

Master Track RV Heincke HE471

Data Processing Report

Contents

1	Introduction	1
2	Workflow	1
3	Sensor Layout	2
4	Processing Report	3

Contact:

Dr. Rainer Knust Alfred-Wegener-Institute

Am Handelshafen 12, D-27570 Bremerhaven, GERMANY

Mail: info@awi.de

Processing Agency:

FIELAX

Schleusenstr. 14, D-27568 Bremerhaven, GERMANY

Mail: info@fielax.de

1 Introduction

This report describes the processing of raw data acquired by position sensors on board RV Heincke during expedition HE471 to receive a validated master track which is used as reference of further expedition data.

2 Workflow

The different steps of processing and validation are visualized in figure 1. Unvalidated data of up to three sensors and ship-motion data are extracted from the DAVIS SHIP data base (https://dship.awi.de) in a 1-second interval. They are converted to ESRI point shapefiles and imported to ArcGIS. A visual screening is performed to evaluate data quality and remove outliers manually. The position data from each position sensor are centered to the destined master track origin by applying ship-motion data (angles of roll, pitch and heading) and lever arms. For all three resulting position tracks, a quality check is performed using a ship's speed filter and an acceleration filter. Filtered positions are flagged. In addition, a manual check is performed to flag obvious outliers. Those position tracks are combined to a single master track depending on a sensor priority list (by accuracy, reliability) and availability / applied exclusion of automatically or manually flagged of data. Missing data up to a time span of 60 seconds are linearly interpolated. To reduce the amount of points for overview maps the master track is generalized by using the Ramer-Douglas-Peucker algorithm. This algorithm returns only the most significant points from the track. Full master track and generalized master track are written to text files and imported to PANGAEA (http://www.pangaea.de) for publication.

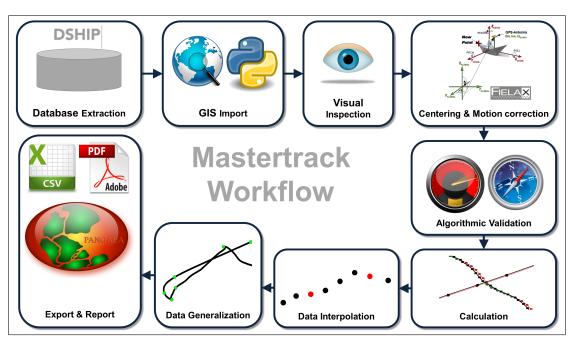


Figure 1: Workflow of master track data processing

3 Sensor Layout

This chapter describes the position sensors mounted during this cruise.

Cruise details

Vessel name RV Heincke Cruise name HE471

Cruise start 2016-09-06 Bremerhaven
Cruise end 2016-09-21 Bremerhaven

Cruise duration 16 days

Master track reference point: Resulting master track is referenced to PHINS installation point.

Position sensors

Sensor name	IXSEA PHINS III, short: PHINS			
Description	Inertial navigation system with reference positions from Trimble DGPS			
Accuracy	\pm 0.5-3.0 m			
Installation point	Electrician's workshop, close to COG			
Installation offset	Offset from master track reference point to sensor installation point X Positive to bow 0.000 m Y Positive to starboard 0.000 m Z Positive upwards 0.000 m			

Sensor name	Trimble Marine SPS461, short: Trimble			
Description	DGPS-Receiver, correction type DGPS RTCM 2.x, correction source			
	DGPS Base via radio			
Accuracy	Horizontal: \pm 0.25 m + 1 ppm & Vertical: \pm 0.50 m + 1 ppm			
Installation point	Starboard railing above bridge deck			
Installation offset	Offset from master track reference point to sensor installation point X Positive to bow 5.044 m Y Positive to starboard 6.788 m Z Positive upwards 11.489 m			

Sensor name	SAAB R5 SUPREME NAV, short: SAAB		
Description	DGPS-Receiver, SBAS-correction with RTCM-104 input		
Accuracy	GPS: \pm 3.0 m; DGPS (2D RMS): \pm 1.0 m		
Installation point	Observational Deck, fore rail		
Installation offset	Offset from master track reference point to sensor installation point X Positive to bow 12.985 m Y Positive to starboard 2.958 m Z Positive upwards 11.328 m		

Motion sensor

Sensor name	IXSEA PHINS III, short: PHINS
Description	Inertial navigation system with reference positions from Trimble DGPS
Accuracy	\pm 0.01 roll, \pm 0.01 pitch, \pm 0.05 heading (deg)
Installation point	Electrician's workshop, close to COG

4 Processing Report

Database Extraction

Data source	DSHIP database (dship.awi.de)
Exported values 1382336	
First dataset	2016-09-06T00:00:00 UTC
Last dataset	2016-09-21T23:58:59 UTC

Centering & Motion Compensation

Each position track has been centered to the *PHINS installation point* by applying the correspondent motion angles for heading, roll and pitch as well as the installation offsets from chapter 3. The motion data were acquired by IXSEA PHINS III.

