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Abstract 

The equatorial Pacific holds the potential to investigate the climate variability of the Earth as it 

connects both hemispheres via the atmospheric and oceanic circulation. The modern Equatorial 

Pacific Intermediate Water (EqPIW) is fed by three end-member components: Southern Ocean 

Intermediate Water (SOIW), Pacific Deep Water (PDW) and, by a smaller proportion, North Pacif-

ic Intermediate Water (NPIW). This modern configuration of end-members in the EqPIW results in 

low productivity of siliceous phytoplankton in the Eastern Equatorial Pacific (EEP) today as SOIW 

is depleted in silicic acid compared to other nutrients. An increased primary production during 

glacials has often been attributed to an enhanced contribution of SOIW to equatorial sub-surface 

waters. However, there is growing debate over whether SOIW was capable of stimulating glacial 

equatorial productivity. This is in light of the fact that nutrients appear to have been trapped in 

glacial Southern Ocean waters. Furthermore, recent studies point towards a change in the lateral 

and vertical extent of both SOIW and NPIW during glacials, impacting the supply of nutrients to 

the EEP. Ultimately, the effect of these intermediate water mass changes on equatorial waters 

remains elusive.  

Most upper ocean water mass reconstructions are based on planktonic foraminifera tests. Dif-

ferent foraminiferal species preferentially dwell in distinct water depths and thus, the calcitic tests 

of these species can be used to infer past climate conditions. However, it has been shown that 

the Apparent Calcification Depths (ACDs) of foraminiferal species are spatially non-uniform. To-

date, there are no ACD reconstructions from the equatorial Pacific based on multinet data. This 

thesis assesses equatorial foraminiferal ACDs to identify a species suitable to trace nutrient-

inflow of extra-tropical intermediate water masses. Using this determined species, this thesis then 

reconstructs the effect of variable nutrient injections from extra-tropical water masses on the 

equatorial Pacific upwelling waters using benthic and planktonic foraminiferal carbon isotopes 

(δ13C). In combination with published records of neodymium isotopes (εNd) and foraminiferal δ13C 

values from the subarctic Pacific, the eastern North Pacific, the eastern tropical North Pacific as 

well as the southeast and southwest Pacific, this thesis aims to improve our knowledge of end-

member contributions on EqPIW during the last two glacial-interglacial cycles, focusing in at 

higher resolution during Marine Isotope Stage (MIS) 2. 

The results of this thesis are presented in three manuscripts. The first manuscript examines 

foraminiferal calcification depths in the western equatorial Pacific using living planktonic forami-

nifera in combination with foraminiferal abundances. Despite the relatively deep thermocline in 

the Western Pacific Warm Pool (WPWP), the relative order of the five investigated species was  
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comparable to other ocean basins. However, absolute ACDs differed due to the local hydrogra-

phy in the WPWP. Surface mixed layer dwellers Globigerinoides ruber and Globigerinoides sac-

culifer were apparent at ~95 m and ~115 m water depth, and were found in low abundances dur-

ing the sampling time. The comparatively deep thermocline between 130 – 230 m below sea level 

subsequently led to relatively deep calcification depths of Neogloboquadrina dutertrei and Pul-

leniatina obliquiloculata. Hence, both species occupy a depth habitat towards the top, and within, 

the thermocline. One of our major findings was that the planktonic species Globorotaloides hex-

agonus was found to occupy a deep habitat (~450 m water depth) within the Pacific. This sub-

thermocline species seems to favour cool, nutrient-rich water masses and was shown to be a 

suitable archive for tracing nutrient-inflow of high latitude intermediate water masses on equatori-

al Pacific sub-thermocline. 

The second and third manuscripts deal with the ventilation of Glacial North Pacific Intermedi-

ate Water (GNPIW) and its influence on the EqPIW during the past 60 ka (Manuscript 2) and dur-

ing the last two glacial-interglacial cycles (Manuscript 3). It was shown that δ13C records from the 

Bering Sea (as an indicator for GNPIW), the eastern tropical North Pacific and the EqPIW (meas-

ured on G. hexagonus) exhibit a similar temporal evolution during MIS 2. In addition, the absolute 

εNd signatures from the Bering Sea and the eastern North Pacific are similar during this time peri-

od. The δ13C difference between the equatorial record and northern and southern signatures, 

respectively, was calculated to infer the relative change of high latitude intermediate water contri-

bution on equatorial sub-thermocline nutrient concentrations. Most interestingly, in times when 

the δ13C differences between the EqPIW record and two Southern Ocean cores are greatest (late 

MIS 2 and MIS 6), the difference in δ13C between the North Pacific and EEP is smallest. These 

results indicate increased GNPIW ventilation during glacials that spreads southward towards the 

eastern tropical North Pacific. During peak glacials the southward expansion of GNPIW was at a 

maximum and extended into the equatorial Pacific. Together with newly published evidence for a 

shallower penetration of relatively nutrient-depleted SOIW during glacials, these results point 

towards repeated episodes of reduced southern-sourced nutrient-injections into EqPIW during 

peak glacials. In contrast, the enhanced ventilation of nutrient-elevated GNPIW resulted in a 

comparatively increased nutrient contribution to the EqPIW. This intensified GNPIW nutrient-

inflow possibly relaxed the nutrient limitation in the EEP, stimulating primary productivity in the 

EEP during peak MIS 2. As a consequence, the invigorated glacial biological pump would have 

sequestered more carbon dioxide (CO2) from the atmosphere into the ocean. And thus, in sum-

mary, this thesis has contributed important new insights into the role of the dynamics of the EEP 

in driving the glacial reduction in atmospheric CO2 concentrations. 



 

 -IV- 

 
 
 

Kurzfassung 

Der äquatoriale Pazifik verbindet die Nord- und Südhemisphäre mittel atmosphärischer und 

ozeanischer Zirkulation und ermöglicht somit die Erforschung der Klimaschwankungen der Erde. 

Das heutige äquatoriale Pazifische Zwischenwasser (EqPIW) wird gespeist aus drei Ursprungs-

wassermassen: aus dem Südozeanischen Zwischenwasser (SOIW), dem Pazifischen Tiefen-

wasser (PDW) und zu sehr geringen Anteilen aus dem Nordpazifischen Zwischenwasser (NPIW). 

Der geringe Anteil an Kieselsäure im SOIW, im Vergleich zu anderen Nährstoffen, ist maßgeblich 

für die heutige geringe Primärproduktivität von kieseligem Phytoplankton im östlichen äquatoria-

len Pazifik (EEP) verantwortlich. Eine erhöhte Primärproduktion im letzten Glazial wird häufig mit 

einer erhöhten Zufuhr von SOIW in das äquatoriale Strömungssystem erklärt. Allerdings wird in 

der Literatur intensiv diskutiert, ob SOIW überhaupt in der Lage war die glaziale Produktivität am 

Äquator zu stimulieren, da Nährstoffe während des Glazials eher im Südozean gebunden waren. 

Darüber hinaus weisen neue Studien darauf hin, dass sich die laterale und vertikale Ausdehnung 

von SOIW als auch von NPIW während der Glaziale verändert hat. Die Auswirkung dieser verän-

derten Zwischenwassermassen auf das äquatoriale Strömungssystem ist bis heute jedoch un-

klar. 

Rekonstruktionen der oberen Wassersäule basieren oftmals auf Analysen an planktischen Fo-

raminiferengehäusen. Unterschiedliche Arten leben und kalzifizieren in bestimmten Wassertiefen 

und eignen sich daher ideal zur Bestimmung vergangener Klimabedingungen. Es hat sich jedoch 

herausgestellt, dass sich die scheinbaren Kalzifizierungstiefen (ACDs) der Foraminiferenarten 

regional unterscheiden können. Es existiert jedoch bis heute keine ACD Bestimmungen aus Mul-

tinetzdaten aus dem äquatorialen Pazifik. Diese Dissertation bestimmt die ACDs verschiedener 

Foraminiferenarten, um eine Art zu ermitteln, die den Nährstoffeintrag aus den Zwischenwasser-

massen der hohen Breiten aufzeigen kann. Diese Art wurde anschließend verwendet, um den 

Effekt variabler Nährstoffzufuhr aus unterschiedlichen Ursprungswassermassen auf den äquato-

rialen Pazifik mittels benthischer und planktischer Kohlenstoffisotope (δ13C) zu rekonstruieren. 

Die gemessenen δ13C Werte werden mit bereits publizierten δ13C Werten und Neodym-

Isotopendaten (εNd), welche an Foraminiferen aus Sedimentkernen vom subarktischen Pazifik, 

dem östlichen Nordpazifik, dem östlichen tropischen Nordpazifik sowie dem südöstlichen und 

südwestlichen Pazifik gemessen wurden, kombiniert. Letztendlich zielt diese Dissertation darauf 

ab, das Wissen über die Quellen und Steuerungsmechanismen der Nährstoffzufuhr im EqPIW 

während der letzten zwei Glazial-Interglazialzyklen und in höherer Auflösung während des Mari-

nen Isotopenstadiums (MIS) 2 zu verbessern.  
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Die Ergebnisse dieser Arbeit werden in drei Manuskripten vorgestellt. Das erste Manuskript 

befasst sich mit der Proxygenerierung und der daraus abgeleiteten ACDs planktischer Foramini-

feren im westlichen äquatorialen Pazifik anhand fünf lebender planktischer Foraminiferenarten in 

Kombination mit Häufigkeitsverteilungen von Foraminiferenarten. Trotz der relativ tiefen Ther-

mokline im Westpazifischen Warmwasserpools (WPWP) glich die relative Abfolge der fünf Arten 

derer aus anderen Ozeanen. Die absoluten ACDs unterschieden sich jedoch auf Grund der loka-

len Hydrographie im WPWP. Dabei zeigen die oberflächennahen Arten Globigerinoides ruber 

und Globigerinoides sacculifer ACDs um jeweils ~95 m und ~115 m an, waren aber in nur gerin-

gen Häufigkeiten während der Probennahme vorhanden. Die verhältnismäßig tiefe Thermokline 

zwischen 130 – 230 m führte zu entsprechend tiefen ACDs von Neogloboquadrina dutertrei und 

Pulleniatina obliquiloculata am oberen Rand und innerhalb der Thermokline. Bedeutend war der 

Fund der im Pazifik tieflebenden (~450 m) planktischen Art Globorotaloides hexagonus. Diese 

sub-thermokline Art kalzifiziert augenscheinlich in kühlen, nährstoff-reichem Wassermassen und 

stellte sich damit als ein verlässlicher Proxy zur Rekonstruktion von Nährstoffkonzentrationen im 

sub-thermoklinen Bereich heraus. 

Das zweite und dritte Manuskript beschäftigen sich mit der Ventilation des Glazialen Nordpazi-

fischen Zwischenwassers (GNPIW) und dessen Einfluss auf das EqPIW während der letzten 

60 ka (Manuskript 2) und der letzten zwei Glazial-Interglazialzyklen (Manuskript 3). Es konnte 

gezeigt werden, dass δ13C Datensätze aus der Bering See (als ein Anzeiger für GNPIW), dem 

östlichen tropischen Nordpazifik und dem EqPIW (gemessen an G. hexagonus) während MIS 2 

einen ähnlichen zeitlichen Verlauf nehmen. Weiterhin wurde hervorgehoben, dass sich die abso-

luten εNd Signaturen aus der Bering See und dem östlichen Nordpazifik in der gleichen Zeit kaum 

unterscheiden. Die δ13C Differenz zwischen dem EqPIW und dem Südozean sowie Nordpazifik 

wurde berechnet um Rückschlüsse über die relativen Änderungen in den Steuerungsmechanis-

men zu schließen. Auffallend war, dass zu Zeiten in denen der δ13C Unterschied zwischen der 

äquatoriale sub-Thermokline und dem Südozean am ausgeprägtesten war (spätes MIS 2 und 

MIS 6), die δ13C Differenz zwischen dem Nordpazifik und dem EEP am geringsten war. Diese 

Ergebnisse zeigen somit, dass es während der Glaziale zu einer verstärkten Ventilation des 

GNPIW gekommen ist, die sich bis in den östlichen tropischen Nordpazifik erstreckte. Sie erreich-

te ihren Höhepunkt mit dem Erreichen des Äquators während der Hochglaziale. Im Zusammen-

hang mit neuen Studien, die auf eine Verflachung des relativ nährstoff-abgereicherten SOIW 

während der Glaziale hinweisen, zeigen die Ergebnisse dieser Dissertation eine wiederholt ab-

nehmende Nährstoffzufuhr von südlichen Wassermassen während der Hochglaziale. Dahinge-

gend schien die erhöhte Ventilation von GNPIW zu einer vergleichsweise gesteigerten Nährstoff-

zufuhr in das EqPIW zu führen. Dies wiederum hob vermutlich die Nährstofflimitierung im EEP 

auf und könnte die erhöhte Produktivität im EEP während des späten MIS 2 mit erklären. Als 

Konsequenz darauf, würde die gestärkte biologische Pumpe mehr Kohlenstoffdioxid (CO2) aus 

der Atmosphäre in den Ozean sequestrieren. Letztendlich tragen die Ergebnisse dieser Disserta-

tion somit zu den laufenden Diskussionen der abnehmenden glazialen CO2 Konzentrationen bei. 
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1. Introduction 

1.1 General introduction 

The Earth’s climate system is strongly mediated by the complex interaction of ocean, atmos-

phere and biosphere. Understanding the climate forcing processes, the feedback mechanisms 

and the teleconnections of natural climate variability are one of the main motives of 

(paleo)climate research. Since the discovery of glacial-interglacial variations in atmospheric car-

bon dioxide (CO2) concentrations, detected in Antarctic ice cores bubbles [Petit et al., 1999; Lüthi 

et al., 2008], scientists have tried to disentangle the causes of these reoccurring fluctuations. It 

has been suggested that the 80 – 100 ppm range of atmospheric CO2 concentrations between 

glacial and interglacial periods is attributed to a combination of physical and biogeochemical pro-

cesses that among others regulate the (deep) ocean carbon reservoir [Sarmiento and 

Toggweiler, 1984; Siegenthaler and Wenk, 1984; Abelmann et al., 2006; Toggweiler et al., 2006; 

Ronge et al., 2016]. The deep ocean contains about 60 times more carbon than the atmosphere 

[Falkowski et al., 2000]. Thus, changes in carbon storage in the ocean interior are likely the main 

driver for atmospheric CO2 fluctuations [Sigman and Boyle, 2000; Toggweiler et al., 2006; Sig-

man et al., 2010; Hendry and Brzezinski, 2014]. 

The Southern Ocean acts as an important exchange area of water masses as it connects the 

world’s major ocean basins [Talley, 2013]. In this area, upwelling water masses from the ocean 

interior containing older CO2 mix with other water masses and transform into newly formed inter-

mediate, deep and abyssal waters that are exported to the rest of the global ocean (Figure 1.1) 

[Orsi et al., 1999; Sarmiento et al., 2004]. The Southern Ocean Intermediate Water (SOIW) [after 

Pena et al., 2013], the largest global intermediate water mass, is subducted (‘thermocline ventila-

tion’) and transported equatorward into tropical regions where they eventually upwell [Liu and 

Yang, 2003]. Thereby, changes in the SOIW composition influence both the physical (e.g. by 

temperature changes) and the chemical (e.g. nutrient composition) properties of the tropical 

thermocline and intermediate waters [Kessler, 2006]. 

Over the last decades, the role of the tropics within the climate system has been increasingly 

explored and seems to be more important than previously expected [Duplessy et al., 1988; Her-

guera et al., 1992; Spero and Lea, 2002; Pena et al., 2008; Pichevin et al., 2009; Martínez-Botí et 

al., 2015]. The Western Pacific Warm Pool (WPWP) with its deep thermocline (~150 – 250 m in 

the centre [Locarnini et al., 2013]) is one of the major sources of heat and moisture transfer from 

low to high latitudes. Changes in surface and sub-surface temperatures connected to variations 
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Figure 1.1. Modern global ocean overturning circulation schema from a Southern Ocean perspective 

[figure taken from Talley, 2013]. 

in the depth of the thermocline along the equator and a simultaneous shift of the wind systems 

(the combined effect was termed El Niño Southern Oscillation, ENSO) does not only affect re-

gional fauna and precipitation, but also global climate through strong inter-hemispheric, extra-

tropical and cross-basin connections [Collins et al., 2010; NOAA 2016]. Over longer timescales, 

changes in the strength and variability of the WPWP affect the east-west temperature gradient 

and is thus responsible for past ENSO variability [Ford et al., 2015]. In addition, variations in nu-

trient utilization revealed by silicon and nitrogen isotopes [Pichevin et al., 2009; Dubois and 

Kienast, 2011] as well as fluctuations in thorium-normalized organic carbon fluxes [Kienast et al., 

2007] indicate that equatorial productivity varied over glacial-interglacial timescales. The pro-

posed invigorated biological pump in the Eastern Equatorial Pacific (EEP) during glacial boundary 

conditions [Pichevin et al., 2009] was attributed to a shift in the nutrient composition of equatorial 

upper-ocean waters due to variations in the nutrient injection of its end-member sources [Loubere 

et al., 2003; Robinson et al., 2009; Dubois et al., 2011; Hendry and Brzezinski, 2014]. As the EEP 

acts as one of the largest CO2 sources on Earth today [Takahashi et al., 2009], a change in the 

nutrient concentration and an associated shift in productivity would have large repercussions for 

the atmospheric CO2 budget. Hence, the equatorial Pacific is an important region for studying 

long-term environmental changes on both regional and global scales. 
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1.2 Modern oceanographic setting 

The equatorial Pacific is characterized by a complex and highly dynamic current system. The 

westward flowing North Equatorial Current (NEC) and the South Equatorial Current (SEC) are 

both wind-driven surface currents, which respond quickly to variations in the wind field. The inter-

hemispheric differences in the distribution of landmass and ocean area lead to stronger southern 

hemispheric wind field component and as a result, the SEC extends from 5°N to 25°S, whereas 

the NEC is strongest at ~15°N (Figure 1.2a) [Tomczak and Godfrey, 2005; Kessler, 2006]. 

Around the Philippines, the NEC divides into a northern branch (Kuroshio Current, KC) and a 

southern branch, which, in turn, feeds the eastward flowing North Equatorial Counter Current 

(NECC). The NECC, centred at 5°N, is also partly fed by the northern extension of the SEC dur-

ing the southwest monsoon [Tomczak and Godfrey, 2005]. 

Despite the intensive surface currents, the most prominent current in the equatorial Pacific is 

the eastward-directed Equatorial Under Current (EUC) and the northern and southern sub-

surface countercurrents (NSCC and SSCC, respectively; also termed Tsuchiya Jets after Tsuchi-

ya, [1972]) [Johnson and Moore, 1997; Rowe et al., 2000]. The EUC with a maximum width of 

500 km extends from 40 to 280 m water depth with its peak velocity at ~200 m [Wyrtki and Ki-

lonski, 1984; Johnson et al., 2002; Tomczak and Godfrey, 2005; Grenier et al., 2011]. As the 

EUC flows eastward across the equatorial Pacific its upper branch shoals parallel with the ther-

mocline providing nutrients to the euphotic zone, stimulating primary productivity [Dugdale et al., 

2002; Ryan et al., 2006]. The lower branch of the EUC does not upwell along the equator, but as 

it travels across the equator it receives nutrients from the Equatorial Pacific Intermediate Water 

(EqPIW) and provides nutrients to the upper EUC by diapycnal mixing [Dugdale et al., 2002; Qu 

et al., 2009; Bostock et al., 2010; Rafter and Sigman, 2015]. Nutrients within the EUC and the 

underlying EqPIW primarily originate in the extra-tropical high-nutrient low-chlorophyll (HNLC) 

regions [Johnson et al., 2002; Goodman et al., 2005; Qu et al., 2009; Grenier et al., 2011]. To 

date, the EUC and EqPIW are mainly fed by nutrient-rich Pacific Deep Water (PDW) and SOIW 

and only a minor proportion can be attributed to North Pacific Intermediate Water (NPIW) (Figure 

1.2b) [Goodman et al., 2005; Tomczak and Godfrey, 2005; Bostock et al., 2010]. 

PDW is formed via the return flow of Circumpolar Deep Water (CDW) and Antarctic Bottom 

Water (AABW). CDW and AABW are formed primarily within the Antarctic Circumpolar Current 

and move slowly from the Southern Ocean towards the North Pacific. On its way, remineralisation 

of organic material and continuous biological export production from above leads to decreasing 

oxygen concentrations and nutrient accumulation. As a result, PDW is the oldest, most nutrient- 

and CO2-enriched water mass in global ocean that occupies a depth range of 1500 – 3300 m 

[Tomczak and Godfrey, 2005; Talley, 2008]. 
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Figure 1.2. Map of the Pacific Ocean with major currents and water masses [after Tchernia, 1980; 

Tomczak and Godfrey, 2005; Kessler, 2006; Bostock et al., 2010]. a: Surface water currents with for-

mation region of Southern Ocean Intermediate Water (SOIW) and North Pacific Intermediate Water 

(NPIW). CC = California Current; KC = Kuroshio Current; NEC = North Equatorial Current; NECC = 

North Equatorial Counter Current; SEC = South Equatorial Current. b: Meridional depth transect of 

silicic acid concentration with major intermediate and deep currents overlain: EUC = Equatorial Under-

current, EqPIW = Equatorial Pacific Intermediate Water, NPIW, SOIW, PDW = Pacific Deep Water, 

AABW = Antarctic Bottom Water, CDW = Circumpolar Deep Water. Colour shading shows silicic acid 

concentration with red indicating high concentrations and blue colours low silicic acid concentrations. 

Map and transect were generated using Ocean Data View [Schlitzer, 2015] with GLODAP Bottle Data 

[Key et al., 2004]. 

SOIW comprises Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) 

[after Pena et al., 2013]. As SAMW travels within the Antarctic Circumpolar Current around the 

Antarctic continent it cools and freshens through deep winter mixing and isopycnal exchange 

along and across the Subantarctic Front [McCartney, 1977; Bostock et al., 2013]. The densest 

SAMW near the Polar Front forms AAIW, which is characterized by a prominent salinity minimum 

(34.4 – 34.5) and an average potential density of 27.1 σθ [McCartney, 1977; Bostock et al., 2010; 

2013]. Different formation areas of AAIW exist but the majority is formed in the southeast Pacific 

Ocean, off southern Chile [Sallée et al, 2010; Bostock et al., 2013]. Diatom blooms in the for-

mation regions of SOIW remove silicic acid (Si(OH)4) out of the surface waters and as a result, 

SOIW contains depleted silicon to nitrogen ratios [Sarmiento et al., 2004; Hendry and Brzezinski, 

2014]. The relatively low-silicon SOIW is then subducted along an isopycnal surface between 300 

and 1300 m [Sloyan and Rintoul, 2001; Bostock et al., 2013] and seems to follow the wind-driven 



1.0 INTRODUCTION 

 -5- 

subtropical gyre water circulation equatorwards before feeding into the low-latitude equatorial 

thermocline and intermediate waters [Tomczak and Godfrey, 2005]. This has the effect that, alt-

hough approximately two-thirds of EUC waters are supplied by SOIW today [Goodman et al., 

2005; Qu et al., 2009], SOIW contributes about half of the nitrate supply and only roughly 30 % of 

the total modern equatorial Si(OH)4 supply [Dugdale et al., 2002; Sarmiento et al., 2004]. 

Today, NPIW only contributes insignificantly to EqPIW (Figure 1.2b). In contrast to SOIW, nu-

trient depletion by biological productivity is relatively limited in NPIW as it is never exposed to the 

surface and consequently, nutrient levels remain high [Talley, 1991; Sarmiento et al., 2004]. A 

mixing of different water masses in the northwest Pacific with the major contribution of Okhotsk 

Sea Intermediate Water (OSIW) forms NPIW. OSIW, in turn, is formed in coastal polynyas during 

wintertime sea-ice formation within the Sea of Okhotsk [Talley, 1993; Shcherbina et al., 2003]. 

NPIW spreads out at 300 – 800 m water depth and is characterized by a salinity minimum (33.9 – 

34.1) with low oxygen concentrations (0 – 150 µmol/kg) and an average potential density of 

26.8 σθ [Dickson et al., 2000; Bostock et al., 2010]. Although, the lateral extent of NPIW is re-

stricted to 15 – 20°N today, the influence NPIW extends to the equatorial Pacific through the Cel-

ebes Sea, where it accounts for ~70 % of the modern Si(OH)4 supply [Sarmiento et al., 2004; 

Bostock et al., 2010]. 

1.2.1 Western Pacific Warm Pool versus Pacific Equatorial Divergence 

The equatorial Pacific is divided into two distinct biogeochemical provinces: the WPWP and 

the contrasting EEP with offshore equatorial upwelling (also termed Pacific Equatorial Diver-

gence, PEqD) (Figure 1.3a). The WPWP is the largest warm water body on Earth. The surface 

layer is characterised by temperatures consistently higher than 28°C, low salinities (<35) and 

relatively low nutrient concentrations (<0.1 µM NO3
- ; <0.2 µM PO4

3-) [Yan et al., 1992; Blanchot 

et al., 2001; Rafter and Sigman, 2015]. The pycnocline, which is associated with the deep ther-

mocline, separates oligotrophic surface waters from nutrient-enriched sub-surface water masses 

[Herbland and Voituriez, 1979; Mackey et al., 1995; Radenac and Rodier, 1996]. The equatorial 

thermocline shoals from the west to the east Pacific, reaching depths as shallow as 30 m in the 

EEP (Figure 1.3b) [Locarnini et al., 2013]. The shoaled thermocline in the eastern Pacific results 

in the PEqD being characterized by lower temperatures (<28°C), higher salinities (>35) and ele-

vated macronutrients levels (3 – 4 µM NO3
- ; 0.4 – 0.5 µM PO4

3-) [Blanchot et al., 2001; Le 

Borgne et al., 2002]. Although chlorophyll-a concentrations are higher in the PEqD compared to 

the WPWP, primary productivity by siliceous phytoplankton is hindered in the PEqD due to the 

limitation of Si(OH)4 and iron [Broecker and Peng, 1982; Dugdale et al., 2002; Sarmiento et al., 

2004; Ryan et al., 2006]. This makes the PEqD (in particular the EEP) one of the largest HNLC 

regions of the world [Minas et al., 1986]. As a consequence of the low productivity, the EEP acts 

as the main global marine source for atmospheric CO2 today [Takahashi et al., 2009]. 
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Another important feature of the equatorial Pacific is the interannual instability in the coupled 

ocean-atmosphere system known as ENSO. On timescales between two to seven years the EEP 

experiences anomalously warm (El Niño) and cold (La Niña) conditions, and the opposite in the 

WPWP. These swings in temperature are associated with changes in the depth of the thermo-

cline and consequently with variations in the availability of nutrients in the photic zone [Le Borgne 

et al., 2002]. Through changes in primary productivity, ENSO is expected to have large repercus-

sions for global atmospheric CO2 concentrations and the global carbon budget [Feely et al., 

2002]. Additionally, during ENSO, the strength of the trade winds and the position of the atmos-

pheric convection influence the hydrography of the equatorial Pacific [Collins et al., 2010]. 

Changes in the atmospheric convection affects the upwelling of water masses along the equator 

and thereby, the zonal extension of the WPWP and PEqD [Le Borgne et al., 2002].  

	  

Figure 1.3. Annual temperatures and nitrate concentrations in the equatorial Pacific. a: annual Sea-

Surface Temperature (SST) map with the Western Pacific Warm Pool (WPWP), the Pacific Equatorial 

Divergence (PEqD) and the Eastern Equatorial Pacific (EEP). b: zonal annual nitrate concentrations 

overlaid by annual temperature contours (white) along the equator showing the higher nitrate concen-

tration in subsurface waters of the EEP compared to the WPWP concurrent with the shoaling of the 

thermocline. Surface map and transect were generated using Ocean Data View [Schlitzer, 2015] with 

data of the World Ocean Atlas 2013 [a, Locarnini et al., 2013] and GLODAP Bottle Data [b, Key et al., 

2004].  
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1.3 Relevant (paleoceanographic) research related to this  
thesis 

Information regarding past ocean and climate changes can be decrypted using paleoceano-

graphic proxies. A commonly used archive to measure the of desired but unobservable variables 

such as temperature, salinity and surface water CO2 concentrations, are carbonate shells of 

planktonic foraminifera, a group of cosmopolitan free-floating marine protozoa. Foraminifera live 

vertically dispersed in the upper ocean water column, with different species dwelling in distinct 

water masses. It should be noted that for precise interpretation of paleo-data from foraminifera, it 

is crucial to know the calcification depth of the analysed foraminiferal species as precisely as 

possible. Planktonic foraminifera are known to migrate within the water column during their on-

togeny [Hemleben and Bijma, 1994]. Consequently, the reconstructed habitat depth using geo-

chemical signals will always represent an integrated signal across the entire water depth range 

and ontogeny of the species and should therefore be referred to as the Apparent Calcification 

Depth (ACD). Information about foraminiferal ACDs from the equatorial Pacific are limited. Previ-

ous studies from the equatorial Pacific rather focussed on foraminiferal fluxes [Thunell and Honjo, 

1981; Fairbanks et al., 1982; Thunell et al., 1983; Kawahata et al., 2002; Yamasaki et al., 2008]. 

The few studies reconstructing ACDs have either concentrated on the reconstruction of past oce-

anic conditions with known ACDs from other ocean basins [Wara et al., 2005; Russon et al., 

2010], or used surface sediments from the central or EEP [Faul et al., 2000; Lynch-Stieglitz et al., 

2015; Nürnberg et al., 2015]. However, foraminiferal ACDs have been shown to differ regionally 

[Faul et al., 2000; Steph et al., 2009]. This is especially true for sub-surface and thermocline spe-

cies such as Neogloboquadrina dutertrei, as the thermocline varies substantially in a highly dy-

namic system like the EEP [Loubere, 2001; Nürnberg et al., 2015]. The use of ACDs reconstruct-

ed from other ocean basins to target specific water masses is therefore risky and highlights the 

need for a precise ACD estimation from the equatorial Pacific. 

Over the last half a century, it has been revealed that carbon isotope (δ13C) values of forami-

nifera can be used to reconstruct past ocean circulation and nutrient changes [Shackleton, 1974; 

Duplessy et al., 1984; Zahn et al., 1991; Curry and Oppo, 2005; Bostock et al., 2010; Knudson 

and Ravelo, 2015a]. However, due to a variety of factors (see Chapter 1.4.2) foraminiferal δ13C 

can deviate from the total dissolved inorganic carbon of ambient seawater (δ13CDIC), which might 

lead to distorted interpretations of past nutrient conditions [Oppo and Fairbanks, 1989; Spero et 

al., 1991; Kroon and Darling, 1995; Birch et al. 2013]. Consequently, a possible foraminiferal 

δ13C-disequilibrium should be considered when interpreting paleo-data. 

Reconstructing past ocean dynamics in the equatorial Pacific is important for regional and 

global climate, as the EEP is the most important source for marine CO2 release into the atmos-

phere under modern conditions [Takahashi et al., 2009]. The release of CO2 from the surface 

ocean in regions of upwelling is counteracted by carbon fixation of siliceous phytoplankton [Dug-

dale and Wilkerson, 1998]. However, the productivity of these biogenic organisms in the EEP is 



 1.0 INTRODUCTION	  

 -8- 

hindered by the low availability of Si(OH)4 and iron today [Broecker and Peng, 1982; Dugdale et 

al., 2002; Sarmiento et al., 2004; Ryan et al., 2006]. The main contributor to equatorial thermo-

cline waters, the SOIW is characterized by high nitrate but low Si(OH)4 concentrations [Sarmiento 

et al., 2004]. During the Last Glacial Maximum (LGM), an enhanced productivity in the EEP sug-

gests that the Si(OH)4 limitation was overcome, requiring the supply of at least three times more 

Si(OH)4 to the system [Pichevin et al., 2009]. Nevertheless, the source of this Si(OH)4 remains 

enigmatic. On the one hand, it has been suggested that a higher contribution of southern-sourced 

waters towards the equatorial Pacific thermocline resulted in higher nutrient concentrations [Pena 

et al., 2008]. Supporting evidence for a greater influence of southern-source waters in the Pacific 

comes from an authigenic mineral study from the Chilean margin that reports higher oxygen con-

centrations related to an enhanced production of SOIW during glacials [Muratli et al., 2010]. In 

addition, a neodymium isotope (εNd) record [Pena et al., 2013], and shallow and deep-water radi-

ocarbon activity (∆14C) reconstructions in the EEP [de la Fuente et al., 2015] suggest that rela-

tively old, deep-southern sourced water masses upwell at the equator during glacial boundary 

conditions. On the other hand, a recent δ13C and oxygen isotope (δ18O) reconstruction combined 

with modelling results from the southwest Pacific argue for a decrease in the vertical extent of 

SOIW during glacial times [Ronge et al., 2015]. This reinforced the interpretation from previous 

stable isotope reconstructions from the southwest Pacific that proposed a reduced production of 

SOIW under glacial conditions [Pahnke and Zahn, 2005] for at least 400 ka [Elmore et al., 2015]. 

In addition to these isotope reconstructions, there is growing debate over whether SOIW was 

capable of stimulating productivity at the equatorial Pacific. Recent silicon and nitrogen isotope 

reconstructions argue for a “nutrient-trapping” in the Southern Ocean leaving the northward pene-

trating intermediate water depleted in nutrients under glacial conditions [Hendry and Brzezinski, 

2014; Robinson et al., 2014; Rousseau et al., 2016].  

In the North Pacific, a εNd record and foraminiferal isotope studies suggest a shift in the for-

mation region of Glacial North Pacific Intermediate Water (GNPIW) from mainly the Sea of 

Okhotsk towards the northwest Pacific during glacial boundary conditions [Horikawa et al., 2010; 

Rella et al., 2012; Max et al., 2014]. Simultaneously, a variety of δ13C records propose an in-

creased formation and strengthened mid-depth circulation (1000 – 1500 m water depth) in the 

North Pacific during the last glacial maximum (LGM) [Duplessy et al., 1988; Herguera et al., 

1992; Keigwin, 1998; Matsumoto et al., 2002a; Cook et al., 2016]. A recent endobenthic forami-

niferal δ13C study demonstrates that this increased GNPIW formation occurred during glacials at 

least since the mid-Pleistocene [Knudson and Ravelo, 2015a]. The enhanced GNPIW might have 

expanded further south along the California margin [Stott et al., 2000] and the Eastern Tropical 

North Pacific (ETNP) [Leduc et al., 2010]. In the EEP, a very recent Pacific εNd data compilation 

revealed a substantial LGM to Holocene shift in εNd values that can only be explained by a higher 

contribution from northern-sourced waters [Hu et al., 2016]. However, it has not yet been re-

vealed how the proposed diminished SOIW and enhanced GNPIW convection might have influ-
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enced the nutrient distribution and biological productivity beyond the northern high latitudes dur-

ing the LGM and further back in time. 

1.4 Planktonic foraminifera as paleo-proxies 

1.4.1 Brief overview on planktonic foraminiferal ecology 

Planktonic foraminifera are exclusively marine eukaryotic protozoans that are globally distrib-

uted in the upper water column of the world’s ocean [Hemleben et al., 1989]. A prominent feature 

is the formation of a calcium carbonate shell (= test), on which modern taxonomic classification is 

based on. Up to 50 extant planktonic foraminiferal species have been identified, which can be 

divided into spinose and non-spinose species [Schiebel and Hemleben, 2005]. Although, plank-

tonic foraminifera are generally heterotrophic [Hemleben et al., 1989], some species, in particular 

spinose species, possess algal symbionts. These symbionts, which are mainly dinoflagellates, 

produce energy through photosynthesis, which the foraminifera use to drive the calcification pro-

cess [Schiebel and Hemleben, 2005]. 

The abundance of planktonic foraminiferal species strongly depends on environmental param-

eters, resulting in a species characteristic biogeographic distribution. Five major faunal provinces 

were determined: tropic, subtropic, transitional, subpolar and polar [Bé, 1977]. The provinciality in 

modern foraminifers is restricted to global climate belts and hence typically to the thermal struc-

ture of the water column [Bé and Tolderlund, 1971]. Nevertheless, other factors such as salinity, 

radiation for symbiont-bearing species, turbidity of the ambient water, food supply and distribution 

of predators determine the spatial and vertical distribution as well [Bijma et al., 1990; Watkins et 

al., 1996; Schiebel and Hemleben, 2005]. Plankton tow analysis revealed that living species are 

restricted to the euphotic zone and the quantity decreases with increasing water depth. Although 

changes in salinity play only a marginal role for the foraminiferal depth distribution directly, it af-

fects the density structure of the water column and thereby the accumulation of nutrients in cer-

tain depths. As certain species of planktonic foraminifera are often associated with the deep chlo-

rophyll maximum (DCM) where nutrients accumulate [Fairbanks et al., 1982; Schiebel et al., 

2001], salinity might therefore affect foraminiferal depth distribution indirectly. Consequently, their 

distinct distribution is mainly controlled by the prevailing surface hydrography and each species 

inhabit characteristic ecological niches [Fairbanks and Wiebe, 1980; Schiebel and Hemleben, 

2005].  

The formation of calcium carbonate (CaCO3) tests makes planktonic foraminifera an important 

carbonate producer with an average of 1.3 – 3.2 Gt CaCO3 per year in the global ocean 

[Schiebel, 2002]. During their ontogeny (maturation), the majority of foraminifera migrate through 

the water column, whilst adding new chambers and covering and thickening the whole pre-

existing test by an additional layer of calcite [Kozdon et al., 2009]. Thus, the calcite records the 
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varying temperatures and salinity of the respective water depth. As each successive chamber is 

larger and heavier than the previous chamber [Hemleben and Bijma, 1994], the shell weight and 

therefore the geochemical signature of the whole shell, is determined by the last few chambers. 

