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Zusammenfassung

Im Winter geht der calanoide Copepode Calanus finmarchicus, der in den gemäßigten/subpolaren

Gebieten verbreitet ist, in eine jahreszeitliche Diapause, eine Art Winterruhe, um Zeiten mit geringer

Nahrungsmittelverfügbarkeit zu überdauern. Tages- und Jahresrhythmen von Zooplankton könnten

unter der Kontrolle einer endogenen zirkadianen Uhr sein, um eine optimale Synchronisation der

physiologischen, biochemischen und verhaltensbezogenen Prozesse an lokal herrschende Umweltbe-

dingungen zu gewährleisten. Hierbei soll als verlässlichster Zeitgeber für eine Synchronisation mit

der Umwelt die Photoperiode (Tageslänge) gelten. Ein geringfügiges, zeitliches Ungleichgewicht

zwischen biologischen Prozessen und der Umwelt, wie z.B. eine durch den Klimawandel verursachte

zeitliche Verschiebung der Phytoplanktonblüte, könnte verheerende Folgen für das gesamte Calanus-

basierte Ökosystem haben. Jedoch ist das Wissen über die Synchronisation mit der Umwelt von C.

finmarchicus und marinen Organismen in polaren Gebieten im Allgemeinen begrenzt. Das Ziel dieser

Studie war es, die Performance der Uhr zu unterschiedlichen Zeitpunkten während der Diapause zu

untersuchen, um zu wissen, ob die Uhr eine Rolle in der saisonalen Diapause von C. finmarchicus

spielt. Dafür wurden Genexpressionsmuster von Uhrgenen in C. finmarchicus aus früher (Septem-

ber 2014, 10 h L:14 h D) und später (Januar 2015, DD) Diapause über den Tagesverlauf untersucht.

Copepoden wurden vor Ort in Kongsfjorden, Svalbard (78.6° N, 11.6 °E), über 24 Stunden gesam-

melt. Primer wurden für jüngst beschriebene potentielle Uhrgene (cry1, cry2, clk, cyc, per1, tim,

dbt2, vri) in C. finmarchicus konzipiert. Expressionsmuster der Uhrgene wurden mittels quantita-

tiver Echtzeit-PCR analysiert. Wir konnten nachweisen, dass die meisten Uhrgene eine tagesrhyth-

mische Oszillation während der frühen Diapause (LD), viele Uhrgene der Copepoden aus später

Diapause hingegen keine signifikante rhythmische Oszillation zeigen. Ein Vergleich der einzelnen

Tageszeitpunkte zwischen früher und später Diapause zeigte signifikante Unterschiede. Copepo-

den, die während der frühen Diapause gefangen wurden, hatten einen insgesamt höheren relativen

mRNA Level im Vergleich zu den Copepoden aus der späten Diapause. Diese Ergebnisse lassen

eine tageszyklische Uhr in C. finmarchicus erkennen. Das könnten erste Anzeichen für eine zirkadi-

ane Uhr in C. fimarchicus sein und eine mögliche Beteiligung der Uhr in der saisonalen Diapause

darstellen. Weitere Studien müssen tagesabhängige Proteinlevel und uhrbezogene Gene unter-

suchen, um das Zusammenspiel von Uhrgenen, Photoperiode und der Diapause in C. finmarchicus

besser verstehen zu können.
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Abstract

During winter the temperate/subpolar calanoid copepod Calanus finmarchicus enters seasonal di-

apause, a type of dormancy, to overcome this period of low food availability. Daily and seasonal

rhythms of zooplankton might be under the control of an endogenous circadian clock ensuring opti-

mal synchronizatzion of physiological, biochemical and behavioral processes to prevailing local en-

vironmental conditions. Photoperiod (daylength) is supposed to be the most reliable entrainment

cue of an animals seasonal cycle for synchronization with the environment. A small timing mis-

match between biological processes and the environment such as temporal shifts of the onset of

phytoplankton blooms caused by climate change could potentially have severe consequences for

the entire Calanus-based ecosystem. Nevertheless, limited knowledge is available concerning the

synchronization of C. finmarchicus and marine organisms inhabiting polar regions with their environ-

ment. This study aimed to investigate the performance of the clock at distinct times during diapause

to gain knowledge concerning the role of the clock in seasonal diapause of C. finmarchicus. Thus,

diurnal clock gene expression patterns in C. finmarchicus being in early (September 2014, 10 h L:

14 h D) and late (January 2015, DD) diapause. Copepods have been collected by 24 h in situ sam-

pling from Kongsfjorden, Svalbard (78.6°N, 11.6°E). Primers were designed for recently described

potential clock genes (cry1, cry2, clk, cyc, per1, tim, dbt2, vri) in C. finmarchicus. Clock gene ex-

pression patterns were analyzed with Real-Time quantitative PCR. We could show that most clock

genes showed a diel rhythmic oscillation during early diapause (LD), whereas in late diapause (DD)

a significant rhythmic oscillations was not detectable for most of the investigated genes. Comparison

of early and late diapause between each diel time point revealed significant differences. Overall,

copepods caught in early diapause had higher relative mRNA levels compared to copepods sampled

in January. These findings indicate a diurnal clock in C. finmarchicus. This might be the first sign of

a circadian clock in C. fi•nmarchicus and the potential involvement of the clock in seasonal diapause.

Further studies need to investigate diurnal protein levels and clock-associated genes to get an un-

derstanding of the interplay of clock genes, photoperiod sensing and diapause in C. finmarchicus.

Keywords: Arctic, photoperiod, entrainment, Kongsfjorden, housekeeper
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1 Introduction

Within most of the North Atlantic and Arctic Ocean the pelagic calanoid subpolar/temperate Calanus

finmarchicus is the biomass dominating zooplankton species representing an important trophic link

in the pelagic lipid-based arctic food web (Hirche et al., 1997). Feeding on the annual phytoplankton

bloom C. finmarchicus converts low-energy carbohydrates and proteins into high-energy wax esters

(Lee et al., 2006; Falk-Petersen et al., 2009). Due to its high biomass and lipid storages, it represents

the key prey species for other zooplankton species, pelagic fishes including polar cod (Boreogadus

saida) and capelin (Mallotus villosus), and some seabird species such as the little auk (Alle alle)

(Norderhaug, 1980; Lønne and Gulliksen, 1989; Hassel et al., 1991; Weslawski et al., 1999). Polar

regions have experienced significant warming in the last decades (IPCC, 2013). The pelagic calanoid

copepod C. finmarchicus has shifted its distribution northwards to up to ∼80° N at Svalbard, caused

by climate change (Fromentin and Planque, 1996; Beaugrand et al., 2002). As many other polar

and temperate species, C. finmarchicus has evolved rhythmic daily and seasonal physiological and

behavioural functions which are synchronized with the cyclic changes of the environment (Hagen,

1999; Falk-Petersen et al., 2009; Daase et al., 2013). Daily rhythms include feeding and diel vertical

migration (DVM), normally an ascent at dusk to shallow waters and a descent at dawn to greater

depths, which is known to be the biggest synchronized movement in terms of biomass on earth (Hays

et al., 1997; Fortier et al., 2001; Hays, 2003). Optimisation of feeding as well as predator avoidance

are considered to be the ultimate factors behind DVM (Hays, 2003). As proximate trigger mostly

day length (photoperiod) as an exogenous cue is mentioned (Fortier et al., 2001; Ringelberg and

Van Gool, 2003; Berge et al., 2009, 2014) resulting in the occurrence of DVM during arctic seasons

with a pronounced light:dark cycle (autumn and spring) (Cottier et al., 2006; Falk-Petersen et al.,

2008; Wallace et al., 2010).

As part of a seasonal rhythm, C. finmarchicus enters seasonal diapause, a state of arrested

development and reduced metabolic reduction, to overwinter at deeper waters in adaptation to the

seasonal scarce food supply during winter (Hirche, 1996a). The calanoid copepod C. finmarchicus

has a one year life cycle, which involves metamorphosis through six naupliar stages (NI-NVI) and

five copepodid stages (CI-CV) prior to moulting to adults. During late summer/autumn mainly the fifth
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and final juvenile stage of C. finmarchicus (CV copepodids), but also CIV copepodids, start initiating

diapause, sink out of the surface waters and overwinter in deeper waters (Hill, 2009; Daase et al.,

2013). During diapause copepods stop ingestion and, thus, CV copepodids accumulate large lipid

amounts prior to entering diapause, which are utilized as nourishment during dormancy at deeper

waters (Hirche, 1996a; Miller, 2000). After descending down to deeper waters in summer/autumn

CV copepodids undergo a state of arrested development (Dahms, 1995; Hirche, 1996b), reduced

metabolism and respiration, accompanied by suppressed reproduction (Hirche, 1983; Ingvarsdót-

tir et al., 1999). Arrested development is indicated by reduced transcriptional activity such as low

RNA/DNA ratios (Wagner et al., 1998), low ecdysteroid levels (Johnson, 2004) as well as delayed

moult progression (Miller et al., 1991). Heat shock protein expression patterns have also been shown

to vary considerably over the seasonal cycle (Aruda et al., 2011). By comparing gene expression

patterns of active and diapausing copepods, genes associated with lipid synthesis, transport and

storage, including ELOV (elongation of very long chain fatty acids), FABP (fatty acid binding protein)

and RDH (reductase/dehydrogenase), were downregulated in diapausing copepods (Tarrant et al.,

2008). Furthermore, expression of ferritin, linked to protection of cells from oxidative stress, and

ecdysteriod reporter (EcR), which is responsible for endocrine regulation of copepod development,

was greater in diapausing copepods (Tarrant et al., 2008). EcR expression levels were also exam-

ined within diapausing copepods having lowest expression levels in December, when animals are

assumed to be in diapause, whereas expression levels increased in January, when the animals were

terminating diapause. Such seasonal rhythms are a response to a pronounced seasonality in envi-

ronmental conditions like light, temperature, sea ice and food availability (Enright and Hamner, 1967;

Hays, 2003; Berge et al., 2009; Hut et al., 2013). Distinct environmental cycles like the change of

the seasons, the monthly cycle of the tides and the diel light/dark cycle are the result of the an-

nual movement of the earth around the sun, the rotation of the earth itself once every 24 hours and

the moon orbiting the earth (Berge et al., 2009; Søreide et al., 2010; Kronfeld-Schor et al., 2013;

Shimmura and Yoshimura, 2013). Especially in the Arctic organisms have to cope with extreme light

regimes, ranging from periods of constant light (midnight sun) to constant darkness (polar night) and

only limited periods of pronounced light:dark cycles. Understanding possible endogenous and ex-

ogenous mechanisms driving life-cycle strategies such as diapause is important to predict the impact

of climate-induced changes on the entire Calanus-based ecosystem of the Arctic/northern Atlantic

(Kwasniewski et al., 2012; Ji et al., 2013). Temperature, food availability, saturation of lipid reserves
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and photoperiod have been proposed as cues for seasonal entrainment initiating/terminating sea-

sonal diapause (Hirche et al., 1997; Niehoff and Hirche, 2005; Johnson et al., 2008; Ji, 2011; Clark

et al., 2012; Pierson et al., 2013). However, little is known about the triggers initiating and terminating

diapause as well as internal processes and molecular underpinnings associated with these triggers.