Automatic Validation

The following thresholds were applied for the automatic flagging of the position data:

Speed	Maximum 20 kn between two datapoints.		
Acceleration	Maximum 1 m/s ² between two datapoints.		
Change of course	Maximum 5° between two datapoints.		

Manual Validation

Obvious outliers were removed manually. For details see Processing Logbook of RV Heincke (hdl:10013/epic.45841).

Flagging result

	PHINS		Trimble		SAAB	
Missing	0	0.000%	48	0.003%	5	0.000%
Speed	0	0.000%	3	0.000%	2	0.000%
Acceleration	0	0.000%	3	0.000%	2	0.000%
Course	434783	31.453%	614762	44.473%	597153	43.199%
Manually	1	0.000%	8	0.001%	0	0.000%

Master Track Generation

The master track is derived from the position sensors' data selected by priority.

Sensor priority used:

- 1. SAAB
- 2. Trimble
- 3. PHINS

Filters applied: manual, speed, acceleration.

Distribution of position sensor data in master track:

Sensor	Data points	Percentage
Total	1382340	100.000%
PHINS	0	0.000%
Trimble	6	0.000%
SAAB	1382330	99.999%
Interpolated	4	0.000%
Gaps	0	0.000%

Remarks

None.

Score

For each cruise, a score is calculated ranging from 0 (no data) to 100 (only very good data). the score for the cruise HE471 is 97.

Generalization

The master track is generalized to receive a reduced set of the most significant positions of the track using the Ramer-Douglas-Peucker algorithm and allow a maximum tolerated distance between points and generalized line of 4 arcseconds.

Results:

Number of generalized points	867 points
Data reduction	99.9373%

Result files

Report in XML format:

The XML contains all information of the master track generation in a machine-readable format. In addition a XSD schema file is provided.

Master track text file:

The format is a plain text (tab-delimited values) file with one data row in 1 second interval.

Column separator	Tabulator "\t"	
Column 1	Date and time expressed according to ISO 8601	
Column 3	Latitude in decimal format, unit degree	
Column 4	Longitude i	in decimal format, unit degree
Column 5	Flag for data source	
	1	PHINS
	2	Trimble
	3	SAAB
	INTERP	Interpolated point
	GAP	Missing data

Text file of the generalized master track:

The format is a plain text (tab-delimited values) file.

the formal to a prime to the (take or annual or an area) more		
Column separator	Tabulator "\t"	
Column 1	Date and time expressed according to ISO 8601	
Column 2	Latitude in decimal format, unit degree	
Column 3	Longitude in decimal format, unit degree	

Processing Report:

This PDF document.

Cruise map

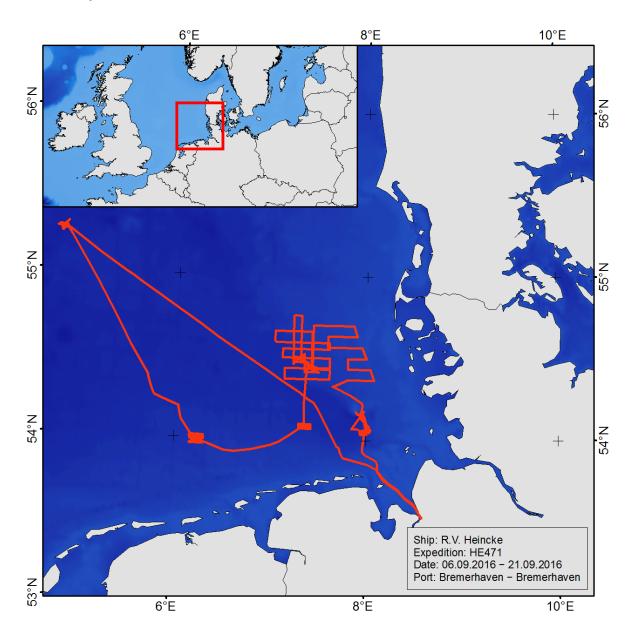


Figure 2: Map of the generalized master track