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Abstract 

 

The Fram Strait is characterized by seasonal ice cover, influenced by cold Arctic waters flowing 

southward on the western margin and warm Atlantic waters flowing northward on the eastern 

margin. A key component of sea ice ecology is the organic particles and their bacterial 

communities, about which little is known. We investigated the within-ice distribution of 

transparent exopolymeric particles (TEP, primarily polysaccharide) and Coomassie stainable 

particles (CSP, primarily protein) as well as parameters affecting their respective abundance 

within sea ice. We then explored differences in the bacterial community composition 

associated with TEP and CSP, compared to free-living bacteria in early summer sea ice of Fram 

Strait.  

Photometric and microscopic analysis of gel particles indicated highest TEP and CSP values 

in landfast ice and lowest values in small ice floes floating on cold Arctic and warm Atlantic 

waters, respectively (only significant for CSP). TEP were generally found in the bottom half of 

sea ice, dominating in terms of particle number and area, whereas CSP were evenly 

distributed, dominating in the top half of sea ice in terms of particle area. TEP values were 

significantly correlated with indices of recent productivity such as chlorophyll a, POC and PON 

concentrations. CSP values were less obviously dependent on the productivity of the system. 

Instead, CSP seemed driven more by low temperature and low light, possibly conditions 

negatively affecting the survival of sea ice microorganisms generally. 

Fluorescence in-situ hybridization and particle-specific staining methods were combined 

to investigate the bacterial community directly living attached to either TEP or CSP. The 

composition of particle-associated bacteria was different from that of free-living bacteria, but 

was dominated by the same bacterial groups, Bacteroidetes and ɣ-proteobacteria. 

Polaribacter spp. was the only genus significantly reduced on particles. We found minor 

preferences of some bacterial groups for either TEP or CSP, none of which was significant. 



Abstract 

 

Distribution patterns and drivers of TEP and CSP suggest different roles of these particles 

in sea ice. Since no complete shifts in bacterial community composition were observed, we 

conclude that sea ice selects for bacteria able to acclimate rapidly to changing conditions. 
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I Introduction 
 

 

1.1 Study Area 

1.1.1 Arctic Sea Ice 

The Arctic Ocean is a closed basin surrounded by land with only one deep passage through 

which water can be exchanged with the rest of the world’s oceans (Thomas & Dieckmann, 

2003). Shelf seas in the Arctic take up about one-third of the ocean area with a depth below 

100 m, the mean depth is 1800 m (Wadhams, 2000). At the time of its maximum extent in 

February and March (15x106 km2), sea ice covers the entire Arctic Ocean. It extends from the 

North Pole to about latitude 44° in the Sea of Japan (Wadhams, 2000). By September it usually 

reaches its minimum. More than half of the Arctic sea ice used to be multi-year ice (Gloersen 

et al. 1992). A substantial reduction in Arctic sea ice extent has been observed for the last two 

decades, with the 2012 minimum ice extent (3.61x106 km2) 16% below the previous low of 

2007 and corresponding to the largest recorded decrease in minimum sea ice extent 

(http://nsidc.org/cryosphere/sotc/sea_ice.html). Hence, the ratio of multi-year to first-year 

sea ice has decreased tremendously. In the Arctic, sea ice is subjected to considerable input of 

terrestrially sourced particles and organic matter, due to river run-off with high sediment 

loads, and/or suspension freezing of bottom sediments. 

 

1.1.2 Fram Strait  

The Fram Strait represents a unique deep water connection between the Arctic Ocean and the 

rest of the world’s oceans. The Strait forms a seaway from the North Atlantic to the Arctic 

Ocean approximately 500 km wide, separating the northeast of Greenland from the Svalbard 

archipelago in the east (Fig. 1). Its bathymetry controls the exchange of water masses between 



I Introduction 

- 6 - 

 

the Arctic basin and the North Atlantic. The Fram Strait is the outlet of ice transported from 

the building zones of ice on the Siberian shelves across the North pole into the North Atlantic 

by the so called “Transpolar Drift” (Polyak et al., 2010).The Fram Strait is characterized by its 

transport of fresh water and sea ice southwards, and transport of warm saline waters 

northwards, thus, influencing the thermohaline circulation at a global scale (Schmitz, 1995; 

Gerdes & Schauer, 1997).  

Two main currents control the water mass exchange. At the western margin it is 

characterized by cold Arctic surface waters which flow southward in the East Greenland 

Current, while on the eastern margin, Atlantic Waters flow northward in the West Spitsbergen 

Current. These major currents are separated by a transition zone (Beszczynska-Möller et al., 

2012). Results of recent modelling studies emphasize the importance of the Fram Strait for 

both heat inflow to, and freshwater export from, the Arctic Ocean (Zhang & Zhang, 2001; 

Meredith et al. 2001). 

 

 

Figure 1. Currents in the Fram Strait (www.whoi.edu). 
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1.2 Sea Ice 

Sea ice covers a vast area of 15x106 km2 in the Arctic and 18x106 km2 in the Antarctic 

(http://nsidc.org/cryosphere/seaice/characteristics/difference.html) at its maximum extent, 

thus being an important component of the cryosphere and the global climate system (Maykut, 

1986). Since sea ice contains much of the productivity of polar regions, it influences global 

energy budgets and strongly influences the atmospheric-oceanic interaction in polar regions 

(Legendre et al., 1992). Sea ice forms in the winter months and breaks up and melts during the 

polar summer. The formation of sea ice begins when the surface waters reach temperatures 

of about -1.8 °C, the freezing point of seawater at a salinity of 35‰ (Staley & Gosink, 1999).  

The coldest and most variable temperatures are reached at the ice-air interface (Fig. 2), 

ranging from 0 to -35 °C during winter (Maykut, 1986). Thus, sea ice provides the coldest 

habitat on earth for marine life. Temperatures at the ice-water interface remain stable at 

about -2 °C (Staley & Gosink, 1999).  

Sea ice is temporally and spatially highly variable with large gradients in light, 

temperature, nutrient availability and salinity (Eicken, 1992). Sea ice is therefore a surprisingly 

complex environment for microbial life. The sea ice crystal matrix is permeated by a highly 

connected network of pores and brine channels, typically ranging from 1 to 20% volume as a 

result of temperature, salt content and ionic composition (Weeks & Ackley, 1986). As the ice 

cools, the volume fraction of liquid decreases and the salinity of the brine increases. Brine 

salinity may reach concentrations greater than 200‰. Brine inclusions range from several 

micro-meters to centimeters in size and become increasingly disconnected at lower 

temperatures (Eicken et al.,2000).  

 

1.2.1 Sea Ice Microorganisms  

Most of the sea ice microorganisms (SIMCOs) have been observed to reside within the brine 

ice channels (Junge et al., 2001), in the lower 10 to 20 cm of the sea ice column at the ice-

water interface (Staley & Gosink, 1999; Krembs & Engel, 2001; Palmisano & Garrison, 1993; 

Horner et al., 1992). There, nutrients are available from the water column and light is available 

from the surface (Staley & Gosink, 1999). Flushing by under-ice water replaces nutrient-
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depleted interstitial waters and removes accumulated waste products (Thomas & Dieckmann, 

2003; Kattner et al., 2004).  