Although various external factors might influence biological rhythms (Dalley, 1980; Wallace

et al., 2010; Ji, 2011), many species display cycles that persist under constant conditions and, there-

fore, are considered as endogenous rhythms (Enright and Hamner, 1967; Cavallari et al., 2011;

Teschke et al., 2011). On a daily scale, these genetically controlled rhythms are called circadian

(Latin: circa = about and dies = day). A rhythm is classified as circadian, if the oscillation runs with

a period of ∼24 h and persists under constant conditions (free-running). It is assumed that DVM of

zooplankton slows down or ceases during winter and is only performed during arctic seasons with

a pronounced light:dark cycle (Cottier et al., 2006; Falk-Petersen et al., 2008; Wallace et al., 2010).

However, Enright and Hamner (1967) found that DVM of calanoid copepods was also performed dur-

ing constant darkness (DD) in experimental studies. Furthermore, during polar night and day, where

ambient light is generally assumed to be insufficient to cue zooplankton (Cottier et al., 2006), DVM

was also performed by several zooplankton species (Berge et al., 2009, 2012) pointing towards the

existence of a self-sustaining endogenous control mechanism, a so called circadian clock. Such a

clock consists of transcriptional-translational autoregulatory feedback loops involving rhythmic clock

gene expression patterns, which generate 24 h rhythms on a molecular level. Cyanobacteria as

well numerous eukaryotes (Aréchiga, 1993; Bradshaw and Holzapfel, 2007; Axmann et al., 2014)

have evolved such a circadian clock in order to anticipate environmental oscillations on a daily basis

(Kuhlman et al., 2007) allowing activation of rhythmic outputs at the appropriate time of the day such

as locomotory activity, DVM and metabolic functions (Marcus, 1985; Aréchiga, 1993; Strauss and

Dircksen, 2010).

Although circadian rhythms can continue to oscillate with cycles of approximately 24 hours

(Berge et al., 2009; Shimmura and Yoshimura, 2013) under constant environmental conditions (En-

right and Hamner, 1967; Kuhlman et al., 2007; Cavallari et al., 2011; Teschke et al., 2011), a reliable

environmental cue is needed to entrain endogenous rhythms to their ∼24 h cycle (Aschoff, 1965).

Photoperiod is supposed to be the most reliable entrainment cue (Zeitgeber ) for synchronization with

the environment (Marcus, 1986; Kuhlman et al., 2007; Tosches et al., 2014). Nevertheless, there

is also evidence that in the absence of photoperiod animals can display arrhythmicity or switch to
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alternative time cues (Lu et al., 2010; Wallace et al., 2010). Besides photoperiod, temperature and

food availability have been proposed as cues for seasonal entrainment triggering diapause (Hirche

and Kwasniewski, 1997; Niehoff and Hirche, 2005; Cavallari et al., 2011; Ji, 2011; Clark et al., 2012;

Pierson et al., 2013).

On a molecular level, the circadian clock consists of three key components. Further description

of clock functions and components includes certain genes and their protein products. Genes are writ-

ten as low-case italic words (e.g. cry1), whereas their proteins can be identified by capitalized terms

(e.g. CRY1). First, a central oscillator independently keeps circadian time generated by temporal de-

lays between activation and repression of clock genes mediated by negative transcription-translation

feedback loops (Hardin, 2005; Mackey, 2007) resulting in a approx. 24 h oscillation of many clock

gene transcripts (Dubruille and Emery, 2008; Zheng and Sehgal, 2008). Post-translational modifi-

cations including phosphorylation, localisation and degradation of clock proteins help to maintain a

circadian rhythm (Zheng and Sehgal, 2008). The second component, the input pathway, synchro-

nizes the clock to its environment. The Drosophila-like cryptochrome protein (CRY), analogous of the

vertebrate-like CRY1, is light-sensitive and primarily function as clock-specific photoreceptors entrain-

ing the molecular clock to changing environmental cycles of light and dark. Cryptochrome proteins

are able to absorb light and transmit the information directly to the oscillator allowing the period and

phase of the clock to adjust to prevailing light:dark cycles (Ceriani et al., 1999; Emery et al., 2000).

A null mutation in the cryptochrome gene, cry b, in the fruit fly Drosophila melanogaster showed a

failure to synchronize to light:dark cycles indicating that cryptochrome’s normal function involves cir-

cadian photoreception (Stanewsky et al., 1998; Helfrich-Förster et al., 2001). The output pathway, the

third component, is responsible for transmitting the information to temporally organize behaviour and

physiology like pupal eclosion, locomotor activity, neuronal function and hormonal secretion (Allada

and Chung, 2010).

The endogenous control mechanism in D. melanogaster is one of the best studied clocks (Al-

lada and Chung, 2010) functioning with two feedback loops, period/timeless and clock (Figure 1.1).

The first feedback loop includes the activation and repression of period (per) and timeless (tim). Dur-

ing late day the positive regulators CLOCK (CLK) and CYCLE (CYC) activate the transcription of the

negative regulators per and tim leading to an accumulation of PER and TIM proteins in the cyto-

plasm. After dimerization of the two proteins PER and TIM during early night, they are translocated

into the nucleus (midnight) binding to CLK/CYC.
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Figure 1.1: Circadian clock of Drosophila melanogaster - Circadian time is generated by two transcription-
translation negative feedback loops (per/tim feedback loop and clk feedback loop) of clock genes
and their protein products as well as a light dependent entrainment of the oscillator. Capitalized
terms stand for proteins, low-case words indicate genes. 1© CYC-CLK heterodimers activate tran-
scription of per and tim (peaking during late day) by binding at the per and tim promoters contain-
ing a CLK/CYC target E-box sequence. 2© Transcription factors PER an TIM are transported out
of the nucleus into the cytoplasm. 3© PER is phosphorylated by DBT and CK2, which leads to its
degradation. PER is also stabilized by PP2A which removes phosphates that were added to PER
(late day/early night). 4© As stabilisation TIM binds to phosphorylated PER (early night), which
remains bound to DBT. 5© During the day, light activates the photoreceptor CRY, which then binds
to the TIM-PER-DBT complex removing TIM, 6© leading to its degradation (early morning). 7© In
the absence of light TIM-PER-DBT complexes are further phosporylated by SGG promoting their
transport into the nucleus (midnight). 8© PER and TIM transcription is inhibited by TIM-PER-DBT
complexes binding to CLK-CYC. 9© The whole complex is removed from the E-box (late night). 10©
TIM, PER and CLK are degraded (early day). Accumulation of non-phosphorylated CLK leads to
heterodimerization with CYC and another cycle of PER an TIM transcription starts. 11© Further,
CLK-CYC heterodimers bind to the E-box 12© activating the transcription of VRI and PDP1. 13© VRI
binds to P/V boxes and inhibits clk transcription. 14© A delayed accumulation of PDP1 leads to a
replacement of VRI from P/V (PDP1 and VRI) boxes and restimulates clk transcription. 15© Accu-
mulation of non-phosphorylated CLK leads to heterdodimerization with CYC and another cycle of
vri and pdp1 transcription [adapted from Hardin (2005)]

.
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Thus, CLK and CYC are removed from the E-box resulting in inhibition of tim and per transcription

(late night). Post transcriptional regulation and modification of clock components including phospho-

rylation via DOUBLETIME (DBT), CASEIN KINASE 2 (CK2), PROTEIN PHOSPHATASE 2 (PP2A)

and SHAGGY (SGG) result in temporal delays between CLK/CYC transcriptional activation (late day)

and PER/TIM repression (late night). Negative feedback on CLK/CYC activity is relieved at dawn

when light activates CRY, a light-sensitive protein (Emery et al., 1998), promoting the degradation

of TIM (Ceriani et al., 1999). Additionally, PER and CLK are degraded during early day. Within the

second feedback loop, CLK/CYC heterodimers activate the transcription of VRILLE (VRI) and PAR

DOMAIN PROTEIN 1 (PDP1). VRI represses clk transcription, whereas a delayed accumulation of

PDP1 results in a replacement of VRI leading to a restimulation of clk transcription (Figure 1.1).

Some aspects regarding the control of the circadian clock are assumed to be common to all

insects (Bradshaw and Holzapfel, 2010). This includes the cyc and clk transcription/translation feed-

back loop promoting transcription of per and tim as well as the involvement of cryptochromes. In

Drosophila cryptochrome protein CRY, which is an analogue to cry1 in the monarch butterfly Danaus

plexippus (Figure 1.2) and Calanus finmarchicus, is known to function as photoreceptor entraining the

clock to the prevailing photoperiod and transmitting that information directly to the clock by promoting

the rapid degradation of the TIM protein (Emery et al., 1998; Stanewsky et al., 1998; Helfrich-Förster

et al., 2001; Collins et al., 2006). CRY2, the vertebrate like cryptochrome, on the other hand, is

light insensitive and might act as a negative-acting transcriptional regulator of CLK:CYC mediated

transcription (Zhu et al., 2008).