During the final phase that is associated with gametogenesis, spinose foraminifera shed their 

spines, eject the symbionts and secrete a smooth veneer of calcite covering spine holes [Hem-

leben et al., 1989]. Following gametogenesis, planktonic foraminiferal tests sink to the seafloor, 

constituting 32 – 80 % of the total deep-marine calcite budget [Schiebel and Hemleben, 2005]. 

Due to their global distribution, their specific adaption to environmental conditions, their good 

fossilization potential and continuous occurrence in the geological record since the Jurassic about 

180 Ma ago [Cifelli, 1969], planktonic foraminifera tests are frequently used to decrypt past eco-

logical and oceanographic conditions. 

1.4.2 General influences on foraminiferal shells 

Foraminiferal tests are the by far most commonly analysed carbonates for reconstructing past 

environmental changes such as the thermal structure of the water column, depth of thermocline, 

nutrient cycling, circulation changes, and ventilation changes. The application is based on the 

relationship between foraminiferal calcite and the ambient seawater. However, there are a num-

ber of physical, chemical and biological effects on both regional and global scales which may 

affect the fidelity of foraminiferal calcite to reflect ambient seawater (Figure 1.4) [Schiebel and 

Hemleben, 2005]. 

1.4.2.1 Stable isotopes 

The incorporation of oxygen and carbon isotopes into foraminiferal calcite is affected by iso-

topic fractionation. Generally, isotopic fractionation is defined as “the partitioning of isotopes be-

tween two substances or two phases of the same substance with different isotope ratios” [Hoefs, 

2009]. In this regard, a distinction is made between equilibrium isotope fractionation and non-

equilibrium fractionation. Equilibrium isotope fractionation occurs usually during isotope exchange 

reactions, e.g. air-sea gas exchange. It involves the forward and backward isotope reaction rates 

among various well-mixed systems. In contrast, non-equilibrium fractionation is the result of in-

complete or unidirectional processes such as kinetic isotope effects in chemical reactions, evapo-

ration, photosynthesis and metabolic effects. This non-equilibrium reactions favour reaction of the 

lighter isotope compared to the heavier isotope, since light isotopes have a higher mobility 

[Zeebe and Wolf-Gladrow, 2001]. 
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Figure 1.4. Summary of the influencing factors on the stable oxygen (δ18O) and carbon (δ13C) isotope 

composition as well as on the Magnesium/Calcium (Mg/Ca) ratio of planktonic foraminiferal tests. Bold 

arrows mark predominant effects. Positive and negative correlations are indicated by [+] and [-], re-

spectively [modified after Schiebel and Hemleben, 2005]. 

Oxygen isotopes 

The oxygen isotope composition of the foraminiferal calcite (δ18Ocalcite) reflects the oxygen iso-

tope composition of the ambient seawater (δ18Oseawater) with a temperature-dependent fractiona-

tion between 18O and 16O [McCrea, 1950]. In this context, at higher temperatures less 18O is in-

corporated into the calcite shell and vice versa. Besides the dominating role of temperature, there 

are several processes that affect the δ18Oseawater itself, which have implications for the δ18Ocalcite. 

These processes include local changes due to evaporation and precipitation, input of continental 

freshwater, and storage of light isotopes in continental ice (‘ice-volume effect’) [Craig and Gor-

don, 1965; Dansgaard and Tauber, 1969; Siegenthaler et al., 1979]. The periodic growth and 

decay of continental ice caps was first described by Shackleton [1967] and is now a well-

established stratigraphic tool, the so-called Marine Isotope Stages (MIS) [Emiliani, 1955]. Fur-

thermore, some species precipitate calcite in disequilibrium from ambient δ18Oseawater due to so-

called “vital effects” [Urey et al., 1951; Wefer, 1985; Niebler et al., 1999]. These vital effects in-

clude ontogenetic effects, symbiont photosynthesis effects, respiration effects and effects of 

changes in the carbonate ion concentration of seawater (also referred to as pH effect) [Hemleben 
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et al., 1989; Wefer and Berger, 1991; Spero and Lea, 1993; Ravelo and Fairbanks, 1995; Bijma 

et al., 1999; Niebler et al., 1999; Bemis et al., 2000; Birch et al., 2013]. 

Since the pioneer work of Urey [1947], the use of δ18Ocalcite became a basic tool in paleocean-

ography. The δ18O-paleotemperature calculations were first established and applied by Epstein et 

al. [1951], Urey et al. [1951], and Emiliani [1955]. Since then, a number of empirically-derived 

paleotemperature equations have been developed on both inorganically precipitated carbonates 

and foraminiferal calcite [Shackleton, 1974; Erez and Luz, 1983; Kim and O'Neil, 1997; Bemis et 

al., 1998; Anand et al., 2003; Mulitza et al., 2004; Mohtadi et al., 2009]. These foraminiferal-

derived equations can be either generic or species-specific, and have been generated using ei-

ther cultured species, plankton tow samples or living samples from the water column [Bemis et 

al., 1998; Ganssen and Kroon, 2000; Dekens et al., 2002; Regenberg et al., 2009; Dueñas-

Bohórquez et al., 2011]. They all have basic similarities, but small differences among them can 

result in different temperature estimates when applying to the same isotope sample (Figure 1.5) 

[Bemis et al., 1998; King and Howard, 2005; Wejnert et al., 2013].  

Another research approach is the use of paleotemperature equations to calculate the predict-

ed theoretical inorganic calcite value (δ18Oequilibrium) that is precipitated in isotopic equilibrium with 

the ambient temperature and δ18Oseawater [Regenberg et al., 2009; Steph et al., 2009]. The com-

parison of measured foraminiferal δ18Ocalcite values with predicted δ18Oequilibrium can be used to 

assess the ACD of a species by integrating the entire calcification history of a specimen.  

 

Figure 1.5. Temperature versus δ18Ocalcite minus seawater [c-w] with various published paleotemperature 

equations [modified after Bemis et al., 1998]. 
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Carbon isotopes 

Shell formation of foraminifera is closely coupled to the δ13CDIC of the ambient seawater [Ber-

ger et al., 1978; Spero, 1992]. Modern ocean δ13CDIC values typically range from -1 ‰ to +3 ‰. 

However, the δ13CDIC is neither distributed uniformly nor is it constant over time. Long-term 

changes involve the interaction between the atmosphere, ocean and terrestrial biosphere as well 

as geological reservoirs. Short-term δ13CDIC modulations involve (a) changes in air-sea fractiona-

tion due to thermodynamic effects, which are especially important in cold waters at high latitudes 

[Broecker and Maier-Reimer, 1992; Lynch-Stieglitz et al., 1995; Mackensen, 2012], (b) the photo-

synthesis-respiration cycle [Broecker, 1982; Kroopnick, 1985; Rohling and Cook, 1999], (c) 

whole-ocean variations in the carbonate chemistry of seawater [Spero et al., 1997], (d) advective 

and diffusive mixing processes during water mass circulation, and (e) changes in species habitat 

or ecology (especially in planktonic species). 

Planktonic foraminiferal δ13C usually varies between -2 ‰ and +2 ‰ [Wefer and Berger, 1991] 

and has been shown to be a reliable tracer for past oceanic circulation and nutrient reconstruc-

tions [Shackleton, 1974; Duplessy et al., 1984; Curry et al., 1988; Oppo and Fairbanks, 1990; 

Zahn et al., 1991; Sarnthein et al., 1994; Mackensen et al., 2001; Bickert and Mackensen, 2004; 

Curry and Oppo, 2005; Bostock et al., 2010; Knudson and Ravelo, 2015a]. However, it should be 

noted that a number of factors can result in foraminifera secreting their carbonate shell in δ13C 

disequilibrium with ambient seawater. Such factors include algal photosynthesis [Bé et. al, 1982; 

Hemleben et al., 1989], metabolic fractionation [Wefer and Berger, 1991; Kroon and Darling, 

1995; Spero et al., 1997], food availability [Spero et al., 1991; Ortiz et al., 1996], and carbonate 

chemistry of the seawater [Spero et al., 1997; Bijma et al., 1999]. These factors should be taken 

into account when interpreting foraminiferal δ13C to reconstruct past ocean conditions. 

1.4.2.2 Mg/Ca paleothermometry 

Measuring the elemental composition of Magnesium (Mg) to Calcium (Ca) in foraminiferal cal-

cite enables the reconstruction of past ocean temperatures. The substitution of Ca by the divalent 

cation Mg is primarily dependent on the temperature of the ambient seawater with high Mg incor-

poration at high temperatures and vice versa (Figure 1.6) [Blackmon and Todd, 1959; Nürnberg, 

1995; Nürnberg et al., 1996; Lea et al., 1999]. Culture based [Nürnberg et al., 1996; Lea et al., 

1999; Dueñas-Bohórquez et al., 2009, 2011], core-top [Dekens et al., 2002; Elderfield and 

Ganssen, 2000; Elderfield et al., 2002; Regenberg et al., 2009] and sediment trap [Anand et al., 

2003; Mohtadi et al., 2009; Friedrich et al., 2012] studies have developed species-specific 

Mg/Ca-paleotemperature equations and established the foraminiferal Mg/Ca paleothermometry 

as a key paleoceanographic tool for reconstructing past ocean temperatures [Nürnberg, 1995; 

Nürnberg et al., 1996, Rosenthal et al., 1997; Nürnberg et al., 2000; Lea et al., 2000; Stott et al., 

2002; Russell et al., 2004; Dueñas-Bohórquez et al., 2011; Rosenthal et al., 2013; Steinke et al., 

2014; Spero et al., 2015]. Other environmental factors such as salinity or seawater pH have only 
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a marginal influence due to the relative overpowering control of temperature on foraminiferal Mg 

[Lea et al., 1999; Kısakürek et al., 2008; Yu and Elderfield, 2008; Arbuszewski et al., 2010; 

Hönisch et al., 2013; Spero et al. 2015]. 

	   	  

Figure 1.6. Mg/Ca ratios of various planktonic foraminifera species versus water temperature imply an 

exponential relationship between test chemistry and temperature [figure taken from Nürnberg et al., 

1996].  

1.5 Aims of the thesis 

Understanding the causes and consequences of climate change on glacial-interglacial time-

scales are a key goal for global climate research. The equatorial Pacific with the large WPWP 

and the contrasting EEP upwelling system has been long in the focus of (paleo-)climatic re-

search, as strength and variability of both regions have large effects on global climate. Varying 

nutrient concentrations in the EEP might have caused changes in the primary productivity and 

hence, CO2 concentrations during the last glacial cycles. However, the source for these changes 

remains elusive. The Southern Ocean has been a focal point in trying to determine the source of 

glacial-interglacial changes in the equatorial Pacific, as SOIW is the main contributor to the equa-

torial thermocline today. With new sediment cores available now from the Pacific sector of the 

Southern Ocean, there is growing debate about the SOIW influence on the equatorial upwelling 

system during glacials. Detailed information concerning the northern high latitudes mostly focus-

es on the North Atlantic, as high-resolution records from the North Pacific were relatively scarce. 

However, more recently, newly recovered sediment material from the Bering Sea and Sea of 

Okhotsk highlight substantial changes in ocean circulation in the North Pacific. This allows for the 

first time to compare records from the source region of SOIW and NPIW with equatorial Pacific 
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records to decipher changes in the relative contribution of extra-tropical intermediate waters on 

the nutrient distribution of equatorial water masses.  

Tracing the water mass signals over time requires reliable paleoproxies. Geochemical studies 

on planktonic foraminifera are an established tool for paleoceanographic reconstructions, includ-

ing the reconstruction of water temperatures, salinities as well as productivity and circulation 

changes (see Chapter 1.3). However, using these approaches requires a precise knowledge of 

the calcification depth of the foraminiferal species. 

 

Thus, the aims of this thesis are:  

1) to examine the proxy-generation of planktonic foraminifera in the WPWP and derived from it to 

determine regional foraminiferal ACDs in order to identify a deep-dwelling planktonic foraminifera, 

which can serve as a proxy for reconstructing nutrient concentrations in equatorial Pacific sub-

thermocline water masses (Chapter 3). 

2) to determine whether the relative nutrient-inflow from northern-sourced versus southern-

sourced waters on tropical intermediate waters and equatorial sub-thermocline changed during 

the last glacial period (Chapter 4). 

3) to identify possible implications for equatorial sub-thermocline nutrient variability and biological 

productivity during the last glacial period (Chapter 4). 

4) to reconstruct the equatorial long-term variability spanning more than one glacial-interglacial 

cycles to decipher if the changing end-member contribution is a reoccurring signal during the 

Pleistocene (Chapter 5). 

1.6 Author’s contribution 

Manuscript 1 (Chapter 3) 

Nadine Rippert, Dirk Nürnberg, Jacek Raddatz, Edith Maier, Ed Hathorne, Jelle Bijma, and 

Ralf Tiedemann. Constraining foraminiferal calcification depths in the Western Pacific Warm 

Pool. 

I collected water samples for stable isotope measurement from the (Conductivity-

Temperature-Depth (CTD) rosette system during the research cruise SO225 on board of the 

German RV SONNE (November 2012 – January 2013) and helped with the multinet sampling. I 

performed the multinet sample treatment including the selection of foraminifera from the remain-

ing organic material as well as the identification and counting of foraminiferal species and the 

subsequent selection of specific foraminifera for stable isotope analyses. Additionally, I selected 
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and prepared foraminiferal tests for Mg/Ca analyses, and performed the measurements via laser 

ablation. I wrote the entire manuscript. Dirk Nürnberg, Jacek Raddatz, Edith Maier and Ralf 

Tiedemann contributed to the interpretation of the data. Ed Hathorne and Jelle Bijma assisted 

with the preparation, performance and interpretation of the laser ablation. All co-authors reviewed 

the draft and contributed to the discussion. The paper is published in Marine Micropaleontology, 

doi:10.1016/j.marmicro.2016.08.004. 

 

Manuscript 2 (Chapter 4) 

Lars Max, Nadine Rippert, Lester Lembke-Jene, Isabel Cacho, Andreas Mackensen, Dirk 

Nürnberg, and Ralf Tiedemann. Evidence for enhanced convection of North Pacific Intermediate 

Water to the low-latitude Pacific under glacial conditions. 

For this manuscript I selected the deep-dwelling foraminifera Globorotaloides hexagonus of 

sediment core ODP Site 1240 for the first 60 ka. Furthermore, I assessed the ACD of 

G. hexagonus to validate its deep calcification depth. I wrote the material section of ODP Site 

1240 and the ACD determination in the methodology chapter. Additionally, I contributed to the 

interpretation and discussion of the manuscript during the writing process and journal review 

stages and edited the manuscript in each processing step. The manuscript is under review in 

Paleoceanography. 

 

Manuscript 3 (Chapter 5) 

Nadine Rippert, Lars Max, Andreas Mackensen, Isabel Cacho, Patricia Povea, and Ralf 

Tiedemann. Alternating influence of northern versus southern-sourced water masses on the 

equatorial Pacific sub-thermocline during the past 240 ka. 

I extended the record of planktonic foraminifera Globorotaloides hexagonus from ODP Site 

1240 for stable isotope analyses. I improved the existing age model of ODP Site 1240 by using 

new benthic isotope data (measured by Patricia Povea). Furthermore, for consistency, I refined 

previously published age models of South Pacific sediment core SO136-003/MD06-2990 [Ronge 

et al., 2015] and Bering Sea sediment core U1342 [Knudson and Ravelo, 2015a]. I wrote the en-

tire manuscript. Lars Max and Ralf Tiedemann contributed to the interpretation of the data. An-

dreas Mackensen assisted with the stable isotope analyses. Isabel Cacho helped with sampling 

of sediment core ODP Site 1240 and Patricia Povea provided the benthic stable isotope data of 

ODP Site 1240. All co-authors reviewed the draft version and contributed to the discussion. The 

manuscript is in preparation for Paleoceanography. 
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2. Material and Methods 

This chapter describes the material and methods that I used to obtain the results shown in the 

manuscripts presented in Chapters 3, 4 and 5. Further materials and methods included in these 

following chapters were analysed by co-authors of the respective manuscripts and are therefore 

not considered in this chapter.  

2.1 Study material 

For this thesis, material from two study sites was analysed. First, samples from the water col-

umn of the western equatorial Pacific (Station SO225-21; 3°03.062’S, -165°03.342’W, Manihiki 

Plateau) [Werner et al., 2013] were investigated to assess foraminiferal calcification depths. Se-

cond, sediment samples from the eastern equatorial Pacific (Ocean Drilling Program (ODP) Leg 

202 Site 1240; 00°01.311’N, 86°27.758’W, 2921 m water depth) were studied to reconstruct past 

ocean circulation and nutrient distribution (Figure 2.1). 

	  
Figure 2.1. Map of the equatorial Pacific with CTD station SO225-21-1, multinet station (MN) SO225-

21-3 as well as the location of sediment core ODP Site 1240.  

2.1.1 Western equatorial Pacific  

At the northernmost edge of the Manihiki Plateau in the WPWP, a multiple open/closing plank-

ton net was used to catch foraminiferal assemblages and to analyse the geochemical signatures 

of foraminifera in order to determine foraminiferal calcification depths. Furthermore, a CTD profile 

of the water column was conducted to analyse physical and chemical properties of the water col-

umn. Both devices were used during RV SONNE cruise SO225. 
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In-situ temperature, salinity and oxygen measurements of the 5170 m water column were 

conducted with a CTD device, which was attached at 24 bottle-rosette system á 10 L (SO225-21-

1) [Werner et al., 2013]. During the up-cast the bottles of the rosette were systematically closed 

at 15 selected depths to retrieve the relevant water samples. For each water depth, a 50 ml and a 

100 ml subsample was taken and stored in glass bottles for δ13CDIC and δ18Oseawater analyses, 

respectively. To prevent biological activity and interaction with air, the water samples for carbon 

isotope analysis were poisoned with 100 µl of saturated mercuric chloride (HgCl2) solution and 

sealed with beeswax. Upon measurement, the samples were stored at +4°C.  

The multiple open/closing plankton net (SO225-21-3) was used at the same station as the 

CTD [Werner et al., 2013] (Figure 2.1) allowing for stratified vertical sampling of the water col-

umn. The net has a square opening of 50 x 50 cm, a 55 µm mesh size, and five net bags. The 

samples were taken in depths that represent the most commonly investigated upper ocean inter-

vals in paleoceanographic research incorporating the sea surface (0 – 50 m), sub-surface (50 – 

100 m), upper thermocline (100 – 200 m), lower thermocline (200 – 300 m) and sub-thermocline 

(300 – 500 m) as shown by the CTD cast (Figure 2.2) [e.g. Spero et al., 2003; Wara et al., 2005; 

Kiefer et al., 2006; Pena et al., 2008; Regenberg et al., 2009; Nürnberg et al., 2015]. The relative-

ly large depth intervals were selected to capture enough material for our analyses since the area 

is known for low primary productivity. Immediately after collection, plankton tow samples were 

preserved with an Ethanol-Bengal Rose solution and stored at +4°C. In a next step, the forami-

nifera were wet picked, dried and counted using a reflective light microscope (Zeiss SteREO Dis-

covery.V8). Five species (Globigerinoides ruber, Globigerinoides sacculifer, Neogloboquadrina 

dutertrei, Pulleniatina obliquiloculata and Globorotaloides hexagonus) were selected for further 

analysis (more details in Chapter 2.2). 

 

 

Figure 2.2. Water column temperature record of the 

uppermost 500 m measured at station SO225-21 (dark 

blue) together with the five chosen multinet-intervals. In 

light blue shading indicate long-term seasonal tempera-

ture variations [Locarnini et al., 2013]. 
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2.1.2 Eastern Equatorial Pacific (EEP) 

Material from the EEP was recovered during ODP Leg 202 Site 1240 from the northern flank 

of the Carnegie Ridge in the Panama Basin (Figure 2.1) [Mix et al., 2003]. A 282.9 m sediment 

sequence was recovered at Site 1240 consisting mainly of nanofossil ooze and diatom-

nannofossil ooze and only little of siliciclastic material, mainly clay minerals [Mix et al., 2003]. 

Furthermore, eight ash layers were present in ODP Site 1240. Within the scope of this thesis, 

only the first 30 m of ODP Site 1240 were investigated spanning the last 300 kyr. Sediment sam-

ples had already been washed and separated into sub-fractions at the University of Barcelona. 

Using a reflective light microscope (Zeiss SteREO Discovery.V8) five specimens of deep-dwelling 

foraminifera G. hexagonus were collected from the 250 – 315 µm size fraction of each selected 

sediment depth for δ18O and δ13C isotope analyses. 

2.2 Applied methods 

2.2.1 Foraminiferal counting 

This study provides the first living foraminiferal abundance analyses from a multiple 

open/closing plankton net at the Manihiki Plateau. The recovered (coloured) material consisted of 

plankton from various size fractions (Figure 2.3). Plankton net samples were sieved over nets 

with a mesh size of 1000 µm and 63 µm to select foraminiferal tests more efficiently. As spinouse 

species often tend to stuck to larger organic material, the filtered material >1000 µm was exam-

ined for foraminiferal tests as well. From the size fraction 125 – 1000 µm intact planktonic forami-

nifera were wet picked collected using a binocular microscope, and dried afterwards. Foraminif-

era with coloured cytoplasm in the early chambers were selected, which we infer represent spec-

imens that were collected alive or shortly after they died. This thesis primarily focuses on forami-

nifera >125 µm. This size fraction is well established in paleoceanographic research, in which 

many studies focuses on foraminifera in the size the range between 250 and 500 µm [Dekens et 

al., 2002; Wara et al., 2005; Kiefer et al., 2006; Knudson and Ravelo, 2015a; Nürnberg et al., 

2015]. We enlarged the size fraction slightly to have broad overview over the even smaller sized 

foraminiferal species. Depending on the amount of material approximately 200 – 400 foraminifera 

were identified and selected, either in the whole sample or in aliquots. The planktonic foraminifer-

al taxonomy follows the work of Parker [1962], Bé [1977] and Hemleben et al. [1989]. 
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Figure 2.3. Multinet sample from 0 – 50 m water depth show the various size fractions of the recov-

ered material. 

Several studies have shown that Globigerinoides ruber (white) exists in different morphotypes 

that dwell in slightly different water depths near the sea surface [e.g. Wang, 2000; Steinke et al., 

2005; Kuroyanagi et al., 2008]. The determination of the morphotypes sensu strictu (s.s.) and 

sensu lato (s.l.) follows the concept of Wang [2000] (Figure 2.4), after which G. ruber s.s. has 

spherical chambers sitting symmetrically over previous sutures with high arched apertus and 

G ruber s.l. corresponds to more compressed subspherical chambers with a small aperture. The 

morphotype G. ruber s.s. has been found to dwell in shallower water depths and was thus select-

ed for the analysis. Nevertheless, due to limited amount of material, specimens of the slightly 

deeper dwelling G. ruber s.l. were also included in our dataset when necessary. 

	  

Figure 2.4. The different morphotypes of Globigerinoides ruber. a: morphotype sensu strictu (s.s) and 

b: sensu lato (s.l.) [figure modified after Wang, 2000].  
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For comparisons with published data, the foraminiferal density in the water column was calcu-

lated using the following formula: 

ρ = #
(a * a) * b

      (1) 

with ρ being the foraminiferal density, a being the multinet opening in meters and b the depth 

interval the respective net was hauled. 

2.2.2 Stable isotope analyses 

Foraminiferal stable isotope ratios (δ18O and δ13C) were carried out at the Alfred-Wegener-

Institut, Helmholtz Zentrum für Polar- und Meeresforschung (AWI), Germany, using Finnigan 

MAT 251 and MAT 253 isotope mass spectrometers that are coupled to automatic carbonate 

preparation devices Kiel II and IV, respectively. The stable isotope ratios are given in permil (δ)-

notation, calibrated via international standard NBS 19 to the Vienna PeeDee Belemnite (VPDB) 

scale. They are determined as follows: 

δ sample=
heavyisotope light isotope( )

sample

heavy isotope light isotope( )
VPDB

-1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
*1000    (2) 

The precision of the measurements, determined over a one-year period and based on repeated 

analysis of an internal laboratory standard (Solnhofen limestone), is ±0.06 ‰ and ±0.08 ‰ (1 σ) 

for carbon and oxygen isotopes, respectively. 

The isotopic composition of seawater samples were determined on a Delta S for the 

δ18Oseawater and on a Gas Bench II MAS 252 for the δ13CDIC at the AWI. The δ18Oseawater values 

were calibrated to the Vienna standard mean ocean water (VSMOW) scale and δ13CDIC via the 

international standard NBS 19 to the VPDB scale. The precision based on an internal laboratory 

standard (Ocean 3 and DML for δ18Oseawater and Solhofen limestone for δ13CDIC) measured over a 

one-year period is ±0.03 ‰ (1 σ) for δ18Oseawater and ±0.1 ‰ (1 σ) for δ13CDIC. 

2.2.3 Determination of trace element ratios 

The Mg/Ca ratios of the foraminiferal shells were obtained via laser ablation coupled to a In-

ductively Coupled Plasma-Mass Spectrometer (LA-ICP-MS). Compared to solution based trace 

element ICP-MS analyses, LA-ICP-MS requires only very little sample material and only minimal 

pre-treatment as surface contamination can be removed by pre-ablating samples prior to analy-

sis. Further, it allows to obtain a large range of element concentrations in solid samples and to 

detect element variabilities within samples. 

As many chambers as possible were measured to ensure to have sampled as much test ma-

terial as possible (Figure 2.5). It has been shown that the large final chamber makes up the bulk 
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of solution based measurements [Hemleben and Bijma, 1994] and average element ratios deter-

mined over the whole tests, are in good agreement with published empirical calibrations on bulk 

foraminifera [Kunioka et al., 2006; Spero et al., 2015]. Thus, the laser ablation method is ideally 

suited for the trace element analyses of the multinet samples, which contain only little measure-

able material. 

The geochemical analyses were carried out with the Excimer ArF 193 nm laser ablation sys-

tem from NEW Wave ESI with a two-volume ablation cell design, coupled to an Agilent 7500cs 

LA-ICP-MS at GEOMAR, Helmholtz Centre for Ocean Research Kiel, Germany. A more detailed 

description about the settings for the laser ablation analysis is given in Chapter 3.2.3. 

 

Figure 2.5. Foraminiferal species analysed for Mg/Ca. Holes show the penetration of the laser. White 

line denotes always 100 µm. a: Globigerinoides ruber, b: Globigerinoides sacculifer, c: Neoglobo-

quadrina dutertrei, d: Pulleniatina obliquiloculata and e: Globorotaloides hexagonus. 

2.2.3.1 Mg/Ca paleothermometry 

Foraminiferal Mg/Ca ratios have become an established proxy to reconstruct past climate sys-

tem changes over the last decades. The uptake of Mg into biogenic calcite shows an exponential 

dependency on temperature after: 

  Mg Ca = B * exp(A *T )      (3) 

with the pre-exponential and exponential constants given as B and A, respectively, and T denotes 

the δ18O calcification temperature [Nürnberg et al., 1996; Lea et al., 1999; Elderfield and 

Gansson, 2000; Dekens et al., 2002; Anand et al., 2003; Regenberg et al., 2009; Friedrich et al., 

2012]. However, the Mg incorporation into foraminiferal tests is highly biologically mediated 
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[Nürnberg et al., 1996; Lea et al., 1999; Dueñas-Bohórquez et al., 2009; 2011]. Due to these so-

called “vital effects” species-specific differences in the uptake of Mg into the foraminiferal calcitic 

test occur. As a consequence, a large number of culture-based, sediment-trap and core-top stud-

ies have generated many different generic and species-specific paleotemperature equations that 

have basic similarities but also differ slightly from each other [Nürnberg et al., 1996; Dekens et 

al., 2002; Anand et al., 2003; Cléroux et al., 2008; Regenberg et al., 2009]. These small differ-

ences might lead to different temperature estimates when applied to the same Mg/Ca ratio. 

Therefore, different paleotemperature equations were tested (Table S3.5.3) to find the most suit-

able temperature equation for the planktonic foraminifera from the multinet. 

2.3 Assessment of apparent calcification depth (ACD) 

The ACDs of foraminiferal species were determined both in the western equatorial Pacific as 

well as in the EEP. At the Manihiki Plateau two approaches were combined to assess the ACDs 

of five selected species with improved accuracy. First, measured δ18Ocalcite was compared to 

δ18Oequilibrium. To determine the δ18Oequilibrium, different paleotemperature equations [Shackleton, 

1974; Kim and O’Neil, 1997; Bemis et al., 1998 (Orbulina universa high light); Mulitza et al., 2004] 

were used, in which measured δ18Oseawater and modern temperatures from the CTD data were 

inserted. Secondly, the determined Mg/Ca-temperatures were associated to in-situ temperatures 

measured by the CTD at the same station. The water depth in which δ18Ocalcite matches 

δ18Oequilibrium and Mg/Ca temperatures fit in-situ temperatures is taken as the ACD of a species. A 

more detailed description about the ACD determination at the Manihiki Plateau is given in Chap-

ter 3.2.5. 

In the EEP, the deep ACD in sub-thermocline waters of G. hexagonus was validated by using 

measured δ18Ocalcite of the near core-top sample (10 cm) of ODP Site 1240. These δ18Ocalcite val-

ues were compared to calculated δ18Oequilibrium values at different water depths and hence, differ-

ent temperatures. To calculate δ18Oequilibrium, several established δ18O-paleotemperature equa-

tions [Epstein et al., 1953; Shackleton, 1974; Kim and O’Neil, 1997; Bemis et al., 1998] together 

with salinity and temperature data from the World Ocean Atlas (WOA09) [Antonov et al., 2010; 

Locarnini et al., 2010] were applied. A more detailed description about the ACD determination in 

the EEP is given in Chapter 4.2.2. 

2.4 Stratigraphy of ODP Site 1240 

Any paleoceanographic reconstruction is dependent on a sound age model. Pena et al. [2008] 

established the first age model for ODP Site 1240 by a combination of radiocarbon dating and 

Antarctic ice core stratigraphy. Seventeen monospecific samples of planktonic foraminifer 

N. dutertrei were analysed for radiocarbon, which were calibrated with the marine dataset MA-
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RINE 04 in parts younger than 20 kyr and the Fairbanks et al. [2005] marine calibration dataset 

for older sections. For detailed information about the radiocarbon calibration, the reader is re-

ferred to Pena et al. [2008]. To reconstruct past ocean circulation and nutrient cycling older than 

MIS 3, the newly generated benthic isotope record (Cibicidoides spp., sampled and measured by 

Patricia Povea, University of Barcelona) was used to refine the existing age model. In this revi-

sion, the benthic δ18OCibicidoides record was aligned graphically to the global benthic δ18O reference 

stack LR04 [Lisiecki and Raymo, 2005] using the software AnalySeries 2.0 [Paillard et al., 1996]. 

Beyond the benthic isotope record of ODP Site 1240, the newly generated δ18O record of deep-

dwelling planktonic foraminifera G. hexagonus and the existing record of surface-dwelling plank-

tonic species G. ruber [Pena et al., 2008] were also graphically tuned to the LR04 stack. In addi-

tion, the ash layer “L” with a previously estimated age of 230±10 kyr [Ninkovich and Shackleton, 

1975] was considered as well. 

In Chapter 5, the long-term G. hexagonus record of ODP Site 1240 was compared to a pub-

lished data set from a Bering Sea sediment core (U1342; 54.83°N, 176.92°E, 818 m) [Knudson 

and Ravelo, 2015a] and a published sediment record from the South Pacific (SO136-003/MD06-

2990; 42.19°S, 169.55°E, 943 m) [Ronge et al., 2015]. The age models of both cores were again 

refined using radiocarbon dates (where available) and visual alignment to the global benthic stack 

LR04. A more detailed description about the revised stratigraphy and the newly generated age 

points for all three sediment cores is given in Chapter 5.2.2 and Table S5.7.1. 
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Abstract 

Insight into past changes of upper ocean stratification, circulation, and nutrient signatures rely 

on our knowledge of the Apparent Calcification Depth (ACD) and ecology of planktonic 

foraminifera, which serve as archives for paleoceanographic relevant geochemical signals. The 

ACD of different species varies strongly between ocean basins, but also regionally. We 

constrained foraminiferal ACDs in the Western Pacific Warm Pool (Manihiki Plateau) by 

comparing stable oxygen and carbon isotopes (δ18Ocalite, δ13Ccalcite) as well as Mg/Ca ratios from 

living planktonic foraminifera to in-situ physical and chemical water mass properties (temperature, 

salinity, δ18Oseawater, δ13CDIC). Our analyses point to Globigerinoides ruber as the shallowest 

dweller, followed by Globigerinoides sacculifer, Neogloboquadrina dutertrei, Pulleniatina obliqui-

loculata and Globorotaloides hexagonus inhabiting increasingly greater depths. These findings 

are consistent with other ocean basins; however, absolute ACDs differ from other studies. The 
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uppermost mixed-layer species G. ruber and G. sacculifer denote mean calcification depths of 

~95 m and ~120 m, respectively. These western Pacific ACDs are much deeper than in most 

other studies and most likely relate to the thick surface mixed layer and the deep chlorophyll 

maximum in this region. Our results indicate that N. dutertrei appears to be influenced by mixing 

waters from the Pacific Equatorial Divergence, while P. obliquiloculata with an ACD of ~160 m is 

more suitable for thermocline reconstructions. ACDs of G. hexagonus reveal a deep calcification 

depth of ~450 m in oxygen-depleted, but nutrient-rich water masses, consistent to other studies. 

As the δ13C of G. hexagonus is in near-equilibrium with ambient seawater, we suggest this 

species is suitable for tracing nutrient conditions in equatorial water masses originating in extra-

topical regions. 

3.1 Introduction 

Geochemical signals of planktonic foraminifera shells (= tests) are frequently used for 

paleoceanographic studies as they well reflect past environmental conditions [e.g. Shackleton, 

1974; Ravelo and Fairbanks, 1992; Nürnberg, 1995; Nürnberg et al., 1996; Bemis et al., 1998; 

Elderfield and Ganssen, 2000; Lea et al., 2000]. Many species, however, are known to migrate 

through the water column during their life cycle and thus, their implemented geochemical signals 

most likely provide an integrated signal across both the entire water depth range and the entire 

ontogenetic (calcification) cycle of the species [e.g. Hemleben and Bijma, 1994]. Hence, the 

foraminiferal habitat depths determined by these geochemical signals are best described by the 

term Apparent Calcification Depth (ACD). It should be noted that the shell weight and therefore 

the chemical signature of the shell as a whole is mainly determined by the chemical composition 

of the last few chambers. 

Approaches using planktonic foraminifers as biotic carriers of geochemical signals generally 

emphasize the importance of the knowledge of foraminiferal ACDs. Since the first plankton tow 

studies of Bé [1959, 1962], efforts were launched to most reliably define the foraminiferal depth 

habitat [Thunell and Honjo, 1981; Fairbanks et al., 1982; Thunell et al., 1983]. With the 

development of geochemical analysis on foraminiferal tests, it was further possible to assess 

foraminiferal ACD [Emiliani, 1955; Shackleton, 1974; Nürnberg, 1995; Faul et al., 2000; King and 

Howard, 2005; Regenberg et al., 2009; Steph et al., 2009; Wilke et al., 2009; Birch et al., 2013; 

Wejnert et al., 2013]. These studies reveal significant regional intraspecific differences in the ACD 

[Faul et al., 2000; Steph et al., 2009]. The species Globigerinoides ruber, for example, is often 

referred to as a “surface dweller”, i.e. living within the upper 30 m of the water column [Hemleben 

et al., 1989; Faul et al., 2000; Steph et al, 2009; Birch et al., 2013]. However, in cases of high 

sea-surface temperatures (SST) and a deep chlorophyll maximum (DCM), it has been shown to 

descend and calcify in deeper waters [Fairbanks et al., 1982; Wejnert et al., 2013]. Contrary, the 

ACDs of Neogloboquadrina dutertrei scatter within 40 – 200 m water depth range [Hemleben et 

al., 1989; Dekens et al., 2002; Steph et al., 2009; Faul et al., 2000; Nürnberg et al., 2015]. 



3.0 MANUSCRIPT I 

 -27- 

Particularly, during strong upwelling the ACD depth can shoal from within the thermocline to 

distinctly shallower waters [Loubere, 2001]. As the studies are scattered over the world oceans, 

reliable estimations of the ACDs of planktonic foraminifera in a specific area remains a challenge, 

which is further hampered by logistical difficulties. 

The Western Pacific Warm Pool (WPWP) is the largest warm water area on Earth with SSTs 

consistently higher than 28°C (Figure 3.1a) [Yan et al., 1992]. The WPWP deep thermocline 

(~175 – 300 m in the centre of the WPWP) [Andreason and Ravelo, 1997] allows for a large heat 

capacity, making it the major source of heat and moisture transfer from low to high latitudes. In 

contrast, in  the eastern equatorial Pacific  (EEP) the thermocline reaches  depths as shallow as 

 

Figure 3.1. Upper ocean conditions of the equatorial Pacific. a: Annual sea-surface temperatures 

(SSTs) with multinet position SO225-21-3 and selected profile line shown in b (dashed line). WPWP 

denotes the Western Pacific Warm Pool, PEqD the Pacific Equatorial Divergence. Major surface 

(black) and intermediate (grey) currents are indicated with arrows; NEC = North Equatorial Current fed 

by the NPIW = North Pacific Intermediate Water, SEC = South Equatorial Current fed by the SOIW = 

Southern Ocean Intermediate Water, and EUC + TJ = Equatorial Undercurrent and Tsuchiya Jets 

[after Tomczak and Godfrey, 1994; Firing et al., 1998; Rowe et al., 2000]. b: Longitudinal depth 

section of annual nitrate along 3°S (see dashed line in a) with multinet position SO225-21-3 (black 

vertical line). Temperature map and section were generated with Ocean Data View [Schlitzer, 2012] 

using World Ocean Atlas 13 Data [a; Locarnini et al., 2013] and GLODAP bottle data [b; Key et al., 

2004]. c: Chlorophyll-a concentration of the upper 200 m showing a seasonal and latitudinal change in 

the depth of the deep chlorophyll maximum. Profiles taken from FLUPAC cruise (black line, 0°, 164°W, 

October 1994) [Blain et al., 1997], Alizé 2 cruise at 0°, 165°W (wide strippled line, February 1991) 

[Reverdin et al., 1991] and Alizé 2 cruise at 2.5°S, 168°W (narrow strippled line, February 1991) 

[Reverdin et al., 1991], respectively. 
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30 m [Locarnini et al., 2013]. This asymmetric behaviour is also clearly seen in the zonal nitrate 

section (Figure 3.1b), which points towards overall oligotrophic conditions in the WPWP and 

contrasting with fertile conditions in the EEP. Fluctuations in size and temperature of the WPWP 

are important drivers for the El Niño Southern Oscillation (ENSO), the Asian monsoon system 

and, through atmospheric teleconnections, the global climate system [Sagawa et al., 2012]. 