The SIMCO comprises viruses, bacteria, algae, fungi, and protozoans and meiofauna 

(Horner et al., 1992). The community is dominated by diatoms, such as the pennate diatom 

Nitzschia spp., which serves as the major primary producer within Arctic sea ice (Krembs et al., 

2001). Concentrations of bacteria are enriched relative to those found in surface seawater, 

therefore, they are considered to be important members of the SIMCO (Helmke & Weyland, 

1995). Bacterial heterotrophy includes direct consumption of dissolved substrates, and the 

decomposition and uptake of dissolved and particular matter produced by the SIMCO via 

exoenzymes (Thomas & Dieckmann, 2003). Bacterial secondary production rates are high, 

generally ranging between 10 to 15% of primary production (Kottmeier et al., 1987). In thick 

or heavily snow covered sea ice, bacterial secondary production may even exceed primary 

production as the light supply to the bottom is restricted (Grossman, 1994). 

Thomas and Dieckmann (2003) described the three main mechanisms by which 

microorganisms from the water column and the sea floor might become incorporated into sea 

ice. One is the enclosure of water, which can occur as ice consolidates. The second are active 

concentration mechanisms. They are best known for initial stages of ice formation by 

scavenging. Adherence of cells to ice crystals moving through the water column is one mode 

of scavenging (Gleitz & Thomas, 1993). Another scavenging mode occurs at the ocean’s 

surface as frazil ice collects to form a grease ice layer. This layer acts as a filter collecting 

particles and cells from water that was pumped through by wave action. Lifting of benthic 

material attached to anchor ice occurs only in the shallowest, coldest regions of polar seas and 

is thus almost exclusive to the Arctic (Thomas & Dieckmann, 2003). The third mechanism is 

active colonization. High concentrations of algal cells, their waste and breakdown products, 

could be attractants to decomposers (bacteria) from the water column. However, due to their 

small size, most marine bacteria are not concentrated by ice scavenging mechanisms 

(Gradinger & Ikävalko, 1998), except for large cells (1 µm3) and those attached to larger 

particles and cells. 
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1.2.2 DOM 

High concentrations of dissolved organic matter (DOM), both dissolved organic carbon (DOC) 

and dissolved organic nitrogen (DON), are associated with the dense SIMCO at the ice-water 

interface (Thomas et al., 1998; Herborg et al., 2001; Papadimitriou et al., 2007, 2009). Sea ice 

DOM is present at concentrations several fold higher than in surface seawater (Underwood et 

al., 2010). The major producers of this DOM are the algae that grow on the ice surfaces (e.g.  

Melosira arctica) and within the brine channels (e.g. Nitzschia spp.) (Krembs & Engel, 2001; 

Meiners et al., 2003, 2008). Furthermore, sea ice DOM is highly bioavailable (Amon et al., 

2001) resulting in increased microbial growth and activity in sea ice compared to the surface 

seawater. Extensive microbial communities from Antarctic sea ice have been reported to 

significantly contribute to the polar ocean carbon budget (Thomas & Dieckmann, 2002). 

 

 

Figure 2. A shematic view of the sea ice habitat (modified after Krell & Krembs). 

 

1.3 Extracellular polymeric substances  

A significant proportion of organic matter in sea ice can be present in form of extracellular 

polymeric substances (EPS), predominantly composed of polysaccharides with carbon 
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backbones of high molecular weight (1-3x105 daltons) (Krembs et al., 2008). Although variable 

in composition and shape (Santchi et al., 1998), they typically carry carboxylic acid groups in 

the form of uronic acids (Meiners et al., 2003; Krembs et al., 2011).  EPS further consist of 

highly branched heteropolysaccharides that can contain fructose, rhamnose, mannose, D-

glucose, xylose, D-glucuronic acid, galactose and half-ester sulphate (Percival et al., 1980), and 

sometimes significant amounts of protein (Mancuso Nichols et al., 2005). 

EPS co-occur inseparably with microbial assemblages in both, terrestrial and aquatic 

environments, underscoring their wide ranging importance and diverse functions in microbial 

ecology (Passow, 2000). Within sea ice, dissolved EPS (dEPS) concentrations have a 

heterogeneous distribution, whereas particulate EPS (pEPS) are mainly found in biomass-rich 

horizons in the ice (Krembs et al., 2002, 2011; Meiners et al., 2003). EPS are released by 

bacteria and algae in form of mucous slime or gels (Krembs & Engel, 2001; Mancuso Nichols et 

al., 2005; Krembs & Deming et al., 2008; Collins et al., 2010).  

EPS can contribute substantially to a wide range of categories of organic material in the 

ocean (Fig. 3), from the dissolved fraction to colloidal and particulate classes (Passow, 2000), 

thus closing the gap between dissolved and particulate matter realms (Verdugo et al., 2004).  
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Figure 3. Size continuum of EPS depicting size distribution and processes affecting formation (Verdugo et 

al., 2004, as cited in Engel 2009, modified). 

 

1.3.1 Particulate EPS  

Particulate EPS (pEPS) are often named gel particles as their solid three-dimensional network 

of organic compounds and inorganic cations is penetrated by seawater, resulting in a 

semisolid or jelly-like structure (Engel, 2009; Underwood et al., 2010). Gel particles are 

generated abiotically from interactions of dissolved and colloidal organic matter by 

spontaneous assembly (Chin et al., 1998), bubble adsorption (Mopper et al., 1995; Mari, 

1999), or laminar and turbulent shear (Engel & Passow, 2001). Therefore, gel particles can be 

easily produced artificially as shown by Engel and Passow (2001). Whereas the origin of 

precursor material is biotic, the aggregation is abiotic, changing the traditional view of 

bacteria as the primary transformer of DOM to POM (Chateauvert et al., 2012).  
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pEPS can be found as thick gels surrounding microbial cells (Myklestad, 1995; Underwood 

et al., 1995; Waite et al., 1995), as free colloidal organic matter (Decho, 1990; Passow, 2000), 

or as part of large particles and aggregates (Alldredge et al., 1993; Passow et al., 2001). Among 

their many roles, pEPS can aid in locomotion (Wetherbee et al., 1998), adhesion to surfaces 

(Cooksey & Wigglesworth-Cooksey, 1995), and sequestering of nutrients and organic 

compounds from solution (Decho, 1990). pEPS can further provide a protective buffer zone 

around a cell against unfavorable shifts in the environment, e.g. changing ionic, osmotic, 

desiccation, or pH conditions (Decho & Lopez, 1993). Furthermore, they might also serve as an 

important carbon and nitrogen sources for bacteria (Mock & Thomas 2005). 

 

pEPS in sea ice are often not discrete particles, but rather cell-associated (Riedel et al., 2006). 

They are usually densely colonized by bacteria and are likely to increase sea ice bacterial 

diversity by providing microhabitats for distinct bacterial groups (Mock & Thomas, 2005). 

