trend, whereas the SST-UK’

37 

record decreases from 22 ka BP to 14 ka BP and increases from 12 ka BP to the present-

day (Fig. 5.2b.).  

We observe a positive �	����	 -UK’
37 minus Temp-TEXH

86) during the LGM (22 ka BP 

to 19 ka BP), the early deglaciation (19 ka BP to 17.5 ka BP) and late Holocene (2 ka BP 

to present-day), while �	� ��� ��������� ������� ���� ����� �� ���� ������ ����$� 5.2c.). Offsets 

between both indices have previously been observed in several regions (Huguet et al., 

2006; Li et al., 2013; Lopes dos Santos et al., 2010; McClymont et al., 2012; 

Rommerskirchen et al., 2011) and are commonly attributed to the differences in 

seasonal occurrence and habitat depth of source organisms. As introduced above, the 

UK’
37 (TEXH

86) represent past changes in the SE monsoon SST (ma temperature at 50 m 

depth) in the upwelling region off south Java.  
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The temporal evolution of the temperature difference is paralleled with G. 

bulloides percentages that are identified as a proxy for winter upwelling and monsoon 

intensity (Fig. 5.2., Mohtadi et al., 2011). Moreover, the temporal evolution of the �T is 

also ����������� "�� ����������� ��� �18O (�� 18O) of two foraminiferal species thriving 

throughout the year and predominantly in winter, respectively, whereby a greater 

difference implies stronger upwelling (Mohtadi et al., 2011). This indicates that the 

difference between the two organic proxy based temperature reconstructions is 

likewise tied to the upwelling strength. This is consistent with previous studies showing 

that the temperature offset depends on the degree of marine primary productivity 

(Chen et al., 2014; Rommerskirchen et al., 2011). The positive temperature offsets 

during the latest Holocene match the modern conditions as observed in surface 

sediments (Chen et al., 2014). Similar conditions likely prevailed during the LGM period.  

In surface sediments, no modern analogue situation exists for negative �	�

between SE monsoon SST (UK’
37 estimate) and mean annual subsurface waters (TEXH

86 

estimate) as observed in our records during the last deglacial and early Holocene (Chen 

et al., 2014). In the study area, the mixed layer varies seasonally under the Australian 

Indonesian monsoon. The mean annual thickness of the mixed-layer is generally 40-50 

m (Qu and Meyers, 2005). The mixed-layer shoals during the SE monsoon and thickest 

during the NW monsoon (Fig. 5.3.). Mohtadi et al. (2011) suggested a weaker Australian-

Indonesian austral winter monsoon (AIWM) during LGM and late Holocene, strongest 

AIWM during early Holocene, and a relatively strong AIWM during HS1 and the YD. As 

illustrated in Fig. 5.3b, when the AIWM is strong off Java, the surface water is cooler and 

nutrient supply is increased, which likely results in low UK’
37 temperature estimates. On 

the other hand, when Australian-Indonesian austral summer monsoon (AISM) is strong 

and the mixed-layer is deep, a small vertical temperature gradient would be expected. 

The cooler TEXH
86 temperature estimates expected during the strongest AIWM are 

possibly compensated by warmer TEXH
86 signals from AISM, resulting in warmer ma 

temperature at 50 m depth (Temp-TEXH
86) than SST during SE monsoon (SST-UK’

37) (Fig. 

5.3b.). In previous studies, it has been postulated that the AISM was generally strongest 
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during warm phases and weakest during cool phases of the Late Quaternary (Kershaw 

and Nanson, 1993). However, the AISM was not stronger enough during the last 

deglacial as implied by the Ti/Ca records of our core as proxy for NW monsoon intensity 

(Mohtadi et al., 2011). The average TEXH
86-based temperature estimates is 26.1 °C range 

from 17.5 ka BP to 2 ka BP, which agrees with the core-top data (25.9 °C, Chen et al., 

2014) as well as modern mean annual temperature at 50 m depth (26.0 °C). The 

relatively constant warm mean annual temperature at 50 m depth we concerned is 

probably less affected by the intensity of NW monsoon. This implies that the coolest SE 

monsoon SST associated with strongest upwelling strength is the dominant factor in the 

negative �	���������������������������������� and early Holocene. A similar observation 

was made in same upwelling area, such as the South China Sea and the Gulf of California, 

where the authors noted that the offset between UK’
37 and TEXH

86 based temperature 

estimates can be used to reconstruct upwelling intensity (e.g., Li et al., 2013; McClymont 

et al., 2012). Therefore, the offset between the two proxies off south Java in the eastern 

Indian Ocean can be explained through the variations in the strength of the austral 

winter upwelling. 