Despite the importance of the WPWP in the climate system, only little information about 

foraminiferal ACDs are available. To-date, the limited number of studies from the WPWP have 

concentrated on reconstructing upper ocean conditions with known ACDs from different regions 

[e.g. Wara et al., 2005; Russon et al., 2010] or focused on foraminiferal assemblages from the 

center of the WPWP near New Guinea [Kawahata et al., 2002; Yamasaki et al., 2008], or on 

plankton tows and surface sediments from the central equatorial Pacific [Watkins et al., 1996; 

Lynch-Stieglitz et al., 2015].  

Our multinet study from the Manihiki Plateau attempts for the first time to define the modern 

ACDs of selected planktonic foraminifera at the south-eastern margin of the WPWP. Five modern 

planktonic foraminiferal species are studied: G. ruber (white), Globigerinoides sacculifer, 

N. dutertrei, Pulleniatina obliquiloculata and Globorotaloides hexagonus. We measured stable 

oxygen and carbon isotopes (δ18Ocalcite, δ13Ccalcite) as well as Mg/Ca ratios on the foraminiferal 

calcite and compared these data to in-situ physical and chemical seawater characteristics 

(temperature, salinity, δ18Oseawater, dissolved inorganic carbon δ13CDIC). By doing so, we were able 

to better constrain species-specific ACD in an area with the thickest and warmest mixed layer on 

Earth and to determine the species-specific carbon-isotope disequilibrium. By doing so, we 

developed a great understanding of regional foraminiferal ACDs in the WPWP. We were then 

able to define to what extent the geochemical measurements deviate from predictions based on 

empirical relationships. Our study can be used to inform on what species to use for upper ocean 

water mass reconstructions of WPWP internal dynamics. 

3.1.1 Foraminiferal ecological preferences and hydrographic setting 

The abundance of planktonic foraminiferal species is strongly affected by environmental 

parameters such as, the thermal structure of the water column, salinity, and food supply [e.g. 

Bijma et al., 1990; Watkins et al., 1996; King and Howard, 2003; Žarić et al., 2005]. Culture 

experiments and surface-sediment samples indicate temperature as one of the major 

environmental parameters affecting the foraminiferal biogeographic distribution [Bé and 

Tolderlund, 1971; Bijma et al., 1990; Morey et al., 2005]. Even though most planktonic 

foraminifera have a large temperature tolerance of about 14 – 32°C [Bijma et al., 1990; Mulitza et 

al., 1998], they all have an individual, far more restricted optimum temperature (e.g. 23.5°C for 

G. sacculifer) at which chamber formation, gametogenesis, and food acceptance is highest 

[Bijma et al., 1990]. In contrast, the salinity tolerance range in planktonic species is wider than 

variations encountered in the open oceans (e.g. 24 – 47 in G. sacculifer) [Bijma et al., 1990], 
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thus, salinity plays most likely a marginal role for the foraminiferal distribution. Salinity, however, 

can influence the vertical distribution of planktonic foraminifera indirectly by changing the density 

structure of the water column and thereby restricting vertical movement and the accumulation of 

nutrients in certain depths [Bijma et al., 1990]. 

The WPWP at the Manihiki Plateau is characterized by high annual SSTs and sea-surface 

salinities (SSS) of 28 ± 0.2°C and 35 ± 0.03 (psu), respectively [Locarnini et al., 2013; Zweng et 

al., 2013]. Sediment trap results from the WPWP reveal that despite the small seasonal SST 

range of ±0.2°C, planktonic foraminifera are not present all year round in high abundances 

[Kawahata et al., 2002; Lin et al., 2004]. The production is rather controlled by local nutrient 

availability and light intensity [Kawahata et al., 2002]. As a consequence of the oligotrophic 

surface waters in the WPWP, with nutrient concentrations of <0.1 mM NO3
- and <0.2 mM PO4 

[Blanchot et al., 2001; Le Borgne et al., 2002; Rafter and Sigman, 2015], primary production is 

low and foraminiferal fluxes are modest (mean 171 shells m-2 day-1) [Kawahata et al., 2002]. In 

contrast, the high-nutrient low-chlorophyll (HNLC) region of the Pacific Equatorial Divergence is 

enriched in macronutrients (>3 mM NO3
-; >0.4 mM PO4) and foraminiferal fluxes are higher (up to 

430 shells m-2 day-1) [Thunell and Honjo, 1981]. Through a complex and highly dynamic current 

system [e.g. Wyrtki and Kilonski, 1984; Fine et al., 1994; Tomczak and Godfrey, 1994; Johnson 

and Moore, 1997; Rowe et al., 2000; Goodman et al., 2005; Grenier et al., 2011], including the 

South Equatorial Current (SEC), the persistent eastward-directed sub-surface Equatorial 

Undercurrent (EUC) and the Tsuchiya Jets [after Tsuchiya, 1972], nutrients are transported via 

intermediate and mode waters from the extra-tropical HNLC regions to the thermocline of the 

western equatorial Pacific and upwell along the equator in the Pacific Equatorial Divergence. 

In the vicinity of the nutricline, chlorophyll-a concentrations reach a maximum between 40 and 

90 m water depths in the WPWP indicating the DCM (Figure 3.1c). Planktonic foraminifera 

respond to the distribution of chlorophyll and high abundances are often associated with the DCM 

[Fairbanks et al., 1982; Schiebel et al., 2001]. Even though the depth of the DCM does not 

change significantly from east to west [La Borgne et al., 2002], it changes meridionally. Upwelling 

decreases away from the equator and, as a consequence, the DCM deepens. The DCM depth 

also varies seasonally: while the DCM at the equator is situated at ~60 m (range ~40 – 80 m, 

values >0.3 mg m-3) during austral summer, it shoals during autumn and reaches its shallowest 

position during austral winter (25 – 70 m, maximum 40 m) [Le Borgne et al., 2002]. 

Variations in upper ocean temperatures, depth of the thermocline and hence, nutrients in the 

upper water column, are influenced by the ENSO climate phenomenon [Collins et al., 2010]. 

Nevertheless, the Oceanic Niño Index (ONI), a standard for identifying El Niño and La Niña 

events through averaging SST anomalies, was only slightly increased (0.2 – 0.4°C) from August 

to December 2012 [NOAA, 2015a], thus indicating only a tendency for a very weak El Niño (ONI 

>0.5°C).  
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3.2 Material and Methods 

3.2.1 Sample material 

During the RV SONNE cruise SO225, in-situ temperature, salinity and oxygen measurements 

were conducted with a Conductivity-Temperature-Depth (CTD) device equipped with a 24 in each 

case 10 L bottle-rosette system (SO225-21-1; 3.05°S, -165.056°W) [Werner et al., 2013]. The 

water column was sampled at 15 depths, and for each water depth a 50 ml and a 100 ml 

subsamples was taken and stored in glass bottles for δ13C and δ18Oseawater measurements, 

respectively. Water samples for carbon isotope analysis were poisoned with 100 µl of saturated 

HgCl2 solution to prevent biological activity and sealed with beeswax to prevent interaction with 

air. 

At the same location where SO225-21-1 was recovered, a multiple open/closing plankton net 

was run during the night at the northernmost edge of the Manihiki Plateau in the WPWP (SO225-

21-3) [Werner et al., 2013] (Figure 3.1a). The multinet (HydroBios, Kiel) with a square mouth 

opening of 50 x 50 cm, 55 µm mesh size, and five net bags allowed stratified vertical sampling in 

five depth intervals within the first 500 m of the water column. The depths were selected after 

viewing the CTD cast and thus, included the sea surface (0 – 50 m), sub-surface (50 – 100 m), 

upper thermocline (100 – 200 m), lower thermocline (200 – 300 m) and sub-thermocline (300 –

500 m). These depth intervals are often investigated in paleoceanographic research [e.g. Spero 

et al., 2003; Wara et al., 2005; Kiefer et al., 2006; Pena et al., 2008; Regenberg et al., 2009; 

Nürnberg et al., 2015], highlighting the need to better understand the ACD of the species 

calcifying in these depths. Since the area is known for low primary production, we selected 

relatively large net depth intervals to capture enough material for our analyses. Immediately after 

collection, plankton tow samples were preserved with an Ethanol-Bengal Rose solution. 

3.2.2 Handling foraminiferal assemblage counts 

In the laboratory, plankton net samples were sieved over 1000 µm and 63 µm. Material 

>1000 µm was analysed for spinose species attached to particulate organic matter. Within the 

fraction 63 – 1000 µm intact planktonic foraminifera >125 µm were wet picked using a binocular 

microscope and dried afterward. As all individuals contained coloured cytoplasm in the early 

chambers, we infer that the samples were collected alive or shortly after they died. Smaller-sized 

planktonic foraminifera are more difficult to define taxonomically. As we primarily focus on size 

fractions well established for paleoceanographic purposes (>250 µm), only foraminifera >125 µm 

were counted. Depending on the amount of material, samples were either quantitatively split into 

aliquots and approximately 200 – 400 foraminifera were identified or the whole sample was 

counted (Supplement Table S3.5.1). Further, we calculated the density of different species over 

the netted depth range using the formula: # / (a*a)*b; with # being the number of counted 



3.0 MANUSCRIPT I 

 -31- 

specimen, a being the multinet-opening in meters and b the depth interval the respective net was 

hauled. 

Planktonic foraminiferal taxonomy follows the work of Parker [1962], Bé [1977] and Hemleben 

et al. [1989]. We are aware that G. ruber (white) exists in different morphotypes. The 

determination of the morphotypes sensu strictu (s.s.) and sensu lato (s.l.) follows the concept of 

Wang [2000], in which G. ruber s.s. has spherical chambers sitting symmetrically over previous 

sutures with high arched apertus and G ruber s.l. corresponds to more compressed subspherical 

chambers with a small aperture. These different morphotypes have been shown to dwell at 

slightly different water depths, yet always at the sea surface [e.g. Wang, 2000; Steinke et al., 

2005; Kuroyanagi et al., 2008]. For our analyses we selected mainly the morphotype s.s., but due 

to limited amount of material, we also included some specimen of the slightly deeper-dwelling 

morphotype s.l. for the isotope analyses when necessary. 

3.2.3 Determination of Mg/Ca ratios and calculation of water 
temperatures 

Mg/Ca ratios of planktonic foraminiferal calcite were measured to assess the water 

temperature during test growth. Prior to the analysis, the cytoplasm within the test was removed 

by treating the foraminiferal shells with 7 % sodium hypochlorite (NaClO) before rinsing with 

deionised water. Intact specimens were selected from the 320 – 760 µm size fraction as a 

narrower size range was prevented by the rather low amount of material (Table 3.1). 

The geochemical analyses were obtained with the Excimer ArF 193 nm laser ablation system 

from NEW Wave ESI with a two-volume ablation cell design, coupled to an Agilent 7500cs 

Inductively Coupled Plasma-Mass Spectrometer (LA-ICP-MS) at GEOMAR. This micro-analytical 

technique enables the measurement of element/Ca through the shell wall of individual chambers. 

However, for the habitat assessment we use the mean Mg/Ca ratios of all the chambers in the 

final whorl of each shell that could be targeted with the laser. Hemleben and Bijma [1994] 

demonstrated that the vast majority of the shell mass and therefore most of the geochemical 

signal is contained in the last few chambers. Measuring as many chambers as possible is 

important as Mg/Ca seems to vary randomly from chamber to chamber in cultures under constant 

environmental conditions [de Nooijer et al., 2014]. Thus, we analysed as many chambers as 

possible to ensure that we have sampled as much of the shell as possible. Culturing studies have 

investigated the difference between whole-test calibrations and Mg/Ca-temperature equations 

based on Mg/Ca measurements of the last chambers and found no significant difference between 

them [Kunioka et al., 2006; Dueñas-Bohórquez et al., 2009, 2011; Spero et al., 2015]. The laser 

was targeted on the test surface, ablating through the test wall with a 50 µm diameter spot size, 

and stopped when the wall was penetrated. Ablations were conducted in a He atmosphere and 

the laser energy density was between 0.97 and 1.85 J/cm2 with a laser repetition rate of 5 Hz. 

The ablation was done on as many chambers as possible (f to f-4), always proceeding from the 
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Table 3.1. Overview of net collections of five paleoceanographically important foraminiferal species. 

The depth ranges from which the foraminifera were selected, species abundances, foraminiferal shell 

sizes, number of tests measured as well as geochemical analyses are given.  

Species Net depth 
[m] #/m3 

Shell size 
[range in 
µm] 

Number of 
tests 
measured 

Accomplished measurement 

δ18Ocalcite [‰] δ13Ccalcite [‰] 
Mean 
Mg/Ca 

[mmol/mol] 

G. ruber 0 – 50 5.60 150 – 250 18 -2.25 ± 0.012 -0.04 ± 0.009 
 

 
0 – 50 5.60 250 – 300 11 -2.17 ± 0.01 0.71 ± 0.008 

 
 

50 – 100 6.00 150 – 250 17 -2.68 ± 0.02 0.02 ± 0.006 
 

 
50 – 100 6.00 250 – 300 14 -2.40 ± 0.004 0.46 ± 0.007 

 
 

50 – 100 6.00 300 – 350 9 -2.47 ± 0.05 0.79 ± 0.025 
 

 
100 – 200 0.84 ~410 1 

  
4.71 ± 0.4 

 
300 – 500 0.12 ~320 1 

  
5.10 ± 0.8 

G. sacculifer 0 – 50 11.04 300 – 350 7 -2.30 ± 0.008 1.18 ± 0.008 
 

 
0 – 50 11.04 350 – 500 4 -2.31 ± 0.007 1.31 ± 0.004 

 
 

0 – 50 11.04 ~520 1 
  

4.27 ± 0.6 

 
0 – 50 11.04 ~520 1 

  
4.50 ± 0.4 

 
50 – 100 9.84 300 – 350 5 -2.33 ± 0.05 0.83 ± 0.025 

 
 

50 – 100 9.84 350 – 500 4 -2.32 ± 0.006 1.00 ± 0.006 
 

 
50 – 100 9.84 350 – 500 4 -1.89 ± 0.01 1.34 ± 0.008 

 
 

50 – 100 9.84 >500 2 -2.27 ± 0.01 1.53 ± 0.007 
 

 
100 – 200 6.64 300 – 350 6 -2.39 ± 0.01 0.56 ± 0.007 

 
 

100 – 200 6.64 350 – 500 5 -2.43 ± 0.01 1.02 ± 0.009 
 

 
100 – 200 6.64 350 – 500 5 -1.94 ± 0.01 0.73 ± 0.005 

 
 

100 – 200 6.64 >500 3 -2.11 ± 0.04 0.99 ± 0.018 
 

 
200 – 300 0.40 >500 2 -2.15 ± 0.02 1.29 ± 0.023 

 
 

300 – 500 0.40 ~750 1 
  

4.88 ± 0.2 
N. dutertrei 50 – 100 8.00 250 – 300 12 -1.90 ± 0.02 -0.14 ± 0.017 

 
 

50 – 100 8.00 300 – 350 9 -2.15 ± 0.02 -0.08 ± 0.008 
 

 
50 – 100 8.00 350 – 500 6 -2.21 ± 0.01 0.03 ± 0.006 

 
 

100 – 200 4.32 ~360 1 
  

3.21 ± 0.2 
P. obliquiloculata 50 – 100 20.64 >500 2 -1.75 ± 0.04 -0.01 ± 0.028 

 
 

50 – 100 20.64 ~520 1 
  

3.16 ± 0.05 

 
100 – 200 20.48 350 – 500 4 -1.62 ± 0.01 0.06 ± 0.004 

 
 

100 – 200 20.48 350 – 500 4 -1.83 ± 0.01 -0.01 ± 0.003 
 

 
100 – 200 20.48 >500 2 -1.54 ± 0.004 0.26 ± 0.016 

 
 

100 – 200 20.48 >500 2 -1.49 ± 0.01 0.25 ± 0.012 
 

 
100 – 200 20.48 ~675 1 

  
3.11 ± 0.1 

 
200 – 300 0.52 >500 2 -1.60 ± 0.03 0.11 ± 0.008 

 
 

200 – 300 0.52 >500 2 -1.42 ± 0.01 0.41 ± 0.004 
 

 
300 – 500 0.20 ~640 1 

  
2.85 ± 0.3 

G. hexagonus 300 – 500 1.76 250 – 300 10 1.39 ± 0.05 -0.06 ± 0.01 
 

 
300 – 500 1.76 300 – 350 9 1.59 ± 0.01 0.22 ± 0.003 

 
 

300 – 500 1.76 350 – 500 6 1.49 ± 0.005 0.24 ± 0.006 
 

 
300 – 500 1.76 ~400 1 

  
1.36 ± 0.4 

 

outside of the test towards the inside. Time-resolved signals of 24Mg were selected for integration 

and the mean background intensities (gas blank) were subtracted. Signal intensities were 

internally standardised to 43Ca to account for variations in ablation yield. Mg/Ca intensity ratios 

were calibrated with analyses of the international reference NIST 610 and NIST 612 glasses after 
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every 10 sample spots [using values from Jochum et al., 2011], which were ablated with a higher 

energy density (around 2.65 J/cm2). A powder pellet of the powdered reference material JCp-1 

(Porites sp.) was ablated like a sample and the repeated measurements during the analytical 

session (n = 6) gave a relative standard deviation of 7.4 % (1 σ) for Mg/Ca with an average value 

of ~3.707 mmol/mol that is 11 % less than the solution ICP-MS consensus value from Hathorne 

et al. [2013] (4.199 mmol/mol). 

Core top and culture studies point towards a species-specific dependency of the Mg 

incorporation into foraminiferal tests due to the interplay of biological processes and ecological 

behaviour [e.g. Nürnberg et al., 1996; Lea et al., 1999; Regenberg et al., 2009; Nehrke et al., 

2013; Mewes et al., 2015]. As a consequence, various species-specific calibrations have been 

established that have all basic similarities, but produce significantly different temperature 

estimates when applied to the same Mg/Ca ratios. Hence, the accurate selection of the applied 

calibration curve is crucial. To find the most reliable calibration curve for each investigated 

foraminiferal species from the multinet samples, we converted the measured whole-shell 

foraminiferal Mg/Ca ratios (Supplement Table S3.5.2) into temperatures using generic and 

species-specific equations if available (Supplement S3.5.3, Supplement Table S3.5.3). At the 

depth interval in which a species was found in highest abundance on the Manihiki Plateau (see 

Chapter 3.3.2), we determined the mean temperature during sampling time from both CTD data 

and the seasonal range in temperature from the WOA13 data [Locarnini et al., 2013] at the same 

location. By comparing the in-situ temperatures with the Mg/Ca-derived temperatures, we 

identified the most suitable calibration equation for each species at our study site (Table 3.2, 

Supplement S3.5.3). 

Table 3.2. Equations used to convert foraminiferal Mg/Ca into temperatures and to calculate 

equilibrium δ18Oequilibrium. 

Species Type of sample Water mass Equation Reference 

   Mg/Ca = B*exp(A*T)  

   B A  
G. ruber Surface sediment 

(0 – 1 cm)  
Sea-surface and sub-
surface (0 – 100 m) 

0.40 0.09 Regenberg et al. 
[2009] 

G. sacculifer Surface sediment 
(0 – 1 cm) 

Sea-surface and sub-
surface (0 – 100 m) 

0.37 0.09 Dekens et al. 
[2002] 

N. dutertrei Surface sediment 
(0 – 1 cm)  

Upper thermocline 
(100 – 200 m) 

0.65 0.065 Regenberg et al. 
[2009] 

P. obliquiloculata Sediment-trap Upper thermocline 
(100 – 200 m) 

0.18 0.12 Anand et al. 
[2003] 

G. hexagonus Surface sediment 
(0 – 1 cm) 

Sub-surface (300 – 
500 m) 

0.52 0.10 Elderfield and 
Ganssen [2000] 

   T = a+b(δ18Ocalcite- δ18Oseawater)-
c(δ18Ocalcite- δ18Oseawater)2  

   a b c  

 Inorganic Sub-thermocline (300 – 
500 m) 16.1 -4.64 0.09 Kim and O’Neil 

[1997] 

 
Living foraminifera Sea-surface to upper 

thermocline (0 – 200 m) 14.32 -4.28 0.07 Mulitza et al. 
[2004] 
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3.2.4 Stable isotope analyses  

Stable oxygen and carbon isotope ratios (δ18Ocalcite and δ13Ccalcite) of the foraminiferal tests 

(Table 3.1) were determined to estimate the ACD by comparing measured δ18Ocalcite to predicted 

δ18Ocalcite as well as to assess the deviation from prediction based on empirical relationships. The 

isotope ratios were measured on a ThermoScientific MAT 253 mass spectrometer coupled to an 

automatic carbonate preparation device Kiel CARBO IV at AWI. The isotope measurements were 

calibrated via the international standard NBS 19 to the VPDB scale. All results are given in the 

common δ-notation versus VPDB. The precision of the measurements, determined over a one-

year period and based on repeated analysis of an internal laboratory standard (Solnhofen 

limestone), is ±0.06 ‰ and ±0.08 ‰ (1 σ) for carbon and oxygen isotopes, respectively. 

Measurements of the oxygen isotope composition of seawater (δ18Oseawater) were performed 

on a ThermoScientific Delta S mass spectrometer and those for the seawater dissolved inorganic 

carbon isotope composition (δ13CDIC) were made with a ThermoScientific MAT 252 coupled to a 

Gas Bench II at AWI. The δ18Oseawater values are given in δ-notation versus VSMOW and δ13CDIC 

values versus VPDB. The precision determined over a one-year period is ±0.03 ‰ (1 σ) for 

δ18Oseawater and ±0.1 ‰ (1 σ) for δ13CDIC. 

3.2.5 Estimation of the apparent calcification depth 

We constrained the ACDs of selected planktonic foraminiferal species by combining two 

approaches. This enables us to assess the ACD with improved accuracy. First, we compared the 

measured foraminiferal    δ18Ocalcite to calculated δ18Oequilibrium values at different water depths and 

hence, different temperatures. The water depth from which δ18Ocalcite matches δ18Oequilibrium is 

taken as the isotope ACD (Table 3.3). The expected δ18Oequilibrium  values were calculated using 

paleotemperature-equations of Shackleton [1974], Kim and O’Neil [1997], Bemis et al. [1998; 

Orbulina universa high light], and Mulitza et al. [2004] (Supplement Table S3.5.4). In them, we 

inserted our measured variables foraminiferal δ18Ocalcite, seawater δ18O (converted into VPDB by 

subtracting -0.27 ‰) [Hut, 1987], and modern temperatures from CTD data. Different equations 

were tested to show that relative species order in the water column is independent of the δ18O-

paleotemperature equation. The absolute isotope-ACDs, however, differ with each equation 

(Supplement Table S3.5.4). In cases where δ18Ocalcite values were lower than predicted 

δ18Oequilibrium values at the sea surface, ACDs of 5 m water depth were assigned (Supplement 

Table S3.5.4). ACDs derived by Shackleton [1974] and Kim and O’Neil [1997] are similar at the 

sea surface. In deeper waters, Shackletons’ [1974] equation produces markedly shallower 

isotope-ACDs than Kim and O’Neils’ [1997]. On the other hand, the equations of Bemis et al. 

[1998] and Mulitza et al. [2004], that were both generated using planktonic foraminifera, yield 

deeper isotope-ACDs at all depths. Nevertheless, using Mulitza et al. [2004] for upper-ocean 

dwelling species (0 – 220 m), the number of samples with measured δ18Ocalcite that are lower than 
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Table 3.3. Specification of Apparent Calcification Depth (ACD) of foraminiferal species at Manihiki 

Plateau using (1) measured δ18Ocalcite values that were placed at water depths corresponding to 

theoretical δ18Oequilibrium values depending on water temperature and salinity. (2) Mg/Ca derived 

temperature estimates placed at water depths corresponding to in-situ measured austral summer 

temperatures [Werner et al., 2013] and seasonal World Ocean Atlas 2013 temperature ranges 

[Locarnini et al., 2013]. Each line represents one single analysed sample. 

 
ACD [m water depth]  

Combined isotope and 
temperature ACD 
[m water depth] 

Species 
using  

δ18Oeq Dec. 
2012 

using seasonal δ18Oeq using 
Temperature 

during sampling 
(Dec. 2012) 

using seasonal                
temperature ACD 

range Mean ACD 
Shallowest Deepest Shallowest Deepest 

G. ruber 152 106 126    

  

 
154 113 137    

 
77 65 66    

 
138 91 105    

 
124 85 96    

    136 92 109 

    5 5 16 

 mean isotope ACD: 109 mean temperature ACD: 61 5 – 154 95 ± 44 
         
G. sacculifer 151 101 118    

 

 
 

 
151 100 118    

 
151 98 115    

 
151 99 117    

 
161 140 156    

 
152 104 124    

 
141 93 107    

 
132 89 101    

 
159 135 154    

 
156 119 145    

 
154 115 140    

    141 100 112 

    126 67 105 

    5 5 5 

 mean isotope ACD: 129 mean temperature ACD: 74 5 – 161 117 ± 39 
         
N. dutertrei 160 140 156    

  

 
154 115 140    

 
153 110 132    

    154 140 150 

 mean isotope ACD: 140 mean temperature ACD: 148 110 – 160 142 ± 16 
         
P. obliquilo- 
culata 

163 151 160    

  

 
166 154 164    

 
162 146 158    

 
168 156 166    

 
169 157 168    

 
167 154 164    

 
171 159 170    

    158 145 155 

    159 146 156 

    160 151 161 

 mean isotope ACD: 162 mean temperature ACD: 155 145 – 171 159 ± 7 
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Table 3.3. continued. 

G. hexagonus 431 427 435    

375 – 514 450 ± 46 

 
498 509 514    

 
467 469 473    

    375 396 403 

 mean isotope ACD: 469 mean temperature ACD: 391 

 

the respective δ18Oequilibrium at the sea surface is minimised. In deeper waters, however, the 

equation of Mulitza et al. [2004] yield isotope-ACDs of up to 660 m (Supplement Table S3.5.4), 

and these are deeper than the nets were hauled. As a consequence, we selected the equation by 

Kim and O’Neil [1997], which was calibrated using inorganic calcite, for sub-thermocline waters 

(220 – 500 m, Table 3.2). Seasonal variations in δ18Oequilibrium due to varying temperature are 

considered by using temperature data from the WOA13 database to account for temperature 

variationsduring the foraminiferal life cycle (Table 3.3) [Locarnini et al., 2013]. To assess the 

influence of species-specific offsets from δ18Oequilibrium, we corrected the measured δ18Ocalcite 

values for disequilibrium effects [values are taken from Niebler et al., 1999 and Steph et al., 2009] 

and recalculated the δ18O-derived ACDs with the Mulitza et al. [2004] and Kim and O’Neil [1997] 

equations (Supplement Table S3.5.4). 

In a second step, we compared the temperatures converted from the average Mg/Ca of living 

specimens (Table 3.1) to the ocean temperatures prevailing during the time of sampling 

(December 2012) at the sample location and placed the temperature-ACD at the according water 

depth (Table 3.3). To account for seasonal variations in the temperature record, we also 

compared the derived Mg/Ca temperatures to austral winter and austral summer temperatures 

(data from WOA13) (Table 3.3) [Locarnini et al., 2013]. 

In a last step, we combined both ACD approaches and determined the mean ACD. We are 

aware, that we have an uneven distribution between δ18O and Mg/Ca measurements (Table 3.1). 

Thereby, more credit is given towards the δ18O-derived ACD. To validate the combined mean 

ACD, we used the mean temperature and mean δ18Ocalcite of the respective species and 

calculated the δ18Owater. For this purpose we selected different paleotemperature equations 

(Supplement S3.5.5, Supplement Table S3.5.5) and rearranged the equations for the δ18Owater. 

The δ18Owater was then compared to the measured δ18Oseawater (Supplement S3.5.5). It 

demonstrates that the calculated δ18Owater displays the measured δ18Oseawater curve and hence, 

supports the use of a combined isotope and Mg/Ca approach. 
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3.3 Results and Discussion 

3.3.1 Hydrological conditions in the upper ocean water column 

At the time of multinet sampling (December 2012) at station SO225-21 the mixed layer was 

characterized by a SST of 27.9°C, a SSS of 35.5, an oxygen concentration > 170 µmol/l and a 

δ18Oseawater of +0.5 ‰ (Figure 3.2). The SST and SSS agree well with the long-term WOA13 

dataset [Locarnini et al., 2013] showing a deep surface mixed layer (SML) extending to 105 m 

water depth, below which temperature decreases steadily. The main thermocline is located 

between 130 m and 230 m water depth and reflects an overall temperature decline of ~16°C 

(from 28°C to ~12°C). 

 

Figure 3.2. Water column characteristics of the uppermost 500 m at multinet station SO225-21-03 

along the towed net intervals. a: Temperature and b: salinity profile from CTD casts in December 2012 

(SO225-21-01) [Werner et al., 2013]. Blue/red curves show the temperature/salinity during the time of 

multinet sampling with the position of the Equatorial Undercurrent (EUC). Grey shaded areas 

delineate long-term seasonal temperature and salinity variations [Locarnini et al., 2013; Zweng et al., 

2013]. c: Measured δ18Oseawater from CTD station SO225-21-01 (purple, this study); solid/dashed black 

lines indicate δ18Oseawater at 160°W/168°W, respectively, using the Schmidt et al. [1999] database. d: 

Oxygen concentration from CTD cast in December 2012 [Werner et al., 2013] showing three oxygen 

minima (OM). Dark brown stars indicate the chlorophyll-a maxima during austral winter (filled symbol) 

[Blain et al., 1997] and austral summer (open symbol) [Reverdin et al., 1991] (data shown in Figure 

3.1c), e: δ13CDIC values measured on water samples from CTD casts (brown, this study) and nitrate 

concentration of the water column (green) obtained from GLODAP bottle data [Key et al., 2004]. f: 



 3.0 MANUSCRIPT I 

 -38- 

Covariance between δ13CDIC and [NO3
-] at 3°S and 168°W yields a relationship of δ13CDIC= -0.02 * 

[NO3
-] + 0.98 (r2 = 0.73). Arrows and numbers on the right denote the five net intervals of the multinet 

collection with sea surface (1), sub-surface (2), upper thermocline (3), lower thermocline (4) and sub-

thermocline (5). 

At the top of the thermocline, however, both temperature and salinity deviate from the long-

term average (Figure 3.2a and b). The temperatures are up to 2°C warmer between 125 and 

150 m. Salinities are significantly reduced between 125 and 160 m. These changes may indicate 

changes in the source area and speed of the EUC as a consequence of weaker trade winds in 

December 2012. In contrast, the comparison between δ18Oseawater values from the sampling site 

to 1991-profiles at 160°W and 168°W [Schmidt et al., 1999] reveals up to 0.2 ‰ heavier values 

(Figure 3.2c). As in the open ocean, δ18Oseawater is mainly affected by the evaporation/precipitation 

balance [Dansgaard, 1964] with heavier values attributed to higher evaporation, we assume an 

increase in evaporation probably related to stronger trade winds from 1991 until December 2012. 

This agrees with model experiments that show an acceleration of Pacific trade winds due to the 

intensification of the Walker circulation over the period 1992 – 2011 [McGregor et al., 2014]. 

Consequently, it seems that over the last decade trade wind strength and hence evaporation 

increased, but in December 2012 wind strength dropped for a short time, leading to a decrease in 

upwelling and thus to warmer and less saline waters at the top of the thermocline. Further 

support comes from the equatorial Pacific Zonal Wind field models in November – December 

2012 [NOAA, 2015b] and from the slightly increased Oceanic Niño Index (ONI) that indicates a 

very weak El Niño (ONI >0.5°C) and consequently weaker prevailing winds (see also Chapter 

3.1.1) [NOAA, 2015a]. 

Associated with the thermo- and halocline, oxygen concentrations decline in two steps, which 

points to two oxygen minima (OM) located at ~180 m and ~250 m (Figure 3.2d). Possibly both 

OM belong to one expansive OM that is separated by a chlorophyll maximum in which oxygen is 

produced. However, to verify this hypothesis a deeper chlorophyll-a profile extending to at least 

300 m water depth is needed. Oxygen concentrations further decline below the thermocline 

towards a less pronounced OM in ~450 m with concentrations of 57 µmol/l. The strongest OM in 

December 2012 (concentration of 44 µmol/l) is located at ~660 m water depth below the hauled 

nets. 

At the multinet sampling site, the overall range in δ13CDIC is from ~0.4 ‰ to ~1.1 ‰, achieving 

a maximum in the surface waters (Figure 3.2e). The δ13CDIC data start to decline below ~50 m 

and gradually decrease throughout the thermocline in response to remineralisation processes 

and the release of 12C to the ambient seawater. The overall shape of the δ13CDIC profile is 

anticorrelated to the GLODAP [NO3
-] profile [Key et al., 2004]. With increasing nitrate 

concentrations, the δ13CDIC values decrease simultaneously due to the concurrent uptake of 12C 

and nutrients during photosynthesis. The slope of this relationship depends on the fractionation of 
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δ13C during photosynthesis. Our δ13CDIC:[NO3
-] comparison yield a relationship of: δ13CDIC = -0.02 

* [NO3
-] + 0.98 (r2 = 0.73) (Figure 3.2f). 

3.3.2 Vertical distribution of planktonic foraminifers in the water 
column 

A total number of 20 taxa have been identified in the net collection from the Manihiki Plateau 

of which 16 could be identified on the species level (Supplement Table S3.5.1). Most common 

and abundant species (>10 %) are: Globorotalia menardii (mean relative abundance (MRA) 

22.7 %, range 7.8 % – 26.4 %), Pulleniatina obliquiloculata (MRA 15.4 %, range 5.2 – 19.6 %), 

Globigerinita glutinata (MRA 13.8 %, range 5.7 – 30.1 %), Globigerinella spp. (MRA 12.8 %, 

range 3.6 – 16 %) and Globorotalia spp. (MRA 10 %, range 3.6 – 10.8 %). Less abundant 

species (2 – 10 %) are Globigerinoides sacculifer (MRA 7.2 %, range 3.6 – 9.8 %), Neoglobo-

quadrina dutertrei (MRA 5.1 %, range 2.6 – 6.3 %), Globigerinoides ruber (white) (MRA 2.9 %, 

range 0.8 – 5 %) and Globoquadrina conglomerata (MRA 2.1 %, range 1 – 2.8 %). All other taxa 

occur in very low abundances (MRA <2 %). For further analyses, we selected four species often 

used in paleoceanographic research (G. ruber, G. sacculifer, N. dutertrei, and P. obliquiloculata) 

[e.g. Spero et al., 2003; Kiefer et al., 2006; Pena et al., 2008; Leduc et al., 2009; Nürnberg et al., 

2015; Rippert et al., 2015], although other species had a higher abundance in the water column 

during our expedition. The highest abundances (in #/m3) of the selected species were found 

between 0 and 100 m water depth (Figure 3.3). This is the depth interval with highest chlorophyll-

a vertical concentrations (Figure 3.1c), supporting the idea that nutrient distribution mainly 

determines the vertical distribution of foraminiferal species [Hemleben et al., 1989; Schiebel et al. 

 

Figure 3.3. Planktonic foraminiferal abundances (in specimen/m3) for five paleoceanographically 

important species in this study plotted with (on the left) in-situ data of temperature [Werner et al., 

2013] and chlorophyll-a (brown) [Reverdin et al., 1991]. Arrows and numbers on the right denote the 

five net intervals of the multinet collections with sea surface (1), sub-surface (2), upper thermocline 

(3), lower thermocline (4) and sub-thermocline (5). 
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al., 2001; Schiebel and Hemleben, 2005]. 

Sediment trap and surface sediment studies from tropical areas indicate that G. sacculifer and 

G. ruber dominate the foraminiferal abundances with >5 % and >10 %, respectively, with similar 

abundances in the Atlantic and Pacific for G. sacculifer (~10 %) and higher abundances of 

G. ruber in the Atlantic compared to the Pacific (~40 to ~18 %, respectively) [Thunell and Honjo, 

1981; Ravelo et al., 1990; Kawahata et al., 2002; Schmuker and Schiebel, 2002; Yamasaki et al., 

2008]. Our MRAs, however, show abundances of these species of <10 % in December 2012. 