Collins et al. (2007) and Krembs et al. (2002) found pEPS in very high concentrations in sea ice 

brines during winter, with pEPS concentrations increasing significantly with decreasing 

temperatures. This may lend support to the assumption that pEPS may serve as a 

cryoprotectant to enhance the survival of SIMCO. Coatings of pEPS might buffer against 

osmotic shock (hypersalinity) and cryoprotecting SIMCO against external ice-crystal formation 

by depressing the ice nucleation temperature of water, due to their high polyhydroxyl content 

(Krembs et al., 2002; Krembs & Deming, 2008; Mancuso Nichols et al., 2005). The study by 

Krembs et al. (2011) clearly indicates that pEPS, if present in sufficient quantity and quality, 

alter the microstructure and desalination of growing ice. Therefore, it can be stated that pEPS 

improve sea ice habitability, survivability and increase the potential for increased primary 

production (Krembs et al., 2011). 

 

Marine gels, such as transparent exopolymeric particles (TEP; Alldredge et al., 1993) and 

Coomassie stainable particles (CSP; Long & Azam, 1996), are made of large organic polymers 

and are considered stable macrogels (Verdugo, 2012).  

TEP are visualized by staining with Alcian Blue (AB; Alldredge et al., 1993; Mopper et al., 

1995), a cationic copper phthalocyanine dye that reacts with the carboxyl (COO–) and sulfate 

half ester (OSO3
–) functional groups of acidic polysaccharides and glycosaminoglycans (Decho, 
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1990). CSP are protein-containing particles that are stainable with Coomassie Brilliant Blue G 

(CBBG) (Long & Azam, 1996). CBBG is an unspecific protein-binding dye that binds to alkaline 

residues of amino acids (Long & Azam, 1996).  

TEP and CSP characteristics overlap in many respects, and so far it is not known to what 

extent CSP and TEP represent different chemical subunits (proteins and polysaccharides) of 

the same gel particle (Engel, 2009). If they do not represent distinct classes, the overall 

contribution of pEPS to particulate organic carbon (POC) is prone to overestimation.  

 

The discovery of new classes of particles represents an important advance toward 

understanding the nutritional quality of pEPS and cycling of carbon through aquatic 

ecosystems. Because of their potential ecological importance, pEPS, especially TEP received 

much recent research attention. 

 

1.3.1.1 TEP 

TEP are carbon-rich particles that seem to be ubiquitous in marine and freshwater ecosystems 

(Chateauvert et al., 2012). The high fraction of sulfate half-ester groups explains their strong 

tendency to form metal ion bridges and hydrogen bonds, which makes TEP highly sticky 

(probability that two particles remain attached after collision) (Passow, 2002a; Krembs et al., 

2008). TEP are discrete particles rather than dissolved substances or cell coatings (Alldredge et 

al., 1993).  

Their role differs from non-particulate EPS, as independent particles, TEP may impact 

aggregation processes (Logan et al., 1995). Since particle-free TEP are positively buoyant 

(Azetsu-Scott & Passow, 2004), they need to associate with other particles or cells to form 

aggregates that actually sink.   

According to many studies (Passow & Alldredge, 1994; Mari & Kiørboe, 1996; Carrias et 

al., 2002; Lemarchand et al., 2006) the vast majority of TEP are colonized by bacteria, 

representing 1 to 20% of the total bacterial count. Carrias et al. (2002) and Lemarchand et al. 

(2006) indicated that TEP are particularly important for bacterial growth in lakes with low 

nutrient loading.  
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1.3.1.1.1 TEP Producers 

It is well established that the majority of TEP present in sea ice is produced by algae (Krembs & 

Engel, 2001; Meiners et al., 2003, 2008; Krembs et al., 2001). Although cultured bacteria are 

known to generate large amounts of TEP (Mancuso Nichols et al., 2005; Grossart, 1999), in-

situ their production often appears to be insignificant (Schuster & Herndl, 1995; Krembs et al., 

2001). Phytoplankton exudates closely resemble polysaccharides found for TEP (Mopper et al. 

1995; Aluwihare & Repeta, 1999). Furthermore, in most studies, concentrations of TEP are 

significantly correlated with chlorophyll a (Passow, 2002b; Riedel et al., 2006; Krembs & Engel, 

2001; Meiners et al., 2003; Arnous et al., 2010), confirming the significance of phytoplankton 

for the formation of TEP. Studies by Krembs & Engel (2001) and Meiners et al. (2003) have 

found pennate diatoms of the genus Nitzschia to be the most important producers of TEP 

within sea ice.  

Sea ice algae are of particular importance, they are an early source of carbon for water 

column grazers (Michel et al., 2002) and can contribute 25% or more to the total primary 

production in the Arctic (Legendre et al., 1992; Gosselin et al., 1997). Depending on their 

nutrient status, they release 3 to 40% of photosynthetic carbohydrates via exudation (Baines 

& Pace, 1991), 75% of which as polysaccharides (Myklestad et al., 1989). 

 

1.3.1.1.2 Role of TEP in Carbon Cycle 

Marine phytoplankton have a unique role in the global carbon cycle as they remove dissolved 

inorganic carbon from the upper ocean via photosynthesis and redirect it to the deep ocean 

through sedimentation. This process is referred to as the biological pump, and is mainly driven 

by the coagulation of single phytoplankton cells into rapidly settling aggregates (Shanks & 

Trent, 1980; Waite et al., 1997).  

The presence of glue-like TEP enhances the formation of these aggregates (Alldredge et 

al., 1993; Logan et al., 1995; Engel, 2000). Because TEP can be an essential component of 

marine and lake snow (Alldredge et al., 1993), they may play an important role in the 

downward flux of organic matter (Passow et al., 2001).  

Since DOM does not sink it is generally assumed that it does not participate in the 

biological pumping of carbon to the deep ocean. However, TEP coagulation is likely to be a 
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pathway for the sedimentation of originally dissolved organic carbon (Engel & Passow, 2001). 

Moreover, since TEP are carbon-rich particles, the biogeochemistry of aggregates should differ 

from organisms by an enrichment of carbon relative to the expected C:N:P ratio of 106:16:1 

(Redfield et al., 1963). Therefore, the sedimentation of TEP may even lead to a selective 

export of carbon from surface waters (Engel & Passow, 2001). 

 

TEP can represent a significant source of carbon, contributing 14 to 32% of POC values in 

Arctic and Antarctic sea ice of varying age (Meiners et al., 2003, 2004). Krembs et al. (2002) 

converted TEP from weight units (Xanthan Gum equivalents) to carbon units. Given the ice 

thickness near Barrow (Alaska), they estimated the areal TEP-carbon content in March and 

May. Their estimates are similar to average DOC concentrations, and are equivalent in 

magnitude to the average POC content measured in March (Eicken et al., 1999). Thus, TEP may 

contribute significantly to polar ocean carbon cycles, not only within the ice but after 

springtime release into the water column and subsequent export to deeper regions (Krembs 

et al., 2001). Large TEP pulse from Arctic sea ice (transition from winter to spring) observed by 

Wurl et al. (2011) was suggested to be the result of discharge from the ice with draining 

brines. The short life span of the TEP pulse, with a substantial decline after only 8 days, implies 

rapid removal from the surface and/or recycling.  