Both circadian and seasonal events rely on the ability to precisely measure time (Marcus, 1986;

Kuhlman et al., 2007; Tosches et al., 2014) and might potentially involve the same genetically ele-

ments (Oster et al., 2002; Meuti and Denlinger, 2013). Evidence imposes that photoperiod and light

intensity are essential for calibration of both events (Kuhlman et al., 2007). To determine the timing

of seasonal events such as diapause it is assumed that organisms use and respond either to annual

changes in day length or directly to the length of day/night (Meuti and Denlinger, 2013). Bünning

(1936) first proposed the idea, that animals likely use their circadian clocks to measure photoperiod,

and hence initiate photoperiodic responses, because the circadian clock already provides critical in-

formation on light:dark cycles. Evidences reveal that the timing of diapause could be related to pho-

toperiod measurement as seasonal entrainment cue (Marcus, 1982; Stearns and Forward, 1984a,b;

Cottier et al., 2006) involving a circadian clock (Davis, 2002; Oster et al., 2002; Schultz and Kay, 2003;
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Figure 1.2: Proposed circadian systems of the monarch butterfly Danaus plexippus - Two CRYs (CRY1
and CRY2) are involved in this system. CRY1 functions as blue-light photoreceptor like the
Drosophila-CRY, whereas CRY2, the vertebrate-like CRY, plays an important role as negative-
acting transcriptional regulator. CLK and CYC heterodimers regulate transcription of per, tim and
cry2 by binding to their E-box. TIM, PER and CRY2 form a complex in the cytoplasm. PER
is progressively phosphorylated and helps translocating CRY2 into the nucelus, where CRY2 in-
hibits CLK:CYC-mediated transcription. TIM degradation is caused by light exposure (lightning
bolt). Grey arrows indicate output functions for CRY1 and CRY2. C=cryptochrome, P (blue cir-
cle)=period, T=timeless, CLK=clock, CYC=cycle, black P=Phosphorylation. Graphic adapted from
Zhu et al. (2008).

Clark et al., 2013; Meuti and Denlinger, 2013). Several clock genes have already been shown to be

involved in diapause (Tauber et al., 2007; Ikeno et al., 2010). Besides two identified crustacean clock

gene sequences of clock (Yang et al., 2006) and cryptochrome 2 (Mazzotta et al., 2010), Christie

et al. (2013) could identify molecular components of a potential circadian clock in C. finmarchicus by

using the D. melanogaster circadian system as reference for mining clock transcripts. This finding of

potential clock genes in C. finmarchicus (Christie et al., 2013) as well as the persistence of DVM in

calanoid copepods (laboratory experiments) and zooplankton species (field studies) under constant

light conditions (Berge et al., 2009; Enright and Hamner, 1967) point to the existence of a potential

circadian clock in this calanoid copepod. Nevertheless, limited knowledge is available concerning the

molecular underpinnings of circadian and seasonal rhythms in pelagic calanoid copepods. Due to its

importance as key species in the northern ecosystem, detailed knowledge concerning the physiol-

ogy and biology of diapausing C. finmarchicus and the physical and biological factors controlling this

behaviour is vital in order to understand the consequences of climate change on this species as well

as on the entire food web.
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The aim of this study was to detect potential rhythmic gene expression patterns of core clock

genes (clock, cycle, period, timeless, cryptochrome 2, doubletime, vrille, cryptochrome 1) in the

calanoid copepod Calanus finmarchicus. We suggest that the circadian clock might not only play a

major role in DVM, but also entrains events of the seasonal cycle like diapause. Without the possibility

to manipulate the clock and observe the impact on diapause, we, thus, rely on sampling diapausing

copepods being in distinct phases and investigate variations within clock gene expression patterns

such as amplitude and shifts in phase and period. This was realized for C. finmarchicus at two

diapause phases (early and late diapause) for the first time in this study. Investigations of the per-

formance of the clock during diapause allows us to get an understanding of the potential role of the

circadian clock in diapause. As it is the major overwintering stage of C. finmarchicus CV copepodids

were used, which were caught during 24 h in situ sampling in Kongsfjorden, Svalbard, in September

2014 (early diapause) and January 2015 (late diapause). We expect different clock gene expression

patterns in C. finmarchicus being in early and late diapause. We assume that C. finmarchicus sam-

pled in September (light:dark cycle (LD) 10 h L:14 h D) show a rhythmic expression of clock genes

by sensing the diel light:dark cycle. Sampling in January took place during polar night. Thus, there is

no entrainment of the circadian clock by sunlight, raising the question if the clock is then still ticking

after a period of constant darkness lasting for almost seven months. We assume that rhythmic clock

gene expression patterns might not be observable in C. finmarchicus in the absence of an external

entrainment signal such as light during late diapause. Our findings indicate a diurnal clock in C. fin-

marchicus. This study might be the first evidence of a potential circadian clock in C. finmarchicus and

the first step into the potential importance of a clock in seasonal diapause.
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2 Material and methods

This study aimed to investigate the performance of the clock at distinct times during diapause to gain

knowledge concerning the role of the clock in seasonal diapause of C. finmarchicus. Thus, we rely on

sampling diapausing copepods being in distinct phases and investigate variations within clock gene

expression patterns such as amplitude and shifts in phase and period.

2.1 Study site characteristics

The glacial fjord Kongsfjorden (78.55°N, 11.3°E) is located in the Svalbard archipelago on the north-

west coast of Spitsbergen (Figure 2.1). Together with the adjacent Krossfjorden, it opens to the West

Spitsbergen Shelf (WSS) (Svendsen et al., 2002). The two-armed fjord system is mainly influenced

by the coastal East Spitsbergen Current (ESC) and West Spitsbergen Current (WSC), both flow-

ing north along the WSS (Figure 2.1). Cold, fresh Arctic Water (ArW) is carried with the ESC and

warm, saline Atlantic Water (AW) is transported by the WSC to the glacial fjord system (Saloranta

and Svendsen, 2001). This shifts seasonal hydrography to states of Arctic as well as Atlantic dom-

inance within an annual cycle (Cottier et al., 2005; Svendsen et al., 2002). During summer warm,

saline Atlantic-derived waters are intruding into Kongsfjorden leading to a shift from Arctic to Atlantic

Water dominated systems (Cottier et al., 2005). Limited or no sea ice formation occured in Kongsfjor-

den during the last decade caused by an increased influx of warm Atlantic waters (Svendsen et al.,

2002; Cottier et al., 2005). In the fjord system upper water masses are mainly influenced by the tide,

freshwater run-off as well as local wind forces affecting prevailing zooplankton community structure

(Svendsen et al., 2002; Willis et al., 2006).

The zooplankton community in Kongsfjorden is comprised of co-occuring boreal and Arctic

species and is mainly influenced by the advection of water masses (Willis et al., 2006). Calanus

finmarchicus has its activity centre in the North Atlantic Ocean (Conover, 1988) and is additionally

transported via the North Atlantic Current into subarctic and arctic seas. Thus, the high biomass of

C. finmarchicus in Kongsfjorden is mainly contributed to advection of water masses.
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However, overwintering of C. finmarchcius in these areas has also been reported, followed by repro-

duction in summer. Due to the balance between the Atlantic, Arctic and freshwater input, this fjord

system is supposed to be very sensitive to climate change (Cottier et al., 2005). Thus, it is a site of

great interest concerning investigations of anthropogenic climate change on the hydrophysical and

biological fjord-system (Cottier et al., 2005).

Figure 2.1: Svalbard archipelago - The Kongsfjorden–Krossfjorden system (white box) is located on the
northwest coast of Spitsbergen. The fjord-system is mainly influenced by the coastal East Spits-
bergen Current (ESC) carrying cold, fresh Artcic Water and the West Spitsbergen Current (WSC)
transporting warmer Atlantic Water (Willis et al., 2006). Red point indicates sampling station
(78.6°N, 11.6°E) in September 2014 and January 2015 during a research cruise with R/V Helmer
Hanssen. The map was created with the programme Ocean Data View (Schlitzer, 2012).
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2.2 Experimental organisms

For clock gene sequence analysis Calanus finmarchicus CV copepodids were used obtained from

24 hour in situ sampling at Kongsfjorden (78.6°N, 11.6°E), Svalbard on the 26th of September 2014

and the 13th of January 2015. Due to the sampling times, copepods were in their early and late

diapause, respectively (Figure 2.2). Copepods were collected by vertical plankton net hauls (mesh

size 200 µm) in depth intervals from around 345 m (∼10 m above the bottom) to 220 m depth dur-

ing the research cruise with R/V Helmer Hanssen (sampling conducted by Sören Häfker and Lukas

Hüppe). Light conditions at Kongsfjorden during sampling were as follows: light:dark cycles (LD) 10

h:14 h on the 26th of September 2014 and constant darkness (DD) on 13th of January 2015. Pho-

toperiod data were obtained from the following website http://pveducation.org/pvcdrom/properties-of-

sunlight/calculation-of-solar-insolation. Information can be gained about daily solar irradiance, the

solar insolation and the hours of sunrise and sunset.

Figure 2.2: Life cycle of Calanus finmarchicus in Kongsfjorden, Svalbard - CV copepodids are descend-
ing down to overwinter at deeper depths (diapause). After ascending back to surface waters during
March/April copepods feed on the annual phytoplankton bloom (green) followed by reproduction
(E = eggs, NI-NVI = naupliar stages, CI-CV = copepodid stages, A = adult copepods). Sampling
points of early (26th September 2014) and late (13th of January 2015) diapause are indicated by
black dashed arrows. LL = continuous light, LD = light:dark cycles, DD = continuous darkness.
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For copepods caught during late diapause in January, 7 samplings in 4 hour intervals (0h,

4h, 8h, 12h, 16h, 20h, 24h) could be conducted, whereas in September only 6 samplings (4h, 8h,

12h, 16h, 20h, 24h) were performed due to technical issues. For both September and January,

sampling started and ended at midnight (0h = 24h). Copepods were immediately transferred in a

cold and dark store. Copepods sampled in January 2015 were sorted directly after sampling on

board and were stored in RNALater ® (Ambion, USA). Copepod samples from September 2014 were

transferred directly into RNALater ® solution for postponed sorting in the home laboratory at the

Alfred-Wegener-Institute in Bremerhaven. Copepods were sorted by species and life cycle stage

(Kwasniewski et al., 2003) with a binocular (Leica MZ125) and cooling chambers for petridishes. For

each diel sampling point 5 replicates were obtained by pooling 15 CV copepodids for each replicate.

All sampled organisms were stored in Cryo vials (Fisher Scientfic) at -20°C in RNALater ® for further

analysis.

2.3 RNA extraction and quality control

Previous laboratory experiments concerning copepod RNA extraction (conducted by Sören Häfker)

were highly time consuming. Thus, at the beginning of this study further investigations needed to be

conducted to gain a reliable RNA extraction protocol. Furthermore, due to extremely low RNA quanti-

ties obtained with a single CV copepodid, RNA quality and quantity checks had to be performed with

distinct amounts of pooled CV copepodids. The disadvantage of pooling individuals is the inability to

identify individual gene expression patterns. Copepods caught during early diapause had generally

higher gene expression patterns compared to early diapausing copepods.