This is in agreement with sediment trap analyses from the West Caroline Basin (New Guinea) 

deployed over a one year interval that revealed a seasonal bias in foraminiferal shell flux with 

lowest fluxes for G. ruber and G. sacculifer in December [Kawahata et al., 2002]. Further, our 

study site at the northernmost rim of the Manihiki Plateau is situated at the transition from the 

WPWP to the Pacific Equatorial Divergence [Le Borgne et al., 2002]. High SSTs at the sampling 

site suggest the dominant influence from the WPWP. On the other hand, surface nitrate 

concentrations of 3.6 ± 0.1 µmol/kg (168.7°W, -3°S, 168°W) [Key et al., 2004] are higher than 

nitrate concentrations typically characteristic for the WPWP (<0.1 µmol kg-1) [Blanchot et al., 

2001; Rafter and Sigman, 2015] and rather suggest a presumably slight increased influence of 

the Pacific Equatorial Divergence. Additionally, repeated station analyses on nitrate 

concentrations along the equator also reveal increasing nitrate concentrations at the base of the 

SML during austral summer [Rafter and Sigman, 2015]. Since the hydrographic data record a 

general decrease in upwelling (Figure 3.2), higher nutrient concentrations probably result from 

increased diapycnal mixing [Rafter and Sigman, 2015]. As a consequence of these higher 

nutrient concentrations primary production was increased, which can be seen in the higher 

chlorophyll-a concentrations determined from Ocean Colour Data during sampling [NASA Ocean 

Biology, 2015]. The resulting higher amounts of nutrients and food most likely explain the 

relatively high abundances of G. menardii, P. obliquiloculata, and G. glutinata, which are often 

associated within or are found at the border of fertile tropical areas [Watkins et al., 1998]. A 

higher abundance of these species, in turn, will compete with G. ruber and G. sacculifer, and 

thereby, decrease their abundance as seen in our multinet analyses. 

Despite the low MRA of 1.7 %, G. hexagonus dominates the foraminiferal assemblage with 

roughly 45 % at 300 – 500 m water depth (Supplement Table S3.5.1). Therefore, we included this 

species in our analyses as well. The high numbers below 300 m demonstrate its adaptation to 

deeper, colder waters. To date, there is only sparse information about the seasonal and the 

reproductive cycle of this species. Time series sediment traps from the Peru-Chile Current 

indicate that in contrast to most other deep-dwelling species, G. hexagonus is present year-round 

[Marchant et al., 1998]. Taking the preference for an ecologically more uniform habitat with 

smaller seasonal variations (compared to the shallow ocean) into account, the reproductive cycle 

of G. hexagonus could be similar to other deep-dwelling species (possibly once per year) 

[Schiebel and Hemleben, 2005]. However, more studies on their depth and seasonal distribution 

as well as their ecology are required to infer a specific calcification depth. 
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3.3.3 Foraminiferal apparent calcification depth 

By combining the isotope-based ACDs (Figure 3.4a) with the Mg/Ca-based ACDs (Figure 

3.4b), we can reliably infer the overall range of species-specific ACDs (Figure 3.4c, Table 3.3). 

Relative ACDs within a foraminifera assemblage point to G. ruber as the shallowest dweller, 

followed with increasing depth by G. sacculifer, N. dutertrei, P. obliquiloculata and G. hexagonus 

being the deepest dwelling species. The ACDs of these species are similar to that shown for 

other ocean basins [e.g. Ravelo and Fairbanks, 1992; Dekens et al., 2002; Regenberg et al., 

2009; Steph et al., 2009; Rincón-Martínez et al., 2011; Birch et al., 2013; Lynch-Stieglitz et al., 

2015]. However, absolute values differ between and within ocean basins. Furthermore, a large 

discrepancy between the δ18O-derived ACDs and the Mg/Ca temperature-derived ACDs can 

sometimes be observed. This is possibly the result of a combination of various effects:  

1) Mg/Ca was measured on different and sometimes larger tests than tests used for isotope 

measurements due to logistical obstacles (Table 3.1). The test sizes used for the Mg/Ca ablation 

of this study are unusually large for Mg/Ca analyses that often concentrate on test sizes between 

250 and 500 µm [e.g. Dekens et al., 2002; Anand et al., 2003]. However, as we were limited by 

the amount of foraminiferal tests within the net samples for the measurements, we had to enlarge 

the size fraction. Studies have shown that there might be a size-related control on the 

incorporation of Mg into the foraminiferal shell with decreasing Mg/Ca values with increasing size 

possibly due to the additional formation of gametogenic calcite [Elderfield et al., 2002; Ni et al., 

2007; Friedrich et al., 2012]. However, it was also shown that the amount of gametogenic calcite 

was constant (ca. 4 µg) independent of size [Hamilton et al., 2008]. The fact that the foraminifera 

we analysed often still had their spines or remains thereof indicates that gametogenetic calcite 

was not present. Nonetheless, isotope and Mg/Ca samples from a similar size range (Table 3.1) 

show comparable ACDs (Table 3.3) and thus, we consider the large size Mg/Ca-derived ACD 

estimations as reliable. 

2) For laser ablation, only one single foraminiferal test was needed, but for isotope 

measurements more than one shell per species was used (Table 3.1). Thereby, the inter-sample 

variability was lower in isotope measurements, which could have led to less variability in ACD 

estimates. 

3) The δ18O-paleotemperature equations applied in this study provide an additional reason for 

varying ACDs between the measurements. This holds true especially for mixed layer species as 

they are exposed to greater variability of water characteristics and thus, tend to have more 

ecology-related chemical effects. Mg/Ca was converted into temperatures using species-specific 

calibration equations (Table 3.2). For the determination of δ18Oequilibrium, we used the general 

equations of Mulitza et al. [2004] that was developed using four foraminiferal species reflecting 

both surface and sub-surface species and the equation of Kim and O’Neil [1997] that was derived 

from inorganic calcite (see Chapter 3.2.5). 
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Figure 3.4. Assessment of Apparent Calcification Depths (ACD) for selected color-coded planktonic 

foraminiferal species from multinet station SO225-21. ACD is inferred from two approaches: a: 

measured foraminiferal δ18Ocalcite values were compared to δ18Oequilibrium values, which were calculated 

using the water temperatures during sampling time (black) and seasonal temperatures [grey, Locarnini 

et al., 2013] (see Chapter 3.2.5 for detailed information), b: Mg/Ca derived species-specific 

temperature (with standard deviations) estimates were placed at water depths with the corresponding 

in-situ measured austral summer temperatures [Werner et al., 2013] and seasonal temperature range 

[grey; Locarnini et al., 2013] (see Chapter 3.2.5). c: Combined ACDs for each species. Each box plot 

represents the ACD of one species; the dashed box represents the ACD of each species corrected for 

δ18O-disequilibrium effects. Each box comprises 50 % of determined ACDs, ranging from quartile 

Q 0.25 to Q 0.75. The two lines within the box mark the median (black line) and the mean (red line, 

values and standard deviation is given below the box plot) and allow to decipher the skewness of the 

ACD distribution. The whiskers (vertical lines) denote the minimum and maximum values. The number 

of measurements (n) is given below the box plot. 
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3.3.3.1 Apparent calcification depths of G. ruber and G. sacculifer 

At multinet station SO225-21-3, G. ruber and G. sacculifer calcified over a broad depth range 

ranging from the sea surface down to ~160 m water depth (Figure 3.4, Table 3.3). This mirrors 

the thick SML in the WPWP and supports the notion of these species being surface-dwellers 

[Fairbanks et al., 1982; Bé et al., 1985; Ravelo and Fairbanks, 1992; Watkins et al., 1996; Steph 

et al., 2009; Rincón-Martínez et al., 2011; Lynch-Stieglitz et al., 2015; Nürnberg et al., 2015]. 

Most studies point to a habitat of G. ruber within the first 30 m of the water column [Fairbanks 

et al., 1982; Bé et al., 1985; Faul et al., 2000; Mohtadi et al., 2009] and G. sacculifer within the 

first 80 m [Fairbanks et al., 1982; Bé et al, 1985; Watkins et al., 1996; Steph et al., 2009]. Our 

study revealed that in December 2012, highest G. ruber abundances were found in the nets of 

50 – 100 m (Figure 3.3) and the ACD estimate showed that 50 % of G. ruber calcified between 70 

and 125 m (Figure 3.4). The depth agrees well to the optimum temperature preference of ~27°C 

[Mulitza et al., 1998]. Various studies point towards varying calcification depths for different 

morphotypes of G. ruber [Wang, 2000; Steinke et al., 2005; Kuroyanagi et al., 2008] and a 

seasonal bias in G. ruber abundances [e.g. Kawahata et al., 2002; Stott et al., 2002; Lin et al., 

2004; Žarić et al., 2005]. However, with the present dataset we are not able to address this issue. 

The determined ACDs of G. sacculifer are commonly deeper than the ACDs of G. ruber (Table 

3.3), which corroborates Central Pacific core-top studies that recorded heavier δ18O values and 

thus, a generally deeper ACD for G. sacculifer in comparison to G. ruber [Lynch-Stieglitz et al., 

2015]. Furthermore, a plankton tow study from the South Atlantic revealed that in areas with a 

thick mixed layer, G. sacculifer often exhibits deeper ACDs than G. ruber, whereas in areas with 

a shallow thermocline, both species dwell at similar depths [Kemle-von Mücke and Oberhänsli, 

1999]. This observation agrees with the slightly cooler optimum temperature range in 

G. sacculifer compared to G. ruber [Bijma et al., 1990]. Fifty percent of G. sacculifer’s ACDs fall in 

the depth range between 100 and 150 m, which is deeper than the highest abundances of this 

species, which is found in the nets in 0 – 50 m. However, it has been shown that G. sacculifer 

migrates to deeper water depths later in its ontogeny [Hemleben and Bijma, 1994]. As small 

individuals outnumber larger specimens due to the high mortality rate, highest total abundances 

of this species are much shallower than ACDs determined on larger specimens [Hemleben and 

Bijma, 1994]. Furthermore, a stratified plankton-tow study from the Red Sea showed that 

specimens from the 350 – 500 µm size fraction accumulate in a narrow depth range [Bijma and 

Hemleben, 1994] similar to our results. This also explains why tests selected from deeper 

habitats depths (100 – 200 m for G. sacculifer and 300 – 500 m for G. ruber) also record ACDs 

within the SML and not from the net depth range they were selected from (Tables 3.1 and 3.3). 

Hence, calcification of these tests happened within the SML. Just before net sampling, these 

specimens possibly died and sank down to the to the depth in which we caught them. 

The SML at the study site extended deeper than the SML recorded by the long-term average 

at the same position (Figure 3.2a). This could explain why the ACDs of G. ruber and G. sacculifer 
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are deeper than ACDs estimated from seasonally varying temperatures (Table 3.3). Using 

seasonal temperatures, both species record shallowest ACDs in austral winter and deepest 

during austral summer, possibly also as a result of changes in the depth of the DCM (Figure 

3.1c). Despite the fact that both species host symbionts and are therefore highly dependent on 

light availability [Hemleben and Bijma, 1994; Schiebel and Hemleben, 2005], the data suggest 

that these species possibly descend to deeper waters in oligotrophic environments to exploit the 

DCM for food as proposed by e.g. Fairbanks et al. [1982], Schiebel et al. [2001], Schiebel and 

Hemleben [2005], and Steph et al. [2009].  

Species-specific vital-effects can alter the ACD assessment, as the deviation from isotopic 

equilibrium might result in too-deep or too-shallow calculated ACDs. In symbiont-bearing species 

vital effects have been shown to be large [Niebler et al., 1999]. Correcting the measured δ18Ocalcite 

data for a disequilibrium of -0.4 ‰ and -0.6 ‰ [Niebler et al., 1999] for G. ruber and G. sacculifer, 

respectively, results in <23 % deeper ACDs for G. ruber and <10 % deeper ACDs for 

G. sacculifer that would point to a calcification within the thermocline (Figure 3.4, Supplement 

Table S3.5.3). However, as the highest abundances of these species were found in surface 

waters similar to other studies, we find these deep vital-corrected ACDs rather unlikely. 

In summary, it seems that ACDs determined by using measured temperatures during 

sampling (December 2012) or seasonal temperatures do not differ substantially. However, using 

vital-corrected ACDs might lead to different results as foraminifera might be placed into different 

water masses. Thus, to make realistic ACD-reconstructions, one needs to consider the 

combination of determined ACD, the local hydrography, local foraminiferal abundance data, and 

to take into account that the last few chambers determine the majority of the chemical signature 

of the shell. 

3.3.3.2 Apparent calcification depths of N. dutertrei and P. obliquiloculata 

The ACD assessment at the sampling site for N. dutertrei and P. obliquiloculata reveals 

calcification in a very narrow depth range at the top and within the upper thermocline, which is in 

broad agreement with ACD studies [e.g. Ravelo and Fairbanks, 1992; Faul et al., 2000; 

Regenberg et al., 2009; Steph et al., 2009]. The mean ACD of ~140 ± 16 m (N. dutertrei) and 

~160 ± 7 m (P. obliquiloculata) (Table 3.3) are somewhat deeper than in other studies, possibly 

due to the comparatively deep thermocline in the western equatorial Pacific. As the thermocline 

was warmer during sampling than the long-term average (see Chapter 3.3.1), we also calculated 

the ACDs using seasonal temperature data [Locarnini et al., 2013]. The estimated seasonal 

ACDs are, however, within the ACD range determined by the combined stable isotope and 

temperature approach (Table 3.3). Furthermore, both species are also affected by isotopic 

disequilibrium. Correcting the measured δ18Ocalcite values of N. dutertrei and P. obliquiloculata for 

disequilibrium of -0.2 ‰ and -0.1 ‰ [Niebler et al., 1999], respectively, only small shifts towards 
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deeper water depths of <3 % for N. dutertrei and <1 % for P. obliquiloculata occur (Figure 3.4; 

Supplement Table S3.5.3). 

The net collection from this study has the highest abundance of N. dutertrei in 50 – 100 m 

water depth within the DCM (Figure 3.3). This agrees with the general view that N. dutertrei 

inhabits a shallow water depth close to the DCM [Fairbanks et al., 1982; Bé et al., 1985; 

Hemleben et al., 1989; Ravelo and Fairbanks, 1992; Dekens et al., 2002; Schmuker and 

Schiebel, 2002; Sadekov et al., 2013]. Our study site at the Manihiki Plateau is at the border of 

the Pacific Equatorial Divergence (see also Chapter 3.3.2). As the longitudinal transition between 

WPWP and Pacific Equatorial Divergence varies between ~150°E and 150°W [Le Borgne et al., 

2002] depending on the wind strength and surface currents, it is expected that N. dutertrei 

changes its habitat and calcification depth depending on the prevailing environmental setting. 

This is supported by calcification-depth studies from the highly dynamic eastern equatorial Pacific 

that reveal variable habitats depending on the strength of the coastal upwelling with shallower 

habitats in cases of strong upwelling [Nürnberg et al., 2015, and discussion therein]. 

Our ACD estimates for P. obliquiloculata correspond well with the observations: all specimens, 

regardless of the net depth the foraminifera were taken from, calcified between 145 m and 170 m 

and highest abundances of adult specimen were found in nets of 100 – 200 m water depths. 

Consequently, this species might be more appropriate for thermocline reconstructions. This is in 

line with previous studies showing that P. obliquiloculata is associated with the base of the upper 

thermocline in other ocean basins [e.g. Ravelo and Fairbanks, 1992; Faul et al., 2000; Mohtadi et 

al., 2009; Rincón-Martínez et al., 2011].  

3.3.3.3 Apparent calcification depths of G. hexagonus 

Both δ18O-derived and Mg/Ca-derived ACDs display a deep habitat for G. hexagonus ranging 

from 375 to 515 m water depth (mean ACD: 450 m ± 46 m) (Figure 3.4, Table 3.3) below the 

thermocline. As seasonal temperature variations are <0.4°C in 300 – 500 m water depth, the 

ACD of G. hexagonus varies by maximal 30 m. Most deep-dwelling foraminifera calcify close to 

isotopic equilibrium with small positive deviations [Niebler et al., 1999]. Applying a +0.1 ‰ 

disequilibrium-correction to the δ18Ocalcite values (Supplement Table S3.5.3) results in an up to 

30 m shallower ACD, which is still clearly below the thermocline (Figure 3.4). Overall, the 

assessed ACDs correspond well to the highest abundances from the net collection in 300 –

 500 m water depth (Figure 3.3). 

Depth assignments from other studies are rare, as this species is endemic for the Indo-Pacific 

[Schiebel and Hemleben, 2005] and hardly ever exceeds a relative abundance of 2 % in 

sediment assemblages [Beiersdorf et al., 1996; Hilbrecht, 1996]. Our depth assessment, 

nevertheless, is similar to a study from the North Pacific with an estimated calcification depth of 

330 – 390 m below the thermocline [Ortiz et al., 1996]. However, our estimated ACD is deeper 

than the calcification depth reported from a core-top study from the western tropical Indian Ocean 
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that places the calcification depth between ~100 – 160 m, i.e. within the mid-thermocline [Birch et 

al., 2013]. These differences are probably the result of an interaction of four different effects: 

1) In the Indian Ocean, Birch et al. [2013] used a different size window ranging from 125 to 

300 µm, whereas the test selected for this study range from 250 to 400 µm. Although smaller 

individuals often inhabit shallower waters than larger individuals [Fairbanks et al., 1982; Bijma 

and Hemleben, 1994; Kroon and Darling, 1995], our smallest size fraction still records far deeper 

habitats than largest specimen derived from Indian Ocean samples. Thus, the size effect on the 

different ACDs is assumed to be rather small. 

2) Birch et al. [2013] applied the paleotemperature equation of Erez and Luz [1983], which 

was calibrated using symbiont-bearing G. sacculifer. As G. hexagonus does not harbour 

symbionts [Parker, 1962], this symbiotic equation may result in erroneous temperatures. 

Symbionts increase ambient pH and [CO3
2-] and hence decrease shell δ18O [Spero et al., 1997; 

Bijma et al., 1999], leading to an over-estimation of the real calcification temperature and hence 

would infer a calcification depth that is too shallow. By recalculating the ACD of G. hexagonus in 

the Indian Ocean with the equation by Kim and O’Neil [1997], the resulting ACD is deeper, 

between 110 and 180 m. Nevertheless, this re-calculated ACD still lies within the western tropical 

Indian Ocean thermocline, highlighting the need for further explanations for varying ACDs of 

G. hexagonus.  

3) Ortiz et al. [1996] argue that G. hexagonus is a sub-thermocline species well adapted to its 

deep habitat, which is associated with the NPIW in the North Pacific. This water mass is 

characterized by elevated nutrient and particulate organic matter concentrations [e.g. Yamanaka 

and Tajika, 1996; Sarmiento et al., 2004]. In contrast, sub-thermocline Indian Ocean water 

masses are less nutrient-rich than in the North Pacific. Furthermore, deep-dwelling (non-spinose) 

foraminifera such as Globorotalia tuncatulinoides or Globorotalia hirsuta are mainly herbivores 

[Hemleben et al., 1989; Schiebel and Hemleben, 2005]. The sub-thermocline species 

Globorotalia scitula, for example, feeds on detrital, particulate organic material [Itou et al., 2001]. 

As G. hexagonus inhabits a similar depth range to that of G. tuncatulinoides and G. scitula, we 

hypothesize that G. hexagonus is also a herbivore, feeding on particulate organic material. 

Consequently, G. hexagonus possibly calcifies in shallower water masses in the western Indian 

Ocean within the thermocline, where nutrients and particulate organic material accumulate. At our 

sampling site, the majority of Pacific equatorial sub-surface waters originate from outside the 

tropics and feed the equatorial sub-surface current system. The ACD determined for 

G. hexagonus corresponds to the depth of the Tsuchiya Jets that transport nutrients and 

particulate organic material originating in the extra-tropical regions along the equatorial Pacific 

(Figure 3.1a) [Johnson and Moore, 1997; Rowe et al., 2000]. Thus, we conclude, that 

G. hexagonus favours water masses enriched in nutrients.  

4) Another important factor might be the insensitivity of G. hexagonus to changing oxygen 

concentrations in the water column [Birch et al., 2013]. In the Indian Ocean, G. hexagonus 
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calcifies in relatively low oxygen concentrations of 100 – 130 µmol/kg, just above the OM [Birch et 

al., 2013]. Similarly, at our sampling site, the ACDs in 375 – 500 m water depth correspond to 

decreasing oxygen concentrations (~60 µmol/kg) (Figure 3.2d) towards the OM at 450 m water 

depth. Hence it seems, that G. hexagonus prefers to calcify in cool, oxygen-depleted and 

nutrient-rich water masses and consequently, might be most suitable for reconstructing the 

variability in extra-tropical nutrient inflow into the equatorial current system. 

3.3.4 Foraminiferal carbon isotope disequilibrium 

In order to evaluate modern species-specific δ13C-disequilibrium effects at certain growth 

stages, we measured the δ13Ccalcite values on various size fractions. The overall δ13Ccalcite values 

range from -0.14 ‰ in N. dutertrei to a maximum value of +1.53 ‰ in G. sacculifer (Figure 3.5, 

Table 3.4). Generally, deeper dwelling species record lower δ13Ccalcite values (concomitant with 

higher δ18Ocalcite values) than SML species. A variety of parameters including algal photosynthesis 

[Bé et. al., 1982; Hemleben et al., 1989], metabolic fractionation [Wefer and Berger, 1991; Kroon 

and Darling, 1995; Spero et al., 1997], food availability [Spero et al., 1991; Ortiz et al., 1996], and 

carbonate chemistry of the seawater [Spero et al., 1997; Bijma et al., 1999] influence 

foraminiferal δ13Ccalcite values.  

 

Figure 3.5. Measured δ13Ccalcite of selected living planktonic foraminifera in comparison to the in-situ 

measured δ13CDIC (black line) measured at multinet station SO225-21-3. Each symbol corresponds to 

a single species. The size of the symbol characterizes the specific test-size spectrum. Instrumental 

standard deviation is smaller than symbol sizes (±0.01 ‰), therefore not shown. Coloured-boxes 
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illustrate the depths at which 50 % of each species calcify (Figure 3.4c). Values more negative than 

the equilibrium line are mostly affected by metabolism and respired light carbon, more positive values 

are possibly affected by symbiotic activity. Grey shaded area represents the ±0.5 ‰ inter-sample 

δ13Ccalcite variability (‘δ13Ccalcite-envelope’) expected in foraminiferal analyses. 

Table 3.4. Foraminiferal δ13Ccalcite values with the determined δ13C-disequilibrium and δ13C-

disequilibrium values using vital-corrected ACDs. Each line represents one measurement of the 

respective species. 

Species Shell size  
[range in µm] 

Number of 
tests 
measured 

δ13Ccalcite [‰] Disequilibrium 
[‰] 

Disequilibrium 
'vital-corrected' 
[‰] 

G. ruber 150 – 250 18 -0.04 -1.1 -0.9 

150 – 250 17 0.02 -1.0 -0.9 

250 – 300 11 0.71 -0.3 -0.2 

250 – 300 14 0.46 -0.6 -0.4 

300 – 350 9 0.79 -0.2 -0.1 

G. sacculifer 300 – 350 7 1.18 0.5 0.5 

300 – 350 5 0.83 -0.1 0.1 

300 – 350 6 0.56 -0.4 -0.2 

350 – 500 4 1.31 0.6 0.6 

350 – 500 4 1.00 0.3 0.3 

350 – 500 4 1.34 0.6 0.6 

350 – 500 5 1.02 0.3 0.3 

350 – 500 5 0.73 -0.2 -0.01 

>500 2 1.53 0.8 0.8 

>500 3 0.99 0.3 0.3 

>500 2 1.29 0.6 0.6 

N. dutertrei 250 – 300 12 -0.14 -0.9 -0.9 

300 – 350 9 -0.08 -0.9 -0.8 

350 – 500 6 0.03 -0.8 -0.7 

P. obliquiloculata 350 – 500 4 0.06 -0.7 -0.7 

350 – 500 4 -0.01 -0.7 -0.7 

>500 2 -0.01 -0.7 -0.7 

>500 2 0.26 -0.5 -0.5 

>500 2 0.25 -0.5 -0.5 

>500 2 0.11 -0.6 -0.6 

>500 2 0.41 -0.3 -0.3 

G. hexagonus 250 – 300 10 -0.06 -0.5 -0.5 

300 – 350 9 0.22 -0.2 -0.2 

350 – 500 6 0.24 -0.2 -0.2 

 

Using the determined ACDs in which 50 % of the species calcify (between quartile Q 0.25 and 

Q 0.75) (Figure 3.4c), we attempted to infer the species-specific δ13C-disequilibrium from ambient 

seawater at the study site. We did not determine the carbonate chemistry at the study site and 
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hence, we cannot correct for the carbonate ion effect. Nevertheless, the measured δ13Ccalcite 

reveals a distinct size-dependent deviation from δ13CDIC values that generally agrees with other 

studies, such as Oppo and Fairbanks [1989], Spero et al. [1991], Spero and Lea [1993], Kroon 

and Darling [1995], and Birch et al. [2013]. The offset from ambient seawater for most species is 

even more pronounced than the added ±0.5 ‰ δ13C-uncertainty (the ‘δ13C-envelope’) that might 

be expected in measured foraminiferal values to account for inter-sample variability expected in 

foraminiferal analysis [Birch et al., 2013]. We also used ‘vital-effect’ corrected ACDs for the δ13C-

disequilibrium assessment. However, following this approach only results in little, if any, change 

in the ACD of the respective species (Table 3.4). 

Large individuals of symbiont-bearing G. ruber and G. sacculifer are influenced by algal 

photosymbiosis. The symbionts preferentially incorporate light carbon into the organic matter 

leaving the microenvironment the foraminifera calcifies from enriched in 13C. Hence, 13C-enriched 

chambers are produced [Spero and Lea, 1993]. Since the symbiont density increases with shell 

size [Spero and Parker, 1985], the δ13Ccalcite values become more positively offset from ambient 

seawater δ13CDIC with up to +0.8 ‰ in G. sacculifer. However, small individuals of SML and 

thermocline species have a large surface-to-volume ratio, tend to grow more rapidly, and possibly 

show a larger impact of depleted, respired CO2 due to higher metabolic activity [Berger et al., 

1978; Wefer and Berger, 1991; Spero et al., 1997]. As a result, foraminiferal δ13Ccalcite is often 

negatively offset from equilibrium by up to -1.1 ‰ (in G. ruber) (Table 3.4). As an individual 

grows, the influence of symbiont-isotopic fractionation increases and dominates over the impact 

of respiration [Berger et al., 1978; Wefer and Berger, 1991; Spero et al., 1997]. 

Deep-dwelling asymbiotic G. hexagonus generally reveals a disequilibrium fractionation of     

≤ -0.5 ‰, which is in the range of the δ13CDIC–uncertainty. Only small tests of this species are 

slightly negatively depleted in δ13Ccalcite, probably due low metabolic rates as a consequence of 

low temperatures. Nevertheless, the near-equilibrium calcification is supported by a study from 

the tropical Indian Ocean [Birch et al., 2013], highlighting G. hexagonus as a reliable recorder of 

δ13C in sub-surface water masses. 

3.4 Conclusions 

The quality of paleoceanographic reconstructions of upper-ocean water mass conditions is 

tied to our precise knowledge of the ACDs of the studied foraminiferal species. The comparison 

between δ18Ocalcite and Mg/Ca-derived temperatures measured on five living planktonic species 

with in-situ physical and chemical water mass properties enables us to enhance our knowledge 

about the species-specific ACDs. 

The WPWP experiences a pronounced year-round thick SML that still extends deeper during 

December 2012 down to ~130 m water depth. Determined ACDs of symbiont-bearing species 

G. ruber and G. sacculifer using both seasonal temperature data and temperatures during 
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sampling indicate mean calcification depth of ~95 m and ~120 m, respectively, corresponding to 

the base of the SML. These ACDs are deeper than in other ocean basins due to the hydrographic 

conditions of the WPWP, and the optimum temperature preference of these foraminifera. As vital 

effects further affect symbiont-bearing species, a combined approach of foraminiferal 

abundances, determined ACDs and hydrography provides most reliable ACD reconstructions. 

Below the SML N. dutertrei and P. obliquiloculata calcified in a very narrow depth range of 

140 – 160 m, corresponding to the top and within the thermocline, regardless of the temperature 

data used (seasonal or during sampling). The same holds true for vital effect corrections. The 

agreement between our ACD of P. obliquiloculata and other studies, suggest that 

P. obliquiloculata is most suitable for thermocline reconstructions. 

The species G. hexagonus records mean ACDs of ~450 m and is thus the deepest dwelling 

species from the analysed species of this study. It calcifies its test in oxygen-depleted, but 

nutrient-rich water masses. The same trend has been observed in other studies from different 

ocean basins. Temperature and seawater chemistry are more stable in sub-surface waters 

compared to surface water conditions. As a consequence, G. hexagonus calcifies in δ13C-

equilibrium with ambient seawater, and hence, this species serves as an archive for tracing 

nutrient variations in equatorial Pacific mode and intermediate water masses being sourced in 

extra-tropical regions. 
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Appendix A. Species list 

Globigerinella spp. [Cushman 1927], Globigerinita glutinata [Egger 1893], Globigerinoides 

ruber var. white [d’Orbigny 1839], Globigerinoides sacculifer [Brady 1877], Globoquadrina 

conglomerata [Schwager 1866], Globorotalia hirsuta [d'Orbigny, 1839], Globorotalia menardii 

[d’Orbigny 1865], Globorotalia scitula [Brady, 1882], Globorotalia truncatulinoides [d'Orbigny, 

1839], Globorotalia spp. [Cushman 1927], Globorotaloides hexagonus [Natland 1938], 

Neogloboquadrina dutertrei [d’Orbigny 1839], and Pulleniatina obliquiloculata [Parker and Jones 

1862]. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at http://dx.doi.org/10.1016 

/j.marmicro.2016.08.004. 

 

  



	  



 3.0 MANUSCRIPT I 

 -52- 

3.5 Supplementary data 

 

To: 

Rippert, N., Nürnberg, D., Raddatz, J., Maier, E., Hathorne, E., Bijma, J., Tiedemann, R., 2016. 

Constraining foraminiferal calcification depths in the western Pacific warm pool. Marine 

Micropaleontology 128, 14-27. doi:10.1016/j.marmicro.2016.08.004. 
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Table S3.5.1. Foraminiferal assemblage counting at station SO225-21 in December 2012. Values of zeros were omitted for a clearer view. 
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Table S3.5.2. Mg/Ca values of single measurements. 

Nr of 
Foraminifera Species Net depth 

[m] 
Shell size 

[range in µm] 
Chamber 
number 

Mg/Ca 
[mmol/mol] 

Mean 
Mg/Ca 

[mmol/mol] 

1 G. ruber 100 – 200 410 

Final 4.30 

4.71 F-1 4.66 

F-2 5.16 

2 G. ruber 300 – 500 320 

Final 4.23 

5.10 F-1 5.63 

F-2 5.43 

3 G. sacculifer 0 – 50 520 

Final 3.61 

4.27 F-1 (2) 4.45 

F-2 4.76 

4 G. sacculifer 100 – 200 645 

Final 4.05 

4.50 F-1 4.89 

F-2 4.55 

5 G. sacculifer 300 – 500 750 

Final 4.67 

4.88 F-1 4.89 

F-2 5.06 

6 N. dutertrei 100 – 200 360 

Final 3.50 

3.21 

F-1 2.93 

F-2 3.02 

F-3 3.30 

F-4 3.30 

7 P. obliquiloculata 0 – 50 520 

Final 3.12 

3.16 F-1 3.16 

F-2 3.21 

8 P. obliquiloculata 100 – 200 675 
Final 3.07 

3.11 
F-1 3.15 

9 P. obliquiloculata 300 – 500 640 

Final 2.61 

2.85 F-1 2.80 

F-2 3.14 

10 G. hexagonus 300 – 500 400 

Final 0.95 

1.36 
F-1 1.16 

F-2 1.48 

F-3 1.84 
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S3.5.3. Evaluation of various Mg/Ca-temperature calibrations  

Mg incorporation into foraminiferal tests is highly biologically mediated [Nürnberg et al., 1996; 

Rosenthal et al., 1997; Lea et al., 1999; Dueñas-Bohórquez et al., 2009; 2011]. Due to these so- 

called “vital effects” there are species-specific differences in the uptake of Mg into the 

foraminiferal calcitic test. As a consequence, separate Mg/Ca thermometer calibrations for 

different species of planktonic foraminifera have been developed either on core top samples or 

culture experiments [Nürnberg et al., 1996; Dekens et al., 2002; Anand et al., 2003; Cléroux et 

al., 2008; Regenberg et al., 2009]. All equations have basic similarities, but slight differences 

might lead to significantly different temperatures estimates when applied to the same Mg/Ca 

ratio. To find the most applicable calibration equation for each investigated planktonic 

foraminiferal species from the multinet samples, we converted the measured foraminiferal Mg/Ca 

ratios into temperatures using generic and species-specific equations if available (Table S3.5.3, 

Figure S3.5.3). We analysed as many chambers as possible to minimize random variations in 

Mg/Ca within a test [de Nooijer et al., 2014]. Previous culturing studies have investigated the 

difference between whole-test calibrations and Mg/Ca-temperature equations based on Mg/Ca 

measurements of the last four chambers and found no significant difference between them 

[Dueñas-Bohórquez et al., 2009; Spero et al., 2015]. Further, Hathorne et al. [2003] and Reichart 

et al. [2003] found that Mg/Ca data from both single-chamber and multiple-shells are similarly 

correlated to temperature. At the depth interval in which a species was found in highest 

abundance per m3 at the Manihiki Plateau (Table S3.5.1), we determined the mean temperature 

during sampling time from both CTD data and the seasonal range in temperature from the 

WOA13 data [Locarnini et al., 2013] at the same location. By comparing these in-situ 

temperatures with the Mg/Ca-derived temperatures, we identified the most suitable calibration 

equation for each species at our study site. 

G. sacculifer was found most abundant per m3 in 0 – 100 m water depth. The calibration of 

Anand et al. [2003] gives the warmest temperatures, which are consistently higher than the 

seasonal range and result in temperatures of up to 32°C. A similar result derives using the 

equation by Nürnberg et al. [2000]. Thus, we neglect these calibrations. Using the calibration by 

Dueñas-Bohórquez et al. [2011, whole chamber] results in coldest temperature. The 

temperatures derived by Dekens et al. [2002] deviate from the average temperatures by only up 

to 0.8°C. As this calibration was deduced using surface sediment samples from the equatorial 

Pacific, we found this equation most applicable for our G. sacculifer calibration. 

G. ruber is analysed frequently in paleoceanographic research to reconstruct past sea surface 

temperatures, hence many species-specific calibrations are available. The net collections indicate 

that G. ruber appears most abundant per m3 in water depths between 0 – 100 m. The 

comparison between the calculated and in-situ temperatures from that depth interval shows that 

the species-specific calibration of Lea et al. [2000] results in the warmest temperatures of >30°C, 

which outreaches the in-situ temperatures and the seasonal range by far. Thus, we reject this 
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calibration curve to minimize an overestimation of our temperatures. The calibration of Mohtadi et 

al. [2009] gives the coldest temperatures for G. ruber, even colder than the seasonal temperature 

range. Calibration equations of Dekens et al. [2002], Regenberg et al. [2009], and Anand et al. 

[2003] are similar and differ only by ~1°C. Both Dekens et al. [2002] and Regenberg et al. [2009] 

calibrated their equation with material from the low latitudes. As Regenberg et al. [2009] used 

G. ruber shells from a similar size fraction (355 – 400 µm) as our analysed foraminifera (320 – 

425 µm), we selected this species-specific calibration equation for further analyses of G. ruber. 

Neogloboquadrina dutertrei and P. obliquiloculata were both found in major abundances per 

m3 between 50 – 100 m water depth. However, we compared the Mg/Ca-derived temperatures to 

in-situ temperatures from 100 – 200 m water depth, as most large foraminifers of these species 

were found at this depth. As this depth interval collides with the thermocline, a very large 

seasonal range exists. For N. dutertrei we applied three species-specific and one generic 

calibration equation. The various calibrations show a large scatter within the calculated 

temperature with coldest temperatures derived from Elderfield and Ganssen [2000] and warmest 

temperatures with the equation of Anand et al. [2003]. Elderfield and Ganssen [2000] used a 

combination of 8 different species for its equation and thus, is not species-specific. We also reject 

the calibration of Dekens et al. [2002], despite the fact that the calculated temperatures lies well 

within the seasonal range. However, Dekens et al. [2002] assumed for its equation a habitat 

depth of their adult species of 50 m for N. dutertrei. Due to the varying habitat of this species [e.g. 

Nürnberg et al., 2015], the authors itself denote the limit of their equation for N. dutertrei. Most 

applicable for our N. dutertrei Mg/Ca estimates is the calibration of Regenberg et al. [2009]. This 

calibration yields temperatures most similar to the mean temperature between 100 – 200 m water 

depth. 

For P. obliquiloculata we tested two species-specific equations and additionally consulted two 

generic equations. The species-specific calibration of Cléroux et al. [2008] results in very high 

temperatures. This calibration was developed using core-top samples from the North Atlantic. 

Further the derived temperatures of up to 29°C outreach even the seasonal range of sea-surface 

temperatures of 27.8 – 28.4°C. Thus, this equation was discarded. The Elderfield and Ganssen 

[2000] calibration reveals the coolest temperatures. Although these calculated temperatures are 

within the seasonal range of the temperatures at 100 – 200 m water depth, it is far colder than the 

mean temperature at 100 – 200 m water depth in December 2012. The equations of Anand et al. 

[2003] and the ‘warm-water’ species calibration of Regenberg et al. [2009] seem more promising. 

Both are very similar and differ only by ~0.3°C. Unfortunately, Regenberg et al. [2009] did not 

analyse P. obliquiloculata. The applied calibration is a combination of three warm-water species 

(G. ruber pink and white, G. sacculifer) and two species associated with the thermocline 

(G. menardii and N. dutertrei). All these foraminifers are thought to host symbionts [Kucera, 

2007], while P. obliquiloculata is only facultative symbiotic [Hemleben et al., 1989]. Hence, we 

apply the species-specific calibration of Anand et al. [2003] for the P. obliquiloculata analyses. 
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No species-specific calibration exists for the Indo-Pacific species G. hexagonus so far. 