 

1.3.1.2 CSP 

CSPs are protein containing particles that seem to be similar to TEP in size range and shape 

(Long & Azam, 1996), but their origin and formation seems to be quite different from those of 

TEP. CSP appeared to be less closely related to the productivity of the ecosystem, supporting 

the assumption that their origin is multiple (Long & Azam, 1996). Furthermore, Lemarchand et 

al. (2006) did not find a relation of CSP abundance and chlorophyll a in lakes. Various 

mechanisms of cell lysis and death, or the adsorption of protein onto nonproteinaceous 

particles could produce CSP (Long & Azam, 1996). Another study by Bhaskar et al. (2005) 

found bacteria to be able to cause CSP formation. However, there is evidence that CSP are 

abundant in seawater (Long & Azam, 1996; Cisternas-Novoa et al., 2014), fresh water (Berman 

& Viner-Mozzini, 2001; Lemarchand et al., 2006) and phytoplankton cultures (Prieto et al., 
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2002; Cisterna-Novoa et al., 2014). Depending on the study area, CSP are more or less 

abundant than TEP, or similar. Field observations of aggregation during phytoplankton blooms 

by Prieto et al. (2002) revealed CSP to have no contribution to macroaggregate production. 

But, like TEP, CSP are frequently colonized by bacteria (Lemarchand et al., 2006), and since 

proteins are a valuable nitrogen and carbon source for them, CSP might be more labile than 

TEP (Cisternas-Novoa et al., 2014). Moreover, CSP production and utilization may influence 

flux and cycling of nitrogen in pelagic systems. Until recently, there was no method to 

determine CSP concentrations photometrically, thus, information on CSP origin, formation, 

function and dynamics are scarce (Lemarchand et al., 2006; Cisternas-Novoa et al., 2014). 

 

1.4 Sea ice bacteria 

Most sea ice bacteria are psychrophilic and therefore differ in abundance, size, activity and 

taxonomy from bacteria living in the underlying seawater (Helmke & Weyland, 1995; Bowman, 

1997). Abundance of sea ice heterotrophic bacteria varies widely, with highest numbers 

usually being found in association with high algal biomass. Junge et al. (2002) found bacterial 

numbers to range from 5.4x104 mL-1 in clear ice to 2.4x106 mL-1 in algal band ice samples in 

Arctic sea ice during summer. 

 

 

 

1.4.1 Community Composition 

Most studies concerning the bacterial community within sea ice have been conducted during 

spring and summer. Results from culture-independent methods (cloning, sequencing of 

16S rRNA genes, fluorescence in-situ hybridization (FISH)) overlap extraordinary well with 

culture-based results, confirming the prevalence of the α- and γ-subclass of Proteobacteria 

and Bacteroidetes in spring and summer sea ice at both poles (Brinkmeyer et al., 2003; Brown 

& Bowman, 2001; Thomas & Dieckmann, 2003; Collins et al., 2010; Han et al., 2014). 
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Differences in bacterial communities at the poles were mainly found at the species level, 

which implies the occurrence of similar selection mechanisms in these two geographically 

separated environments (Brinkmeyer et al., 2003).  

In the Arctic, approximately 50, 30 and 25% were identified as belonging to the γ-

proteobacteria, α-proteobacteria and Bacteroidetes group, respectively. Brinkmeyer et al. 

(2003) further detected β-Proteobacteria, making up 6% of the total, whereas abundances of 

Gram-positive bacteria, Planctomycetes and Archaea were shown to be below the detection 

limit of FISH. Archaea have only been detected in winter sea ice, making up 3.4% of the total 

(Junge et al., 2004). 

The highest diversity of phylotypes was found within the γ-proteobacteria, dominated by 

the genera Colwellia, Glaciecola and Marinobacter (Brinkmeyer et al., 2003; Groudieva et al., 

2004). Identified phylotypes within the α-proteobacteria were affiliated to the Roseobacter 

clade, with Octadecabacter spp. being the most abundant isolate. Salegentibacter spp. and 

Psychroserpens spp. were abundant phylotypes within the Bacteroidetes group.  

In contrast, the bacterial community of Arctic winter sea ice is dominated by SAR11 (α-

proteobacteria) and strongly overlaps with under-ice water. Polaribacter is the only genus that 

was detected to reside within sea ice throughout the year (Collins et al., 2007).  

 

It seems that, in all studies investigating the bacterial community composition of Arctic sea 

ice, the whole bacterial community was analyzed, without differentiation between the liquid 

and pEPS attached fraction.             

 

 

1.4.2 Attachment to Particles                                                                                                                 

Sea ice is a porous habitat with many attachment sites (ice crystals, pEPS, algal cells) that may 

select for specific types of bacteria. Many of the species isolated from sea ice, especially 

among the Bacteroidetes, are known for their attached life style (Bernardet et al., 1996) and 

for their extracellular enzymes that degrade a wide variety of polymeric substances 

(Reichenbach & Dworkin, 1992). In Antarctic sea ice, more than 30% of the bacteria in melted 

sea ice were observed to be attached to algae and detritus (Sullivan & Palmisano, 1984). Junge 
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et al. (2004) found an even higher attachment rate of over 50% in an unmelted Arctic sea ice 

sample.  

Association with particles is common among sea ice bacteria, as it is an important 

mechanism for survival and growth, even though underlying mechanisms remain poorly 

known (Junge et al., 2004). Generally, attached bacteria are larger than free-living bacteria 

and have higher specific uptake rates for some substrates (Unanue et al., 1992).  

Meiners et al. (2008) described pEPS as microbial hotspots with bacteria possessing high 

enzymatic activities. Thanks to their physiological adaptation at the enzyme level, 

psychrophilic sea ice bacteria stay highly active at low temperatures (Feller & Gerday, 2003). 

Junge et al. (2004) showed that, within slices of intact sea ice, the percentage of active 

bacteria attached to particles increased with decreasing temperature. Additionally, all 

bacterial cells that stay metabolically active down to -20 °C were attached to particles. This 

suggests that bacteria living attached to pEPS are of major importance in biogeochemical 

processes and the food web, not only in the sunlit, but also during the coldest season.  

Although sea ice is known to harbor high concentrations of pEPS and their potential role 

for the SIMCO has been discussed, it is not studied yet in which ways they influence the 

bacterial sea ice community composition.             

 

Furthermore, there are no studies of the bacterial sea ice community directly living attached 

to either TEP or CSP. Since the composition of the particles differs we would also expect a 

different bacterial community.  

There is only one study by Lemarchand et al. (2006) where they investigated the bacterial 

community attached to TEP and CSP in lake water samples by combining FISH with the gel 

particle specific stains mentioned above. They found all TEP and more than 90% of CSP to be 

colonized by bacteria. Numbers of bacterial cells for all tested bacterial groups were 

significantly higher for TEP than CSP, indicating that particles containing acidic sugars are 

favored attachment sites for bacteria. In contrast, Berman and Viner-Mozzini (2001) found CSP 

to be more colonized, arguing that proteinaceous particles provide a more nutritious 

substrate, resulting in a more rapid turnover of CSP in lakes.       
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1.5 Hypothesis and Aims      

By analyzing ice cores from different sea ice types for their number, area and concentration of 

TEP and CSP, we aimed to investigate the distribution of TEP and CSP, and to identify which 

particle class might dominate in Arctic early summer sea ice. By correlating TEP and CSP values 

with abiotic and biotic factors recorded at the same stations, we aimed to identify parameters 

likely to affect the abundance of TEP and CSP.  