Copepod RNA was extracted using the RNeasy ® Mini Kit (Qiagen, Germany) with some im-

provements for the RNA isolation of Calanus. Per each diel time point 15 pooled C. finmarchicus

were transferred into 2 ml Precellys ® tubes containing 1.4 mm and 2.8 mm beads filled with 1000 µl

of Buffer RLT (10 µl ß-mercaptoethanol per 1 ml Buffer RLT). Copepods were immediately homoge-

nized with a Precellys ® 24 homogenizer (bertin Technologies, France) for 16 s and 6500 rpm at room

temperature (RT). Homogenated C. finmarchicus were rest for 60 min at RT. Precellys ® tubes were

centrifuged for 10 min at max. speed (20817 g) and RT. The supernatant was mixed with one sample

volume of 70% molecular biology grade ethanol (AppliChem, Germany) and 700 µl were transferred

to RNeasy spin column placed in a 2 ml collection tube.
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Figure 2.3: RNA quality control - Electropherogram (A) and gel-like image (B) of extracted RNA from 15
pooled C. finmarchicus produced by microfluidic electrophoresis in an Agilent 2100 Bioanalyzer
using a RNA 6000 Nano Kit System. Time of ribsosomal RNA peak appearance (size related) is
plotted against fluorescence of the peak (concentration related).

After centrifugation (30 s at 16000 g), flow-through was discarded and the remainig sample volume

was added on the RNeasy spin column and centrifuged again. A volume of 700 µl Buffer RW1 were

transferred into the spin column and samples were incubated for 2 min at RT. After inverting and

rolling the tubes to remove possible RLT residues, samples were centrifuged for 30 s at 16000 g and

flow through was discarded. Same procedure was conducted once, but instead of 700 µl Buffer RW1,

500 µl RPE was added into the spin column. An additional washing step with 500 µl Buffer RPE was

conducted with a centrifugation of 1 min at 16000 g. The spin columns were transferred into 2 ml

collection tubes and centrifuged for another 1.5 min at max. speed g to dry the membrane. After

placing the spin column in a new collection tube, 60 µl RNase free water were added directly onto

the column membrane and incubated at RT for 5 min. To elute the RNA, samples were centrifuged

for 1 min at 10000 g. This step was conducted once more, but instead of adding new water the flow

through was used for eluting RNA. Samples were stored on ice. The RNA concentration and purity

were determined using a Nanodrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington,

USA). The 260/280 ratios ranged from 2.12 - 2.16 indicating reliable RNA quality for all RNA samples.

Furthermore, the RNA quality was checked with the Agilent Bioanalyzer 2100 and the RNA 6000

Nano Kit (Agilent Technology) according to suppliers instruction (Figure 2.3).
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2.4 cDNA synthesis

Exactly 2 µg RNA were reversely transcribed to cDNA. Total reaction volume of 50 µl for one reaction

included 28.25 µl copepod RNA (end concentration: 2 µg; dilution with RNase free water) as well

as 21.75 µl Master mix (for one reaction: 10 µl 5 x Buffer, 1 µl dNTPs 10 mM, 0.5 RNase inhibitor

40 U/µl, 5µl RNase free water, 5 µl Pentadecamere 500 µM, 0.25 µl Reverse Transcriptase; Thermo

Fisher Scientific Molecular Biology). After mixing RNA was reversely transcribed to cDNA with the

T100TM Thermal Cycler (Biorad). Additionally, no template (NT) controls were run to observe possible

contamination of the cDNA reagents. The -RT (without Reverse Transcricptase) controls, which were

run for all samples, did include RNase free water instead of RNA to check for DNA contamination

within each RNA sample. Settings were as follows: 25°C at 10 min, 37°C at 50 min, 70°C at 15 min,

4°C at∞. To avoid decay cDNA was stored at -20°C.

2.5 Primer design

With the aid of the data from Christie et al. (2013) primers were designed to investigate the 8 po-

tential clock genes including clock (clk ), cycle (cyc), period1 (per1), timeless (tim), cryptochrome 2

(cry2), doubletime 2 (dbt2),vrille (vri) and cryptochrome 1 (cry1) Table 2.1). The usage of the online

software Primer3Plus Version 2.3.6 (http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) for obtained

clock gene sequences resulted in primers of∼20 bp for a query length of the targeted sequence of 70-

150 bp. Received primers were checked for the occurrence of hetero dimers, self dimers and possible

hairpin structures (Oligo Analyzer 3.1, http://eu.idtdna.com /analyzer/Applications/OligoAnalyzer/).

With the DINAMelt web server including the UNAfold software package (similar to mfold) the possi-

bility of folding and hybridization of two primers was analyzed as well as the melting profiles of the

nucleic acids (http://mfold.rna.albany.edu/?q =DINAMelt/Hybrid2). Primer specifity was ensured by

using BlastN and Primer-BLAST (http://www.ncbi.nlm. nih.gov/tools/ primer-blast/).

Six housekeeping genes (Table 2.1) were checked for stable gene expression. Ribsosomal pro-

tein L32 (rpl32) and elongation factor 1-α (ef1-α) have been identified as most reliable housekeep-

ers under different photoperiodic treatments (Fu et al., 2013). Beta-actin (actb), RNA polymerase

(rnap), 16S and 18S rRNA were chosen due to their common use as housekeepers in many species

(Teschke et al., 2007; Tarrant et al., 2008; De Pittà et al., 2013). Due to limited sequence availability in

the NCBI database for specific potential housekeeping genes of Calanus finmarchicus, primers were
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designed by using Local BlastN (version: ncbi-blast-2.2.30+). An own database was created with

the transcriptome of C. finmarchicus (Lenz et al., 2014). Targeted housekeeping gene sequences

of crustaceans within the NCBI database were used to identify the appropriate regions within the

Calanus-transcriptome. Output sequences were aligned with NCBI BlastN and similar sequences

were eliminated. Remaining alignments were checked with NCBI BlastX. The best sequence hit was

used for designing primers as described above. Besides ensuring primer specificity with Primer-

BLAST, specifity within the Calanus-transcriptome was additionally assured with local BlastN.

Table 2.1: Primer design - Primer sequences of target and housekeeping genes used for RT-qPCR

Target genes Primer sequence (5’-3’) Product (bp) Sequence source

clock (clk ) fwd ACTCGGATTGGCTTTGATGG 122 Christie et al. (2013)

rev TTCTCAGGTGCAACGTTTCC (comp76772 c1 seq1)

cycle (cyc) fwd CAGAGCAGGAAGGATAATGAGC 110 Christie et al. (2013)

rev TGTAAGCATTGGCACTCAGC (comp160482 c0 seq1)

period 1 (per1) fwd ACATTGTCACAAGCCCTTGG 143 Christie et al. (2013)

rev ACAGATGCTCCTTGTGATGC (comp171214 c0 seq1)

timeless (tim) fwd CCTAACCTGTTACCGTTGACC 121 Christie et al. (2013)

rev ATCGCTCACCAATGACTTCC (comp88114 c0 seq1)

cryptochrome 1 (cry1) fwd GGGTTTCAACTGGCTTTGG 86 Christie et al. (2013)

rev CCTCTCACTTACCAGAAGATGC (comp37700 c0 seq1)

cryptochrome 2 (cry2) fwd AGCAACCACCGAATATGACC 108 Christie et al. (2013)

rev AACTGACCTTGTGGCATTCC (comp181328 c0 seq1)

doubletime 2 (dbt2) fwd ATGTGTCAGATGCAGCAAGC 74 Christie et al. (2013)

rev TAGTTTGGCCAGCTTGTTGG (comp126103 c3 seq2)

vrille (vri) fwd TGCAGCCTCACAACATTACC 108 Christie et al. (2013)

rev AAACACGCAGGGATTTCACG (comp71844 c0 seq1)

Housekeeping genes Primer sequence (5’-3’) Product (bp) Sequence source

ribsosomal protein L32 fwd GTCCTGATCCACAACATCAAGG 95 Lenz et al. (2014)

(rpl32) rev CTGTTCTTTGCGGAGACTCC (comp30 c2 seq1)

rna polymerase (rnap) fwd TCAATGACGAGGTTCTCAGG 79 Lenz et al. (2014)

rev ATCAACTGTTGCCACTCTCG (comp19535 c1 seq1)

elongation factor 1-α fwd AGTTGCTGGCTTGTTCTTGG 142 Lenz et al. (2014)

(ef1-α) rev GGTTAAGTCCGTGGAGATGC (comp8 c1 seq1)

beta actin (actb) fwd GCATCATCTCCAGCGAAACC 91 Lenz et al. (2014)

rev CAAACCCAAAGATGTGTGACG (comp25 c4 seq1)

16S rRNA (16S) fwd CCGCGTTAGTGTTAAGGTAGC 143 Lenz et al. (2014)

rev CTTCTCGTCCTAGTACAACTGC (comp2 c0 seq1)

18S rRNA (18S) fwd AAGCTCGTAGTTGGATCTCG 131 Lenz et al. (2014)

rev AAGTAAACCTGCCAGCATCC (comp92 c0 seq1)
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2.6 qPCR methodology

Transcription levels of target genes were determined using quantitative Real-Time PCR (RT-qPCR)

with a SYBR-Green single gene assay. Therefore, cDNA was diluted 1:10 with RNase free water.

Each RT-qPCR reaction was performed in a total volume of 20 µl containing 8 µl properly diluted

cDNA of the sample, 10 µl of SYBR Green Master mix (FIRMA) and 2 µl of primer mix (forward and

reverse, 3000 nM respectively). The qPCR was run with the software Vii-A7 (Applied Biosystems).

Reaction conditions were as follows: 1 cycle of stage 1 with 50°C for 2 min and 95°C for 10 min,

40 cycles of stage 2 with 95°C for 15 s and 60°C for 1 min, ending with 1 cycle of 95°C for 15 s

and 60°C for 1 min. Threshold values for all qPCR runs were set to a value of 0.1 to guarantee

the comparability between data obtained from different genes and different runs. Blank controls with

no template (NT) or no reverse transcriptase (-RT) were performed for each run. The -RT controls

should indicate genomic DNA contamination of the RNA samples. These controls were lacking the

enzyme reverse transcriptase during the cDNA synthesis. In case of contamination occurring Ct

(cycle threshold) values would be similar to the Ct values of the samples. NT controls (RT-qPCR)

were performed by substituting the RNA for sterile RNase free water to elucidate contamination of

the used RT-qPCR Master mix. Further NT controls during the cDNA synthesis were conducted to

control for contamination of the used chemicals. The results from the NT controls should be negative

or have higher Ct values which might occur due to primer dimers, otherwise they are not reliable.