G. hexagonus was found most frequently in nets of 300 – 500 m water depth. The mean 

temperatures in this depth interval is 9.4°C. Using the general calibration of Anand et al. [2003], 

which was calibrated by using 10 planktonic species, reveals the warmest temperatures of 

14.2°C. Similar to G. hexagonus, G. truncatulinoides is frequently hauled from deep waters below 

the thermocline [Hemleben et al., 1989]. Therefore, we also applied the species-specific equation 

of G. truncatulinoides [Anand et al., 2003] to our G. hexagonus Mg/Ca values. However, this 

results in even higher temperatures of 14.8°C. As a consequence, we reject both equations. We 

further tested a G. bulloides equation from the North Atlantic [Cléroux et al., 2008] as both 

G. hexagonus and G. bulloides are symbiont-barren [Hemleben et al., 1989], and the ‘cold–water’ 

species equation of Regenberg et al. [2009]. Both Mg/Ca calculated temperatures are colder than 

the mean and seasonal temperatures at the Manihiki Plateau. Regenberg et al. [2009] used a 

mixture of the deep-dwelling foraminifera G. truncatulinoides and G. crassaformis for their ‘cold-

water’ equation. During their ontogeny both G. truncatulinoides and G. crassaformis sink to 

deeper water depths and build a thick calcite crust that reflects the colder waters [Schiebel and 

Hemleben, 2005]. This might be the reason for the colder temperatures calculated from our 

G. hexagonus Mg/Ca values. Most suitable for our calculation is the general calibration of 

Elderfield and Ganssen [2000]. The eight planktonic species used for this calibration mirror the 

broad range of foraminiferal habitats. The resulting calculated temperature of 9.6°C fit well with 

our measured mean in-situ temperature of 9.4°C and is therefore assumed to be the most 

suitable calibration for the G. hexagonus Mg/Ca values from the Manihiki Plateau. 
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Figure S3.5.3. Foraminiferal Mg/Ca derived temperatures for mean Mg/Ca values determined over a 

whole test using various calibration equations for a: G. sacculifer (orange) and G. ruber (red), b: 

P. obliquiloculata (purple) and N. dutertrei (green), and c: G. hexagonus (blue). Each vertical 

sequence of symbols denotes one specimen whereas each symbol represents a different calibration 

equation from various authors (see also Table S3.5.3). The blue line represents the mean 

temperatures in December 2012 over the depth interval each foraminifera were found most abundant 

in the net collections. The grey bar shows the seasonal temperature range derived from the WOA13 

Data [Locarnini et al., 2013]. 
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Table S3.5.3. Calibration equations tested to convert measured Mg/Ca values into temperatures. 

Species Source Mg/Ca = B*exp (A*T) Reference 
  y- Intercept B Slope A  
Globigerinoides 
ruber 

Surface sediment (equatorial 
Pacific) 

0.30 0.089 Lea et al. [2000] 

Sediment trap (North Atlantic) 0.48 0.085 Anand et al. [2003] 
 

Surface sediment (equatorial 
Pacific) 

0.38 0.09 Dekens et al. [2002] 
 

Surface sediment (Caribbean and 
tropical Atlantic) 

0.40 0.09 Regenberg et al. [2009]* 
 

Sediment traps (Indo-Pacific Warm 
Pool) 

0.85 0.066 Mohtadi et al. [2009] 

Globigerinoides 
sacculifer 

Sediment trap (North Atlantic) 1.06 0.048 Anand et al. [2003] 

 
Surface sediment (equatorial 
Pacific) 

0.37 0.09 Dekens et al. [2002]* 
 

Culture experiments 0.491 0.033 Nürnberg et al. [2000] 
 

Surface sediment (Caribbean and 
tropical Atlantic) 

0.60 0.075 Regenberg et al. [2009] 

 Culture experiments (whole 
chamber) 

0.55-
0.0001*MSD1 

0.089 Dueñas-Bohórquez et al. 
[2011] 

 Culture experiments (last four 
chambers 

0.55-
0.0002*MSD1 

0.089 Dueñas-Bohórquez et al. 
[2011] 

Neogloboquadrina  
dutertrei 

Sediment trap (North Atlantic) 0.342 0.09 Anand et al. [2003] 
 

Surface sediment (Caribbean and 
tropical Atlantic) 

0.65 0.065 Regenberg et al. [2009]* 

Surface sediment (equatorial 
Pacific) 

0.60 0.08 Dekens et al. [2002] 
 

Surface sediment (North Atlantic) 
8 planktonic species 

0.52 0.10 Elderfield and Ganssen, 
[2000] 

Pulleniatina  
obliquiloculata 

Surface sediment (North Atlantic) 1.02 0.039 Cléroux et al. [2008] 
 

Sediment trap (North Atlantic) 0.18 0.12 Anand et al. [2003]* 
 

Surface sediment (Caribbean and 
tropical Atlantic); ‘warm-water’ 
multispecies calibration 

0.22 0.113 Regenberg et al. [2009] 

Surface sediment (North Atlantic) 
8 planktonic species 

0.52 0.10 Elderfield and Ganssen, 
[2000] 

Globorotaloides  
hexagonus 

Sediment trap (North Atlantic) 
10 planktonic species 

0.38 0.09 Anand et al. [2003] 

Sediment trap (North Atlantic) 
G. truncatulinoides calibration 

0.359 0.09 Anand et al. [2003] 
 

Surface sediment (North Atlantic) 
8 planktonic species 

0.52 0.10 Elderfield and Ganssen, 
[2000]* 

Surface sediment (North Atlantic) 
G. bulloides calibration 

0.78 0.082 Cléroux et al. [2008] 

Surface sediment (Caribbean and 
tropical Atlantic); ‘cold-water’ 
multispecies calibration 

0.84 0.083 Regenberg et al. [2009] 

*equation being applied in this study 
1MSD = maximum shell diameter  

  



 3.0 MANUSCRIPT I 

 -60- 

Table S3.5.4. Apparent Calcification Depths (ACDs) of selected planktonic foraminiferal species used 

in this study determined by the comparison between the measured oxygen isotope values (δ18Ocalcite) 

with that theoretically expected at various water depths (δ18Oequilibrium) in dependence of temperature 

and salinity. δ18Oequilibrium was calculated using δ18O-paleotemperature equations of Shackleton [1974] 

(sha), Bemis et al. [1998] (bem), Kim and O’Neil [1997] (kim) and Mulitza et al. [2004] (mul). Seasonal 

data were taken from the World Ocean Atlas database [Locarnini et al., 2013]. To correct for 

disequilibrium effects, isotope values were corrected with disequilibrium values of -0.6 ‰ for 

G. sacculifer, -0.4 ‰ for G. ruber, -0.2 ‰ for N. dutertrei and -0.1 ‰ for P. obliquiloculata. Deep-

dwelling foraminifera calcify close to equilibrium. For G. hexagonus we assume a calcification depth 

between G. tumida and G. crassaformis and hence corrected our values for a disequilibrium of 

+0.1 ‰. Mean and ± standard deviation is given for each species and equation. 

Species δ18Ocalcite 
[‰] 

ACDs using seasonal ACDs after 
kim & mul 

disequilibrium 
corr. after 

sha kim bem mul shallowest deepest kim & mul 

G. ruber -2.25 5 50 103 152 106 126 161 

G. ruber -2.168 49 59 122 154 113 137 163 

G. ruber -2.68 5 5 5 77 65 66 153 

G. ruber -2.4 5 5 70 138 91 105 158 

G. ruber -2.465 5 5 55 124 85 96 156 

mean ± stdev 

 

14 ± 20 25 ± 27 71 ± 45 129 ± 31 92 ± 19 106 ± 28 158 ± 4 

G. sacculifer -2.303 5 5 92 151 101 118 164 

G. sacculifer -2.306 5 5 91 151 100 118 164 

G. sacculifer -2.329 5 5 86 151 98 115 164 

G. sacculifer -2.316 5 5 89 151 99 117 164 

G. sacculifer -1.886 112 126 154 161 140 156 174 

G. sacculifer -2.266 5 5 100 152 104 124 165 

G. sacculifer -2.388 5 5 73 141 93 107 163 

G. sacculifer -2.428 5 5 63 132 89 101 162 

G. sacculifer -1.942 99 113 152 159 135 154 173 

G. sacculifer -2.112 61 73 135 156 119 145 169 

G. sacculifer -2.152 52 63 126 154 115 140 168 

mean ± stdev  33 ± 42 37 ± 48 106 ± 31 151 ± 8 108 ± 17 127 ± 19 166 ± 4 

N. dutertrei -1.899 109 123 154 160 140 156 165 

N. dutertrei -2.151 52 63 126 154 115 140 159 

N. dutertrei -2.205 5 5 114 153 110 132 158 
mean ± stdev  55 ± 52 64 ± 59 131 ± 21 156 ± 4 122 ± 16 143 ± 12 161 ± 4 

P. obliquiloculata -1.753 142 151 157 163 151 160 166 

P. obliquiloculata -1.622 152 153 160 166 154 164 168 

P. obliquiloculata -1.826 125 140 155 162 146 158 164 

P. obliquiloculata -1.535 154 156 162 168 156 166 170 

P. obliquiloculata -1.488 155 157 163 169 157 168 171 

P. obliquiloculata -1.596 153 155 161 167 154 164 169 

P. obliquiloculata -1.415 157 159 165 171 159 170 173 

mean ± stdev 

 

148 ± 11 153 ± 6 160 ± 3 167 ± 3 154 ± 4 164 ± 4 169 ± 3 

         



3.0 MANUSCRIPT I 

 -61- 

Species δ18Ocalcite 
[‰] 

ACDs using seasonal ACDs after 
kim & mul 

disequilibrium 
corr. after 

sha kim bem mul shallowest deepest kim & mul 

         

G. hexagonus 1.388 277 431 618 569 556 558 386 

G. hexagonus 1.587 353 498 776 662 644 649 467 

G. hexagonus 1.486 312 467 686 612 600 602 430 
mean ± stdev  314 ± 38 465 ± 34 693 ± 79 614 ± 47 600 ± 44 603 ± 46 428 ± 41 
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S3.5.5: δ18Owater calculation to validate combined ACD approach 

The measured Mg/Ca data and δ18O data enable us to calculate of the δ18O of the water. The 

calculated δ18Owater can be compared to the measured δ18Oseawater (Figure 3.2c). This will enable 

us to further validate the combined ACD approach, if the calculated δ18Owater values are close to 

the δ18Oseawater curve. To calculate the δ18Owater, different paleotemperature equations were 

selected (Table S3.5.5) and rearranged for δ18Owater. Mean temperature from Mg/Ca and mean 

δ18Ocalcite of the respective species were inserted. The δ18Owater was then compared to the 

measured δ18Oseawater. Figure S3.5.5 displays the calculated δ18Owater of the respective species in 

comparison to the measured δ18Oseawater. It demonstrates that the calculated δ18Owater mirrors the 

measured δ18Oseawater curve. 

 

 

 

Figure S3.5.5. Calculated δ18Owater of the five 

respective species used in this study in 

comparison to measured δ18Oseawater (grey). 

The vertical bars denote the standard 

deviation of the mean ACD assessment (Table 

3.3). 

 

 

 

 

Table S3.5.5. Equations used to calculate δ18Owater of the respective foraminiferal species using mean 

Mg/Ca temperatures and mean δ18Ocalcite values. 

Species 
Mean 
Mg/Ca-
temperature 

Mean 
δ18Ocalcite 

δ18Owater 
[VSMOW]1 Equation Source Reference 

    T= a+b(δ18Ocalcite- 
δ18Oseawater) 

  

    a b   

G. ruber 27.84 -2.39 0.4803 15.4 -4.78 G. ruber  Farmer et al. [2007] 

G. sacculifer 27.86 -2.22 0.4102 16.2 -4.94 G. sacculifer Farmer et al. [2007] 

N. dutertrei 24.58 -2.09 0.5047 13.1 -4.95 G. tumida Farmer et al. [2007] 

P. obliquiloculata 23.54 -1.61 0.4218 14.6 -5.09 N. dutertrei Farmer et al. [2007] 

G. hexagonus 9.6 1.49 0.0944 17.0 -4.59 G. sacculifer Erez and Luz [1983] 
1 δ18Owater [VPDB] was converted to VSMOW by adding +0.27 [for Farmer et al., 2007] and +0.22 [for Erez and Luz, 
1983]. 
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Abstract 

We provide high-resolution foraminiferal stable carbon isotope (δ13C) records from the 

subarctic Pacific and Eastern Equatorial Pacific (EEP) to investigate circulation dynamics 

between the extra-tropical and tropical North Pacific during the past 60 kyr. We measured the 

δ13C composition of the epibenthic foraminiferal species Cibicides lobatulus (C. lobatulus) from a 

shallow sediment core recovered from the western Bering Sea (SO201-2-101KL; 58°52.52’N, 

170°41.45’E, 630 m water depth) to reconstruct past ventilation changes close to the source 

region of Glacial North Pacific Intermediate Water (GNPIW). Information regarding glacial 

changes in the δ13C of sub-thermocline water masses in the EEP is derived from the deep-

dwelling planktonic foraminifera Globorotaloides hexagonus (G. hexagonus) at ODP Site 1240 

(00°01.31’N, 82°27.76’W, 2921 m water depth). Apparent similarities in the long-term evolution of 

δ13C between GNPIW, intermediate waters in the eastern tropical North Pacific and sub-

thermocline water masses in the EEP suggest the expansion of relatively 13C-depleted, nutrient-

enriched, and northern-sourced intermediate waters to the equatorial Pacific under glacial conditi- 
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ons. Further, it appears that additional influence of GNPIW to the tropical Pacific is consistent 

with changes in nutrient distribution and biological productivity in surface-waters of the glacial 

EEP. Our findings highlight potential links between North Pacific mid-depth circulation changes, 

nutrient cycling, and biological productivity in the equatorial Pacific under glacial boundary 

conditions. 

4.1 Introduction 

The high latitudes of the North Pacific and the Southern Ocean play an essential role in 

regulating the exchange of CO2 between the ocean and the atmosphere [Takahashi et al., 2002]. 

In both regions, vertical mixing brings nutrient- and CO2-rich deep waters into the euphotic zone 

and facilitates the biological pump, which sequesters atmospheric CO2 back into the deeper 

ocean interior [e.g. Honda et al., 2002]. In the modern North Pacific, however, the further 

exposure of nutrient- and CO2-rich sub-surface waters to the surface ocean is largely hampered 

by a permanent halocline [Haug et al., 1999]. In both regions, intermediate water masses are 

formed that re-circulate excess nutrients from the high-latitude oceans towards the low latitude-

regions of the Pacific Ocean (Figure 4.1). North Pacific Intermediate Water (NPIW) is formed in 

the sub-surface of the Northwest Pacific via mixing of high-nutrient sub-surface waters and 

intermediate water masses produced in coastal polynyas through brine rejection during 

wintertime sea-ice production in the Okhotsk Sea [Talley, 1993; Shcherbina et al., 2003]. Today, 

NPIW circulates within the upper ~300 – 800 m and is mainly restricted to the subtropical North 

Pacific regions between ~20°N – 40°N, however a tongue of NPIW also spreads into the Celebes 

Sea in the western tropical Pacific [Talley, 1993; Bostock et al., 2010]. In the Southern Ocean 

Antarctic Intermediate Water (AAIW) is produced at the surface ocean from upwelled nutrient- 

and CO2-enriched Circumpolar Deep Water (CDW). AAIW ventilates into the Subtropical Gyre 

known as “ocean tunnelling” and thereby affects the equatorial current system (Figure 4.1). An 

important difference between northern- and southern-sourced intermediate waters is that sub-

surface formation of NPIW largely prevents the biologically driven re-setting of deep ocean 

nutrient ratios that happens at the surface ocean during formation of AAIW. It is for this reason 

that NPIW is characterized by higher silicic acid to nitrate supply ratios compared to southern-

sourced intermediate waters (Figure 4.1) [Sarmiento et al., 2004]. On the other hand, as carbon 

fixation is dominated by siliceous phytoplankton at the surface-ocean near the formation region of 

modern AAIW, southern-sourced intermediate waters are characterized by high nitrate, but low 

silicic acid concentrations (Figure 4.1) [Sarmiento et al., 2004]. 

Under modern conditions, mainly southern-sourced water masses (AAIW) are injected into the 

eastward-directed Equatorial Undercurrent (EUC) and the Equatorial Pacific Intermediate Water 

(EqPIW) via the South Equatorial Current and the New Guinea Coastal Undercurrent [Dugdale et 

al., 2002]. The dominant role of AAIW on equatorial intermediate waters was also verified by a 

geochemical tracer analyses that suggests that EqPIW are primarily a combination of AAIW and  
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Figure 4.1. a: Bathymetric chart of the Pacific Ocean with locations of proxy records in the North 

Pacific (SO201-2-101KL, this study; SO201-2-85KL, Max et al., 2012; BOW-8A, Horikawa et al., 2010; 

W8709A-13PC, Lund and Mix, 1998; MV99-MC19/GC31/PC08, Basak et al., 2010), the Equatorial 

Pacific (MD02-2529, Leduc et al., 2010; ODP Site 1240, Pichevin et al., 2009; this study; ME0005-24, 

Kienast et al., 2007), and the Southern Ocean (CHAT 16K, Noble et al., 2013; SO213-84-1, Ronge et 

al., 2015; E11-2, Robinson et al., 2014) considered in this study. White arrows denote major 

circulation pattern of intermediate water masses in the North Pacific and Southern Ocean: Magenta 

and green spots indicate formation regions of AAIW and NPIW, shaded magenta and green areas 

mark modern lateral extent of intermediate waters in the Pacific Ocean. b: Latitudinal profile of 

present-day silicic acid concentrations from the North Pacific to the Southern Ocean [Garcia et al., 

2010] and major modern mid-depth to deep-water masses (white arrows): AAIW = Antarctic 

Intermediate Water; CDW = Circumpolar Deep Water; EUC = Equatorial Undercurrent; EqPIW = 

Equatorial Pacific Intermediate Water; NPIW = North Pacific Intermediate Water; PDW = Pacific Deep 

Water [modified after Bostock et al., 2010]. This figure was generated with Ocean Data View 

[Schlitzer, 2015]. 
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Pacific Deep Water (PDW) with only a very minor contribution of NPIW today (Figure 4.1) 

[Bostock et al.,2010]. As the intermediate water masses flow towards the east, they supply 

nutrients via diapycnal mixing to the overlying waters masses. As a consequence of the high 

southern-sourced contribution today, carbon fixation by siliceous phytoplankton is limited by low 

silicic acid and iron availability in the Eastern Equatorial Pacific (EEP) making this region a 

significant net source of CO2 to the atmosphere [Dugdale et al., 2002]. 

Information regarding past ocean circulation changes can be reconstructed from the stable 

carbon isotopic composition (δ13C) measured on benthic foraminiferal tests. During the past thirty 

years, this proxy has been successfully used to investigate glacial to interglacial changes in water 

mass geometry and ocean circulation [e.g. Duplessy et al., 1984; Curry et al., 1988; Mix et al., 

1991; Curry et al., 2005; Bostock et al., 2010; Knudson and Ravelo, 2015a]. In the modern 

ocean, high(low) values of δ13C of the Dissolved Inorganic Carbon (DIC) are indicative of 

low(high) nutrient concentrations and large-scale oceanic water mass circulation patterns 

[Kroopnick, 1985]. For δ13C reconstructions of intermediate- and deep-water mass circulation 

changes the initial δ13C, where water masses are subducted into the ocean interior, has to be 

taken into account. The initial δ13C value of a water mass is affected by air-sea gas exchange at 

the surface-ocean, which in turn is temperature-dependent. After isolation from the surface-

ocean, the δ13C of a given water mass is mainly altered by in-situ addition of CO2 through 

respiration of sinking organic material. Today, a δ13CDIC of about 1 ‰ characterize surface waters 

of the North Atlantic where North Atlantic Deep Water (NADW) is formed. As it flows to the 

circum-Antarctic Ocean interior the continuous degradation of sinking organic particles reduces 

the original δ13CDIC of NADW to about 0.5 ‰. In the Southern Ocean deep-water further re-

circulates to the Indian and Pacific Ocean and lowest values of ~ -0.6 ‰ δ13CDIC are observed 

today in the deep subarctic Pacific. Since δ13C of epibenthic foraminifera is closely related to the 

δ13CDIC of ambient seawater, past differences in nutrient content and water mass circulation 

patterns can be reconstructed from benthic foraminiferal tests preserved in marine sediments 

[e.g. Duplessy et al., 1984]. 

Combined evidence of Δ14C deep-water ventilation ages and benthic foraminiferal δ13C 

records suggest changes in mid-depth circulation (the upper 1000 to ~2000 m water depth) of the 

North Pacific Ocean under glacial conditions [Duplessy et al., 1988; Herguera et al., 1992; 

Keigwin, 1998; Matsumoto et al., 2002a; Okazaki et al., 2012]. Accordingly, the mid-depth 

circulation of the North Pacific was strengthened by formation of Glacial North Pacific 

Intermediate Water (GNPIW). In contrast to today, it has been proposed that the Bering Sea 

formed intermediate waters during glacial times and played an important role in formation of 

GNPIW [e.g. Tanaka and Takahashi, 2005; Horikawa et al., 2010]. Evidence for additional cold 

and well-oxygenated intermediate water in the glacial Bering Sea has been provided from a study 

based on changes in radiolarian assemblages [Tanaka and Takahashi, 2005]. Based on a 

neodymium isotope record (εNd) it has been argued that Bering Sea intermediate water was a 

principal component of GNPIW during the glacial period [Horikawa et al., 2010]. The formation of 
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glacial Bering Sea intermediate waters was explained by changes in high-latitude hydrological 

processes such as enhanced brine rejection and the resulting salinity increase favouring the 

subduction of cold surface waters to the mid-depth in the Bering Sea as important precursor of 

GNPIW [Rella et al., 2012]. A recent study based on endobenthic foraminiferal stable oxygen 

(δ18O) and δ13C records from the Bering Sea indicates that enhanced GNPIW formation was not 

only restricted to the Last Glacial Maximum (LGM), but also recurred during extreme glacial 

intervals of the last 1.2 Myr [Knudson and Ravelo, 2015a]. 

In the Southern Hemisphere there is so far no consensus about the amount of AAIW 

production during glacial boundary conditions. Based on δ13C and δ18O analyses on benthic 

foraminifera from the Australian margin it has been suggested that a colder and fresher water 

mass ventilated at intermediate depth, which was linked to a shift in the frontal zonation within the 

Southern Ocean [Lynch-Stieglitz et al., 1994]. Furthermore, a study based on authigenic minerals 

from the Chilean margin found higher oxygen concentrations during glacial times, which were 

linked to an enhanced production of AAIW [Muratli et al., 2010]. On the contrary, it has been 

proposed that stronger water column stratification in the Southern Ocean led to a reduced 

production of AAIW under glacial conditions [Pahnke and Zahn, 2005]. Accordingly, periods of 

increased intermediate water formation were linked to Southern Hemisphere warm episodes 

through a tight coupling between climate warming and intermediate water production at the high 

southern latitudes. A recent study combined benthic δ13C and δ18O records off New Zealand with 

modelling results and reconstructed the vertical extent of AAIW over the last 350 kyr [Ronge et 

al., 2015]. These results showed that the vertical extent of AAIW changed on glacial-interglacial 

timescales with a significantly shallower AAIW subduction under glacial conditions. The shallower 

subduction of glacial AAIW has been related to an advanced winter sea-ice edge as well as 

enhanced freshwater flux from sea-ice melting that induced a salinity anomaly and resulted in 

formation of less dense intermediate waters in the Southern Ocean. 

Studies based on εNd records as well as Δ14C shallow- and deep-water ventilation ages from 

the equatorial Pacific suggest a dominant role of the Southern Ocean in transferring climatic 

signals from the high latitudes towards the tropical regions during late Marine Isotope Stage 

(MIS) 2 [Pena et al., 2013; de la Fuente et al., 2015]. Accordingly, available reconstructions of 

changes in water mass signatures of the equatorial Pacific suggest a principal southern-source 

for tropical Pacific intermediate water masses during glacial times similar to today. In a recent 

study, Carriquiry et al. [2015] analysed δ13C records at the western Baja California Margin and 

relates changes in mid-depth nutrient distribution to a larger influence of glacial AAIW to the 

tropical North Pacific. In contrast, Leduc et al. [2010] explained anomalies in glacial δ13C of 

intermediate waters in the Eastern Tropical North Pacific (ETNP) by a switch from southern 

nutrient-poor to northern nutrient-enriched intermediate water masses due to a sustained 

formation of GNPIW. This notion is supported by a very recent εNd data compilation from 55 core 

sites around the Pacific [Hu et al., 2016] that revealed a significant offset in EEP εNd signature 

values between LGM and Holocene values (by 1 – 2 epsilon units lower than during the 
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Holocene), which can only be explained by a higher contribution from northern-sourced waters 

[Hu et al., 2016]. The enhanced penetration of northern-sourced water masses is in agreement 

with evidence for enhanced glacial mid-depth circulation reconstructed from δ13C records of 

California margin sediment cores, however these records also point to spatial and temporal 

complexity in the ventilation history of the Northeast Pacific [Stott et al., 2000]. Together, these 

results point to a more prominent role of GNPIW in shaping the mid-depth water mass 

characteristics of the glacial North Pacific. On the other hand, it still remains illusive how 

strengthened GNPIW circulation shaped the mid-depth water mass characteristics of the glacial 

North Pacific and whether GNPIW might have influenced the nutrient distribution, biological 

productivity and export patterns far beyond the northern high latitudes. 

In this study, we report on stable isotope measurements derived from sedimentary records of 

the western subarctic Pacific (Bering Sea) and EEP to investigate spatiotemporal changes in 

GNPIW circulation and its influence on low-latitude Pacific water mass characteristics during the 

past 60 kyr. We chose a sediment core from the western Bering Sea located on Shirshov Ridge 

(SO201-2-101KL; 58°52.52’N, 170°41.45’E, 630 m water depth, Figure 4.1) and measured the 

δ13C composition of the epibenthic foraminifera Cibicides lobatulus (C. lobatulus) as an indicator 

for past ventilation changes close to the source-region of GNPIW [Max et al., 2014]. Today the 

western Bering Sea is poorly ventilated due to the absence of local intermediate water formation 

and water masses bathing core site SO201-2-101KL are dominated by upwelling of nutrient-rich 

PDW (Figure 4.1b). Additional δ13C data of deep-dwelling planktonic foraminifera Globorotaloides 

hexagonus (G. hexagonus) from Ocean Drilling Program (ODP) Site 1240 (00°01.31’N, 

82°27.76’W, 2921 m water depth, Figure 4.1) provide information about glacial changes of sub-

thermocline water mass characteristics in the EEP. Modern water mass signatures of sub-

thermocline waters at ODP Site 1240 are linked to the lower branch of the EUC, which brings 

nutrients to the surface ocean of the EEP (Figure 4.1b). By comparing water mass signatures of 

intermediate- to deep-water masses of the Pacific Ocean and Southern Ocean with sub-

thermocline to mid-depth water masses in the tropical Pacific we examine whether (1) the 

influence of northern-sourced versus southern-sourced water masses on tropical Pacific 

intermediate- and sub-thermocline water masses of the EEP changed during the last glacial 

period and (2) discuss potential implications for sub-thermocline nutrient availability and biological 

productivity in the equatorial Pacific in the past. 

4.2 Materials and Methods 

4.2.1 Stable carbon (δ13C) and oxygen (δ18O) isotope measurements 
from benthic and deep-dwelling planktonic foraminifera 

We measured the δ13C and δ18O isotope composition of epibenthic foraminifera C. lobatulus 

selected from sediment samples of western Bering Sea sediment core SO201-2-101KL and 
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deep-dwelling planktonic foraminifera G. hexagonus from samples of ODP Site 1240 in the 

Panama Basin (Figure 4.1; Supplementary Table S4.4.1 and S4.4.2). Sedimentation rates of 11 – 

16 cm kyr-1 have been reported for core SO201-2-101KL from Shirshov Ridge [Riethdorf et al., 

2013] and 6.4 – 25.2 cm kyr-1 for ODP Site 1240 [Pena et al., 2008]. According to our sampling 

scheme we achieved a millennial to centennial-scale resolution of proxy-data in this study with an 

average temporal resolution of ~0.25 kyr for core SO201-2-101KL and ~0.23 kyr for the last 

60 kyr of ODP Site 1240, respectively. Stable isotope analyses in core SO201-2-101KL were 

made on samples of two to three specimens of C. lobatulus picked from the 250 – 400 µm size 

fractions. The stable isotopic composition of G. hexagonus of ODP Site 1240 were determined 

using five specimens per sample picked from the 250 – 315 µm size fraction. 

It has been proposed that C. lobatulus preferentially lives attached to hard substrate on or 

slightly above the sediment surface and studies on living specimen indicated that this species 

faithfully records the δ13CDIC of ambient seawater [Schweizer et al., 2009]. Some investigators 

have observed a positive offset in the δ13C of C. lobatulus with regard to ambient bottom water 

δ13CDIC in some high-latitude settings of the North Atlantic Ocean [Mackensen et al., 2000]. 

However, this effect was caused by high seasonal variability of the original ambient δ13CDIC-

signal, confirmed by time-series measurements of water column δ13CDIC and related to the 

calcification of C. lobatulus during time intervals of maximum ventilation [Mackensen et al., 2000]. 

We thus regard the δ13C-signal C. lobatulus to reliably reflect δ13C of ambient seawater. 

Isotopic compositions of C. lobatulus and G. hexagonus were measured at the Alfred 

Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany, using a Thermo 

Fisher MAT 253 mass spectrometer coupled to a Kiel IV automatic carbonate preparation device. 

All stable isotope measurements were calibrated via the NBS-19 international standard and 

results are reported in δ-notation versus VPDB scale. Overall long-term analytical reproducibility 

of measurements based on internal laboratory standard (Solnhofen limestone) together with 

samples over a one-year period is better than ±0.06 ‰ for δ13C and ±0.08 ‰ for δ18O. 

4.2.2 Stable oxygen isotope composition (δ18O) and apparent 
calcification depth of deep-dwelling planktonic foraminifera 
G. hexagonus 

Information regarding apparent calcification depth (ACD) of the planktonic foraminifera 

G. hexagonus is still sparse. We make a first attempt to determine the ACD at ODP Site 1240 to 

validate the depth habitat of G. hexagonus in the EEP. The ACD-estimation was done by 

comparing measured foraminiferal δ18Ocalcite from a near core-top sample (at 10 cm) to a 

theoretically expected equilibrium δ18O values of calcite (δ18Oequilibrium) that foraminifera would 

incorporate in dependence of modern water temperature, salinity and δ18O values of seawater 

(δ18Oseawater). In order to calculate δ18Oseawater, the δ18Oseawater-salinity relationships given by Leduc 

et al. [2007] for 0 – 40 m water depth: 
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δ18Oseawater (‰) = 0.253*S-8.52, 

and for >40 m water depth: 

δ18Oseawater (‰) = 0.471*S-16.15 

were used in conjunction with annual salinity data derived from World Ocean Atlas 2009 [Antonov 

et al., 2010]. 

Several established δ18O-paleotemperature equations [Epstein et al., 1953; Shackleton, 1974; 

Kim and O’Neil, 1997; Bemis et al., 1998] were considered for δ18Ocalcite as absolute ACD 

estimation strongly depends on the applied temperature equation [Wejnert et al., 2013] (Figure 

4.2). Modern temperatures are derived from the World Ocean Atlas 2009 [Locarnini et al., 2010], 

and δ18Oseawater were included after correcting δ18Oseawater to the VPDB scale by subtracting the 

δ18Oseawater-conversion factor given in Bemis et al. [1998]. The water depth showing the best 

match between δ18Ocalcite and δ18Oequilibrium is taken as the ACD of G. hexagonus (Figure 4.2). 

	  

Figure 4.2. Apparent Calcification Depth (ACD) of planktonic foraminifera G. hexagonus in the 

Eastern Equatorial Pacific. ACD of G. hexagonus at ODP Site 1240 was inferred from best match 

between measured foraminiferal δ18Ocalcite values and corresponding calculated theoretically present 

δ18Oequilibrium value, which were determined using various paleotemperature equations (black partly 

dashed lines), modern water temperatures [Locarnini et al., 2010] and δ18Oseawater (gray line). The blue 

bar indicates the ACD range of G. hexagonus considering all used equations. 

The calculated ACD suggests that G. hexagonus dwells below the thermocline in 340 – 430 m 

water depth similar to estimated depth habitats defined by Ortiz et al. [1996] in the North Pacific. 
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Further support comes from a very recent ACD assessment from the western equatorial Pacific, 

which concludes that deep-dwelling G. hexagonus is a suitable proxy for tracing properties of 

equatorial sub-thermocline water masses [Rippert et al., 2016, this thesis]. Hence, the stable 

isotopic composition of G. hexagonus is considered to reflect the water mass properties of sub-

thermocline waters of the EEP. 

4.2.3 Stratigraphic approach and age models 

The stratigraphic framework of western Bering Sea core SO201-2-101KL was constructed 

using a multi-proxy approach described in detail in Riethdorf et al. [2013]. Briefly, information 

derived from high-resolution X-ray fluorescence (XRF) and spectrophotometric logging data 

(color b*) of core SO201-2-101KL were used for correlation to millennial-scale variability 

preserved in the NGRIP ice core [Andersen et al., 2004] according to the GICC05 timescale 

[Svensson et al., 2008] (Figure 4.3a). The tuning of core SO201-2-101KL to NGRIP was further 

validated by five planktonic radiocarbon ages spanning the time interval from the onset of MIS 2 

to the time interval of the last glacial termination (Figure 4.3a) [see Max et al., 2012]. 

We adopted the established age scale of ODP Site 1240 described in the work of Pena et al. 

[2008]. The stratigraphic framework of ODP Site 1240 was constructed from 17 AMS 14C ages 

based on monospecific samples of the planktonic foraminifera Neogloboquadrina dutertrei 

(N. duterteri) and tuning of the initiation of N. duterteri δ13C minima at ODP Site 1240 to the CO2 

increase in the Vostok CO2, as shown by Spero and Lea [2002]. Graphical correlation of 

planktonic foraminiferal Mg/Ca derived sea surface temperatures (SST) from ODP Site 1240 to 

Antarctic Vostok deuterium records was used to get additional age controls for deeper parts of 

the core [see supplement of Pena et al., 2008 for more details] (Figure 4.3b). 

4.3 Results 

Under modern conditions, the western Bering Sea is poorly ventilated due to the absence of 

local intermediate water formation. Today, water masses bathing core site SO201-2-101KL are 

dominated by upwelling of nutrient-rich PDW with very low δ13C signatures of ~ -0.6 ‰ (Figures 

4.1 and 4.4). The nutrient-rich and 13C-depleted signature of PDW results from its long isolation 

from the sea surface and continuous respiration of organic matter along its path from the 

Southern Ocean into the North Pacific [Herguera et al., 2010]. The reconstructed glacial (60 – 

20 ka) δ13C values show a pronounced variability on millennial timescales, in particular during 

MIS 3, and vary between -0.8 – 0.2 ‰ (Figure 4.4). Upon millennial-scale variability a long-term 

trend towards increased δ13C of Bering Sea intermediate water since the beginning of MIS 3 is 

clearly visible in core SO201-2-101KL, which culminated during early MIS 2 (~29 ka) with δ13C 

signatures of up to ~0.3 ‰ (Figure 4.4). During MIS 2 δ13C values show a long-term decrease 

with δ13C signatures reaching ~ -0.2 ‰ at the beginning of the last deglaciation (~17 ka). 
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Figure 4.3. a: Comparison of high-resolution XRF core-logging data (Ca/Ti-ratio) from core SO201-2-

101KL to NGRIP ice-core record. Numbers indicate Dansgaard-Oeschger Interstadials in NGRIP 

[Andersen et al., 2004] and SO201-2-101KL [this study] during the past 60 kyr [Riethdorf et al., 2013]. 

b: The stratigraphic framework of ODP Site 1240 based on 17 AMS 14C ages and graphical tuning 

deeper parts of the cores to the Vostok ice core record [Petit et al., 1999; Pena et al., 2008]. Available 

AMS-14C dating’s derived from core SO201-2-101KL and ODP Site 1240 are given by blue and purple 

squares at the bottom. 
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The deep-dwelling planktonic foraminifera G. hexagonus record from ODP Site 1240 serves 

as proxy for changes in δ13C signatures of sub-thermocline water masses upwelled in the EEP 

(Figure 4.4). Under modern conditions, water mass upwelling to the surface of the EEP happens 

via the lower branch of the EUC with modern δ13C signatures of ~0.1 ‰ (Figures 4.1 and 4.4). 

During MIS 3 (~60 – 30 ka) the G. hexagonus δ13C proxy record indicates the presence of 

relatively 13C-enriched (nutrient-depleted) water masses with δ13C signatures of 0.1 – 0.2 ‰ and 

relatively low variability in δ13C of sub-thermocline waters (Figure 4.4). A first switch to relatively 
13C-depleted sub-thermocline water masses in the EEP is apparent during early MIS 2, and most 
13C-depleted values of ~ -0.4 ‰ are found at the beginning of the last deglaciation (~17 ka). 