By analyzing melted sea ice samples and samples from an experiment to study the effect 

of pEPS on the composition of the bacterial sea ice community, we aimed to identify bacterial 

groups that are favored by the presence of pEPS, and to compare the bacterial community 

composition living free or attached to either TEP or CSP in Arctic early summer sea ice. We 

further aimed to identify which particle class might be favored by bacteria. 

 

With respect to present knowledge, we hypothesize that (a) highest TEP and CSP values occur 

at the ice-water interface, (b) TEP values mainly correlate with sea ice algal abundance 

(chlorophyll a), whereas (c) CSP correlates with abiotic parameters that in turn affect 

survivability of SIMCO, (d) the presence of pEPS will favor bacteria known for their attached 

life-style, like Bacteroidetes, (e) the bacterial community composition/relative abundance 

differs between the free-living and pEPS attached fraction and (f) between pEPS of different 

chemical composition (TEP and CSP).  
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II Material and Methods 

 

 

2.1 Sampling and Processing  

Sea ice samples were collected with a Mark II 9 cm inner diameter ice corer (Kovacs 

Enterprise, Roseburg, OR, USA) during the R. V. Polarstern summer cruise PS 85 / ARKXXIII/1 

(June 2014) in the Fram Strait. A total of ten stations were approached either by helicopter or 

rubber boat. Positions of all stations are shown in Fig. 4. On the Transect from the West to the 

East of Fram Strait sea ice exposed to different conditions was sampled. Sea ice stations 1 and 

2 were located close to Greenland and were identified as landfast ice (Table 1). In the middle 

and in the North we found large single ice floes of different size and thickness. The smallest 

and thinnest floes were observed in the East floating on warmer Atlantic water.  
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Figure 4. Sampling stations in Fram Strait. Green stars mark locations of landfast ice, yellow stars of large  

ice floes and orange stars of small ice floes. Map was generated by Lars Radig with IBCAO v3 

(http://www.gebco.net). 

 

 

Table 1: Summary of station metadata 

  Position Ice Ice thickness 
Snow 

coverage 

Station Longitude N Latitude type cm cm 

1  78 15.915  14 42.859W Landfast 135 9 

2  77 45.609  16 3.58W Landfast 190 4 

3  78 49.0  8 46.167W Large floe 164 3 

5  78 52.091  4 29.551W Large floe 272 27.5 

6  78 30.403  2 47.951W Large floe 177 24 

9  79 45.284  4 18.279E Large floe 173 9 

10  78 48.175  2 00.996W Large floe 213 20 

7  79 3.044  4 9.188E Very s. floe 69 4 

8  79 2.428  4 18.576E Small floe 89 5 
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Separate cores from each sampling site were used to measure salinity and temperature 

profiles, biological variables, and bacteriology (see below). Transmission of light through the 

ice was measured as described by Chresten Lund-Hansen et al. (2015). 

2.1.1 Salinity – Temperature Core Measurements 

In-situ temperature of the cores was determined directly after sampling by drilling small holes 

every 5 cm and subsequent measurement with an Testo 720 temperature sensor (accuracy: 

0.1 °C; Lenzkirchen, Germany). Ice cores were cut into 10 cm sections and melted in plastic 

boxes at room temperature. After melting the salinity was determined using a WTW Probe 

(WTW 206; Weilheim, Germany).  

 

2.1.2 Biological Core Measurements 

Biological cores were immediately cut into 10 cm sections, transferred in plastic boxes and 

stored in a cooling box. Sections were transferred in filtered seawater (pore size, 0.2 µm; for 

each centimeter of ice 200 mL of filtered seawater were added) and melted at 4 °C. After 

melting, the entire volume of the ice and filtered seawater was determined to calculate the 

exact dilution factor for each section. Therefore all concentrations given in this study are 

concentration per liter of ice. For the analysis of transparent exopolymeric particles (TEP) and 

Coomassie stainable particles (CSP) within the ice, subsamples of the upper and the lower 

halves of the original ice core were pooled into a “Top” and a “Bottom”, respectively.  

Subsamples of the Top and Bottom were stained for microscopic and colorimetric analysis 

of TEP and CSP. 30 - 150 mL of melted sea ice were filtered onto 0.4 µm polycarbonate filter 

(PC-filter) at low and constant vacuum (< 150 mmHg). TEP were stained with an aqueous 

solution of Alcian Blue (AB), CSP with Coomassie Brilliant Blue G (CBBG) directly on the filter 

and rinsed with ultrapure water. Fresh filters were checked for an evaluable number of 

particles. Blank filters were prepared from 0.4 µm PC-filters moistened with MilliQ water and 

processed like the samples. For microscopic and colorimetric analysis filters were mounted on 

CytoClear slides (Poretics Corp., Livermore, US) and put in plastic cups, respectively and stored 

at -20 °C.  For each sample two filters for microscopic and three filters for colorimetric analysis 

were prepared.  
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In addition, fractionated chlorophyll a (< 10 µm and > 10 µm, filtered onto glass fiber- (GF/F)-

filters; Whatman, and 10 µm polycarbonate- (PC)-filters), particulate organic carbon (POC) and 

particulate organic nitrogen (PON) concentrations (filtered onto precombusted GF/F-filters) 

were measured by other scientists.  

Chlorophyll a was determined with a Turner-Design fluorometer after Evans and O'Reily 

(1987).   

POC and PON were analyzed in the stable isotope laboratory of the Museum für 

Naturkunde, Berlin. Stable isotope analysis and concentration measurements of nitrogen and 

carbon were performed simultaneously with a THERMO/Finnigan MAT V isotope ratio mass 

spectrometer, coupled to a THERMO Flash EA 1112 elemental analyzer via a 

THERMO/Finnigan Conflo III- interface. Stable isotope ratios were expressed in the 

conventional delta notation (δ13C / δ15N) relative to atmospheric nitrogen (Mariotti, 1983) and 

VPDB (Vienna PeeDee Belemnite standard). Standard deviation for repeated measurements of 

lab standard material (peptone) is generally better than 0.15 per mill (‰) for nitrogen and 

carbon, respectively. Standard deviations of concentration measurements of replicates of our 

lab standard are < 3% of the concentration analyzed. 

 

2.1.3 Bacteriological Core Measurements 

Careful attention was paid to maintain sterile conditions during sampling and subsequent 

processing of the bacteriological cores. Special emphasis was put on the lower 5 cm of ice 

cores to study the bacterial community that lives attached to TEP and CSP. The layer at the 

ice-water interface is considered to harbor the highest concentration of ice algae and 

extracellular particles due to its exchange of nutrients with the water below. The lower 5 cm 

section of bacteriological cores were cut and stored in sterile sampling bags in a cooling box. 