5.7. Summary and Conclusions 

UK’
37 and TEXH

86 records covering the last 22 ka were obtained from a sediment 

core (GeoB10053-7) in the upwelling area off south Java. The UK’
37 and TEXH

86 records 

reveal different temperature variations spanning the past 22 ka. Temp-TEXH
86 record 

shows an overall warming tendency during the whole time period, whereas SST-UK’
37 

record is punctuated by two abrupt cooling events during HS1 and the YD. Our results 

reveal that the tropical eastern Indian Ocean seasonal and mean annual temperatures 

are closely linked to climate changes in both hemispheres. The UK’
37-SST is controlled by 

upwelling strength, which in turn reflects northern hemisphere climate variations (cold 

HS1 and the YD). Temperature estimates based on TEXH
86 reflecting mean annual 

conditions at 50 m depth show a trend closely resembling the southern hemisphere 

continuous warming pattern. Temp-TEXH
86 is up to 2 °C warmer than SST-UK’

37 during the 
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last deglacial and early Holocene, whereas lower TEXH
86 temperature estimates are 

observed during LGM and late Holocene. The offset between two temperature proxies 

can be used to reconstruct the upwelling intensity in the study area. 

 

 

 

 

 

 

 

 

Fig. 5.3. Schematic illustration of the relationship between temperature difference and intensity 

of upwelling: a) modern/glacial conditions; b) deglacial conditions. Temperature profiles in the 

core site from WOA 09, Solid black lines: mean annual temperature; dashed black lines: austral 

winter temperature; dashed grey lines: austral summer temperature; black dots and grey 

triangles represent flux-weighted UK’
37 temperature estimates and TEXH

86 temperature estimates, 

respectively (Chen et al., submitted). 
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Chapter 6 Conclusions and Outlook 

6.1. Summary and Conclusions 

In this thesis, the seasonality, depth habitats of source organism and the 

application of two commonly used organic-geochemical SST reconstruction proxies 

(UK’
37 and TEXH

86) in the eastern Indian Ocean for modern and last glacial-interglacial 

timescale were investigated. Additionally, a detailed study in the Java upwelling area 

was carried out. In the following sections the major findings are summarized. 

In the sediment core-top study, the temperatures based on the UK’
37 and TEXH

86 

proxies deviate from the mean annual temperature of the World Ocean Atlas 2009 

(WOA09), particularly for the samples from the upwelling regions off south of Java and 

the Lesser Sunda Islands. Variations in these lipid biomarker proxies could be attributed 

to differences in seasonal production and/or spatial distribution of the water column. In 

the upwelling regions, alkenone-based temperature estimates are up to 2 °C lower than 

mean annual SST, but are in agreement with SE monsoon SST. This indicates that the 

SST-UK’
37 reflects the SE monsoon SST consistent with previous studies demonstrating 

maximum alkenone production during the colder season associated with higher marine 

primary productivity (e.g. Leider et al., 2010). Further support for this interpretation is 

given by the results from the sediment trap. Highest alkenone flux (4.3 μg/m2/day) is 

measured in late September during the SE monsoon, coincident with high total organic 

carbon fluxes as well as high net primary productivity. The flux-weighted average UK’
37-

SST of 26.8 °C for the high flux period is also similar to the satellite-based SE monsoon 

SST (26.4 °C), which is consistent with the findings in the core-top study. This average is 

based on those samples only that permitted a reliable SST estimate, i.e. mainly the 

samples from the SE monsoon period. The surface sediment SST-UK’
37 of core 

GeoB10044, which is located 112 km away from our trap site, is 26.9 °C, which is similar 

to the flux-weighted average UK’
37-SST.  Furthermore, a secondary flux maximum during 

the NW monsoon, likely related to increased production stimulated by riverine input of 

nutrients, does not strongly contribute to the total annual flux. On the other hand, the 
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sediment trap results show less pronounced seasonality of GDGT flux with only a small 

peak during the upwelling season, which may be attributed to more efficient export of 

GDGTs by aggregation with phytoplankton during austral winter. The flux-weighted 

average TEXH
86-based temperature estimates is 26.2 °C, cooler than mean annual SST 

(28.0 °C), but in better agreement with the water temperature at 50 m depth (26.7 °C). 

Lower TEXH
86-temperatures than the mean annual SST were also observed in the core-

top study. The different performance of both temperature proxies resulted in a 

temperature offset (�T) off Lesser Sunda Islands, which could be interpreted by either 

one or a combination of the following factors: the TEXH
86 signal is derived from 

subsurface water at 50 m depth with lower temperatures and/ or highest archaeal and 

alkenone production occurs at different times, with alkenones-based temperatures not 

representing the coldest upwelling SSTs whereas the lower TEXH
86 signal might derive 

from times of peak upwelling associated with the highest export flux. Furthermore, 

alkenone-based temperature estimates probably underestimate tropical SST due to 

reduced sensitivity of the UK’
37 proxy at SST beyond 28 °C in the equatorial non-

upwelling area off western Sumatra. In contrast, GDGT-based temperature estimates 

are in agreement with mean annual SST, implying that the Temp-TEXH
86 reflects the 

mean annual SST in the non-upwelling region. 