PCR amplifications were always run in technical duplicates, except the -RT controls for January

samples due to low sample volume caused by low RNA concentrations. The transcript levels of all

target genes were normalized to a BestKeeper consisting of the three best housekeeping genes by

using the 2−∆∆Ct method, a convenient algorithm to analyze relative changes in genes expressions,

calculated with Microsoft Excel 2007 software (Livak and Schmittgen, 2001).

Efficiencies of primers were generated with serial dilutions of C. finmarchicus cDNA (1:10, 1:20,

1:40, 1:80, 1:160, 1:320). Calculation of the efficiency of the PCR amplification was conducted with

standard curves provided within the software Vii-A7 (Applied Biosystems). Efficiency is calculated

using the slope of the regression line in the standard curve. A slope close to -3.32 indicates optimal,

100% PCR amplification efficiency.
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2.6.1 Genomic DNA contamination

In general, more than five cycles difference between the -RT (without reverse transcriptase) and

+RT (with reverse transcriptase) Ct values allow the assumption that no DNA contamination occured.

Comparing -RT and +RT Ct values for all target as well as housekeeping genes revealed a genomic

DNA contamination of our samples. This was indicated by a Ct difference between -RT and +RT of

generally less than five cycles. Normally, a subequent DNase treatment of extracted sample RNA is

a common procedure in molecular biology. Nevertheless, DNase digestion is known to affect RNA

quantity leading to an additional RNA loss. Furthermore, the working group of Bettina Meyer had

good experience with RNA extraction of larval and adult krill (Euphausia superba) without DNase

digestion leading to reliable RT-qPCR results. During the establishment of the RNA extraction proto-

col we decided against a DNase digestion due to general low RNA quantity, especially of copepods

caught in January 2015. Preliminary investigations of RNA extraction of Calanus finmarchicus had

been considered promising without DNase digestion. Results of RNA quality and quantity with the

Nanodrop and Bioanalyzer did not indicate a high genomic DNA contamination. Thus, we decided

to extract the RNA of all the samples using the RNeasy ® Mini Kit (Qiagen, Germany) with some

improvements for the RNA isolation of Calanus.

For further investigations concerning time series analysis of C. finmarchicus, RNA extraction

followed by a DNase digestion or the usage of the RNeasy ® Plus Mini Kit (Qiagen, Germany), which

already includes a gDNA Eliminator spin column for removing genomic DNA, should be considered

to avoid DNA contamination and to reveal high reliable results. Due to the fact that the genomic DNA

contamination occured in all samples, results are still reliable and can be interpreted.

2.7 Housekeeping gene validation

Normalizing the transcript levels of target genes to a stably expressed gene measured simultaneously

in the same biological material is a useful and established method to gain reliable gene expression

results. Such reference or housekeeping genes are used to correct inequalities in DNA concen-

trations which result from natural variations. Reference genes are supposed not to be influenced

by biological or experimental conditions (Boda et al., 2009). Different methods can be applied to

substantiate the suitability of these genes as endogenous controls. NormFinder (Andersen et al.,

2004) , BestKeeper (Pfaffl et al., 2004) , geNorm Vandesompele et al. (2002) and delta CT method
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(Livak and Schmittgen, 2001) are the most used tools for housekeeper validation. The web-based

tool RefFinder (http://www.leonxie.com/referencegene.php?type = reference) combines these four

straightforward software programs to compare and rank the tested candidate reference genes. Based

on the rankings from each program, RefFinder assigns an appropriate weight to an individual gene

and calculates the geometric mean of their weights for the overall final ranking. Anaylsis of our tested

potential housekeeping genes revealed 16S as the most stable one, followed by EF1-α and RNA

polymerase.

2.8 Statistics

After normalization of the RNA samples with a previously identified BestKeeper (RNA polymerase,

EF1-α, 16S) possible outliers were detected by using four outlier tests (Thompson Tau, z-score,

Nalimov and IQR). Data points have been removed, if three out of four methods indicated an outlier.

Expression levels of mRNA were calculated relative to the minimal expression level for each gene and

represent the mean ± SEM (n = 4-5) of used replicates per treatment (early and late diapause). Nor-

mal distribution of the data were tested with normal quantile-quantile plots and the Shapiro-Wilk-Test

for each gene and the two sampling times (early and late diapause) using the statistical software R

(Version 3.1.2, http://cran.r-project.org/bin/windows/base/). Where the criteria for normal distribution

and equal variances were met, significance between the two sampling times (early and late diapause)

was investigated with a two-sided t-test conducted with R. Furthermore, the software package RAIN

(= rhythmicity analysis incooperating non-parametric methods) for R/Bioconductor was applied to

detect possible rhythmic behaviour in our time series data (Thaben and Westermark, 2014). The

significance level for all analyses was set at p<0.05.
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3 Results

Gene expression levels of eight potential core clock genes (clock, cycle, period, timeless, cryp-

tochrome 2, doubletime, vrille, cryptochrome 1) were investigated of CV copepodids being in early

(September 2014, 10 h light:14 h dark) and late diapause (January 2015, constant darkness DD).

Copepods being in early diapause (LD) exhibited generally higher relative mRNA levels compared to

copepods in late diapause (Figure 3.1). During early diapause half of the investigated genes (cry1,

cyc, per1, vri) reached their maximum expression levels during the day or early night, whereas others

(cry2, clk, tim, dbt2) showed lowest expression levels during the day. For copepods in late diapause

a generalized pattern such as rising or falling levels linked to day/night phase was not observed. For

most clock genes a diel rhythmic oscillation with a period of 24 h could be detected for copepods in

early diapause (RAIN: p<0.05), while mRNA levels of copepods in late diapause showed no rhythmic

behaviour over 24 h (RAIN: p>0.05) except for two genes (tim, vri).

3.1 Clock gene expression patterns during early diapause

During early diapause expression patterns of the investigated genes could be divided in three pat-

terns: upregulation during light phase (cry1, cyc, per1, vri), downregulation during light phase (cry2

and clk ) and a quite stable expression over 24 h (tim, dbt2). A diel rhythmicity for cry1 during early

diapause with a period of 24 h could be detected (RAIN: p<0.01) (Figure 3.1). Cry1 seemed to be

upregulated at the beginning of the light phase (8 h), having its highest expression levels at 20 h, fol-

Figure 3.1 (following page): Clock gene expression patterns - Eight potential clock genes cry1, cry2, per1,
tim, dbt2, vri, clk, cyc of C. finmarchicus being in early (September 2014) and
late (January 2015) diapause were analyzed. After normalization to a Best-
Keeper (consisting of RNA polymerase, EF1-α, 16S), data were expressed as
relative mRNA levels. Each point represents the mean ± SEM (n=4-5). Bars
beneath the graph indicate the photoperiod during sampling. Light conditions
were as follows: LD 10 h:14 h in September and constant darkness in January
(black/grey bars = darkness, white bars = light). Rhythmic oscillation with a pe-
riod of 24 h was detected with RAIN (Thaben and Westermark, 2014) and is
indicated by clocks and stars. Significant differences between each diel time
point of early and late diapause were calculated with with a two-sided t-test (in-
dicated by stars). Significance levels were as follows: ’***’ 0.001, ’**’ 0.01, ’*’
0.05.
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lowed by a steep decrease until 24 h. An earlier increase in gene expressions starting at 0 h until 20

h was observed for cyc, vri and per1, whereas cyc and vri showed a drop in expression levels at 12

h and 16 h, respectively. Except for per1, a diel rhythmic oscillation with period of 24 h for cyc and vri

could be detected (RAIN: p<0.001). Overall, cyc and vri had the highest expression levels reaching

relative mRNA levels over 4. Clk and cry2 showed a similar gene expression pattern characterized

by a downregulation during light phase. For both genes, a rhythmic behaviour oscillating with a period

of 24 h was detected by RAIN (cry2 p<0.05, clk p<0.001), whereas clk had higher expression levels

(range from 1 to 2.468) compared to cry2. Except for a higher relative abundance at 0 h, tim was

constitutively expressed with low levels.

3.2 Clock gene expression patterns during late diapause

A division into defined expression patterns like for early diapause was not possible for late diapause

mRNA levels. Most genes lacked a rhythmic oscillation with a period of 24 h during late diapause

(RAIN: p>0.05), except for tim and vri (Figure 3.1). Vri mRNA levels almost stayed constant within

the 24 h period (range from 1 to 1.4), whereas tim mRNA levels showed no clear pattern over time.

Cyc, clk and dbt2 all showed similar expression patterns reaching lowest mRNA levels at 12 h during

light phase. Per 1, on the other hand, reached its lowest mRNA level at 20 h. Except for a peak at

16 h, cry1 showed a decline over the 24 h period. Relative mRNA levels of cry2 alternate between

rising and falling parts every 4 h.

3.3 Early diapause vs. late diapause

A comparison of each diel time point between early and late diapause (two-sided t-test) was used to

distinguish significant differences ranging from zero (cry2) up to six (vri) diel time points differences.

Early and late diapausing relative mRNA levels are within the same range for cry1, cry2 and tim

by comparing both sampling times. For all other clock genes (cyc, clk, per1, dbt2, vri) expression

levels were generally higher during early diapause over the investigated 24 h period. No significant

difference between early and late diapause could be detected for cry2 (two-sided t-test: p<0.05).