On board, single sections were crushed mechanically and melted in filtered (0.2 µm pore size) 

autoclaved under-ice water (ratio seawater to sea ice 1:1) to reduce the mechanical and 

osmotic stress on bacterial cells during melting.  

The under-ice seawater also contains dissolved particle precursors. However, since the 

concentration of exopolymeric particles is one order of magnitude lower than in sea ice their 

contribution was neglected. To minimize bacterial growth during melting, the melting-process 
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was speed up by continuous agitation on a shaking platform. The ice had melted at room 

temperature within 2 to 3 h (sample temperature stayed below 0 °C). After melting, samples 

were directly transferred to a temperature controlled room at 0 °C.  

 

Two molecular approaches were conducted. The first approach was to separately analyze 

attached-living bacteria and the free-living bacterial community using denaturing gradient gel 

electrophoresis (DGGE) and subsequent sequencing of the 16S rRNA gene. Therefore, melted 

sea ice was filtered through different pore sizes. First, melted sea ice was filtered onto 2.0 µm 

PC-filter to exclude most of the free-living bacterial cells as long rods can measure up to 

0.65 µm x 4.0 µm (Helmke & Weyland, 1995). Air dried filters were stored in Eppendorf cups 

at -80 °C. To compare the mainly attached-living with the free-living bacterial community using 

DGGE, the filtrate was further filtered onto 0.2 µm PC-filters.  

The second approach was to combine catalyzed reporter deposition fluorescence in-situ 

hybridization (CARD-FISH) with the respective stain for TEP and CSP. Thus, one can estimate 

the relative abundance of bacterial groups that life free or attached to either TEP or CSP. Prior 

to filtration onto 0.2 µm PC-filters supported with 0.45 µm cellulose-nitrate filters, melted sea 

ice was fixed with formaldehyde solution (final concentration, 2 to 4% [vol/vol]) for 24 hours 

at 4 °C. Air dried filters were stored in petri dishes at -20 °C.  

 

2.2 Experiments  

To study how TEP and CSP influence the bacterial sea ice community, three experiments with 

melted sea ice of different stations (Table 2) were set up in the dark at 0 °C. Due to their high 

stickiness, TEP are usually attached to particles such as algae and debris (Verdugo et al., 2004). 

Algae and debris surfaces harbor bacteria, too, but our aim was solely to study the bacteria 

living directly attached to either TEP or CSP. Therefore, we produced exopolymeric particles 

artificially from dissolved precursors (< 0.2 µm) using bubble coagulation (Mari, 1999; Engel, 

2009). This has the advantage that algae, debris and bacteria can be removed by filtration 

prior to the production of particulate extracellular polymeric substances (pEPS). Artificially 

generated pEPS were then inoculated with a natural bacterial community of sea ice.  
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Table 2: Sources of water and natural bacterial sea ice community  

for experiments 

 

 
 

  

  Melted ice Inoculum   

Experiment from station from station Ice type 

1 1 2 Landfast 

2 5 6 Large ice floe 
3 9 9 Large ice floe 

 

In detail: Melted lower 5 cm sections of three sea ice cores of the same station were pooled 

and filtered through 0.2 µm PC-filters. The filtrate contains dissolved precursors for 

exopolymeric particles but should be free of bacterial cells and particles. The filtrate was 

decanted into two Schott flasks (Fig. 5). To prevent sedimentation, the flasks were put on a 

shaking platform during the whole experiment.  

Flask 1 (“precursor”) only contained dissolved precursors. Flask 2 (“bubbled”) was bubbled 

with air throughout the whole experiment using a glass frit to produce exopolymeric particles 

from dissolved precursors within 24 h. Flask 2 should contain pEPS as well as dissolved 

precursors.  

After one day, two ice cores (of another station) were melted and used as a natural 

bacterial inoculum (10 mL Inoculum per 100 mL sample volume) for the two Schott flasks. A 

third Schott flask (“control”) was filled with the unfiltered sea ice water and served as a 

control to identify changes in the stock solution. The flasks were incubated over a period of 

four days.  

Subsamples to determine the concentration of TEP and CSP photometrically as well as 

samples for DGGE and FISH (both filtered onto 0.2 µm PC-filters) were taken after 0, 2 and 4 

days (exception for experiment 1: no FISH samples on day 0) and stored at their respective 

storing temperature until analysis. 
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Figure 5. Experimental set-up. 

 

2.3 DNA Extraction 

Total community nucleic acids from filtered bacterioplankton of melted sea-ice and 

experiment samples were extracted using the NucleSpin Soil kit (Macherey-Nagel, Düren, 

Germany), where the sample material is resuspended in lysis buffer and mechanically 

disrupted using ceramic beads. Extracts were stored at -20 °C. 

 

2.4 PCR Amplification and DGGE 

2.4.1 PCR Amplification of 16S rDNA 

A part of the 16S ribosomal RNA gene of bacteria was amplified using bacteria-specific primers 

(Table 3). GM5 (corresponding to positions 341–358 of the Escherichia coli 16S rRNA) with an 

attached GC-clamp (5’-CGC CCG CCG CGC CCC GCG CCC GGC CCG CCG CCC CCG CCC CAC GGG 

CGG TGT GTR C-3’) and 907R (corresponding to positions 907–927 of the E. coli 16S rRNA; 

Thermo Scientific, Waltham, USA) were used for amplification in 50 µL reaction mixtures as 

listed in Table 4. 
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Table 3: Bacteria-specific primers used for PCR amplification; Wobble M = A/C 

Primer Sequence Reference 

GM5F 5`-CCT ACG GGA GGC AGC AG-3` Muyzer et al., 1993 

907R 5`-CCG TCA ATT CMT TTG AGT TT-3` Muyzer et al., 1993 

 

Table 4: PCR mixture for amplification of DNA  

extracts for DGGE 

Component Volume in µL 

Primer GM5-GC [10 pmol] 1 

Primer 907R [10 pmol] 1 

5Prime Mastermix 20 

PCR H2O 26 

Template 2 

 

The template DNA was denatured in a thermal cycler (Eppendorf, Hamburg, Germany) for 

4 min at 95 °C followed by a touchdown-PCR (see Table 5) to increase the specificity of 

amplification and to avoid the formation of spurious by-products (Muyzer et al., 1997). The 

success of the amplification reaction was controlled by an agarose gel electrophorese. 

Therefore, 0.5 g agarose were heated in 60 mL 1xTAE buffer (Sigma Aldrich, St. Louis, USA), 

then GelRed (Biotium, Hayward, USA) was added to stain the DNA within the gel. 3 µL PCR 

products mixed with 2 µL loading buffer were loaded. A 1kb ladder was used as a reference. 

Gels were run for 30 min at 100 V. 

 

Table 5: PCR conditions for amplification of DNA extracts for DGGE  

Phase Temperature in °C Duration in min 

Initial denaturation 95 4 

Denaturation 95 1 

Annealing 65 1 

Elongation 72 3 

Cycles Annealing temperature decreases by 

  1 °C per cycle until 55 °C are reached, 

  followed by 24 cycles at 55 °C. 