	  

Figure 4.4. Detailed comparison of mid-depth benthic δ13C record from sediment core SO201-2-

101KL from the subarctic Pacific (Bering Sea) with δ13C record of deep-dwelling (sub-thermocline) 

planktonic foraminifera G. hexagonus derived from ODP Site 1240 in the Eastern Equatorial Pacific 

during the past 60 kyr. Grey shaded area marks times of convergence between the given δ13C records 

during MIS 2. Coloured circles indicate δ13CDIC composition of water masses bathing the respective 

core sites under modern conditions [Key et al., 2004]. 
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4.4 Discussion 

Based on proxy data of marine productivity and benthic foraminiferal stable isotope records a 

recent study suggested that the long-term increase in δ13C Bering Sea intermediate water was 

related to local formation of waters masses with lower salinity and higher oxygen content under 

glacial conditions [Schlung et al., 2013]. Rella et al. [2012] argued that an eastward displacement 

of the Aleutian Low and a shift to predominantly northerly winds over the Bering Sea created 

favourable conditions for active polynya formation and brine rejection coupled to sea-ice 

formation, which led to intermediate water production as one potential source-region of GNPIW 

during the glacial period. However, changes in thermodynamic (temperature-dependent) 

equilibration between the surface ocean δ13CDIC and the atmospheric CO2 also influence isotopic 

fractionation, whereby surface ocean δ13CDIC increases by 0.1 ‰ with each 1°C decrease in 

surface ocean temperature [Mook et al., 1974]. Given that glacial production of intermediate 

waters in the western Bering Sea was supposedly linked to sea-ice formation during winter, when 

surface ocean temperature were always close to the freezing point, temperature-dependent 

changes in air-sea gas exchange of western Bering Sea surface waters should have had a minor 

effect on the δ13CDIC signal. A recent study showed that during stadial periods of the deglaciation 

most of the western Bering Sea was covered by seasonal sea ice [Méheust et al., 2016], thus 

providing favourable conditions for intermediate water formation. Moreover, benthic δ13C data 

from proximal core SO201-2-85KL point to a decline in δ13C and reduced ventilation during 

deglacial warm stages and the early Holocene when sea-ice cover was substantially reduced 

[Max et al., 2012; Max et al., 2014]. 

4.4.1 Glacial contribution of northern- versus southern-sourced water 
masses in the Eastern Tropical North Pacific (~8°N) 

In a first step, we compare the benthic δ13C of mid-depth records from the Southern Ocean 

(SO213-84-1; Ronge et al., 2015), the subarctic Pacific (SO201-2-101KL; this study) and a deep-

water benthic δ13C record from the Northeast Pacific (W8709A-13PC; Lund and Mix, 1998) with 

mid-depth δ13C signatures derived from sediment core MD02-2529 [Leduc et al., 2010] located in 

the ETNP to assess the influence of northern- versus southern-sourced water masses on EqPIW 

characteristics during the past 60 kyr (Figures 4.1 and 4.5a). The core site of MD02-2529 in the 

ETNP is situated at the modern confluence of northern oxygen-poor and southern oxygen-rich 

waters, and thus is ideally located to investigate past changes in the respective latitudinal extents 

of northern versus southern-sourced water masses in the past [Leduc et al., 2010]. 
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Figure 4.5 Benthic δ13C records and εNd signatures from intermediate waters of the North Pacific 

(GNPIW), off Baja California, the Eastern Tropical North Pacific (EqPIW) and the Southern Ocean 

(AAIW) compared to benthic δ13C deep-water (PDW) variability for the last 60 kyr. a: Benthic δ13C 

record from Southern Ocean core SO213-84-1 (AAIW, in green) [Ronge et al., 2015], benthic δ13C 

record from MD02-2529 located in the Eastern Tropical North Pacific (in light blue) [Leduc et al., 

2010], benthic intermediate-water δ13C record from Bering Sea core SO201-2-101KL (in magenta) 

[this study] and SO201-2-85KL (in black) [Max et al., 2014], deep-water benthic δ13C record from core 

W8709A-13PC (in brown) [Lund and Mix, 1998). b: End-member intermediate-water mass εNd records 

from southern Bering Sea core BOW-8A (GNPIW, in magenta) [Horikawa et al., 2010] and southwest 

Pacific core CHAT 16K (AAIW, in light green) [Noble et al., 2013] together with εNd signatures derived 

from sediment cores off Baja California (in blue) [Basak et al., 2010]. Coloured vertical bars indicate 

total variability in measured δ13C at respective core sites. Coloured circles indicate δ13CDIC 

composition of water masses bathing respective core sites under modern conditions [Key et al., 2004]. 

The glacial δ13C end-member variability of AAIW is reflected by sediment core SO213-84-1 off 

New Zealand [Ronge et al., 2015] (Figure 4.5a). There, glacial δ13C signatures of AAIW range 

between ~0.5 – 1.4 ‰ and characterizing southern-sourced intermediate water masses. The 
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long-term evolution of δ13C-signatures between AAIW and intermediate waters in the North 

Pacific and ETNP reveals remarkable differences in temporal variability under glacial conditions 

(Figure 4.5a). Moreover, huge gradients in δ13C (up to 2 ‰) between Southern Ocean core 

SO213-84-1 and MD02-2529 from the ETNP [Leduc et al., 2010] clearly separate 13C-enriched 

(more nutrient-depleted) signatures of AAIW from 13C-depleted (more nutrient-enriched) 

signatures of EqPIW under glacial conditions (Figure 4.5a). Evidence for a weakened production 

or shoaling of glacial AAIW has been inferred from δ13C-records off New Zealand [Pahnke and 

Zahn, 2005; Ronge et al., 2015], which generally points to a glacial change in relative contribution 

of intermediate waters from the Southern Ocean to the tropical Pacific. However, large gradients 

and the discrepancy in temporal evolution of δ13C signatures of EqPIW and AAIW cannot be 

explained by δ13C variability of southern-sourced intermediate waters alone and point to 

additional water masses influencing the glacial mid-depth tropical Pacific. 

Next, we compare our new benthic δ13C record from the mid-depth subarctic Pacific (SO201-

2-101KL) and the benthic δ13C record of PDW from the Northeast Pacific (W8709A-13PC) [Lund 

and Mix, 1998] with EqPIW δ13C water mass characteristics (MD02-2529) [Leduc et al., 2010] 

during the past 60 kyr (Figures 4.1 and 4.5a). Millennial-scale variability superimposed on the 

long-term δ13C trend of EqPIW is more pronounced compared to the δ13C-signal recorded in 

SO201-2-101KL (GNPIW) or W8709A-13PC (PDW) during early MIS 3 (55 – 45 ka). In addition 

EqPIW δ13C values oscillate between δ13C signatures of GNPIW and PDW during MIS 3 (60 – 

30 ka). During this time, there is no clear relationship to northern- or southern-sourced 

intermediate waters, and rather admixing of different source water masses to EqPIW is likely. On 

the other hand, clear similarities in the long-term evolution in δ13C between the intermediate 

water records derived from subarctic Pacific core SO201-2-101KL and sediment core MD02-2529 

from the ETNP are observed since at least ~29 ka (Figure 4.5a). Moreover, glacial gradients in 

δ13C between GNPIW and EqPIW are relatively small and vary between 0.2 – 0.5 ‰. In contrast, 

absolute δ13C signatures as well as the temporal evolution of EqPIW and PDW differs 

substantially such as δ13C of EqPIW increases steadily, whereas δ13C of PDW shows a long-term 

trend to more depleted 13C signatures during MIS 2 (Figure 4.5a). Accordingly, available deep-

water ventilation ages as well as the long-term trend in deep-water δ13C of the North Pacific 

indicate that glacial PDW was similar or even less well ventilated than today [Lund and Mix, 1998; 

Galbraith et al., 2007; Lund et al., 2011] and the ventilation history different to the mid-depth 

circulation dynamics of the North Pacific [Kennett and Ingram, 1995; Stott et al., 2009]. 

Altogether, our results indicate that intermediate waters in the subarctic Pacific and ETNP 

(GNPIW and EqPIW) share similar glacial δ13C signatures, which are indicative for the presence 

of nutrient-enriched intermediate water masses, but are apparently different to δ13C signatures of 

AAIW or PDW (Figure 4.5a). Given that GNPIW features slightly higher δ13C signatures 

compared to EqPIW masses our results point to the advection of northern-sourced intermediate 

water masses towards the tropical Pacific. Thus, from similarities in long-term evolution of δ13C 

between the North Pacific and ETNP intermediate water records we argue that relatively nutrient-
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enriched GNPIW generally extended further south to the tropical Pacific under glacial conditions. 

During the last deglaciation (~17 – 15 ka), however, intermediate water δ13C-signals at the ETNP 

and North Pacific starts to diverge substantially. The δ13C signatures in the ETNP increase, while 

the δ13C values decrease at site SO201-2-85KL in the subarctic Pacific (Figure 4.5a). 

Independent evidence for enhanced glacial influence of northern-sourced intermediate waters 

to the low-latitude Pacific comes from the comparison of available εNd records of the Bering Sea 

and off Baja California [Basak et al., 2010; Horikawa et al., 2010] (Figure 4.5b). In particular, εNd 

data at the intermediate depth in the Bering Sea show radiogenic values explicitly indicating that 

Bering Sea surface water masses (marked by more radiogenic εNd signatures) were subducted to 

intermediate depths under glacial conditions [Horikawa et al., 2010]. At the same time, glacial εNd 

values derived from a sediment record off Baja California point to the presence of more 

radiogenic intermediate water masses, which has been linked to admixture of dominantly 

northern-sourced intermediate waters [Basak et al., 2010]. Furthermore, available information of 

glacial εNd signatures from a sediment core in the southwest Pacific [Noble et al., 2013] clearly 

distinguish less radiogenic εNd signatures of AAIW from signals of more radiogenic intermediate 

water masses found in the Bering Sea or off Baja California (Figure 4.5b). Altogether, results from 

εNd records are in line with enhanced glacial advection of northern-sourced intermediate water 

masses towards the tropical Pacific (Figures 4.1 and 4.5b). However, rapid changes in Bering 

Sea and Baja California εNd signatures are visible during the last deglaciation that point to a 

switchback to reduced influence of northern-sourced intermediate water masses to the low-

latitude Pacific since ~17 ka (Figure 4.5b). 

The combined evidences from δ13C and εNd proxy data of the subarctic Pacific, the eastern 

North Pacific (Baja California), the ETNP and Southern Ocean suggest that northern-sourced 

intermediate waters extended further south to the ETNP under glacial conditions (Figures 4.5a 

and b). This is in agreement with a scenario proposed by Herguera et al. [2010], in which a 

deepening of the main thermocline and cooling of the high-latitude North Pacific would lead to a 

south-eastward expansion of GNPIW circulation and greater glacial influence of northern-sourced 

intermediate water on the tropical Pacific. Therefore, we propose that glacial changes in the 

relative contribution of intermediate waters from both the Southern Ocean and North Pacific are 

important in re-circulating excess nutrients from the high-latitude oceans towards the low latitude-

regions of the Pacific Ocean. We suggest that the observed glacial changes in δ13C-signatures of 

tropical intermediate waters in the ETNP are linked to additional contribution of northern-sourced 

intermediate waters. Increased glacial contribution from relatively nutrient-enriched, northern-

sourced intermediate water (relative to AAIW) to the low-latitude Pacific is also in line with a 

regional pattern of elevated marine productivity observed along the tropical North Pacific 

[Arellano-Torres et al., 2011]. Altogether, our results further confirm considerations of a 

southward expansion of GNPIW to explain the δ13C signatures found in the mid-depth tropical 

Pacific during MIS 2 [Herguera et al., 2010]. 



 4.0 MANUSCRIPT II 

 -78- 

4.4.2 Evidence for increased GNPIW influence on the Eastern 
Equatorial Pacific since MIS 2? 

To assess whether GNPIW expanded further south to the equatorial upwelling system, we 

compare the variability in δ13C of GNPIW and AAIW with a new sub-thermocline δ13C proxy 

record of the deep-dwelling planktonic foraminifera G. hexagonus from ODP Site 1240. Glacial 

variations in δ13C of sub-thermocline water masses are interpreted as both changes in incoming 

nutrients and export productivity in the surface ocean of the EEP. During MIS 3 (~60 – 30 ka) the 

G. hexagonus δ13C proxy record indicates the presence of relatively 13C-enriched (nutrient-

depleted) water masses with low variability in δ13C of sub-thermocline waters of the EEP (Figure 

4.6a). At the same time, GNPIW shows distinctly lower (more-nutrient-rich) δ13C values with 

higher temporal variability than EEP sub-surface waters. However, apparent similarities are 

observed since ~29 ka at the beginning of MIS 2, where absolute δ13C values as well as the long-

term trend indicate more nutrient-enriched sub-thermocline water masses recorded in δ13C of 

G. hexagonus at ODP Site 1240, which closely follows the temporal evolution of the δ13C 

signature advected towards the tropical Pacific via GNPIW (Figure 4.6a). 

Interestingly, another rapid switch to monotonically increasing δ13C of G. hexagonus is visible 

during the last deglaciation, which suggests a decoupling from northern-sourced intermediate 

waters between ~17 – 15 ka. The transition from 13C-depleted (more nutrient-enriched) to rather 
13C-enriched (more nutrient-depleted) sub-surface water implies another significant change in 

characteristics of source water masses along with changes in biological productivity in the EEP 

during the last deglaciation (Figures 4.6a and b). Simultaneously, intermediate waters in the 

North Pacific became further 13C-depleted and seems to be decoupled from sub-thermocline 

waters in the EEP. This is in line with a recent study on surface ocean productivity at ODP Site 

1240, which showed that southern-sourced intermediate waters played a more dominant role for 

the nutrient redistribution in the EEP since the early deglaciation [e.g. Calvo et al., 2011]. 

Dissimilar trends are also evident between northern-sourced intermediate water and mid-depth 

water masses in the ETNP, probably due to a reduced lateral extent of GNPIW during the last 

deglaciation (Figure 4.5a). Since then, mid-depth waters in the ETNP seems to follow the 

temporal variability of southern-sourced intermediate water that imply a larger influence of 13C-

enriched (more nutrient-depleted) AAIW in the tropical Pacific. However, we note that large 

gradients between δ13C of sub-thermocline waters in the EEP and AAIW are also visible during 

the last deglaciation and Holocene. Still, available benthic δ13C records from the mid-depth to 

deep North Pacific do not cover the whole Holocene and impede further interpretation of δ13C 

variability in the ETNP during this time. 

Past changes in sub-thermocline water mass signatures in the EEP have been usually linked 

to differences in advection and/or source-water mass characteristics of Southern Ocean water 

masses to the tropical Pacific. Rapid changes in meridional transport of southern-sourced 

intermediate water towards the tropical regions have been proposed from proposed from εNd 
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records over the last 30 kyr [Pena et al., 2013]. A recent study investigating Southern Ocean and 

EEP shallow- and deep-water ventilation ages suggest that relatively old water masses 

(PDW/UCDW) upwelled to EEP thermocline waters and proposed a dominant deep southern-

source during late MIS 2 [de la Fuente et al., 2015]. A study reconstructing radiocarbon activity of 

mid-depth waters from sediment cores off Baja California also pointed to the presence of slightly 

older intermediate waters in the eastern North Pacific during the latter part of the glacial period 

[Marchitto et al., 2007], which might also explain glacial age anomalies in the surface ocean of 

the EEP. Thus, we explain changes in δ13C of sub-thermocline water masses of the EEP 

between MIS 3 and MIS 2 by changes in source water masses characteristics probably due to 

variable ocean interior transport pathways reaching the equatorial Pacific under glacial 

conditions. Based on the apparent similarities between δ13C-signatures of northern-sourced 

intermediate waters, mid-depth waters in the Panama basin of the ETNP and sub-thermocline 

waters in the EEP (Figures 4.5a and 4.6a), we argue for additional intrusion of GNPIW into sub-

thermocline water masses of the EEP during MIS 2. 

4.4.3 “North Pacific Nutrient Leakage” 

We provide the first evidence that relatively 13C-depleted (nutrient-enriched) GNPIW 

influenced glacial EEP sub-thermocline waters during MIS 2 and discuss further potential 

implications on marine productivity of the equatorial Pacific regions at that time (Figures 4.6a - c). 

Nitrogen and silicon isotopes are often used as diagnostic tools for reconstructing past nutrient 

cycling. With higher nutrient consumption, both substrate (dissolved nutrients) and products 

generated from it become progressively enriched in heavier isotopes. Indeed several studies of 

sediment cores in the EEP found evidence for changes in marine productivity and nutrient 

utilization during MIS 2 [Kienast et al., 2007; Pichevin et al., 2009; Robinson et al., 2009; Dubois 

et al., 2011] (Figure 4.6b). Overall similarities between these records demonstrate that they are 

not primarily influenced by local processes at the deposition site, but rather reflect a robust signal 

of regional changes in nutrient delivery and biological productivity in the EEP [Dubois et al., 

2011]. Pichevin et al. [2009] found that the glacial biological carbon pump in the EEP was more 

efficient due to a relaxation of nutrient limitation and speculated about its contribution to lower 

atmospheric CO2 conditions during MIS 2. 

Glacial relaxation of nutrient limitation and concurrent maxima in biological productivity in the 

EEP have been usually related to the redistribution of excess nutrients (mainly silicic acid) from 

the Southern Ocean via “ocean tunnelling” as proposed by the Silicic Acid Leakage Hypothesis 

[Matsumoto et al., 2002b]. At the same time, changes in the contribution of northern-sourced 

intermediate waters are often neglected e.g. by assuming that the relative contribution from 

northern- and southern-sourced water did not change significantly in the past [e.g. Dubois et al., 

2011; Pena et al., 2013]. However, studies using diatom-bound silicon and nitrogen isotopes as 

proxies for nutrient utilization suggested enhanced glacial drawdown of silicic acid and nitrate alo 
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Figure 4.6. Reconstructed δ13C variability of GNPIW versus AAIW compared to glacial changes in 

δ13C of sub-thermocline waters, biological productivity and nutrient utilization in the Eastern Equatorial 

Pacific (EEP) and Southern Ocean. a: δ13C record of GNPIW (SO201-2-85KL, Max et al., 2014; 

SO201-2-101KL; this study) compared to δ13C composition of AAIW (SO213-84-1, Ronge et al., 2015) 

and deep-dwelling planktonic foraminifera δ13C record of G. hexagonus (ODP Site 1240, this study) 

during the past 60 kyr. b: δ15N record at ODP Site 1240 in the EEP [Pichevin et al., 2009] together with 
230Th-normalized Corg flux of neighbouring core ME0005-24 [Kienast et al., 2007]. c: δ30SiDiatom isotope 

composition of ODP Site 1240 in the EEP [Pichevin et al., 2009] compared to δ30SiDiatom composition 

derived from core E11-2 [Robinson et al., 2014] located in the Pacific Zone of the Southern Ocean. 

Yellow shaded bar marks times of increased GNPIW contribution to sub-thermocline waters of the 

EEP during MIS 2. 
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along with higher glacial opal fluxes in the Pacific Subantarctic Zone of the Southern Ocean 

during MIS 2 [Bradtmiller et al., 2009; Robinson et al., 2005, 2014]. These results show that, in 

contrast to the EEP, silicic acid and nitrate have been utilized more efficiently and became rather 

“trapped” north of the Antarctic Polar Front in the glacial deep Southern Ocean (Figures 4.6b and 

c). However, it has been also shown that average glacial opal fluxes were less than during the 

Holocene south of the Antarctic Polar Front [Bradtmiller et al., 2009]. Whether the glacial 

Southern Ocean provides sufficient nutrients via ”ocean tunnelling” to enhance marine 

productivity at the EEP as predicted by the Silicic Acid Leakage Hypothesis is still discussed 

controversial [Hendry and Brzezinski, 2014; Robinson et al., 2014]. 

Interestingly, times of enhanced organic carbon flux rates and low nutrient utilization (silicic 

acid and nitrate) in the EEP are visible since the beginning of MIS 2 and generally coincided with 

the proposed changes in additional contributions of relatively nutrient-rich GNPIW to equatorial 

Pacific sub-thermocline water masses (Figures 4.6b and c). Invoking an additional export of 

unutilized (preformed) nutrients from the high-latitude North Pacific via nutrient-enriched GNPIW 

(here named as “North Pacific Nutrient Leakage”) thus might be another, yet unconsidered, 

process to explain relieved nutrient limitation and a stimulated biological pump in the EEP during 

MIS 2. Unfortunately, less is known about glacial changes in utilization of major nutrients, such as 

silicon or iron in the source region of GNPIW. Some studies propose low biological productivity 

and nutrient utilization (nitrate) in the Bering Sea due to a decrease in productivity, or an increase 

in nitrate availability through changes in vertical mixing under glacial conditions [Riethdorf et al., 

2013; Schlung et al., 2013]. Other studies point to near-complete nutrient utilization (nitrate) in the 

Bering Sea and western subarctic Pacific during glacial times [Brunelle et al., 2007, 2010]. A 

recent study emphasizes the role of strong physical stratification of the glacial subarctic Pacific 

surface waters, which prevented additional flux of nitrate from underlying water, such that 

available surface nitrate was used to near completion [Knudson and Ravelo, 2015b]. Our results 

propose that additional influence of nutrient-rich North Pacific mid-depth waters to the tropical 

Pacific via GNPIW might hold new clues about glacial productivity changes in the EEP, but need 

to be further evaluated in order to understand the role of enhanced influence of GNPIW to the 

low-latitude Pacific under glacial conditions. 

During the deglaciation, the resumption of intense overturning within the Southern Ocean led 

to a higher injection of relatively nutrient-depleted southern-sourced water masses into the 

EqPIW. As a consequence, decreasing nutrient concentrations and increasing nutrient 

consumption are recorded in the EqPIW (Figure 4.6). However, we can only speculate about the 

offset in timing between the onset of EqPIW δ13C changes (shown by G. hexagonus) and the 

increase in δ15Ν in ODP Site 1240. The switch in relative end-member contribution during the 

deglaciation possibly causes variations in intermediate water suboxia and hence water column 

denitrification [Robinson et al., 2009]. This would affect the nitrogen isotopes only as 

G. hexagonus seems to be more insensitive to varying oxygen concentrations [Rippert et al., 
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2016, this thesis]. Nonetheless, the discrepancy in timing needs to be further investigated in 

combination with δ15Ν studies from the high latitudes. 

4.5 Conclusions 

Here we report on new foraminiferal δ13C records from the western subarctic Pacific (Bering 

Sea) and EEP spanning the past 60 kyr. Combined evidence of δ13C from core SO201-2-101KL 

and εNd records of the Bering Sea points to a long-term increase in GNPIW formation since the 

onset of MIS 3, which culminated early in MIS 2 (~29 ka). The comparison between benthic 

foraminiferal δ13C records of SO201-2-101KL and marine sediment core MD02-2529 from the 

Panama Basin as well as εNd records of the Bering Sea and eastern North Pacific reveals 

remarkable similarities in the long-term evolution between GNPIW and EqPIW signatures in the 

tropical North Pacific during the glacial period. These results support the notion that northern-

sourced intermediate water extended further south to the tropical Pacific region than today under 

glacial boundary conditions. Glacial changes in δ13C of sub-thermocline water masses in the EEP 

were derived from deep-dwelling planktonic foraminiferal species G. hexagonus at ODP Site 

1240 and indicate significant changes in sub-thermocline water mass characteristics during 

MIS 2. Notably, the proposed times of additional influence of GNPIW to the tropical Pacific 

coincides with changes in nutrient availability and biological productivity in the glacial EEP. 

Overall, our new findings indicate that past changes in North Pacific mid-depth circulation might 

have played a crucial role in glacial nutrient availability and biological productivity in the EEP, but 

needs to be further constrained by future studies investigating glacial changes in utilization of 

major nutrients, such as silicon or iron in the subarctic Pacific. 
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Table S4.4.1. Stable isotope data (δ13C) of epibenthic foraminifera Cibicides lobatulus from sediment 

core SO201-2-101KL (58°52’N, 170°41’E). 

Depth 
(cm) 

Age 
(ka)  

δ13CC.lobatulus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CC.lobatulus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CC.lobatulus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CC.lobatulus 

(‰VPDB) 
83 16.66 0.095 255 31.20 -0.298 430 45.54 -0.606 650 56.60 -0.341 
85 16.82 -0.019 260 31.96 -0.125 433 45.71 -0.282 655 56.77 -0.438 
90 17.21 -0.156 263 32.30 0.036 435 45.82 -0.279 660 56.94 -0.698 
93 17.46 -0.034 265 32.52 -0.108 440 46.11 -0.429 665 57.11 -0.760 
95 17.63 -0.236 270 33.06 -0.070 443 46.28 -0.282 670 57.29 -0.469 

100 18.06 -0.116 273 33.39 0.041 445 46.39 -0.401 675 57.46 -0.384 
103 18.31 -0.050 275 33.77 -0.285 450 46.67 -0.455 680 57.63 -0.596 
105 18.48 -0.198 280 35.10 -0.307 453 46.84 -0.570 685 57.80 -0.734 
110 18.91 -0.159 283 35.58 -0.025 455 46.98 -0.481 690 58.05 -0.696 
113 19.16 -0.134 285 35.78 -0.349 460 47.37 -0.378 695 58.30 -0.567 
115 19.33 -0.144 290 36.11 -0.387 463 47.61 -0.338 700 58.55 -0.593 
120 19.76 -0.113 293 36.31 -0.116 465 47.76 -0.216 705 58.80 -0.524 
123 20.01 -0.117 295 36.44 -0.064 470 48.15 -0.377 710 59.05 -0.804 
125 20.18 0.026 300 36.77 -0.279 473 48.39 -0.145 715 59.30 -0.779 
130 20.60 0.065 303 36.96 -0.220 475 48.55 -0.720 720 59.55 -0.646 
133 20.86 -0.085 305 37.08 -0.358 480 48.94 -0.270 725 59.82 -0.675 
135 21.03 -0.129 310 37.38 -0.280 483 49.17 -0.240 730 60.11 -0.859 
140 21.45 -0.043 313 37.56 -0.299 485 49.33 -0.225 

   143 21.71 -0.079 315 37.67 -0.406 490 49.72 -0.205 
   145 21.88 -0.012 320 37.97 -0.261 493 49.96 -0.505 
   150 22.30 0.069 323 38.15 -0.043 495 50.11 -0.286 
   153 22.56 0.070 325 38.27 -0.013 500 50.50 -0.281 
   155 22.73 -0.017 330 38.57 -0.249 503 50.74 -0.278 
   160 23.15 -0.060 333 38.75 -0.149 505 50.90 -0.428 
   163 23.41 -0.074 335 38.87 -0.128 510 51.29 -0.221 
   165 23.58 -0.004 340 39.16 -0.586 515 51.64 -0.371 
   170 24.00 0.033 343 39.34 0.190 520 51.82 -0.445 
   173 24.25 0.056 345 39.46 -0.112 525 52.00 -0.773 
   175 24.42 0.007 350 39.79 -0.087 530 52.19 -0.284 
   180 24.85 0.031 353 40.06 -0.021 535 52.37 -0.586 
   183 25.10 0.234 355 40.24 -0.396 540 52.56 -0.549 
   185 25.27 -0.122 360 40.68 0.092 545 52.74 -0.661 
   190 25.70 -0.035 363 40.95 0.094 550 52.92 -0.834 
   193 25.90 -0.116 365 41.13 -0.587 555 53.11 -0.760 
   195 26.04 0.043 370 41.58 -0.307 560 53.29 -0.459 
   200 26.37 0.193 373 41.85 -0.567 565 53.48 -0.768 
   203 26.56 0.087 375 42.03 -0.084 570 53.66 -0.507 
   205 26.69 0.076 380 42.47 -0.204 575 53.84 -0.303 
   210 27.02 0.059 383 42.74 -0.121 580 54.03 -0.604 
   213 27.22 -0.092 385 42.92 -0.152 585 54.21 -0.521 
   215 27.35 0.070 390 43.27 -0.084 590 54.39 -0.635 
   220 27.68 0.203 393 43.44 -0.219 595 54.58 -0.465 
   223 27.88 -0.320 395 43.55 -0.152 600 54.76 -0.421 
   225 28.01 0.029 400 43.84 0.145 605 54.95 -0.242 
   230 28.34 -0.111 403 44.01 0.005 610 55.13 -0.593 
   233 28.53 -0.092 405 44.12 -0.706 615 55.31 -0.780 
   235 28.71 0.032 410 44.40 0.045 620 55.50 -0.688 
   240 29.28 0.250 413 44.58 -0.191 625 55.68 -0.531 
   243 29.62 0.287 415 44.69 -0.067 630 55.87 -1.025 
   245 29.85 0.062 420 44.97 -0.354 635 56.05 -1.234 
   250 30.45 -0.047 423 45.14 -0.149 640 56.23 -0.263 
   253 30.90 -0.075 425 45.26 -0.357 645 56.42 -0.744       
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Table S4.4.2. Stable isotope data (δ13C) of deep-dwelling planktic foraminifera Globorotaloides 

hexagonus from ODP Site 1240 (00°01’N, 82°27’W). 

Depth 
(cm) 

Age 
(ka)  

δ13CG.hexagonus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CG.hexagonus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CG.hexagonus 

(‰VPDB) 
1 1.91 0.53 187 15.26 -0.22 316 22.16 -0.004 
5 2.47 0.50 189 15.36 -0.38 318 22.26 0.051 
9 3.03 0.54 191 15.47 -0.27 324 23.22 -0.053 

13 3.59 0.56 193 15.58 -0.391 326 23.36 -0.030 
17 4.15 0.56 195 15.69 -0.240 328 23.63 0.015 
18 4.29 0.64 197 15.80 -0.262 330 23.91 -0.041 
22 4.85 0.50 199 15.91 -0.195 332 24.18 0.013 
26 5.34 0.47 201 16.02 -0.073 334 24.46 -0.060 
29 5.55 0.49 203 16.13 -0.341 336 24.73 -0.014 
34 5.90 0.33 207 16.35 -0.289 338 25.00 0.112 
38 6.18 0.31 209 16.46 -0.394 340 25.28 0.284 
42 6.46 0.42 211 16.57 -0.155 342 25.55 0.205 
49 6.95 0.25 213 16.67 -0.437 344 25.83 -0.074 
54 7.29 0.30 215 16.78 -0.173 346 26.10 0.091 
58 7.57 0.55 217 16.89 -0.176 348 26.38 0.280 
62 7.85 0.27 219 17.00 -0.300 350 26.65 0.079 
69 8.34 0.35 221 17.11 -0.286 352 26.88 0.137 
73 8.62 0.09 227 17.28 -0.022 354 27.11 0.000 
77 8.90 0.22 233 17.46 -0.080 356 27.34 0.078 
82 9.11 0.54 235 17.59 -0.112 360 27.80 0.044 
89 9.39 0.30 237 17.72 -0.161 364 28.16 0.118 
94 9.60 0.03 239 17.85 -0.151 366 28.29 0.053 

102 9.93 0.08 241 17.98 -0.045 370 28.55 0.080 
109 10.21 -0.05 243 18.11 -0.044 374 28.80 0.047 
113 10.38 0.41 245 18.24 -0.183 376 28.93 0.006 
117 10.54 0.24 247 18.37 0.022 380 29.19 0.055 
118 10.65 0.31 249 18.50 -0.212 384 29.45 0.127 
122 11.08 0.05 251 18.63 -0.153 386 29.58 0.131 
125 11.40 0.31 253 18.76 -0.192 390 29.84 -0.029 
126 11.50 0.23 255 18.89 -0.325 396 30.22 0.204 
129 11.83 0.04 257 19.02 -0.101 398 30.35 0.100 
130 11.93 -0.10 259 19.15 -0.065 402 30.61 0.195 
133 12.25 0.03 261 19.28 -0.260 406 30.87 0.145 
134 12.36 0.18 263 19.41 -0.154 410 31.13 0.087 
137 12.68 0.08 265 19.52 -0.177 414 31.38 0.144 
141 12.91 0.01 267 19.62 -0.199 416 31.51 0.160 
142 12.95 0.23 269 19.73 -0.136 420 31.77 -0.118 
145 13.08 0.20 271 19.83 -0.234 424 32.03 0.159 
151 13.32 0.08 273 19.94 0.139 426 32.16 0.137 
153 13.43 0.11 275 20.04 -0.160 430 32.42 0.170 
155 13.53 0.05 281 20.36 0.053 432 32.55 0.256 
157 13.64 0.12 283 20.46 -0.116 436 32.80 0.102 
159 13.75 0.08 285 20.57 -0.129 440 33.06 0.085 
161 13.85 0.02 287 20.67 -0.190 442 33.21 0.213 
165 14.07 0.01 289 20.78 -0.069 444 33.36 0.154 
167 14.17 -0.03 293 20.98 -0.082 446 33.53 0.234 
171 14.39 -0.26 295 21.08 -0.073 448 33.71 0.230 
173 14.49 -0.17 297 21.19 -0.042 450 33.88 0.213 
175 14.60 -0.11 299 21.29 -0.106 452 34.05 0.057 
177 14.71 -0.09 306 21.65 -0.080 454 34.22 0.269 
179 14.82 -0.19 308 21.75 -0.119 456 34.40 0.232 
181 14.93 -0.24 312 21.95 -0.247 458 34.57 0.020 
183 15.04 -0.08 314 22.06 -0.193 460 34.74 0.103 
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Depth 
(cm) 

Age 
(ka)  

δ13CG.hexagonus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CG.hexagonus 

(‰VPDB) 
Depth 
(cm) 

Age 
(ka)  

δ13CG.hexagonus 

(‰VPDB) 

462 34.91 0.142 568 42.20 0.1 687 51.44 0.3 
464 35.09 0.045 572 42.51 0.1 691 51.75 0.2 
466 35.26 0.192 576 42.82 0.1 695 52.06 0.2 
468 35.43 0.236 580 43.14 0.2 699 52.37 0.3 
470 35.60 0.093 584 43.45 0.2 703 52.68 0.1 
472 35.77 0.135 588 43.76 0.1 707 52.99 0.035 
474 35.95 0.176 592 44.07 0.1 711 53.2978 0.134 
476 36.12 -0.004 596 44.38 0.1 715 53.6081 0.142 
478 36.29 0.078 600 44.69 0.1 719 53.9184 0.262 
480 36.46 0.200 603 44.92 0.1 723 54.2287 0.132 
482 36.64 0.063 607 45.23 0.0 726 54.46 0.08 
484 36.81 0.127 611 45.54 0.2 730 54.7717 0.322 
488 37.06 0.089 615 45.85 0.1 734 55.0821 0.087 
496 37.38 0.057 619 46.16 0.2 738 55.3924 0.051 
504 37.69 0.1 621 46.32 0.2 742 55.7027 0.043 
508 37.85 0.1 625 46.63 -0.2 746 56.01 0.09 
516 38.17 0.0 629 46.94 0.2 750 56.3233 0.115 
520 38.48 0.1 633 47.25 0.2 754 56.6336 0.067 
524 38.79 0.1 637 47.56 0.2 758 56.9439 0.109 
528 39.10 0.1 641 47.87 0.1 762 57.2543 0.118 
532 39.41 0.1 645 48.18 0.3 765 57.49 0.007 
536 39.72 0.3 647 48.33 0.2 768 57.7197 -0.02 
540 40.03 0.2 651 48.64 0.3 772 58.03 0.117 
544 40.34 0.2 655 48.95 0.1 776 58.3403 0.096 
548 40.65 0.1 659 49.26 0.3 780 58.6507 0.006 
550 40.81 0.2 663 49.57 0.3 784 58.961 0.005 
554 41.12 0.2 667 49.88 0.1 786 59.12 0.048 
558 41.43 0.0 673 50.35 0.2 790 59.4264 -0.098 
562 41.74 0.2 675 50.50 0.2 794 59.7368 -0.077 
566 42.05 0.1 679 50.82 0.1 798 60.0471 -0.018 
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Abstract 

The Eastern Equatorial Pacific (EEP) is a key area to understand past oceanic processes that 

control atmospheric CO2 concentrations. Many studies argue for higher past nutrient concentra-

tions in the EEP by enhanced transfer of nutrients via Southern Ocean Intermediate Water 

(SOIW) to the low-latitude Pacific. Latest studies, however, argue against SOIW as a nutrient 

source at least during Marine Isotope Stage 2 (MIS 2) as proxy-data indicate that nutrients are 

better utilized in the Southern Ocean under glacial conditions. Whereas, recent results from the 

subarctic Pacific suggest that enhanced ventilation of nutrient-rich Glacial North Pacific Interme-

diate Water (GNPIW) contribute to the nutrient concentration in equatorial Pacific sub-thermocline 

water masses during MIS 2. However, the interplay between SOIW versus GNPIW and its influ-

ence on the nutrient distribution in the EEP spanning more than one glacial cycle are still not un-

derstood. We present a carbon isotope (δ13C) study of sub-thermocline waters derived from deep 
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dwelling planktonic foraminifera Globorotaloides hexagonus in the EEP (ODP Site 1240), which is 

compared with published δ13C records around the Pacific. Results indicate an enhanced influ-

ence of GNPIW during MIS 2 and MIS 6 compared to today and largest contributions of northern-

sourced intermediate waters during glacial maxima. These observations suggest that changes in 

EEP nutrient concentrations are possibly related to the relative contributions between northern 

and southern intermediate waters. A switch from increased GNPIW – decreased SOIW to dimin-

ished GNPIW – enhanced SOIW influence on equatorial sub-thermocline waters is recognized 

during glacial terminations and marks substantial changes in nutrient concentrations and biologi-

cal productivity in the EEP. 

5.1 Introduction 

The modern Eastern Equatorial Pacific (EEP) acts as the most important source for marine 

carbon dioxide (CO2) to the atmosphere [Takahashi et al., 2009]. The elevated pCO2 has been 

attributed to the upwelling of nutrient-rich waters in combination with low productivity by siliceous 

phytoplankton that sequesters CO2 during photosynthesis [Dugdale and Wilkerson, 1998]. How-

ever, primary productivity of these organisms is nowadays hindered by the low availability of silic-

ic acid (Si(OH)4) and iron in the EEP [Broecker and Peng, 1982; Dugdale et al., 2002; Sarmiento 

et al., 2004; Ryan et al., 2006]. Other macronutrients such as nitrate are not fully utilized and re-

main high [Robinson et al., 2009]. Southern Ocean Intermediate Water (SOIW), which is the main 

contributor of Equatorial Pacific Intermediate Water (EqPIW) under modern conditions [Goodman 

et al., 2005; Qu et al., 2009; Bostock et al., 2010], only contains depleted Si(OH)4 concentrations 

relative to other macronutrients, as diatoms blooming in the formation area of SOIW remove 

Si(OH)4 out of the surface waters [Hendry and Brzezinski, 2014]. These low-silicon SOIW are 

then fed into the low-latitude thermocline [Qu and Lindstrom, 2004]. As a result, SOIW contrib-

utes about half of the nitrate supply but only roughly 30 % of the total modern equatorial Si(OH)4 

supply into the EEP upwelling system [Sarmiento et al., 2004; Dugdale et al., 2002]. Its northern 

counterpart, the nutrient-elevated North Pacific Intermediate Water (NPIW), is nowadays mostly 

bound to about 20°N but extends further south in the western Pacific [Bostock et al., 2010]. 