Cry2 mRNA levels of early and late diapause were within the same range and besides a higher

expression at 12 h, gene expression patterns were quite similar (Figure 3.1). Only one significant

difference between early and late diapause could be detected for the genes cry1 (p<0.01 for 20 h),
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per1 (p<0.05 for 20 h), tim (p<0.05 for 20 h) and dbt2 (p<0.01 for 4 h). Dbt2 mRNA levels showed a

similar pattern in early as well as late diapause reaching a minimum at 12 h. For cyc and clk four diel

time points were significantly different between early and late diapause. Significant differences for

clk between early and late diapause could be detected for time points 4 h, 16 h, 20 h and 24 h (two-

sided t-test; p<0.05, p<0.05, p<0.001, p<0.01, respectively). For cyc significant differences could be

observed for 8 h (p<0.05), 12 h (p<0.01), 16 h (p<0.01) as well as 24 h (p<0.05) by comparing early

and late diapause. Comparison between early and late diapause expression patterns of vri revealed

a significant difference for all time points (two-sided t-test; 4 h-16 h and 24 h: p<0.01, 20 h: p<0.001).
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4 Discussion

A previous study of Christie et al. (2013) already revealed the existence of several clock genes in

the calanoid copepod Calanus finmarchicus. The present study aimed to investigate eight potential

circadian clock gene expression patterns (clock, cycle, period, timeless, cryptochrome 2, double-

time, vrille, cryptochrome 1) in CV copepodids of C. finmarchcius. Most clock genes showed a diel

rhythmic oscillation during early diapause (LD), whereas in late diapause (DD) a significant rhythmic

oscillation was not detectable for most of the investigated genes. Comparison of early and late dia-

pause revealed significant differences between expression levels. Overall, copepods caught in early

diapause had higher relative mRNA levels compared to copepods sampled in January. Investigations

of clock gene expression patterns in copepods being in distinct diapause phases allows us to get an

understanding of the potential role of the circadian clock in regulating seasonal diapause. This study

provides first observations of the performance of the clock in diapausing C. finmarchicus at two times

of this seasonal event, early (September) and late diapause (January).

One key component of this study was to sample diapausing copepods. Timing of C. finmarchi-

cus entering and terminating diapause as well as the duration of overwintering varies among locations

(Hind et al., 2000). Relatively little information is available concerning seasonal changes of zooplank-

ton communities and their timing of life cycle strategies in high Arctic fjords like Kongsfjorden in Spits-

bergen. In the Gulf of Maine C. finmarchicus CVs emerge in late December (Durbin et al., 1997),

whereas in the Scotian shelf they return to surface waters in February (McLaren et al., 2001). The

latest documented emerging period, March-April, is documented from copepods inhabiting the St.

Lawrences Estuary (Plourde et al., 2001). At the Norwegian coast, CV copepodids overwinter from

July to February and emerge to surface waters in February-March (Marshall and Orr, 1955; Tande,

1982; Falkenhaug et al., 1997). In Kongsfjorden CV copepodids have been reported as the most dom-

inant stage in 65 m depths at the end of August, followed by extremely low surface abundances at the

beginning of September (Willis et al., 2006) indicating that the majority of CV copepodids migrated

down to deeper waters to overwinter. During diapause, C. finmarchicus reduces its metabolism and

suppresses development and reproduction (Hirche, 1996a). Biochemical measurements would valid

the diapausing state of Calanus finmarchicus. Activities of metabolic enzymes like citrate synthase
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and malate dehydrogenase are known to serve as indicators for overall metabolic activity due to their

role as key enzymes within the citric acid cycle (Meyer et al., 2002; Cullen et al., 2003; Donnelly

et al., 2004). Due to time limitations within this study, such measurements could not be conducted,

but respective samples were taken and await analysis. Abundance data collected during September

revealed that C. finmarchicus CV copepodids were still present in the water column between 0-200

m (Häfker pers. comm.). However, the highest proportion of Calanus finmarchicus CVs was located

deeper in the water column in depth of 200-320 m. Thus, we suggest that collected CV copepodids

have been in diapause during September 2014 and January 2015, forming the basis of our research.

4.1 A functional clock in Calanus finmarchicus

Christie et al. (2013) could identify molecular components of a circadian clock in C. finmarchicus

by using the fruit fly Drosophila melanogaster circadian system as reference for mining clock tran-

scripts. Nevertheless, reverse blasting of the Calanus sequences revealed a closer correlation to

non-Drosophila-isoforms rather than to Drosophila itself (Christie et al., 2013). Together with the

existence of both cryptochromes, cry1 and cry2, the potential circadian copepod clock might be an

ancestral one as found in the monarch butterfly Danaus plexippus (Zhu et al., 2008). Such a clock-

work mechanism with two distinct expressed functional cry genes has not been fully described yet

(Zhu et al., 2008). Furthermore, instead of generally one per gene involved in the circadian clock

system of insects (e.g. D. melanogaster, D. plexippus), Christie et al. (2013) could identify three per

genes (per1, per2, per3) in C. finmarchiucs as found in mice (Tei et al., 1997; Takumi et al., 1998).

All three mice per genes are the molecular relative of insect per (Tei et al., 1997). Due to their po-

tentially similar role within the clock and time limitations within this study, we only investigated per1.

Knowledge about circadian clocks in crustaceans with respect to distribution, oscillatory activity and

chronobiological functions is scarce (Strauss and Dircksen, 2010) and information about the func-

tioning of circadian clocks in polar marine crustaceans is missing. Thus, for further discussion of the

potential role of each investigated clock gene, we compare our clock gene expression patterns for C.

finmarchicus with one of the best studied clocks of D. melanogaster and known clock mechanisms

of D. plexippus due to its closer correlation.

Drosophila CRY, analogue to CRY1 in Calanus finmarchicus, is activated during light exposure

and binds to TIM promoting its rapid degradation through a proteasome dependent pathway (Ceriani
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et al., 1999; Naidoo et al., 1999) to reset the clock to its 24 h cycle. Per and tim expression are

both controlled by CLK:CYC heterodimers. Thus, in many insects tim and per transcriptional rhythms

are robust and cycle almost in synchrony with rising mRNA levels during early night (Sehgal et al.,

1995). In C. finmarchicus both genes showed distinct gene expression patterns.Tim was constantly

expressed on a low level during the investigated 24 h period, whereas per1 increased at the end of

the night over the day reaching its peak at the beginning of the following night. If we expect that TIM

has a similar function as in the monarch butterfly and Drosophila, TIM proteins could accumulate

at the beginning of the night, when TIM degradation by light is not possible. For Drosophila it has

been shown, that the circadian loop will continue to cycle as long as there is a delay generated by

PER/TIM association and a suppression of PER accumulation in the absence of TIM (Dunlap, 1999).

However, a rhythmic oscillation of per1 and tim (early diapause) could not be detected with RAIN

in this study, but other investigated genes still showed a rhythmic oscillation with a period of 24 h.

Thus, TIM could also be modified by post-transcriptional mechanisms. Shaggy, for example, plays an

important role within the clock. It is responsible for the timing of the nuclear transfer of the PER/TIM

complex accomplished by promoting phosphorylation of TIM (Young and Kay, 2001) and should be

considered as potential post transcriptional modification of TIM to ensure a delay in the feedback

loop. In Drosophila DBT, analogue of DBT2 in C. finmarchicus, physically associates with PER and

PER/TIM complexes. Furthermore, it promotes phosphorylation and degradation of single PER in the

cytoplasm and nucleus leading to a delay within the feedback loop (Kloss et al., 1998). Drosophila

dbt is constitutively expressed like dbt2 in C. finmarchicus in our study.

In Drosophila, PER acts as the main negative regulator of the clock function by associating

with TIM for translocation into the nucleus (Konopka and Benzer, 1971). However, in insects ex-

pressing cry2, PER’s function seems to have been replaced by CRY2 (Sandrelli et al., 2008). Thus,

cry2 should have the same expression patterns as tim as well as per as it still associates with both

proteins TIM and CRY2 (Zhu et al., 2008). Nevertheless, in our study cry2 showed a daily rhythmic

expression pattern with lowest expression levels during the day, whereas tim levels were constitutively

expressed. Within the endogenous circadian timing system in the Antarctic krill Euphausia superba,

cry2 expression patterns were highly rhythmic in a light:dark cycle (LD 16:8) with an upregulation

until the middle of the day (Teschke et al., 2011). Furthermore, expression levels of mRNA were 2-3

folds higher in E. superba compared to our findings.
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Vrille is an essential component for embryonic development oscillating with a circadian rhythm

as per and tim regulated by the transcription factors CLK and CYC (Blau and Young, 1999). Cycling

vri is required for a functional Drosophila clock (Cyran et al., 2003). Accumulation of per and tim

mRNA was repressed by a high constitutive expression of vri, what could explain the absence of

cycling per1 and tim in our study. Clk RNA levels cycle with a PER/TIM dependent manner, but with

a different phase as compared to per and tim mRNA oscillations (Bae et al., 1998). However, in our

study with a downregulation during the day clk showed a completely different pattern by comparing

the oscillation with per and tim mRNA levels. PER and TIM proteins dimerize and enter the nucleus,

where PER inhibits CLK/CYC activity to complete the negative feedback loop. In Drosophila cyc is

constitutively expressed, whereas in several other insects cyc mRNA levels vary (Meireles-Filho and

Kyriacou, 2013) as found in Calanus finmarchicus cyc mRNA levels.

Despite distinct clock gene expression patterns to other arthropod species, diurnal clock gene

expression patterns in early diapause point to the existence of a functional clock in the calanoid

copepod Calanus finmarchicus. By comparing clock gene expression patterns of C. finmarchicus

with other arthropod expression patterns (D. melanogaster, D. plexippus, E. superba), detected dif-

ferences might indicate distinct roles of clock genes within the potential circadian clock in C. finmarch-

cius, if we assume that copepods might still have detected photoperiod in sampling depths of ∼300

m. On the other hand, if we exclude the possibility of entrainment by photoperiod at these depths,

these differences might also have occurred due to the fact, that sampled C. finmarchicus were already

in diapause in September.

Photoperiod is generally regarded as the most reliable entrainment cue controlling the move-

ment of migrators during DVM and seasonal diapause (Marcus, 1985; Kuhlman et al., 2007; Bartok

et al., 2013). We assumed that C. finmarchicus sampled in September (light:dark cycle (LD) 10 h

L:14 h D) might show a rhythmic expression of clock genes entrained by the light:dark cycle. It seems

that C. finmarchicus sampled in September (LD) might be synchronized to prevailing light:dark cy-

cles in Kongsfjorden as indicated by rhythmic oscillations of at least several investigated clock genes.