Final elongation 72 5 
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2.4.2 DGGE 

PCR-products were analyzed by DGGE, based on the protocol of Muyzer et al. (1997) using a 

gradient-chamber. 

 

2.4.2.1 Production of DGGE Gels 

For the production of a DGGE gel two stock solutions with a formamide (Applichem, 

Darmstadt, Germany) gradient of 0% and 80% were prepared (Table 6). Both solutions have an 

acrylamide (Bio-Rad, Hercules, USA) concentration of 6%. PCR products were separated on 20 

to 70% denaturant (7 M urea and 40% deionized formamide) DGGE gels. From the stock 

solutions the two initial gradients were prepared (Table 7). Ammoniumpersulfate (APS; Bio-

Rad) solution and TEMED (Bio-Rad) were added just before the gradient mixer (SG Series 

Gradient Makers; Hoefer Pharmacia Biotech, Holliston, USA) was loaded to initialize the 

polymerization of acrylamide. After pouring the gradient gel it was covered with a layer of 0% 

stock solution. After complete polymerization, the gel was transferred in the DGGE chamber 

filled with 1xTAE buffer (40 mM Tris-acetate and 1 mM Na-EDTA, pH 8.0) heated up to 60 °C. 

Before loading 20 to 40 µL of the PCR products, gel pockets were thoroughly washed. Gels 

were run at 60 °C and constant voltage of 100 V for 18 h.  

Gels were stained in 1xTAE containing SYBR Gold (diluted 1:10000; Molecular Probes; 

Waltham, USA) for 20 min in the dark. Stained gels were immediately photographed under UV 

transillumination (Gel iX20 imager; Intas Science Imaging, Göttingen, Germany). Digitized 

DGGE profiles were straightened and aligned with the Bionumerics Gelcompare software 

(Applied Maths, Sant-Martens-Latern, Belgium). 

 

Table 6: Stock solutions for DGGE gels 

Component 0% Gradient 80% Gradient 

Acrylamid/Bis (37.5:1, 40%) 15 mL 15 mL 

50xTAE buffer 2 mL 2 mL 

Formamide, deionized - 32 mL 

Urea - 33.6 g 

Final volume with MilliQ 100 mL 100 mL 
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Table 7: Instructions for the preparation of initial gradients 

Component 70% 20% 

0% Stock solution 1.4 mL 8.25 mL 

80% Stock solution 9.6 mL 2.75 mL 

TEMED 7 µL 7 µL 

APS 10% 40 µL 40 µL 

 

2.4.2.2 Excision of Bands and Reamplification 

All visible unique bands were picked for sequencing, and bands recurring several times on 

the same gel were picked at least twice. Bands were excised with a flamed scalpel under UV-

light (Transilluminator UVT-28 BE; Herolab, Wiesloch, Germany) and resuspended in 100 µL 

PCR H2O (Sigma Aldrich). To elute the DNA from the gel, samples were shaken (Vortex-Genie 

2; Scientific Industries, New York, USA) for 2 h at 4 °C before refrigeration at –20 °C overnight.  

Then, the eluted DNA was reamplified using same primers but without the GC-clamp 

(Table 4) under the conditions stated in Table 8. Successful amplification was checked as 

described above. PCR products were purified with Agencourt AMPure (Beckman Coulter, 

Pasadena, USA) following producers instructions and checked again on an agarose gel. 

 

Table 8: PCR conditions for reamplification of excised DGGE bands 

Phase Temperature in °C Duration in min 

Initial denaturation 95 4 

Denaturation 95 1 

Annealing 55 1 

Elongation 72 3 

Cycles 28 

Final elongation 72 7 

 

2.5 Sequencing of DGGE Bands 

Sequencing was carried out using the BigDye Terminator v3.1 sequencing kit (Applied 

Biosystems, Waltham, USA). The primer GM5 was used in the sequencing PCR (Table 9). The 

conditions for the amplification are listed in Table 10. PCR products were checked as described 

above, purified with Agencourt ClenSEQ (Beckman Coulter, Pasadena, USA) following 
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producers instructions and checked again before sequencing was carried out on an ABI 3700 

sequencing system (Applied Biosystems, Californien, USA). 

 

Table 9: PCR mixture for sequencing PCR 

Component Volume in µL 

Primer GM5 [1 pmol] 1 

5x Sequence buffer 1.5 

Pre Mix Big Dye RR100 0.3 

PCR H2O 4.2-5.2 (depending on amount of template) 

Template 2-3 

 

Table 10: Conditions for sequencing PCR 

Phase Temperature in °C Duration in sec 

Initial denaturation 96 60 

Denaturation 96 10 

Annealing 50 5 

Elongation 60 240 

Cycles 24 

 

2.5.1 Sequence Processing and Analysis 

With the program Codon Code Aligner (CodonCode Corporation, Centerville, USA) 

chromatograms of the sequences were visualized. The primer was removed manually based 

on quality data calculated by the program and bad quality ends were cropped. Sequences with 

an overall average quality below 90 were discarded. To taxonomically classify the bacterial 

community present in the samples, single sequences were submitted to the SINA alignment 

service of the high quality ribosomal RNA database silva (SINA Alignment Service, Pruesse et 

al., 2012; silva, http://www.arb-silva.de/). Strains showing highest overlap with the submitted 

sequences were identified.   
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2.6 Fluorescence In-Situ Hybridization (CARD-FISH) 

CARD-FISH analysis was used to examine community structure and relative abundances of 

bacterial groups in samples collected from the experiments after one, two and for days of 

incubation at 0 °C. Samples were fixed with buffered paraformaldehyde solution (final 

concentration, 2 - 4% [w/v]). Within 24 h of fixation, samples were filtered in duplicates (10 

and 20 mL) at a low vacuum pressure (< 150 mmHg) onto 0.2 µm PC-filters (Whatman; 

diameter 50 mm), and then rinsed with sterile filtered and autoclaved under-ice water and 

distilled water. Air dried filters were stored at -20 °C in the dark until further processing. 

CARD-FISH analysis was conducted according to the method of Pernthaler and colleagues 

(2004) using horseradish-peroxidase (HRP)-labeled oligonucleotide probes (Thermo Fisher 

Scientific) Probes ranged in specificity from domain to species level, with GLAC227, MB-

ICO22a, SF825, POL740 being characteristic for sea ice communities (Brinkmeyer et al., 2003; 

Gerdes et al., 2005). Probes used are listed in Table 11. 

 

Experiments showed that it is possible to combine TEP and CSP staining techniques with FISH.  

Counts of positive cells before and after staining filters with AB or CBBG did not differ 

(Lemarchand et al., 2006), therefore, combined protocols were used to observe particles and 

their attached bacterial cells at the same time.  

 

First, filters were embedded in low gelling point agarose (0,1%) to prevent substantial cell loss 

during permeabilisation with lysozyme solution (10 mg mL-1 in 0.05 M EDTA, pH 8.0; 0.1 M 

Tris-HCl, pH 8.0) for 60 min at 37 °C. After washing with MilliQ water endogenous peroxidases 

were inactivated by incubation in 0.01 M HCl for 20 min at room temperature, followed by 

washing in MilliQ water and 96% ethanol.  