Thereby, the imprint of NPIW reaches the equatorial Pacific, where it accounts for ~70 % of the 

Si(OH)4 supply today [Sarmiento et al., 2004]. 

Under glacial conditions, changes in nutrient utilization based on silicon isotope records 

showed that the EEP recieved three times more Si(OH)4, thereby removing the Si(OH)4-limitation 

within the EEP [Pichevin et al., 2009]. Brzezinski et al. [2002] and Matsumoto et al. [2002b] as-

sumed that excess Si(OH)4 has been delivered via enhanced SOIW to the EEP as described in 

the Silicic Acid Leakage Hypothesis (SALH). This caused diatoms to displace coccolithophores at 

low latitudes and consequently, weakened the carbonate pump and lowered glacial atmospheric 

pCO2 [Brzezinski et al., 2002]. Stable isotope analyses [Pena et al., 2008], biomarkers [Calvo et 

al., 2011], planktonic foraminiferal abundances [Yu et al., 2012], neodymium isotope records (εNd) 
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[Pena et al., 2013], and radiocarbon data [de la Fuente et al., 2015] further support the increasing 

influences of southern-sourced waters on the equatorial upwelling waters. However, the potential 

of SOIW in delivering more nutrients to the low-latitude Pacific under glacial conditions is still un-

der debate. Recent studies found increased glacial productivity in the Southern Ocean, which 

potentially leave surface waters rather nutrient depleted, and leads to “nutrient-trapping” in the 

Southern Ocean [Loubere et al., 2011; Hendry and Brzezinski, 2014; Robinson et al., 2014; 

Rousseau et al., 2016]. Furthermore, there is growing debate on the amount of SOIW formed 

during glacial maxima. An authigenic mineral study found higher oxygen concentrations along the 

Chilean margin during glacials and correlated these to an increased SOIW production [Muratli et 

al., 2010]. In contrast, a benthic carbon isotope (δ13C) record from the southwest Pacific [Pahnke 

and Zahn, 2005] and εNd values from the tropical Atlantic [Pahnke et al., 2008; Huang et al., 2014] 

both suggest a reduced production of SOIW during glacial conditions, possibly related to stronger 

water column stratification. More recently, results from benthic δ13C records, which form an in-

termediate to deep water transect at the New Zealand margin, suggest in combination with model 

results a shoaling of the SOIW / Upper Circumpolar Deep Water (UCDW) boundary during glaci-

als due to an increased freshwater flux into SOIW by melting sea ice [Ronge et al., 2015].  

In the subarctic Pacific, benthic foraminiferal δ13C records point to increased formation of Gla-

cial North Pacific Intermediate Water (GNPIW) [Duplessy et al., 1988; Keigwin, 1998; Matsumoto 

et al., 2002a]. In comparison with the modern situation, a εNd record proposes a glacial shift in the 

formation area from mainly the Sea of Okhotsk towards the northwest Bering Sea [Horikawa et 

al., 2010], which was further supported by foraminiferal isotope studies [Rella et al., 2012; Max et 

al., 2014; Knudson and Ravelo, 2015a; Max et al., under review, this thesis] and reconstructions 

based on radiolarian assemblages [Matul et al., 2015]. Evidence for strengthened mid-depth cir-

culation in the North Pacific has been further noticed along the California margin to the Eastern 

Tropical North Pacific (ETNP) [Stott et al., 2000; Leduc et al., 2010] and as far as the equatorial 

Pacific, where benthic δ13C signatures and trends show apparent similarities between Bering Sea 

records and EEP sub-thermocline waters during glacial boundary conditions [Knudson and Rave-

lo, 2015a; Max et al., under review, this thesis]. 

First studies indicate reoccurring signals during the Pleistocene with a shallower penetration of 

SOIW in the southern hemisphere and at the same time higher GNPIW ventilation in the North 

Pacific [Elmore et al., 2015; Knudson and Ravelo, 2015a; Ronge et al., 2015]. However, the in-

terplay between SOIW versus NPIW and its influence on past nutrient distribution in the EEP 

spanning more than one glacial cycle are not well constrained, but important for our understand-

ing of past ocean processes and past atmospheric CO2 fluctuations. This study provides new 

insights into the dynamic behaviour by comparing δ13C records from the equatorial sub-

thermocline Pacific, the Pacific Sector of the Southern Ocean and the North Pacific to further 

disentangle the varying sources of nutrient-injections into the equatorial Pacific sub-thermocline 

over the past 240 ka. 
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5.1.1 Modern oceanography and hydrography 

The modern EEP is one of the largest high-nitrate low-chlorophyll (HNLC) areas in the world 

oceans [e.g. Dugdale and Wilkerson, 1998; Le Borgne et al., 2002]. Delivery of nutrients towards 

the EEP happens through the eastward flowing Equatorial Undercurrent (EUC) that is formed in 

the western equatorial Pacific by the South Equatorial Current (SEC), New Guinea Coastal Un-

dercurrent (NGCUC) and the North Equatorial Counter Current (NECC) (Figure 5.1a) [Fine et al., 

1994; Dugdale et al., 2002]. As the EUC flows eastward across the equatorial Pacific its upper 

branch shoals parallel with the thermocline providing nutrients to the euphotic zone and thereby, 

stimulating primary productivity [Dugdale et al., 2002; Ryan et al., 2006]. The lower branch of the 

EUC does not upwell along the equator, but as it travels across the equator it receives nutrients 

from the underlying EqPIW and at the same time provides nutrients to the upper EUC by diapyc-

nal mixing [Dugdale et al., 2002; Qu et al., 2009; Rafter and Sigman, 2015]. 

	  

Figure 5.1. Overview of Pacific Ocean current system and hydrography. a: Major surface (solid line) 

and subsurface (dashed line) currents that are mentioned in the text [after Tchernia, 1980; Tomczak 
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and Godfrey, 2005; Kessler, 2006]. Formation areas of North Pacific Intermediate Water (NPIW) and 

Southern Ocean Intermediate Water (SOIW) are given in colored circles [after Talley, 1993; Bostock et 

al., 2013]. Location of sediment core ODP Site 1240 [this study] is shown with a red star, other δ13C 

reference cores with green spots. The red line in (a) denotes the transect shown in (b). b: Meridional 

carbon isotope transect across the Pacific Ocean with major mid-depth to deep water masses (white 

arrows): Equatorial Pacific Intermediate Water (EqPIW) and Equatorial Undercurrent (EUC), NPIW 

and SOIW, PDW = Pacific Deep Water, AABW = Antarctic Bottom Water and CDW = Circumpolar 

Deep Water. The red star indicates the location of ODP Site 1240 benthic (open) and ODP Site 1240 

G. hexagonus (full). Black dots denote the reference sediment cores from (a) (assignment through 

small numbers). Maps and transect were generated using Ocean Data View [Schlitzer, 2015] using 

data from Schmitter et al. [2013]. 

In HNLC areas, including the EEP primary productivity is stimulated by the input of iron [e.g. 

Martin et al., 1994; Coale et al., 1998]. A variety of iron sources in the formation region of the 

EUC have been identified to increase the iron concentration within the EUC including hydrother-

mal venting [Gordon et al., 1997], riverine input and direct interaction of NGCUC with continental 

shelf areas [Mackey et al., 2002] as well as atmospheric dust input along the equator [Winckler et 

al., 2008]. A nutrient analysis by Dugdale et al. [2002] revealed that concentrations of other mac-

ronutrients such as nitrate and Si(OH)4 are not only asymmetrically distributed along the equator 

but also differ meridional. North of the equator within the NECC both Si(OH)4 and nitrate are in 

about equal proportions. Contrary, the NGCUC has low Si(OH)4 to nitrate ratios, a signal originat-

ing in its source water – the SOIW (Table 5.1) [Dugdale et al., 2002]. SOIW comprises Subant-

arctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) [after Pena et al., 2013]. 

SAMW occupies ~300 – 800 m water depth and is formed in wintertime by vigorous deep mixing 

along the Subantarctic Front [McCartney, 1977; Bostock et al., 2013]. The densest of the circum-

polar SAMW is the AAIW, which sinks to 800 – 1400 m water depth [McCartney, 1977; Bostock 

et al., 2013], although characterized by a prominent salinity minimum [McCartney, 1977]. 

On the other hand, NPIW, which is the main contributor for NECC [Fine et al., 1994], is never 

exposed to the surface thereby nutrient-depletion by biological productivity is marginal and nutri-

ent levels remain high [Sarmiento et al., 2004]. Instead, modern NPIW-formation is tightly cou-

pled to Okhotsk Sea Intermediate Water (OSIW) that is formed in coastal polynyas during winter-

time sea-ice formation within the Sea of Okhotsk [Shcherbina et al., 2003]. The fresh and cold 

OSIW merges with the northward flowing warm and less dense Kuroshio Current (KC) and forms 

a mixture of these two water masses east of Japan in the northwest Pacific [Talley, 1993]. The 

nutrient-elevated NPIW spreads at depths of approximately 300 – 800 m southwards and east-

ward across the North Pacific (Table 5.1) and feeds the near-surface flowing California Current 

(CC) as well as North Equatorial Current (NEC) and NECC [Reid, 1965; Talley, 1993]. 

Equatorial Pacific Intermediate Water that provides nutrients to the overlying EUC is mainly 

made up of SOIW and Pacific Deep Water (PDW) under modern conditions [Bostock et al., 
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2010]. PDW formed initially in the North Pacific via upwelling and diffusion of Circumpolar Deep 

Water (CDW) and Antarctic Bottom Water (AABW) (Figure 5.1) [Tomczak and Godfrey, 2005]. 

The deep northern-south water mass is the oldest water mass on Earth, characterized by low 

oxygen and high nutrient concentrations with a pronounced silicate maximum as well as elevated 

CO2 concentrations (Table 5.1) [Fiedler and Talley, 2006]. 

Table 5.1. Modern geochemical characteristics for different intermediate and deep water-masses at 

their origin. 

Tracer NPIW EUC + EqPIWa SOIW PDW AABW 

Salinity1,2 33.9 – 34.1 34.5 – 34.7 34.3 – 34.5 34.6 – 34.7 34.6 – 34.8 

Average potential density [σθ]1,3,4 26.8 26.6 – 27.0 27.1 27.7 – 27.8 >27.8 

Oxygen [µmol/kg]4 0 – 150 0 – 80 150 – 250 100 – 135 190 – 210 

Nitrate [µmol/kg]4 25 – 45 30 – 40 20 – 35 37 – 40 31 – 34 

Silicate [µmol/kg]4 60 – 150 20 – 50 5 – 50 150 – 170 110 – 125 

Phosphate [µmol/kg]4 2.0 – 3.2 1.9 – 2.7 1.4 – 2.3 2.4 – 2.8 2.1 – 2.3 

δ13C [‰]5 -0.7 0 – 0.1 1.1 -0.1 0.4 
avalues determined for 300 – 500 m water depth 

1values from Bostock et al. [2010] 
2values from Locarnini et al. [2013] 
3values from Fiedler and Talley [2006] 
4values from Key et al. [2004] 
5values from Schmitter et al. [2013] 

 

5.2 Materials and Methods 

5.2.1 Material and stable isotope analyses 

We measured stable oxygen (δ18O) and carbon (δ13C) isotopes of deep-dwelling planktonic 

foraminifera Globorotaloides hexagonus from ODP Site 1240 at the northern flank of Carnegie 

Ridge in the Panama Basin (0°01.31´N, 86°27.76´W, 2,921 m water depth) [Mix et al., 2003] 

(Figure 5.1). For stable isotope analyses, five specimens of G. hexagonus were picked from the 

250 – 315 µm size fraction in each sample. The measurements were conducted on a Thermo 

Fisher Scientific MAT 253 mass spectrometer coupled to an automatic carbonate preparation 

device Kiel CARBO IV at AWI. The isotope measurements were calibrated via the international 

standard NBS 19 and all results are given in δ-notation versus VPDB. The precision of the meas-

urements, determined over a one-year period and based on repeated analysis of an internal la-

boratory standard (Solnhofen limestone), is ±0.06 ‰ and ±0.08 ‰ for carbon and oxygen iso-

topes, respectively. 

To validate the depth habitat of G. hexagonus we determined its Apparent Calcification Depth 

(ACD) using the uppermost core top sample (at 10 cm) [details described in Max et al., under 
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review, this thesis]. The ACD assessment indicates an ACD of 340 – 430 m water depth that 

agrees with studies from the central equatorial Pacific [Rippert et al., 2016, this thesis] and North 

Pacific [Ortitz et al., 1996]. 

We further used published benthic δ18O and δ13C records from Bering Sea sediment core 

U1342 (54.83°N, 176.92°E, 818 m) [Knudson and Ravelo, 2015a] and from South Pacific sedi-

ment core SO136-003/MD06-2990 (in the later only termed MD06) (42.19°S, 169.55°E, 943 m) 

[Ronge et al., 2015]. 

5.2.2 Stratigraphic approach 

We improved existing age models of the first 29 meters composite depth (m.c.d.) from ODP 

Site 1240 [Pena et al., 2008], MD06 [Ronge et al., 2015] and U1342 [Knudson and Ravelo, 

2015a] by a combination of published radiocarbon dating (if available) and δ18O correlation to the 

global benthic δ18O stack LR04 [Lisiecki and Raymo, 2005] (Figure 5.2). For the age model of 

ODP Site 1240, we used the established age model from Pena et al. [2008] for the first 5.2 m.c.d 

based on 17 Accelerator Mass Spectrometry (AMS) 14C dates that cover the first ~38 ka. For the 

sediment depth interval between 5.2 m.c.d. and ~19 m.c.d we used a new benthic δ18OCibicidoides 

record and δ18O record of deep-dwelling planktonic foraminifera G. hexagonus [both this study], 

which were aligned graphically to the LR04 record [Lisiecki and Raymo, 2005]. Beyond the range 

of the δ18OCibicidoides record (~19 m.c.d. – 29.4 m.c.d), we took the G. hexagonus record and visu-

ally tuned it to the LR04 stack. As the G. hexagonus record has a only low-resolution during that 

time interval, we additionally used the surface-dwelling planktonic species Globigerinoides ruber 

record of ODP Site 1240 [Pena et al., 2008] to constrain the developed age model (Figure 5.2). 

Furthermore, the ash layer “L” [Ninkovich and Shackleton, 1975] was considered as well that is 

located at 125.71 m.c.d. [Pena et al., 2008]. Our age model estimation yields an age of the ash 

layer “L” of 235.83 ka, which is in the range of the previously estimated age of 230 ± 10 ka 

[Ninkovich and Shackleton, 1975]. 

For the age model of site MD06 we used the six 14C dates of Ronge et al. [2015] dating back 

~25 ka and beyond that graphically tuned the benthic Cibicidoides wuellerstorfi δ18O record to the 

LR04 record. For U1342 we used the δ18O values measured on Uvigerina peregrina [Knudson 

and Ravelo, 2015a] and graphically aligned them to LR04. 

As a result, the sediment record from 0 – 29.4 m.c.d. of ODP Site 1240 comprises the time in-

terval of the last 300 kyrs. The sampling distance provides an average time resolution of 0.23 kyr 

for the first 60 ka and 1.4 kyr for 60 – 240 ka. The upper 9.4 m of sediment core MD06 and the 

upper 39.4 m of U1342 (core composite depth below seafloor, CCSF-A) cover the time interval of 

the last 351.7 kyr and 1260 kyr with an average temporal resolution of 0.91 kyr and 1.16 kyrs, 

respectively (Figure 5.2). Supplementary Table S5.7.1 summarizes all age control points used for 

site ODP Site 1240, MD 06, and U1342. 



 5.0 MANUSCRIPT III 

 -94- 

	  

Figure 5.2. Stratigraphic correlation of published and newly generated δ18O records with respect to 

the benthic δ18O reference stack (LR04, black) [Lisiecki and Raymo, 2005]. ODP Site 1240 G. ruber 

(green) [Pena et al., 2008], ODP Site 1240 G. hexagonus (dark blue) [this study], SO136-003/MD06-

2990 C. wuellerstorfi (brown) [Ronge et al., 2015], ODP Site 1240 Cibicidoides spp. (light blue) [this 

study] and U1342 U. peregrina (purple) [Knudson and Ravelo, 2015a]. 

5.3 Carbon isotopes as proxy for nutrient concentrations  

Over the past decades it has been shown that the δ13C signature of specific benthic foraminif-

eral tests is closely related to the δ13CDIC signature of ambient seawater [Berger et al., 1978; Du-

plessy et al., 1988]. This makes foraminiferal δ13C a widely applied proxy to trace past changes in 

circulation and nutrient conditions in the global ocean [Duplessy et al., 1984; Oppo and Fair-

banks, 1990; Mix et al., 1991; Zahn et al., 1991; Keigwin, 1998; Stott et al., 2000; Matsumoto et 

al., 2002a; Curry and Oppo, 2005; Rickaby and Elderfield, 2005; Bostock et al., 2010; Knudson 

and Ravelo, 2015a]. 

In this study we compare the epibenthic C. wuellerstorfi and infaunal U. peregrina with the 

sub-thermocline dwelling planktonic species G. hexagonus. Differences in species habitat or 

ecology might affect the δ13C interpretation. C. wuellerstorfi lives epibenthic or elevated above the 

sediment surface [Lutze and Thiel, 1989] and its calcitic test has been shown to reliably record 
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the δ13CDIC signal without significant fractionation of carbon isotopes [Duplessy et al., 1984]. The 

influence of seasonal depositions of phytodetritus layers might affect the δ13C of benthic forami-

nifera [Mackensen et al., 1993]. However, this influence was excluded for MD06 due to negligible 

glacial-interglacial changes in paleoproductivity [Ronge et al., 2015]. In contrast, infaunal U. per-

egrina was found to correlate with accumulation rates of organic carbon, which leads to a disequi-

librium from bottom water δ13CDIC [Zahn et al., 1986]. In this study, we used the corrected 

U. peregrina values from Knudson and Ravelo [2015a], who converted the δ13CU.peregrina values to 

δ13CC.wuellerstorfi values by using a constant adjustment of +0.9 ‰. However, this offset was shown 

to be highly variable ranging from +1.1 ‰ during the Holocene to +0.1 ‰ during MIS 2 around 

New Zealand [McCave et al., 2008]. It was found to be even larger (+1.4 to +0.76 ‰) in a more 

recent study from the same area [Elmore et al., 2015]. Nevertheless, an adjusted correction fac-

tor would change the amplitude but not the direction of the curve. Given, that there are no studies 

available from the subarctic Pacific that determine the variable offset between Cibicidoides and 

Uvigerina, we refrained from using a variable δ13C offset factor and used the correction for 

U. peregrina values given by Knudson and Ravelo [2015a]. For planktonic G. hexagonus we as-

sume a constant calcification depth over time. Further, we do not correct δ13C values of 

G. hexagonus for disequilibrium effects as the few available studies infer an only marginal carbon 

isotope offset to ambient δ13CDIC [Birch et al., 2013; Rippert et al., 2016, this thesis]. 

Intermediate and deep water masses from different end-members have a characteristic 

δ13CDIC signature (Figure 5.1b, Table 5.1), depending on the biological cycle and thermodynami-

cally driven gas exchange between the surface ocean and the atmosphere [Mackensen et al., 

1993; Rohling and Cooke, 1999; Lisiecki, 2010; Mackensen, 2012]. The latter is particularly im-

portant in the source region of intermediate waters; with each 1°C drop in temperature, the 

δ13CDIC decreases by 0.1 ‰ [Broecker and Maier-Reimer, 1992; Mackensen, 2012]. In the 

Southern Ocean, the glacial drop in δ13C of intermediate waters is similar to the δ13C drop rec-

orded in UCDW, thus it was assumed that the thermodynamic effect influences the δ13C record 

only insignificantly [Ronge et al., 2015]. In the subarctic Pacific, the modern and glacial formation 

of intermediate waters is linked to sea-ice formation when surface-ocean temperatures are close 

to the freezing point [Rella et al., 2012]. Given that the formation conditions are nearly congruent 

during glacial-interglacials, a change in the air-sea gas exchange is assumed to have an only 

minor effect on the δ13C signal of the Bering Sea. 

Nevertheless, instead of using absolute δ13C values, we adopted the approach by Knudson 

and Ravelo [2015a] and used the comparisons between ODP Site 1240 with U1342U.peregrina (corr.) 

[Knudson and Ravelo, 2015a] and MD06 [Ronge et al., 2015] as a proxy for relative nutrient in-

jections of northern-sourced and southern-sourced waters on equatorial sub-thermocline. Thus, 

as a proxy for assessing GNPIW-nutrient influence we calculate ∆δ13CNP-EQG.hex  (δ13C at site 

U1342 minus δ13CG.hex at ODP Site 1240) and for SOIW-nutrient influence the ∆δ13CEQG.hex-SPSW  

(the δ13CG.hex at site ODP Site 1240 minus δ13C at MD06). In the modern ocean, U1342 is located 

in 818 m water depth within the oxygen minimum zone, which is characterized by very low δ13C 
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values (Figure 5.1b). On the other hand, G. hexagonus of ODP Site 1240 is situated in 13C en-

riched (nutrient-depleted) waters that are mainly fed from southern-sourced waters today [Bos-

tock et al., 2010]. Consequently, modern ∆δ13CNP-EQG.hex values are extremely negative. If the 

oxygen minimum zone at site U1342 is replaced by well-ventilated GNPIW, the benthic foramini-

fers would bath in relatively high δ13CDIC signatures. If GNPIW expands its influence southward 

into the EEP upwelling system, the equatorial and the subarctic δ13C values would approach 

each other. A full control of GNPIW on equatorial sub-surface water would result in a small but 

still positive difference (∆δ13CNP-EQG.hex), allowing for the aging effect on the δ13C signal. To in-

vestigate the SOIW- influence we use the same approach. In the modern ocean SOIW has rela-

tively high δ13CDIC values (Figure 5.1b) and the δ13C difference between equatorial sub-

thermocline and SOIW is relatively small. If the injection of SOIW into the EEP upwelling system 

would cease, we would expect an increased difference in δ13C (large ∆δ13CEQG.hex-SPSW ). 

5.4 Results 

Over the last 240 ka carbon isotope data from North Pacific core U1342, equatorial sub-

thermocline (ODP Site 1240 G. hexagonus) and South Pacific record MD06 oscillate between -

0.68 ‰ and +1.38 ‰ with high δ13C and thus, nutrient-depleted values in the South Pacific and 

low δ13C (nutrient-elevated) values in the North Pacific (Figure 5.3). 

	  

Figure 5.3. Compilation of Pacific carbon isotope records: MD06 (South Pacific) (dark blue) [Ronge et 

al., 2015], PS75/059-2 (light blue) [Tapia, 2016], equatorial ODP Site 1240 G. hexagonus (red) and 
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Cibicidoides (orange) [this study], U1342corr. (North Pacific) (dark green) [Knudson and Ravelo, 2015a] 

and EW9504-04 (California margin (CM), light green) [Stott et al., 2000]. Benthic δ18O stack [Lisiecki 

and Raymo, 2005] is shown for stratigraphic orientation. Coloured circles denote modern δ13CDIC at 

core location. Grey bars mark glacial Marine Isotope Stages 2 and 6. 

The δ13C amplitude in all three records is similar (0.99 – 1.14 ‰) and do not differ significantly. 

In every record, glacials are characterized by lower and interglacial by higher δ13C values display-

ing the 0.32 ‰ changes in the terrestrial biosphere and consequently storage in the deep ocean 

[Gebbie et al., 2015] as well as additional changes in the ocean interior. Equatorial sub-

thermocline δ13C variations are assumed to reflect both nutrient injections and export productivity 

in the surface ocean of the EEP. Late Holocene equatorial sub-thermocline values largely follow 

South Pacific signatures and drift apart from North Pacific values (Figure 5.3). Contrary, equatori-

al sub-thermocline δ13C values show an apparent similarity with North Pacific δ13C record during 

glacial periods and particularly during the glacial maxima MIS 2 and MIS 6. 

5.5 Discussion 

The carbon isotope comparisons (∆δ13C) between the North Pacific and EEP sub-thermocline 

as well as between EEP sub-thermocline and the South Pacific allow us to identify relative 

changes in the nutrient input into equatorial sub-thermocline waters. Modern ∆δ13CEQG.hex-SPSW 

values are very negative (-1.0 ‰) albeit SOIW largely contributes to equatorial sub-thermocline 

waters under modern conditions [Bostock et al., 2010]. Contrary, modern ∆δ13CNP-EQG.hex values 

are slightly more positive than ∆δ13CEQG.hex-SPSW, although northern-sourced waters only subsi-

dize minor to equatorial sub-thermocline waters today. This contrasting picture might be ex-

plained by the additional contribution of δ13C-depleted PDW on equatorial sub-thermocline that 

would decrease equatorial δ13C values [Bostock et al., 2010]. During the past 240 ka and particu-

larly during late MIS 2 (16 – 19 ka) and late MIS 6 (128 – 140 ka) both ∆δ13C curves show large-

scale fluctuations (Figures 5.4c and d), which indicate that the source water-mass contribution 

might have been different in the past. 

5.5.1 Reduced SOIW-nutrient contribution on equatorial sub-
thermocline during peak glacials 

In a first step, we investigated the relative nutrient-contribution of southern-sourced water 

masses on equatorial sub-thermocline, as the majority of modern equatorial waters are fed by 

SOIW [Bostock et al., 2010]. The δ13C difference between the southwestern South Pacific and 

equatorial sub-thermocline record (∆δ13CEQG.hex-SPSW) increased from -1.0 ‰ under modern con-

ditions to -1.2 ‰ during glacial maxima (Figure 5.4). This increasing δ13C difference suggests that 

southern-sourced water masses are either more nutrient-depleted compared to today or that the  
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Figure 5.4. Comparison of different δ13C records from the Pacific. a: Global benthic δ18O stack [Li-

siecki and Raymo, 2005] for stratigraphic reference, b: εNd record from Bering Sea core BOW-8A [Ho-

rikawa et al., 2010], c: 5pt moving average of δ13C comparison between North Pacific sediment core 

U1342 (NP) [Knudson and Ravelo, 2015a] and California Margin (CM) record EW9504-04 [Stott et al., 

2000] minus ODP Site 1240 G. hexagonus values. d: 5pt moving average of δ13C comparison 

between ODP Site 1240 G. hexagonus values minus southeast Pacific record PS75-59-2 (SPSE) [Ta-

pia, 2016] and southwest Pacific MD06 (SPSW) [Ronge et al., 2015]. Colored circles denote ∆δ13C 

values using modern water mass characteristics for the respective comparisons. Grey bars denote 

glacial Marine Isotope Stages 2 and 6. 

nutrient-injection from SOIW derived in the southwestern Pacific into the equatorial intermediate 

water is reduced during peak glacials. However, different formation regions of SOIW exist in the 

South Pacific (Figure 5.1a) with the bulk of SOIW formed in the southeast Pacific off Chile [Bos-

tock et al., 2013]. This southeast-SOIW is slightly younger and fresher than the SOIW-

counterpart in the southwest Pacific [Bostock et al., 2013]. Higher glacial oxygen concentrations 

along the Chilean margin were correlated to an enhanced SOIW formation in the SE Pacific dur-
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ing the Last Glacial Maximum (LGM) [Muratil et al. [2010]. Unfortunately, hardly any sediment 

cores from intermediate depths recording long-term variations in intermediate water δ13CDIC exist 

from the southeast Pacific. We therefore considered a central South Pacific δ13C record from the 

deep-dwelling planktonic foraminifera Globorotalia inflata (core PS75/059–2; 54°13’S, 

125°256’W, 3.613 m water depth; Tapia [2016]), that calcifies in 300 – 800 m water depth and 

thus, within SOIW (Figure 5.1c) [Elderfield and Ganssen, 2000; Tapia, 2016]. Carbon isotope 

values were corrected by +0.3 ‰ as G. inflata calcifies in disequilibrium with ambient seawater 

[King and Howard, 2004; Shiraldi et al., 2014]. The δ13C values of PS75/059-2 (SP-SEPS75) dis-

play comparable values as δ13CMD06 (Figure 5.3). This indicates that the nutrient composition of 

intermediate waters from the eastern and western sector of the South Pacific is rather similar 

across the Pacific Sector of the Southern Ocean. Accordingly, the δ13C difference of ∆δ13CEQG.hex-

SPSE shows a similar pattern as ∆δ13CEQG.hex-SPSW (Figure 5.4d).  

The δ13C values of the penultimate glacial in both southeast and southwest Pacific cores are 

lower than the respective δ13C values of MIS 2 (Figure 5.3). In the southwest Pacific, the 

∆δ13CEQG.hex-SPSW values display comparable signatures during MIS 2 and MIS 6 (Figure 5.4). In 

contrast, in the southeast Pacific the ∆δ13CEQG.hex-SPSE values are offset by ~0.2 ‰ between 

MIS 2 and MIS 6. Only during peak MIS 2 and peak MIS 6, they display similar values. A local 

salinity reconstruction from the central south Pacific estimated that contrasting conditions pre-

vailed in the Southern Ocean between MIS 2 and MIS 6 with water masses saltier than during the 

Holocene during MIS 6 and contrasting fresher-than-Holocene conditions during MIS 2 [Tapia et 

al., 2015]. To what extent this might influence the nutrient concentration between the southeast 

and southwest Pacific Ocean remains elusive as information regarding major nutrient cycles are 

missing during MIS 6. Nevertheless, the last peak glacial and the penultimate glacial shows an 

increased difference between equatorial sub-thermocline waters and SOIW waters compared to 

modern values. 

Our analyses point to a reduced southern nutrient-contribution on equatorial sub-thermocline 

during high glacials. This notion is supported by δ13C studies from New Zealand, that highlight a 

shoaling of the SOIW/UCDW boundary from ~2000 m to ~1100 m water depth [Elmore et al., 

2015; Ronge et al., 2015]. This shoaling possibly reflect a reduced production of SOIW due to 

increased freshwater flux by melting sea ice in the formation area of SOIW [Pahnke and Zahn, 

2005; Ronge et al., 2015]. Further support comes from nutrient studies in the Southern Ocean 

that found increased opal accumulation rates in the Subantarctic Zone (SAZ) during glacials, 

which was explained by an increased upwelling due to enhanced wind stress in the SAZ and 

thus, a higher supply of nutrients to the euphotic zone [Hendy and Brzezinski, 2014; Robinson et 

al., 2014]. As a consequence, the nutrient-concentration of SOIW decreased during glacials. 

Thus, it seems questionable whether nutrient-depleted SOIW was able to stronger enhance 

productivity at the equator during late MIS 2 and late MIS 6 as suggested by proxies indicative of 

changes in biological productivity. Opal flux and productivity reconstructions in the EEP infer a 



 5.0 MANUSCRIPT III 

 -100- 

greater nutrient contribution during glacials [e.g. Dugdale et al., 2004; Loubere et al., 2003, 2007; 

Calvo et al., 2011; Loubere et al., 2011], which suggest that sub-thermocline waters in the EEP 

experienced substantial changes in its chemistry. Thus, the largest δ13C difference between the 

EEP and Southern Ocean δ13C values argues for a relative reduced contribution of nutrient-

depleted southern-sourced waters on equatorial sub-thermocline during extreme glacials (Figure 

5.5). 

5.5.2 Northern-sourced nutrient influence on EqPIW during peak  
glacials 

Here we consider two possible sourced from the North Pacific, PDW and NPIW. The change 

in δ13CG.hexagonus values during the peak glacials might be explained by an enhanced upwelling of 

PDW at the equator. A recent εNd data comparison between LGM and Holocene values reveals 

substantial reduced glacial εNd values in the EEP, which was explained by a more invigorated 

deep circulation and higher contribution from deep northern-sourced waters [Hu et al., 2016]. 

Sediment core ODP Site 1240 was retrieved from ~2900 m water depth and thus, the benthic 

δ13C of ODP Site 1240 reports variability in PDW waters (Figure 5.1). The comparison between 

the G. hexagonus record and the benthic record of ODP Site 1240 yields an offset of ~0.2 ‰ 

during late MIS 2 and MIS 6, when the δ13C differences between the equatorial sub-thermocline 

and the Southern Ocean is greatest (Figure 5.3). The δ13CG.hexagonus and δ13CCibicidoides values ap-

proach each other only during the Termination I and II. They indicate even similar values during 

Termination II (126 – 132 ka) after the maximum δ13C difference between the EqPIW and SOIW 

occurred (Figures 5.3 and 5.4). Thus, we argue that the glacial PDW contribution into the sub-

thermocline might not have changed substantially from today’s (Figure 5.5). Only during the de-

glaciation, the contribution from deep water masses on the equatorial sub-thermocline might have 

been enhanced. This notion is supported by a recent δ13C comparison between EqPIW and PDW 

during the past 60 ka, which indicates a substantially different temporal evolution in δ13C values 

of EqPIW and PDW during MIS 2 [Max et al., under review, this thesis]. Furthermore, recent 

analyses of radiocarbon activity show maximal benthic 14C offsets to atmospheric values during 

the LGM [Skinner et al., 2010; de la Fuente et al., 2015; Skinner et al., 2015; Ronge et al., 2016]. 

At 15 ka, within the termination when both our determined δ13CEQG.hex-SP offsets decrease (Figure 

5.3), the old glacial carbon pool between 2000 – 4300 m was eroded [Ronge et al., 2016]. The 

decreasing ventilation ages were explained by the deglacial breakdown of the Southern Ocean 

stratification in relation to enhanced Southern Ocean upwelling [Ronge et al., 2016]. Also within 

the EEP, a ventilation age reconstruction from ODP Site 1240 estimated that the largest benthic-

planktonic 14C offset (B-P) occurred during peak MIS 2, which decreased to modern values from 

15 ka onward [de la Fuente et al., 2015]. These combined evidences argue against a higher 

PDW contribution to EEP sub-thermocline waters during peak glacials and rather suggests a 

more invigorated role of northern-sourced intermediate waters. 
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Figure 5.5. Schematic illustration of changing end-member contributions on EEP upwelling waters 

during a: interstadials and b: glacial maxima. EUC + EqPIW = Equatorial Undercurrent + Equatorial 

Pacific Intermediate Water, SOIW = Southern Ocean Intermediate Water, (G)NPIW = (Glacial) North 

Pacific Intermediate Water, PDW = Pacific Deep Water, CDW + AABW = Antarctic Bottom Water + 

Circumpolar Deep Water. Black arrows represent possible contributions of end-members and dashed 

arrows show current flow. Given values represent δ13C values that were determined using data from 

GLODAP [Key et al., 2004], Peterson et al. [2014], and from sediment cores analyzed in this study. 

In a next step, we compared the δ13C sub-thermocline values to a record from the Bering Sea 

(U1342) to investigate a possible contribution of GNPIW. Our δ13C comparison reveals that the 

difference between the Bering Sea and EEP δ13C values (∆δ13CNP-EQG.hex ) diminishes substan-

tially during glacials and both δ13C records approach similar values during late MIS 2 and late 
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MIS 6. Most interestingly, the smallest offset between δ13CNP and δ13CEQG.hex values happen sim-

ultaneously to the largest offset between δ13CEQG.hex and δ13CSP signatures (Figure 5.4). This 

might indicate a relatively higher GNPIW contribution than today on the equatorial δ13C. Given 

that GNPIW evinces slightly higher δ13CEQG.hex values, the ∆δ13CNP-EQG.hex are slightly positive 

during glacial maxima. Similar to the increased ∆δ13CNP-EQG.hex from Bering Sea core U1342 dur-

ing extreme glacials, a recent high-resolution δ13C comparison between western Bering Sea 

(Shirshov Ridge) core SO201-2-101KL and ODP Site 1240 G. hexagonus over the past 60 ka 

[Max et al., under review, this thesis] indicates a close resemblance of sub-thermocline waters to 

North Pacific waters during MIS 2.  

Rella et al. [2012] argue that the formation of GNPIW was initiated in the Bering Sea by the 

closure of the Bering Strait and an easternmost position of the Aleutian Low. This pooled relative-

ly fresh water within the Bering Sea and fostered a strengthened pycnocline [Riethdorf et al., 

2016]. The newly formed intermediate water with high oxygen content and low salinities was pre-

sent in the subarctic Pacific from ~60 ka until the beginning of Termination I [Schlung et al., 

2013]. Further support comes from a εNd study indicating that intermediate waters from the Bering 

Sea were a principle component of GNPIW during MIS 2 and MIS 6 [Horikawa et al., 2010] and 

seems to be a reoccurring feature during the past 1.2 Ma [Knudson and Ravelo, 2015a]. The 

enhances stratification prevented upwelling of nutrients from below and as a consequence, iso-

lated the available nitrate at the surface [Knudson and Ravelo, 2015b; Riethdorf et al., 2016]. 

High nitrogen isotopes indicate an enhanced nutrient utilization in the Bering Sea during MIS 2 

and MIS 6 [Galbraith et al., 2008; Brunelle et al., 2010; Knudson and Ravelo, 2015b; Riethdorf et 

al., 2016]. However, it was reported that productivity and export production remained low during 

glacial maxima [Kienast et al., 2004; Jaccard et al., 2005; Gebhardt et al., 2008; Brunelle et al., 

2010; Kim et al., 2011]. The combined evidence for an increased GNPIW formation but reduced 

primary productivity in the subarctic Pacific and a decreased δ13C difference between the Bering 

Sea core and EEP sub-thermocline argues for an enhanced nutrient-injection of GNPIW into 

equatorial sub-thermocline waters during peak glacials. This nutrient-injection was higher than 

today. Thereby it confirms a previous δ13C compilation, which postulates increased North Pacific 

mid-depth circulation that expands southward and eastward between 700 – 2600 m water depth 

in the subarctic Pacific [Matsumoto et al., 2002a]. 