However, also a sensor attached to a CTD (conductivity-temperature-depth instrument) could not de-

tect any light in sampling depths of ∼300 m, whereby one should keep in mind that the light detecting

sensor was not the most sensitive one. There is no literature available concerning light regime pat-

terns in the water column down to 300 m in the high Arctic Kongsfjorden during autumn. However,

it is known that sunlight intensity decreases exponentially with depth. Within the twilight or disphotic
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zone (200-1000 m) light is not sufficient for photosynthetic processes, but faint sunlight is still de-

tectable. Light availability of individuals depends on the spectral sensitivity of an organisms as visual

systems are not sensitive to all wavelengths equally (Cohen and Forward, 2002). Only a few studies

have investigated the phototactic response of copepods related to the rate of change and absolute

intensity threshold as well as spectral sensitivity (Stearns and Forward, 1984b; Cohen and Forward,

2002; Cohen and Forward Jr, 2005). Buskey and Swift (1985) investigated the spectral sensitivity of

C. finmarchicus by simulating bioluminescent flashes of different wavelengths and found the greatest

responses with blue-green wavebands, matching ambient twilight at the time of migration. Further

literature concerning the spectral sensitivity of C. finmarchicus in particular is not available. However,

a recent study revealed the lowest irradiance (10-8 - 10-6 µmol photons m-2 s-1) eliciting a significant

phototactic response in Calanus spp. (Båtnes et al., 2013). In deep-sea plankton DVM was performed

precisely to prevailing local sunrise and sunset between 500 and 650 m (van Haren and Compton,

2013). Together with the knowledge that zooplankton can sense even the smallest light quantities

(Stearns and Forward, 1984b), photoperiodic entrainment of C. finmarchicus clock in these depths

might still be possible. When we exclude the possibility of photoperiodic entrainment in samplings

depths of ∼300 m, observed clock gene expression patterns might already indicate the existence of

a circadian clock. Calanus finmarchicus conducts DVM within a day, down to depths ranging from

200-1000 m depending on the location. Thus, descending down to deeper waters to overwinter at

300 m could be performed within one day. We do not know, how long animals have been at these

depths before sampling. Several studies revealed that clock gene expression patterns continued to

oscillate in constant darkness for a few days with a lower amplitude (Emery et al., 1998; Blau and

Young, 1999; Young and Kay, 2001; Teschke et al., 2007). These studies rely on several days in LD

cycles followed by several days in DD. In our study one indication for an already free-running period

could be detected rhythmic mRNA levels of the clock gene cry1. During light exposure CRY1 is ac-

tivated leading to degradation of TIM and setting the clock to its 24 h cycle. Thus, expression levels

of cry1 are shown to have a close correlation to light exposure with increased mRNA levels during

the day followed by a decline during dark phase (Emery et al., 1998; Zhu et al., 2008). In our study

a slightly shifted pattern was observed for cry1, where mRNA levels increased during the day until

beginning of the night. The increase until the dark phase could be explained by a delayed response

due to the possible absence of photoperiod as entrainment cue at sampling depths.
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4.2 Clock gene expression levels in late diapause

Inhabiting polar regions is accompanied with a strong variability in annual day length (Hut et al.,

2013). Knowledge about the adaptions used by polar organisms to entrain their circadian clocks to

prevailing extreme light conditions is scarce. Investigations of the circadian clock in the Arctic reindeer

Rangifer tarandus indicate an absent or a reduced circadian rhythmic oscillation under constant light

conditions. A circadian rhythmic of locomotory activity occurred only under pronounced LD cycles

(autumn/spring) (van Oort et al., 2005; Lu et al., 2010). Some other Arctic species such as birds,

squirrels and porcupines maintained their circadian activity cycles indicating an intact circadian clock

during constant light conditions (Folk et al., 2006; Silverin et al., 2009). Thus, due to a possible

wide plasticity of the circadian clock, polar organisms are able to cope with prolonged periods in the

absence of a strong Zeitgeber. They can either display arrhythmicity or switch to alternative time

cues such as spectral composition (Pohl, 1999; Lu et al., 2010; Wallace et al., 2010).

We assumed that rhythmic clock gene expression patterns might not be observable in Calanus

finmarchicus in the absence of an external entrainment signal such as photoperiod during late dia-

pause. In our study no significant rhythmic oscillation could be detected for most of the investigated

clock genes in Calanus finmarchicus except for tim and vri. For vri the difference in gene expres-

sion relative levels range from 1-1.4 with extremely low standard errors, assuming that RAIN thus

might have detected a rhythmic oscillation. Furthermore, for each diel time point 15 CV copepodids

were pooled for analysis. It is known that there are differences of circadian clock expression pat-

terns among species as well as among individuals of one population. Thus, pooling of organisms

might also have influenced mRNA results of tim and vri. Furthermore, behavioural rhythmicity is

controlled by a master clock located in the central brain and besides the coordination of rhythms in

peripheral tissues by a master clock, autonomous clocks within peripheral tissues could be detected

in some organisms (Hege et al., 1997; Plautz et al., 1997). Although similar rhythmic oscillations of

central clocks and peripheral clocks could be observed (Hege et al., 1997), peripheral clocks play an

important role sometimes independently of brain clocks (Allada and Chung, 2010).

By comparing gene expression patterns of early and late diapause in our study, genes lost

or damped their diurnal gene expression patterns observed in September. Gene expressions were

for almost all genes lower compared to early diapause. Several studies revealed that clock gene

expression patterns (cry1, cry2, tim, vri) continued to oscillate in constant darkness for a few days with

a lower amplitude (Emery et al., 1998; Blau and Young, 1999; Young and Kay, 2001; Teschke et al.,
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2007). These studies rely on organisms held for several days in LD cycles followed by several days in

DD, whereas copepods caught in January have lived for several months in constant darkness. After

a defined time span under constant light conditions, rhythmicity of circadian clock gene expressions

were damped in other studies (Aréchiga, 1993).

Figure 4.1: Irradiance levels during polar night - Irradiance from moon, night, sky and aurora borealis with
depth, the shaded areas representing and approximate range of irradiance from each source. The
vertical dotted line (0.05 x 10 -6 µmol photons m-2 s-1) represents the lowest irradiance value for
photoperiodic response in Calanus spp. (Båtnes et al., 2013).

Sampling in January took place during polar night, excluding a possible entrainment by pro-

nounced light:dark cycles. On the other hand, it is known, that zooplankton can perceive even the

smallest light quantities (Stearns and Forward, 1984b; Båtnes et al., 2013) and might not only be

entrained by solar illumination, but also by lunar illumination during polar night with intensities far

below the threshold not detectable for human eyes (Berge et al., 2009; Cohen and Forward Jr, 2005).

Båtnes et al. (2013) investigated the spectral sensitivity of field-collected Calanus spp. sampled dur-

ing polar night. Irradiance (E) of moon, night sky and aurora borealis were linked to depth and the

lowest irradiance value for photoperiodic response in Calanus spp., which corresponds to 0.0005-0.5

% of the polar night surface irradiance (Figure 4.1). Modelling results revealed a response of Calanus
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spp. down to 70-80 m depth to clear night sky E, 120-170 m to moonlight and 80-120 m to aurora

borealis (Båtnes et al., 2013). Furthermore, a recent study reported the ambient light regime in the

high Arctic during polar night (Cohen et al., 2015). Several Arctic zooplankton species were able to

detect and use ambient light down to 20-30 m depth during polar night. However, our copepods were

sampled in 220-345 m depths and due to the absence or damped diurnal gene expression patterns

we, thus, exclude a possible entrainment by photoperiod during late diapause.

4.3 Time to (dia)pause - how to tell time

Investigations of diapausing C. finmarchicus under laboratory conditions is accompanied with diffi-

culties, including realization of overwintering depth of 300 m. We cannot substantiate a functional

causality of the circadian clock in regulation of diapause in this study without the possibility to manip-

ulate the clock and observe the impact on diapause. We rely on sampling diapausing copepods being

in distinct phases and investigate variations within clock gene expression patterns such as amplitude

and shifts in phase and period. No external factor or combination of factors could yet be identified

as directly responsible for the initiation or termination of diapause in calanoid copepods (Miller et al.,

1991; Johnson et al., 2008; Ji, 2011). Some of the most convincing evidence that the circadian clock

is involved in diapause initiation includes recent molecular studies on the clock genes themselves. In

D. melanogaster mutant strains of per, tim and clk led to a disruption of a diapause imitating narcosis

like state (Pegoraro et al., 2014). Ikeno et al. (2010) used RNA interference (RNAi) to knock-out core

circadian clock genes in the bean bug Riptortus pedestris and assessed whether the bugs are able to

enter diapause. The RNAi technique uses RNA molecules to inhibit gene expression by destruction

of specific mRNA molecules. (Ikeno et al., 2010) suggest that the circadian clock as a functional

unit, rather than individual genes regulates diapause initiation in R. pedestris. Cycle and per function

as opposing regulators and have been shown to play an important role in diapause of R. pedestris

(Ikeno et al., 2010). Inhibition of either cycle or period expression affected ovarian diapause. While

cyc RNAi suppressed ovarian diapause even under long-day conditions, per RNAi led to an induc-

tion of ovarian development under short-day conditions (Ikeno et al., 2010). However, in Drosophila

no association of cyc with diapause occurred, whereas tim and cry seemed to have significant, but

independent effects on diapause (Yamada and Yamamoto, 2011). Yamada and Yamamoto (2011)

even suggested that the occurrence of diapause might not be based on the circadian clock function
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as a unit, but independently relies on individual clock genes. For example, Tauber et al. (2007) as-

sumed that adaptation to seasonal conditions is enhanced by a natural mutant allele in Drosophila

melanogaster. They discovered that natural and artifical alleles of the timeless gene affected the

incidence of diapause in response to changes in light and temperature (Tauber et al., 2007). Besides

different assumptions of the involvement of the whole clock as a unit or just several clock genes in

diapause, it seems also to depend on the species, which clock genes might influence diapause. With

our findings we can see, that during early diapause most clock genes still showed a rhythmic oscil-

lation. However, for tim, per and dbt2 a rhythmic oscillation was not detectable, what could indicate,

that those three genes might influence the initiation of diapause. Further studies should include clock

gene expression patterns of active Calanus finmarchicus, right before entering diapause (August)

as well as in the middle of the midnight sun (e.g. June), to have the possibility to compare gene

expression patterns of diapausing copepods with active copepods.