Subsequently, the retrieved knowledge about UK’
37 and TEXH

86 from surface 

sediments and sediment trap was applied to a sediment core off south of Java in the 

eastern Indian Ocean spanning the past 22,000 years. SST-UK’
37 records fluctuated 

between 22.2 °C and 27.1 °C, with a glacial-interglacial difference of 3.0 °C. TEXH
86-

temperature records fluctuated between 20.9 °C and 27.8 °C, with a glacial-interglacial 

difference of 3.8 °C. The records show two apparent temperature discrepancy phases, 

TEXH
86-temperature records are up to 2 °C warmer than SST-UK’

37 records during the last 

deglacial, whereas lower TEXH
86 temperature estimates are observed during LGM and 

late Holocene. The �T is paralleled by G. bulloides percentage as a proxy for upwelling 

and monsoon intensity, indicating the difference is tied to the upwelling strength. This is 

coincident with previous findings in the surface sediments study, showing that the �T 
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depends on the degree of marine primary productivity. Furthermore, the data 

documents the contrasting cooling and warming trends record in alkenones and GDGTs 

during the abrupt climate changes phases, e.g., the HS1, the ACR and the YD.  I 

hypothesize that this may be caused by different mechanisms, i.e. bipolar seesaw and 

increased greenhouse gases. Depressed alkenone-based temperature estimates during 

HS1 and the YD could possibly be controlled by upwelling strength. On the other hand, 

TEXH
86-temperatures are likely mediated by climate changes occurring in the southern 

hemisphere with respect to increased atmospheric CO2 concentration.  

6.2. Outlook 

This thesis provides valuable insights to understanding the two lipids biomarkers 

temperature proxies (UK’
37 and TEXH

86) in tropical upwelling regions. However, some 

open questions remain and need to be addressed in future work. 

Although global calibrations of marine core-tops studies reveal a strong 

relationship between UK’
37 and mean annual SST (e.g. Müller et al., 1998; Conte et al., 

2006), several studies observed that UK’
37 may be biased towards a certain season due 

to seasonality in production of alkenone (e.g. Herbert et al., 2003 and reference therein; 

Leider et al., 2010). Conte et al. (2006) documented the global production temperature 

calibration, suggesting that the regional bias in temperature estimates using this 

calibration is insignificant. However, there are no surface sediments and surface water 

samples from the eastern Indian Ocean included in the datasets of Conte et al. (2006).  

Only five surface water samples which are located in Indian Ocean and the Arabian Sea 

in the whole datasets with 629 samples are available (Conte et al., 2006). The sediment 

trap study reveals a pronounced seasonality in production of alkenone. The SST-UK’
37 

reflects seasonal SST rather than mean annual SST. Thus, a regional calibration for the 

tropical Indian Ocean is required in order to reconcile the differences between different 

proxy-based temperatures and real temperatures. 

In the sediment trap, as the low alkenone concentration do not permit a reliable 

quantification of the triple unsaturated C37  alkenone (C37:3), however, only those UK’
37-
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SST estimates from the high flux period where alkenone abundance allowed a 

determination of C37:3 concentration can be reported instead of the all samples for the 

one-year time series. This leads to lack of information for the low flux period. On the 

other hand, for further studies it would be interesting to gain more information about 

sinking particles, to calculate more realistic particle sinking rates, and to examine the 

particle residence time in the surface water not only for alkenones but also for GDGTs. 

Therefore, a long-time series and shallow/deep trap should be deployed in the study 

area. 

As discussed thoroughly in the previous chapters, consistent temperature 

estimates on the proxy applicability could be inferred from core-top data, sediment trap 

data and downcore records, suggesting that both indices might be valid in the past off 

Java. Our records reveal that the seasonal SSTs and mean annual subsurface 

temperatures (i.e. the top of the thermocline) are closely linked to climate changes 

occurring in both hemispheres during the last glacial-interglacial cycle. The obvious 

deviations between the two indices are observed. However, no modern analogue 

situation exists for negative T (SST-UK'
37 minus Temp-TEXH

86)  during strong upwelling 

season, which is further needed to investigate. Additionally, our data provide evidence 

for synchronous change in subsurface temperatures in the southern high latitudes and 

tropical eastern Indian Ocean, which is probably related to globally rising CO2 levels. On 

the other hand, thermocline waters in the eastern Indian Ocean are dominated by two 

water masses: the North Indian Water (NIW) and the ITF. The NIW is originated from the 

Indian Central Water (ICW) that forms in latitudes 40-45 S during the late winter 

convective overturning and northward propagation of the Subantarctic Mode Water 

(Mohtadi et al., 2010 and reference therein). At this point it would be of interest to 

assess how meridional shifts in southern hemisphere front systems resulting in impact 

of the mean annual subsurface temperatures in the tropics. More locations to detect 

the pathway and modeling study are needed.  
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