The penultimate glacial maximum (MIS 6) shows larger ∆δ13CNP-EQG.hex values than MIS 2 

(Figure 5.4), which suggests an even higher nutrient-contribution from northern-sourced waters 

into the equatorial upwelling waters. A model simulation investigates the extension of past glacia-

tions and found colder MIS 6 conditions with an extensive Eurasian ice sheet compared to MIS 2 

[Colleoni et al., 2016]. Furthermore, in the Sea of Okhotsk ice-rafted debris accumulation was 2 – 

3 times higher due to extensive mountain glaciers during MIS 6 compared to the LGM [Nürnberg 

et al., 2011]. Together with the change from seasonal to still mobile perennial sea ice cover 

[Nürnberg et al., 2011], GNPIW formation could have been further intensified during MIS 6. As 

persistent stratification and nearly complete surface nutrient utilization prevailed during that time 
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[Riethdorf et al., 2016], the nutrient-injection into equatorial sub-thermocline waters might have 

been enhanced and possibly explains the larger ∆δ13CNP-EQG.hex during MIS 6 compared to 

MIS 2. 

An expanded GNPIW circulation could also explain the increased ventilation along the Califor-

nia margin during MIS 6 as well as MIS 3 and MIS 2 [Stott et al., 2000]. Therefore, we compared 

ODP Site 1240 and EW9504-04 (32°17’N, 118°24’W, 1759 m water depth, 1400 sill depth) (Fig-

ure 5.1) [Stott et al., 2000] to investigate possible δ13C modifications along the flow path of 

GNPIW. The carbon isotope comparison between EW9504-04 and ODP Site 1240 (∆δ13CCM-

EQG.hex ) yields a similar pattern as ∆δ13CNP-EQG.hex with small differences during glacials and high 

differences during past interglacials due to very low δ13C values at the Californian margin (Figure 

5.4d). The amplitude of ∆δ13CCM-EQG.hex is less pronounced compared to the ∆δ13CNP-EQG.hex rec-

ord, possibly because regional circumstances such as sill depths and local productivity along the 

California margin modify the δ13C of EW9504-04 slightly [Stott et al., 2000]. Nevertheless, these 

regional differences do not influence the general pattern, as δ13C comparisons between 

δ13CG.hexagonus of ODP Site 1240 and benthic δ13C records cores from additional sediment cores of 

the California margin (ODP Site 1012, Andreasen et al. [2000] and ODP Site 1014, Hendy and 

Kennet [2000], here termed CMadd, both not shown) indicate a very similar pattern as ∆δ13CCM-

EQG.hex with higher ∆δ13CCMadd-EQG.hex values during glacial maxima and lower ∆δ13CCMadd-EQG.hex 

values during interglacials. It thereby supports an earlier Pacific carbon isotope study that found a 

relatively larger contribution of well-oxygenated (ventilated) waters between 1000 – 2600 m water 

depth originating in the North Pacific [Duplessy et al., 1988]. A more recent stable isotope anal-

yses off the Baja California margin by Herguera et al. [2010] concluded that the observed δ13C-

enriched intermediate waters are the result of a changed thermohaline circulation with a possibly 

enhanced GNPIW formation mode. Further south in the ETNP, a carbon isotope study by Leduc 

et al. [2010] proposed that GNPIW spreads at least till 8°N during the last glacial. Hence, it 

seems as if the enhanced ventilated GNPIW is progressively expanding southward, and thereby 

reaches the California margin and ETNP at the start of the glaciations. During glacial maxima, the 

volume of GNPIW expanded even further south reaching the equatorial sub-thermocline waters 

(Figure 5.5). Thereby, it possibly also changed the chemistry of the equatorial sub-thermocline 

waters, which is consistent with findings of Loubere et al. [2003, 2011], and Max et al. [under 

review, this thesis]. 

Our δ13C comparisons together with previously published results show that large-scale reor-

ganization in the formation area of GNPIW and SOIW took place during glacial stages that ampli-

fied during glacial maxima. In the western equatorial Pacific, these high latitude intermediate wa-

ters are incorporated into the equatorial current system. Thus, glacial/interglacial changes in this 

area affect the relative contribution of extra-tropical intermediate waters within the EqPIW as well. 

An idealized layer modeling shows that with the reduction of the Indonesian Throughflow during 

glacial conditions the proportion of GNPIW that was deflected into the tropical EqPIW increased 

[McCreary and Lu, 2001] and thus reaches the EEP sub-thermocline during glacial maxima. Fur-
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thermore, under modern conditions the NECC, which in turn also feeds the EUC, is fed from both 

hemispheres (see Chapter 5.1.2). Only during the Northwest Monsoon, the SEC is prevented 

from injecting into the NECC, and thus, the NECC is only fed from the north [Tomczak and God-

frey, 2005]. A hydrogen isotope record together with regional modeling reconstructed a south-

ward position of the mean Intertropical Convergence Zone (ITCZ) and an intensification of North-

east trade winds during the last glacial [Pahnke et al., 2007]. The glacial southward shift of the 

ITCZ is further verified by nitrogen isotopes and organic carbon records [Dubois and Kienast, 

2011], biomarker analysis [Shaari et al., 2013], and by nannofossil assemblages [Staines-Urías et 

al., 2015]. The resulting stronger northeast trades might have reduced the northward penetration 

and contribution of SOIW to the NECC and possibly also the EqPIW. Thereby, it provides a pos-

sible scenario for our proposed relatively enhanced contribution of northern-sourced waters on 

the equatorial Pacific sub-thermocline during late MIS 2 and late MIS 6. 

5.5.3 Deglacial and interglacial change in EEP nutrient-concentration 

The δ13C comparisons between high latitude and EEP upwelling waters yield rapid changes 

within the Termination I and II. The δ13C difference between the Bering Sea and ODP Site 1240 

increases towards modern values (Figure 5.4), which suggests decreasing nutrient-injections 

from northern-sourced intermediate waters into EqPIW. The GNPIW retreat is supported by the 

deposits of laminated sediments around the subarctic Pacific that indicates less well ventilated 

intermediate waters and the expansion of the oxygen minimum zone in the subarctic Pacific [Ku-

ehn et al., 2014]. The increasing temperatures and the opening of the Bering Strait triggered a 

change in productivity [Riethdorf et al., 2016]. Low nitrogen isotopes indicate enhanced productiv-

ity that was explained by a change towards seasonal sea ice, decreased upper ocean stratifica-

tion and subsequent enhanced nutrient supply to the euphotic zone by mixing and renewed river-

ine input [Gebhardt et al., 2008; Knudson and Ravelo, 2015b; Riethdorf et al., 2016]. Conse-

quently, the increasing δ13C difference between the Bering Sea and the EEP during warm periods 

suggests that northern-sourced intermediate water masses were depleted in nutrients during in-

terglacials compared to glacials and more confined to the modern extent. 

On the other hand, the both ∆δ13CEQG.hex-SP records show increasing values from the glacial 

maxima towards the interglacials. This argues for an intensified southern-sourced nutrient-

injection into the equatorial sub-thermocline. Silicon isotopes from the Southern Ocean indicate 

elevated Si(OH)4 concentrations at mode and intermediate depths in the SAZ [Rousseau et al., 

2016]. The excess dissolved silicon is then transported equatorwards as described by the SALH 

[Hendry and Brzezinski, 2014]. Loubere et al. [2003, 2007] found that the re-establishment of 

deep EUC waters with a mainly southern-sourced water mass occurred roughly at 18 ka. This is 

in harmony with a stable isotope study from the EEP showing an increased inflow of SOIW at the 

onset of the terminations [Pena et al., 2008; 2013; Bova et al., 2015]. The intensified SOIW venti-

lation expanded further north into the ETNP, where δ13C records and εNd signatures show compa-
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rable values to southern Ocean signatures within the deglaciation [Leduc et al., 2010; Basak et 

al., 2010]. 

5.6 Conclusions 

This study investigates the varying influence of extra-tropical intermediate waters on EEP sub-

thermocline. The carbon isotope comparisons indicate decreasing ∆δ13C ratios between the 

Equatorial sub-thermocline and the Southern Ocean records during peak glacials, which imply a 

diminishing relative nutrient influence from SOIW. On the other hand, the δ13C comparisons be-

tween EEP sub-thermocline record and sediment cores within the pathway of GNPIW indicate 

minor δ13C differences between the regions during peak glacials. This argues for enhanced 

GNPIW ventilation and subsequently relative enhanced nutrient contribution on equatorial sub-

thermocline waters during late MIS 2 and late MIS 6. 

The signal of relative increasing GNPIW influence on equatorial sub-thermocline would have 

large effects on biological productivity, as GNPIW is nutrient elevated compared to SOIW. Given 

that the modern EEP acts as one of the biggest CO2 source on Earth today, past changes in the 

biological pump of the equatorial Pacific might have affected the balance between oceanic and 

atmospheric CO2 concentrations. There is growing debate, whether the EEP turned into a sink for 

atmospheric CO2 during at least the last glacial [Sanyal and Bijma, 1999; Martínez-Botí et al., 

2015]. The expansion of nutrient-rich GNPIW might be another piece of the puzzle to further un-

derstand atmospheric CO2 variations during the Pleistocene and in particular during peak glacial 

periods. 
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Table S5.7.1. Age control points for analysed sediment cores. 

ODP Site 1240 SO136-003/MD06-2990 

Core depth 
(m.c.d.) Age (ky) Pointer Type Core depth 

(m) Age (ky) Pointer Type 

0.01 1.91 14C Marine041 0.03 3.35 14C Marine042 

0.25 5.27 14C Marine041 0.07 4.50 14C Marine042 

0.77 8.9 14C Marine041 0.15 9.48 14C Marine042 

1.17 10.54 14C Marine041 0.25 13.93 14C Marine042 

1.38 12.79 14C Marine041 0.35 19.33 14C Marine042 

1.51 13.32 14C Marine041 0.73 25.85 14C Marine042 

1.75 14.6 14C Marine041 1.13 38.46 Cib δ18O vs LR04 

2.23 17.22 14C Marine041 1.28 45.64 Cib δ18O vs LR04 

2.31 17.33 14C Marine041 1.69 59.48 Cib δ18O vs LR04 

2.63 19.41 14C Marine041 1.13 38.46 Cib δ18O vs LR04 

2.91 20.88 14C Marine041 1.28 45.64 Cib δ18O vs LR04 

3.18 22.26 14C Marine041 1.69 59.48 Cib δ18O vs LR04 

3.5 26.65 14C Fairbanks051 1.81 61.62 Cib δ18O vs LR04 

3.62 28.03 14C Fairbanks051 2.98 62.27 Cib δ18O vs LR04 

4.42 33.19 14C Fairbanks051 3.01 63.55 Cib δ18O vs LR04 

4.86 36.98 14C Fairbanks051 3.26 79.34 Cib δ18O vs LR04 

5.16 38.17 14C Fairbanks051 3.46 86.42 Cib δ18O vs LR04 

5.65 44.63 Cib δ18O vs LR04 3.59 93.40 Cib δ18O vs LR04 

6.43 49.32 Cib δ18O vs LR04 3.91 105.56 Cib δ18O vs LR04 

7.59 52.72 Cib δ18O vs LR04 4.05 108.22 Cib δ18O vs LR04 

9.81 64.00 Cib δ18O vs LR04 4.24 128.65 Cib δ18O vs LR04 

10.21 75.64 Cib δ18O vs LR04 4.28 130.63 Cib δ18O vs LR04 

10.91 80.20 Cib δ18O vs LR04 4.38 136.56 Cib δ18O vs LR04 

11.39 87.95 Cib d18O vs LR04 4.60 139.76 Cib δ18O vs LR04 

12.72 109.57 Cib d18O vs LR04 4.86 156.01 Cib δ18O vs LR04 

13.74 118.74 Cib δ18O vs LR04 5.21 165.94 Cib δ18O vs LR04 

14.09 126.24 Cib δ18O vs LR04 5.62 185.33 Cib δ18O vs LR04 

14.89 130.79 Cib δ18O vs LR04 5.76 191.84 Cib δ18O vs LR04 

17.35 155.79 G.hex δ18O vs LR04 5.89 204.31 Cib δ18O vs LR04 

18.53 166.23 Cib δ18O vs LR04 6.13 221.39 Cib δ18O vs LR04 

18.94 173.24 G.hex δ18O vs LR04 6.17 227.48 Cib δ18O vs LR04 

20.63 185.53 G.hex δ18O vs LR04 6.21 231.52 Cib δ18O vs LR04 

22.02 198.82 G.hex δ18O vs LR04 6.45 242.92 Cib δ18O vs LR04 

22.86 208.38 G.ruber δ18O vs LR04 6.66 251.62 Cib δ18O vs LR04 

24.44 217.52 G.ruber δ18O vs LR04 7.09 268.35 Cib δ18O vs LR04 

24.92 227.40 G.ruber δ18O vs LR04 7.35 281.91 Cib δ18O vs LR04 

27.08 250.54 G.ruber δ18O vs LR04 7.58 291.43 Cib δ18O vs LR04 

27.75 270.39 G.ruber δ18O vs LR04 8.15 303.82 Cib δ18O vs LR04 

28.64 291.11 G.ruber δ18O vs LR04 8.31 307.69 Cib δ18O vs LR04 

29.39 299.34 G.ruber δ18O vs LR04 8.51 316.58 Cib δ18O vs LR04 

25.71 235.83 Ash layer 8.65 318.69 Cib δ18O vs LR04 

   
9.00 339.06 Cib δ18O vs LR04 

   
9.24 346.93 Cib δ18O vs LR04 



 5.0 MANUSCRIPT III 

 -108- 

U1342 

Core depth 

(CCSF-A) 
Age (ky) Pointer type 

Core depth 

(CCSF-A) 
Age (ky) Pointer type 

0.3 12.33 Uvi (corr to cib) δ18O vs LR04 21.44 639.45 Uvi (corr to cib) δ18O vs LR04 

0.49 17.49 Uvi (corr to cib) δ18O vs LR04 22.1 689.37 Uvi (corr to cib) δ18O vs LR04 

0.94 20.28 Uvi (corr to cib) δ18O vs LR04 22.34 700.94 Uvi (corr to cib) δ18O vs LR04 

2.1 56.74 Uvi (corr to cib) δ18O vs LR04 22.66 727.15 Uvi (corr to cib) δ18O vs LR04 

2.46 70.41 Uvi (corr to cib) δ18O vs LR04 23.6 745.43 Uvi (corr to cib) δ18O vs LR04 

3.12 80.69 Uvi (corr to cib) δ18O vs LR04 26.19 793.12 Uvi (corr to cib) δ18O vs LR04 

3.29 87.1 Uvi (corr to cib) δ18O vs LR04 26.87 817.53 Uvi (corr to cib) δ18O vs LR04 

3.49 93.2 Uvi (corr to cib) δ18O vs LR04 27.86 849.57 Uvi (corr to cib) δ18O vs LR04 

3.76 105.45 Uvi (corr to cib) δ18O vs LR04 28.47 866.26 Uvi (corr to cib) δ18O vs LR04 

3.94 109.3 Uvi (corr to cib) δ18O vs LR04 28.9 892.7 Uvi (corr to cib) δ18O vs LR04 

3.99 115.24 Uvi (corr to cib) δ18O vs LR04 29.07 909.96 Uvi (corr to cib) δ18O vs LR04 

4.8 126.78 Uvi (corr to cib) δ18O vs LR04 29.36 917.25 Uvi (corr to cib) δ18O vs LR04 

5.05 131.07 Uvi (corr to cib) δ18O vs LR04 30.19 955.99 Uvi (corr to cib) δ18O vs LR04 

5.17 134.73 Uvi (corr to cib) δ18O vs LR04 30.92 973.72 Uvi (corr to cib) δ18O vs LR04 

5.27 140.59 Uvi (corr to cib) δ18O vs LR04 31.24 993.19 Uvi (corr to cib) δ18O vs LR04 

5.41 155.43 Uvi (corr to cib) δ18O vs LR04 31.41 1014.92 Uvi (corr to cib) δ18O vs LR04 

5.6 165.97 Uvi (corr to cib) δ18O vs LR04 31.59 1021.77 Uvi (corr to cib) δ18O vs LR04 

6.35 184.09 Uvi (corr to cib) δ18O vs LR04 31.68 1032.05 Uvi (corr to cib) δ18O vs LR04 

6.62 191.25 Uvi (corr to cib) δ18O vs LR04 35.02 1133.3 Uvi (corr to cib) δ18O vs LR04 

7.22 217.41 Uvi (corr to cib) δ18O vs LR04 35.23 1147.62 Uvi (corr to cib) δ18O vs LR04 

7.69 227.48 Uvi (corr to cib) δ18O vs LR04 36.12 1206.8 Uvi (corr to cib) δ18O vs LR04 

7.9 233.05 Uvi (corr to cib) δ18O vs LR04 36.45 1216.01 Uvi (corr to cib) δ18O vs LR04 

8.53 240.34 Uvi (corr to cib) δ18O vs LR04 39.24 1257.17 Uvi (corr to cib) δ18O vs LR04 

8.69 249.8 Uvi (corr to cib) δ18O vs LR04 

   8.98 255.81 Uvi (corr to cib) δ18O vs LR04 

   10.53 282.62 Uvi (corr to cib) δ18O vs LR04 

   11.27 299.64 Uvi (corr to cib) δ18O vs LR04 

   12.41 328.83 Uvi (corr to cib) δ18O vs LR04 

   14.53 396.69 Uvi (corr to cib) δ18O vs LR04 

   15.39 410 Uvi (corr to cib) δ18O vs LR04 

   15.72 433.2 Uvi (corr to cib) δ18O vs LR04 

   16.37 455.49 Uvi (corr to cib) δ18O vs LR04 

   17.92 489.11 Uvi (corr to cib) δ18O vs LR04 

   19.64 548.68 Uvi (corr to cib) δ18O vs LR04 

   20.27 576.81 Uvi (corr to cib) δ18O vs LR04 

   20.3 582.25 Uvi (corr to cib) δ18O vs LR04 

   20.9 597.65 Uvi (corr to cib) δ18O vs LR04 
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6. Conclusion and Outlook 

6.1 Conclusion 

The overall aim of this thesis was to investigate long-term variations in the upper ocean nutri-

ent circulation in the Pacific Ocean. The emphasis of this work was the equatorial Pacific sub-

thermocline and its relationship to increased intermediate water ventilation in the North Pacific. 

The assessment of precise regional foraminiferal ACDs is another important aspect of this thesis, 

as planktonic foraminifera generally serve as a tool to reconstruct past upper-ocean conditions. 

For this purpose, multiple different proxies were applied including the measurements of physical 

and chemical water properties, Mg/Ca ratios of planktonic foraminifera and benthic and plankton-

ic δ18O and δ13C values, as well as the determination of foraminiferal abundances. The obtained 

results of this thesis together with relevant published records from the Pacific, archives profound 

outcomes concerning the raised research questions that given in Chapter 1.5. 

The comparison between in-situ physical and chemical water mass properties with δ18Ocalcite 

values and Mg/Ca-derived temperatures measured on five living planktonic foraminifera species 

enabled species-specific ACDs and δ13C-disequilibrium in the WPWP to be obtained (Chapter 3). 

It was shown that the relative order of G. ruber as the shallowest dweller, followed by 

G. sacculifer, N. dutertrei, P. obliquiloculata and G. hexagonus inhabiting increasingly greater 

depths, is similar to other ocean basins. However, the relatively deep SML in the WPWP during 

the period of sampling (reaching a maximum depth of ~130 m) resulted in the ACD of G. ruber 

and G. sacculifer of ~95 m and ~120 m respectively, which is deeper than in other ocean basins. 

As vital effects further affect symbiont-bearing species, a combined approach of foraminiferal 

abundances, local hydrography and determined ACDs provides the most reliable ACD recon-

structions for these SML dwellers. At the top of and within the thermocline in the WPWP, both 

N. dutertrei and P. obliquiloculata calcify in water depths of ~140 m and ~160 m, respectively. We 

found that for the reconstruction of thermocline conditions, P. obliquiloculata seems to be most 

promising at the Manihiki Plateau. Most significantly, the ACD assessment reveals that 

G. hexagonus prefers to calcify in cooler, more oxygen-depleted and nutrient-rich sub-

thermocline water masses at ~450 m. This species seems to have only negligible δ13C-

disequilibrium with ambient seawater and thus, G. hexagonus was found to be most suitable for 

reconstructing the long-term variability in extra-tropical nutrient injections into the equatorial cur-

rent system. 



 6.0 CONCLUSION AND OUTLOOK 

 -110- 

Furthermore, GNPIW ventilation and the variable influence of northern-sourced versus south-

ern-sourced water masses in the eastern tropical Pacific was reconstructed using the newly gen-

erated benthic foraminiferal δ13C data from the Bering Sea and the new sub-thermocline δ13C 

record from the EEP (Chapter 4 and 5). An increased formation of GNPIW was observed since 

the onset of MIS 3 by combining δ13C records and εNd evidence from the Bering Sea. The resem-

blance between our Bering Sea sediment core (SO201-2-101KL) and a previously published ben-

thic δ13C record from the Panama Basin (MD02-2529) suggests a southward expansion of 

GNPIW into the tropical North Pacific during glacial boundary conditions (Chapter 4). This finding 

is supported by a εNd comparison between the Bering Sea and the eastern North Pacific, which 

indicates that the enhanced GNPIW ventilation during glacials reached Baja California. The 

southward penetration of GNPIW culminated early in MIS 2 (~29 ka). During that time δ13C 

measured on deep-dwelling planktonic species G. hexagonus at ODP Site 1240 reveals remark-

able similarities with SO201-2-201 KL. These similarities are accompanied by changes in marine 

productivity and nutrient utilization in the EEP. This likely suggests nutrient leakage from north-

ern-sourced waters on equatorial Pacific sub-thermocline water masses during MIS 2. 

So far, environmental changes within the EEP have only been correlated to SOIW due to the 

large contribution of southern-sourced water masses on EqPIW today. To investigate long-term 

changes spanning more than one glacial cycle, we compared the sub-thermocline δ13C record of 

ODP Site 1240 to records from the Bering Sea (U1342), the eastern North Pacific (EW9504-04), 

the southwest Pacific (SO136-003/MD06-2990) and the southeast Pacific (PS75/059-2) (Chapter 

5). The comparison of carbon isotope records indicates that δ13C values between the North Pacif-

ic and the equatorial sub-thermocline are nearly identical during peak MIS 2 and late MIS 6. At 

the same time, the largest offset is recorded in the δ13C values between EqPIW and SOIW. In 

agreement with the evidence for a reduced production and/or shallower penetration of SOIW and 

the enhanced North Pacific mid-depth circulation, the results of this thesis argue for repeated 

episodes of enhanced nutrient-injection of GNPIW coupled with diminished contribution from 

southern-sourced waters into the EqPIW during Pleistocene peak glacials. 

6.2 Outlook 

To ensure paleoceanographic reconstructions as precisely as possible, it is essential to accu-

rately determine the ACD of each species. It has been proven that ACDs vary regionally, but also 

seasonally [e.g. Kawahata et al, 2002; Steph et al., 2009]. The multinet study shown in Chapter 3 

presents for the first time foraminiferal ACDs from the south-eastern margin of the equatorial Pa-

cific. It should be noted that this study was conducted during a single season at one location. For 

the western equatorial Pacific there exist no spatial ACD assessments, although chlorophyll data 

suggest a deeper chlorophyll maximum north and south of the equator. In addition, a one-year 

sediment trap analyses from the western equatorial Pacific highlights a seasonal difference in 

planktonic foraminifera abundance, which might be related to the varying strength of trade winds 
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and the associated nutrient concentrations [Kawahata et al., 2002]. Consequently, for a more 

reliably spatial-refined ACD assessment and to prevent a seasonally biased interpretation of 

paleo-data, additional multinet studies distributed within the WPWP and the EEP are needed. 

This thesis demonstrates the suitable application of sub-thermocline dwelling G. hexagonus to 

trace varying nutrient concentrations in equatorial Pacific sub-thermocline waters. Marchant et al. 

[1998] showed that, at least in the Peru-Chile current, the abundance of G. hexagonus did not 

differ seasonally. However, studies of this species are scarce. Indeed, different ACDs have been 

reported from the Pacific Ocean and the Indian Ocean (Chapter 3.3.3.3) Hence, more detailed 

information concerning regional calcification depths in the WEP and EEP, seasonal variations in 

abundances, feeding and the reproduction cycle would aid the use of G. hexagonus as an ar-

chive for sub-thermocline water masses. 

The climate phenomenon ENSO causes large variations of the SSTs, large changes in pre-

cipitation, and a change in the depth of the thermocline and the associated availability of nutri-

ents. El Niño events occur with a periodicity of 3 – 8 years and a duration of ~6 months. This pe-

riodicity is typically too short to be resolved by most sedimentary records, especially at the 

Manihiki Plateau where sedimentation rates are low (1 – 3 cm/kyr) [Beiersdorf et al., 1995; Rad-

datz et al., submitted (abstract in the appendix)]. Despite the difficulty in resolving such short time 

periods, it has often been discussed whether glacial climate prevailed in a more El Niño-like state 

[e.g. López-Otálvaro et al., 2008; Li et al., 2011; Sadekov et al., 2013] or La Niña-like conditions 

[e.g. Beaufort et al., 2001; Staines-Urías et al., 2015]. These different climate modes could cause 

a shift in the ACD of especially SML- and thermocline-dwelling species. Consequently, ACD as-

sessments during El Niño and La Niña events are needed to better constrain past glacial-

interglacial oceanic and climate changes. 

Our new downcore reconstructions indicate that past changes in North Pacific mid-depth circu-

lation influenced the carbon signature of equatorial sub-thermocline water masses during peak 

glacial conditions. To record the long-term evolution of equatorial Pacific sub-thermocline waters, 

the δ13C record of G. hexagonus was compared to the δ13C record of Bering Sea sediment core 

U1342. The latter was measured on infaunal benthic U. peregrina that was corrected with a mod-

ern constant offset of +0.9 ‰ with respect to bottom water δ13CDIC [Duplessy et al., 1984; Knud-

son and Ravelo, 2015a]. However, a number of studies have shown that this offset is highly vari-

able on glacial-interglacial timescales [Pahnke and Zahn, 2005; McCave et al., 2008; Ronge et 

al., 2015], decreasing our confidence in the utility of U. peregrina as a tracer of past bottom water 

δ13CDIC. This is particularly important as the contribution of Bering Sea Intermediate Water to 

GNPIW during glacial conditions, remains enigmatic [Tanaka and Takahashi, 2005; Horikawa et 

al., 2010; Rella et al., 2012; Max et al., 2014; Matul et al., 2015; Cook et al., 2016]. Thus, it would 

be beneficial to compare a high-resolution record of epibenthic Cibicidoides from the Bering Sea 

and the Sea of Okhotsk, which covers more than one glacial-interglacial cycle, to equatorial in-

termediate waters. This would enable a more accurately determination of the specific North Pacif-

ic end-member signature and contribution to equatorial upwelling waters during glacials and 
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across the terminations. In addition, it would allow more accurate constraints to be place on the 

timing of the switch from northern- to southern-sourced water masses feeding into the equatorial 

Pacific. 

This thesis also revealed that GNPIW might have changed glacial equatorial nutrient availabil-

ity by providing preformed nutrients to EqPIW, which we defined as the ‘North Pacific Nutrient 

Leakage’ hypothesis. This nutrient leakage from the north argues for a relaxation of the nutrient 

limitation in the EEP. To date, there is no consistent information regarding glacial equatorial 

productivity [Loubere et al., 2003; Bradtmiller et al., 2006; Pichevin et al., 2009; Robinson et al., 

2009; Arellano-Torres et al., 2011; Calvo et al., 2011; Dubois et al., 2011], but a north-south di-

chotomy in the primary productivity within the EEP during MIS 2 emerges [Bova, personal com-

munication]. Whether this reflects atmospheric shifts in the position of the ITCZ and thus varia-

tions in upwelling, or variations in the contribution of nutrients from the different end-members, 

remains uncertain. To elucidate this matter, necessary information about utilization processes of 

major nutrients in the GNPIW formation region are needed. Recent studies from the Bering Sea 

hint to low glacial mass accumulation rates of biogenic opal and decreased glacial nitrate utiliza-

tion [Schlung et al., 2013; Knudson and Ravelo, 2015b]. However, information on other major 

nutrients such as silicon and iron are absent. As northern-sourced water inject ~70 % of the mod-

ern Si(OH)4 into equatorial upwelling waters [Sarmiento et al., 2004], more information on glacial-

interglacial variations in this input are required. For example, silicon isotopes in the formation 

region of GNPIW combined with published records from the Southern Ocean would possibly al-

low us to infer the sources of productivity changes at the equator during glacials.  

Understanding the causes of productivity changes in the equatorial Pacific would enable sci-

entists to make more accurate estimations about the role of the equatorial Pacific within the past 

global CO2 budget. To date, there is no real consensus about the emission of CO2 to the atmos-

phere during glacials. A boron isotope study from the EEP proposes that the glacial oceanic CO2 

emission was even larger than today [Sanyal and Bijma, 1999]. In contrast, a more recent boron 

isotope study from the same area calculated that the EEP turned from a carbon source towards a 

CO2 sink in the last glacial [Martínez-Botí et al., 2015]. Supporting evidence for an environmental 

change towards a glacial CO2 sink comes from a diatom-bound carbon isotope calculation from 

the tropical western Pacific [Xiong et al., 2013]. In summary, a more coherent understanding of 

past changes in the equatorial Pacific will enable us to more accurately infer potential future 

ocean dynamics in this climatically sensitive region, improving future global climate predictions. 
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Abstract 

The internal development of the tropical West Pacific Warm Pool and its interaction with other 

ocean regions on geological timescales is only poorly constrained. Based on two newly recov-

ered sediment cores from the southeastern margin of the West Pacific Warm Pool (northern and 

southern Manihiki Plateau), we provide new aspects on the dynamically interacting ocean circula-

tion at surface, subsurface, thermocline, and deep thermocline levels during the Pleistocene 

(~2.5 – 0.5 Ma). Notably, the variability of thermocline and deep thermocline (~150–  400 m water 

depth) foraminiferal Mg/Ca-based temperatures with up to ~6°C amplitude variations exceeds 

those at shallower depths (down to ~120 m) with only ~2 – 3°C temperature variations. A major 

gradual reorganization of the West Pacific Warm Pool oceanography occurred during the transi-

tional time period of ~1.7 – 1.35 Ma. Prior to ~1.7 Ma, pronounced meridional and latitudinal gra-

dients in sea-surface to subsurface ocean properties point to the sustained eastward displace-

ment of the West Pacific Warm Pool, with the South Pacific Convergence Zone being shifted fur-

ther northeastward across Manihiki Plateau. Simultaneously, the low amplitude variations of 

thermocline and deep thermocline temperatures refer to an overall deep and stable thermocline. 

Our data further suggest that pronounced upper ocean temperature gradients between the East-

ern and western equatorial Pacific were established by several hundred thousand years earlier 

than previously suspected, contradicting notions on permanent El Niño-like conditions until 
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~1.7 Ma. The meridional and zonal gradients in sea-surface and subsurface ocean properties 

diminished within the West Pacific Warm Pool, pointing to close-to-present-day temperature con-

ditions particularly between ~1.7 – 1.35 Ma and ~0.9 – 0.75 Ma, and the more southward position 

of the warm South Pacific Convergence Zone at ~1.35 – 0.9 Ma and ~0.75 – 0.5 Ma. Synchro-

nous to the changes in the upper ocean, the deeper water masses experienced high amplitude 

variations in temperature, most prominently since ~1.5 Ma. This and the dynamically changing 

thermocline conditions most likely occurred in response to the impact of southern-sourced mode 

waters, which developed coincidently with the emergence of the East Pacific Cold Tongue and 

high latitude sea-surface cooling. 
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Journal of Quaternary Science 30(3), 201-210. 
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Abstract 

To reconstruct the still poorly understood thermocline fluctuations in the western tropical 

Indian Ocean, a sediment core located off Tanzania (GeoB12610-2; 04°49.00’S, 39°25.42’E, 

399 m water depth) covering the last 35 ka was analysed. Mg/Ca-derived temperatures from 

the planktonic foraminifera Globigerinoides ruber (white) and Neogloboquadrina dutertrei 

indicate that the last glacial was ~2.5°C colder in the surface waters and ~3.5°C colder in the 

thermocline compared with the present day. The depth of the thermocline and thus the 

stratification of the water column were shallower during glacial periods and deepened during 

the deglaciation and Holocene. The increased inflow of Southern Ocean Intermediate Waters 

via ‘ocean tunnels’ appears to cool the thermocline from below, leading to a similarity 

between the thermocline record of GeoB12610-2 with the Antarctic EDML temperature curve 

during the glacial. With rising sea level and the corresponding greater inflow of Red Sea 

Waters and Indonesian Intermediate Waters, the proportion of Southern Ocean Intermediate 

Water within the South Equatorial Current is reduced and, by Holocene time, the correlation 

to Antarctica is barely traceable. Comparison with the eastern Indian Ocean reveals that the 

thermocline depth reverses from the last glacial to present.  

	  



	  



 APPENDIX 

-A.III.- 

A.III. List of Abbreviations 

Areal, climate, current and water mass abbreviations: 

AABW  Antarctic Bottom Water 

AAIW   Antarctic Intermediate Water 

CC   California Current 

CDW   Circumpolar Deep Water 

EEP   Eastern Equatorial Pacific 

ENSO  El Niño Southern Oscillation 

EqPIW  Equatorial Pacific Intermediate Water 

ETNP   Eastern Tropical North Pacific 

EUC   Equatorial Undercurrent 

GNPIW  Glacial North Pacific Intermediate Water 

HNLC  high-nutrient low-chlorophyll 

ITCZ   Intertropical Convergence Zone 

KC   Kuroshio Current  

LGM   Last Glacial Maximum 

MIS   Marine Isotope Stage 

NADW  North Atlantic Deep Water 

NEC   North Equatorial Current 

NECC  North Equatorial Countercurrent 

NGCUC  New Guinea Coastal Undercurrent 

NPIW   North Pacific Intermediate Water 

NSCC  Northern Subsurface Countercurrent 

OSIW   Okhotsk Sea Intermediate Water 

PDW   Pacific Deep Water 

PEqD   Pacific Equatorial Divergence 

SAMW  Subantarctic Mode Water 

SAZ   Subantarctic Zone 

SEC   South Equatorial Current 

SSCC  Southern Subsurface Countercurrent 

SOIW   Southern Ocean Intermediate Water 

UCDW  Upper Circumpolar Deep Water 
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WPWP  Western Pacific Warm Pool 

 

Proxy, chemical and analytical definitions: 

ACD   Apparent Calcification Depth 

bem   paleotemperature equation of Bemis et al. [1998] 

CaCO3  calcium carbonate 

CO2   carbon dioxide 

Corg   organic carbon 

CTD   Conductivity-Temperature-Depth 

δ13C   stable carbon isotope of foraminiferal calcite 

δ13CDIC  stable carbon isotope of total dissolved inorganic carbon 

δ15N   stable nitrogen isotope 

δ18O   stable oxygen isotope 

δ18Ocalcite  stable oxygen isotope of foraminiferal calcite 

δ18Oequilibrium  the predicted theoretical stable oxygen isotope values of inorganic calcite 

δ18Owater  stable oxygen isotope of water 

δ18Oseawater  stable oxygen isotope of seawater 

δ30SiDiatom  silicon isotope of diatoms 

∆14C   radiocarbon activity of a sample relative to the absolute international 

   standard (year 1950) 

DIC   total dissolved inorganic carbon 

εNd   neodymium isotope record 

HgCl2   mercury chloride 

kim   paleotemperature equation of Kim and O’Neil [1997] 

(LA)-ICP-MS  (Laser-Ablation) Inductively Coupled Plasma-Mass Spectrometer 

mul   paleotemperature equation of Mulitza et al. [2004] 

NaClO  sodium hypochlorite 

NO3
-   nitrate 

Mg/Ca  Magnesium/Calcium 

PO4   phosphate 

psu   practical salinity unit 

sha   paleotemperature equation of Shackleton [1974] 

Si(OH)4  silicic acid 

VPDB  Vienna PeeDee Belemnite 
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VSMOW  Vienna standard mean ocean water 

XRF   X-ray fluorescence 

 

Facility, institute and cruise names: 

AWI   Alfred-Wegener-Institut, Helmholtz Zentrum für Polar- und  

   Meeresforschung 

BMBF  Bundesministerium für Bildung und Forschung 

GEOMAR  GEOMAR, Helmholtz Centre for Ocean Research Kiel 

GLODAP  Global Ocean Data Analysis Project 

MD06   RV Marion Dufresne cruises MD106 (year 1997) 

NOAA  National Oceanic and Atmospheric Administration 

ODP   Ocean Drilling Project 

ONI   Oceanic Niño Index 

SO136/201/225 RV Sonne cruises 136, 201 and 225 (year 1998, 2009 and 2012/2013) 

U1342  Sediment core obtained during Integrated Ocean Drilling Program  

   323 (year 2009) 

 

Other: 

DCM   deep chlorophyll maximum 

LR04   global benthic δ18O stack 2004 [Lisiecki and Raymo, 2005] 

MRA   mean relative abundance 

MSD   maximum shell diameter 

OM   oxygen minimum 

s.s.   Globiderinoides ruber morphoytpe sensu strictu 

s.l.   Globiderinoides ruber morphoytpe sensu lato 

SALH   Silicic acid leakage hypothesis 

SML   surface mixed layer 

SST   sea-surface temperature 

SSS   sea-surface salinity 

WOA09/13  World Ocean Atlas of 2009 and 2013 

	  