The circadian clock is tracking daily changes of light and other environmental factors and has

been studied well at the molecular level, at least for several organisms including insects, mice, hu-

mans and plants (Aschoff, 1965; Allada and Chung, 2010; Foster and Helfrich-Förster, 2001). The

circadian system plays an important role in photoperiodic measurements in almost all species studied

to date (Kuhlman et al., 2007). When we assume that photoperiod might act as a entrainment cue

for the circadian clock due to its reliability, Calanus finmarchicus must discriminate between long and

short days. In most cases short days (long nights) result in a high occurrence, whereas long days

(short nights) elicit a low occurrence of diapause (Tagaya et al., 2010). During sampling in Septem-

ber, the night was already 4 hours longer than the day (10 h L: 14 h D). Thus, C. finmarchicus might

already have reached its critical photoperiod (CPP) in August at Kongsfjorden. The CPP of an or-

ganism is defined as the point at which the incidence of diapause is 50 % of its maximal level (Meuti

and Denlinger, 2013). The CPP increases with latitude enabling populations at higher latitudes to

adjust to the earlier onset of winter by entering diapause at an earlier date (Bradshaw and Holzapfel,

1975; Jordan and Bradshaw, 1978). Thus, the short days with 10 h and/or the long night with 14 h

could have triggered the initiation of diapause in C. finmarchicus. There are controversial hypothesis

concerning how animals might respond to changes in photoperiod concerning seasonal events.

In 1936 Bünning first proposed the idea, that the circadian clock regulating daily activities is

also involved in a seasonal photoperiodic timing measurement system by measuring the length of

day and night initiating photoperiodic responses such as diapause (Bünning, 1936). Bünning’s hy-
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pothesis, later named external coincidence model, states, that the relative size of the light and dark-

requiring phases encodes the critical photoperiod that induces the seasonal response. This model

suggests the existence of an endogenous rhythms of 24 h, which is composed of two 12 h cycles,

the subjective day (photophil, photosensitive) and the subjective night (scotophil, photoinsensitive).

In this model light has a dual effect. It entrains the endogenous circadian rhythm of subjective day

and subjective night and it stimulates photoperiodic responses if it coincides with the photosensitive

phase (subjective night). With longer days in spring light starts penetrating into the scotophil (pho-

tosensitive) phase triggering a physiological or behavioural response. Due to a longer shift of light

into the scotophil phase during summer, animals recognize these days as long days and enter a non-

diapause phenotype. Short day effects like diapause are seen in autumn, when light is restricted to

the photophil phase (Saunders, 1978; Goto and Numata, 2009; Tagaya et al., 2010). Since Bünnings

hypothesis, this assumption has been verified for various organisms (Pittendrigh, 1981; Saunders

et al., 2004). The internal coincidence model, first described by Pittendrigh and Minis (1964), sug-

gests two oscillators being entrained by dawn and dusk and does not require the dual role of light as

described in the external coincidence model. The critical photoperiod is encoded by unique phase

relationships between two internal oscillators. Light is only necessary for the synchronization of the

circadian system. Changing photoperiods will alter the internal phase relationship of the two oscilla-

tors resulting in states of permission and inhibition of multiple circadian rhythms.

Excluding the involvement of a circadian clock in photoperiodic measurement, the hourglass

model, the non-circadian timer, relies on the total number of hours of light per day (Lee, 1950).

The hourglass model assumes the gradual accumulation of a physiological agent in the organism

during one part of the light:dark cycle, whereas during the other part the agent is degraded. A

threshold is reached, if the light or dark phase had been long enough to lead to an accumulation of

this physiological reagent without a previous degradation. Thus, after reaching a certain amount of

this agent a physiological response is triggered (Lee, 1950). With our findings, we cannot tell which

model might be applicable for the initiation/termination of diapause in Calanus finmarchicus.

Copepods in late diapause (DD) showed a weak till no oscillation of most clock genes. The

absence of rhythmic oscillations during late diapause also point to the fact, that the clock was not

entrained by other environmental cues. In Kongsfjorden, C. finmarchicus is terminating diapause

probably at the beginning of March. During this time a pronounced light:dark cycle already exists

again. The polar night begins mid of October, lasts for 129 days and ends mid February. The
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question remains, if clock genes start to show a rhythmic oscillation with recurring photoperiod or if

other external factors trigger the termination of diapause.

Nevertheless, there is also evidence that in the absence of photoperiod animals can display

arrhythmicity or switch to alternative time cues (Lu et al., 2010; Wallace et al., 2010). Sampling

in January was conducted during polar night. Thus, photoperiod as entrainment cue during this

time was not possible. Temperature and food availability have been proposed as cues for seasonal

entrainment triggering diapause (Hirche and Kwasniewski, 1997; Niehoff and Hirche, 2005; Cavallari

et al., 2011; Ji, 2011; Clark et al., 2012; Pierson et al., 2013). The descent of Calanus glacialis

females in Norway to lower depths and the arrest of their reproductive activity where apparently

related to a temperature increase in the surface layer, similar to earlier observations in the White Sea

(Niehoff and Hirche, 2005). However, many circadian clocks are temperature compensated meaning

that the period of oscillations is remarkably stable over a wide temperature compensation, whereas

changes in the apparent phase can occur (Aréchiga, 1993; Pittendrigh, 1954; Bartok et al., 2013).

Furthermore, different entrainment pathways of the circadian clock such as pressure in Carcinus

maenas (Taylor and Naylor, 1977) or food in Procambarus clarkii for locomotory activity (Page and

Larimer, 1972) were found. Hind et al. (2000) proposed that diapause might me cued directly by

a decrease in food supply rather than photoperiod. Thus, it seems to depend also on the species,

which environmental cue might be applicable for entrainment of the circadian clock.

A further assumption is the involvement of lipids, which could play a major role in initiating and

terminating diapause. This so called lipid accumulation window hypothesis point to a lipid-modulated

endogenous timer controlling dormancy duration (Johnson et al., 2008). Individuals can only enter

dormancy if their lipid storage reached a defined accumulation threshold to endure overwintering,

moulting and gonad maturation. Individuals that did not reach this threshold would remain at the

surface. The length of dormancy might be controlled by the quantity of lipid reserve built up before

entering dormancy. After depletion of lipid reserves to a certain level copepods might become active

ascending back to surface waters (Irigoien, 2004; Hassett, 2006; Johnson et al., 2008). Prior to

entering diapause, C. finmarchicus accumulates large amounts of lipids. However, not all individuals

of C. finmarchicus CV copepodids enter a diapause state. This could be an indication for the lipid

accumulation windows hypothesis. After migrating to surface waters in late winter, low lipid levels

of C. finmarchicus indicate that feeding on the spring bloom is required prior to development and
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reproduction (Willis et al., 2006), whereas some adult females might start reproducing prior to the

bloom (Niehoff et al., 1999).

Overall, successful reproduction of C. finmarchicus strongly depends on the timing of the an-

nual spring bloom, whose time of occurrence can be strongly affected by seasonal ice coverage and

water temperatures (Sakshaug and Slagstad, 1991; Niehoff et al., 2000; Søreide et al., 2010; Hodal

et al., 2012; Weydmann et al., 2013). Climate-mediated changes in ice dynamics and stratification of

nutrient-rich water masses lead to short and intense Arctic phytoplankton blooms and impose tem-

poral asynchronies between energy requirements and food availability for organisms inhabiting polar

regions (Falk-Petersen et al., 2007). Thus, temporal shifts of occurring phytoplankton blooms can

lead to timing mismatches between herbiviorous copepods, including C. finmarchicus and primary

producers having also a negative impact on higher trophic levels (Søreide et al., 2010; Leu et al.,

2011; Ji et al., 2013). It is from great importance to understand the exogenous and endogenous

mechanisms controlling diapause to predict future scenarios caused by climate change.
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4.4 Conclusion

Little is known about the molecular underpinnings of circadian and seasonal rhythms in pelagic

calanoid copepods and generally in marine crustaceans (Miller et al., 1991; Johnson et al., 2008;

Marcus and Scheef, 2010; Ji, 2011). The cue triggering diapause is still under discussion (Johnson

et al., 2008; Clark et al., 2012, 2013). Due to its importance as key species in the northern ecosys-

tem, physical and biological factors triggering and controlling the initiation/termination of diapause in

Calanus finmarchicus needs to be investigated to understand the consequences of climate change

on this species as well as on the entire arctic food web. We assume that a circadian clock might

be involved in seasonal diapause. A closer correlation to non-Drosophila-isoforms (Christie et al.,

2013) and the existence of both cryptochromes, cry1 and cry2 as in the monarch butterfly D. plexip-

pus (Zhu et al., 2008) point to an ancestral circadian clock in the calanoid copepod C. finmarchicus.

To gain knowledge about the potential involvement of a circadian clock, we need to investigate the

performance of the clock at distinct diapause phases. This study provides the first investigations of

clock gene expression patterns of diapausing C. finmarchicus at two distinct diapause phases, early

(September) and late (January) diapause. The detection of rhythmic oscillations with a period of 24

h in C. finmarchicus being in early diapause (10 h:14 h LD) point towards the existence of a diurnal

or even circadian clock in C. finmarchicus. Copepods sampled during late diapause showed no or at

least a weak rhythmic oscillation of clock genes, indicating that the clock was not ticking in January

during polar night with the absence of photoperiod as possible entrainment cue. Future studies need

to focus on circadian clock gene expression patterns throughout the season (active copepods) and

must include more time points of diapausing copepods to gain further knowledge about the perfor-

mance of the clock and possible entrainment cues initiating/terminating diapause.
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5 Outlook

To clearly prove the existence of a circadian clock in Calanus finmarchicus laboratory experiments

with several days in light:dark cycles followed by several days in constant darkness (DD) should be

conducted to valid the continuity of significant rhythmic oscillations with a period of 24 h in constant

light conditions. Furthermore, comparison of clock gene expression patterns of active and diapaus-

ing C. finmarchicus shall give an opportunity to investigate circadian characteristics (e.g. amplitude,

period, phase, relation) at different stages throughout the season. The maintenance of the feedback

loop to a ∼24 h rhythm is accomplished by cyclic activation and inhibition of gene expression as

well as post-transcriptional modifications such as phosphorylation, relocalisation and degradation of

proteins (Mackey, 2007). Thus, to get an understanding of the whole clock machinery, it is necessary

to investigate protein levels and their role within the clock. Knock-out experiments with the RNAi

technique could clarify the role of investigated clock genes within the feedback loop. Investigation of

photobehavioural sensitivity of C. finmarchicus will clarify the possibility of detecting light at the over-

wintering depths of ∼300 m. The open question remains what physiological/behavioural patterns are

controlled by a circadian system of C. finmarchicus. Further investigations need to focus on the role

of the circadian clock in seasonal time-keeping and on seasonal patterns of clock controlled target

genes to understand regulatory processes in the phenology including the initiation and termination of

diapause.
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