Prior to hybridization, the filters were cut into small sections. These sections were 

hybridized in a humidity chamber for 2 h at 46 °C. The hybridization buffer consisted of 0.9 M 

NaCl; 20 mM Trsi HCl, pH 8.0;  0.02% sodium dodecyl sulfate (SDS); 1% Blocking Reagent 

(Roche, Basel); 10% dextran sulfate and a variable concentration of formamide depending on 

probe (see Table 11) The hybridization buffer was mixed in a ratio of 150:1 with probe working 

solution (50 ng DNA µL-1). Filters were then incubated in a prewarmed washing buffer 

composed of 5 mM EDTA, pH 8.0; 20 mM Tris HCl, pH 8.0; 0,01% SDS and a variable 
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concentration of NaCl, at 48 °C for 10 min. Followed by an incubation in 1xPBS for 15 min at 

room temperature for catalyzed reporter detection.  

The amplification buffer (1xPBS; 0.1% Blocking Reagent; 2 M NaCl; 10% dextran sulfate) 

was first mixed in a ratio of 100:1 with H2O2 solution (0.15% in PBS), then Alex488-labeled 

tyramide was added in a ratio of 1000:1. Filter pieces were covered with the amplification mix, 

put in a humidity chamber and incubated at 46 °C for 30 min in the dark. After incubation, the 

samples were transferred to 1xPBS for 10 min, washed in excess MilliQ water and then 

dehydrated in ethanol and air-dried in the dark.  

Sections were counterstained with 4',6-diamidino-2-phenylindole (DAPI; 1 µg mL-1) for 

5 min, afterwards washed in MilliQ water, 96% ethanol to remove unspecific staining and air-

dried in the dark before staining with either AB or CBBG. 

 

TEP and CSP were visualized on separate filter sections. Slight modifications of the instructions 

by Engel (2009) were used to obtain quantitative microscopic analysis of TEP and CSP, 

respectively. TEP were stained on filter sections with AB working solution. Filter sections were 

fully covered with the dye (500 mL) for about 30 s. CSP were stained for 90 s with CBBG 

working solution. All filter sections were then rinsed with MilliQ  water, air-dried in the dark, 

mounted onto Cytoclear slides in a mixture of four parts Citifluor and one part Vecta Shield, 

and stored at -20 °C in the dark.  

Image acquisition was done within a week after staining by using an Eclipse 50i 

epifluorescent microscope (Nikon Instruments, Tokyo, Japan) equipped with a camera 

(Axiovision, Zeiss, Germany). 

To analyze the free-living bacterial fraction fields without any cell accumulations were 

enumerated by switching between green-light excitation to visualize probe labelled bacteria 

and UV light to visualize DAPI stained bacteria. At least 500 DAPI stained cells per probe and 

sample were counted. For analyzing the bacterial community on either TEP or CSP, first blue 

stained particles were identified under visible light. Then DAPI stained and probe labelled cells 

were directly counted under the microscope. A first picture was taken under visible light, a 

second under UV light, and a third under green-light excitation. Approximately 20 TEP and CSP 

particles per probe and sample were evaluated. 
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Table 11: HRP-labeled probes used in this study  

 

 

 

2.7 Extracellular Polymeric Substances 

As part of this study, both TEP and CSP were assessed in terms of abundance, area, 

concentration, carbon content and size frequency distribution within ice cores and in terms of 

concentration over the course of the experiment. In order to quantify these naturally 

transparent gel particles, two dyes were used to differentiate between TEP and CSP. Both 

particle categories were analyzed microscopically and photometrically following the 

instructions by Engel (2009) and Cisternas-Novoa et al. (2014).  

 

2.7.1 Alcian Blue Solution 

Aqueous AB solution was used to stain TEP. AB is a cationic dye that binds electrostatically to 

negatively charged residues of acidic mucopolysaccharides, in particular to carboxyl and 

sulfate groups (Decho, 1990). 

 

Prior to the expedition, AB stock solution (97 mL  MilliQ water, 3 mL acetic acid, 1 g Alcian Blue 

(8GX, Sigma)) was diluted in MilliQ water in a ratio of 1:50 (vol:vol), yielding a working solution 

of 0.02% AB solution at pH 2.5. The working solution was stored at 4 °C in the dark. Directly 

Probe Target organisms Sequence (5’ -> 3’) FA1 [%] Reference 

EUB338-I Bacteria GCTGCCTCCCGTAGGAGT 35 Amann et al. 1990 

NON338 control ACTCCTACGGGAGGCAGC 35 Wallner et al. 1993 

BET42a β-subgroup of Proteobacteria GCCTTCCCACTTCGTTT 35 Manz et al. 1992

comp Gam42a Competitor for BET42a, targets 23S rRNA GCCTTCCCACATCGTTT 35 Manz et al. 1992

GAM42a ɣ-subgroup of Proteobacteria GCCTTCCCACATCGTTT 35 Manz et al. 1992 

comp Bet42a Competitor for GAM42a, targets 23S rRNA GCCTTCCCACTTCGTTT 35 Manz et al. 1992

    Alt1413 Alteromonas / Colwellia TTTGCATCCCACTCCCAT 40 Eilers et al. 2000 

    PSA184 Pseudoalteromonas/ Colwellia CCCCTTTGGTCCGTAGAC 30 Eilers et al. 2000 

        GLAC227 Glaciecola AATCTCGCTTAGGCCACT 30 unpublished Kassabgy, Fuchs

    MB-IC022a Marinobacter  sp. strain  IC022 group GTTTCCGCCCGACTTGCA 25 Brinkmeyer et al. 2003

    comp MB-IC022a Competitor for MB-IC022 GTTTCCGCTCGACTTGCA 25 Brinkmeyer et al. 2003

    SF825 Shewanella frigidimarina AAGTCACCAAACTCCGAG 10 Brinkmeyer et al. 2003

CF319a Bacteroidetes TGGTCCGTGTCTCAGTAC 35 Manz et al., 1996 

    POL740 Polaribacter CCCTCAGCGTCAGTACATACGT 35 Malmstrom et al. 2007 

ROS537 Roseobacter  clade CAACGCTAACCCCCTCC 35 Eilers et al. 2001

PLA46 Planctomycetes GACTTGCATGCCTAATCC 30 Neef et al. 1998 
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before usage, AB working solution was filtered through 0.2 µm syringe filters (Minisart; 

Sartorius, Göttingen, Germany) to remove dye particles that may have formed spontaneously 

in the solution.  

 

2.7.2 Coomassie Brilliant Blue G 

Aqueous CBBG was used to stain CSP. CBBG is an unspecific protein-binding dye that binds to 

alkaline residues of amino acids (Long & Azam, 1996). Stock solution was prepared on board 

by adding 1 g Coomassie Brilliant Blue G (Serva, Heidelberg, Germany) to 100 mL MilliQ water. 

CBBG working solution was prepared freshly prior to staining by diluting the stock solution 

with 0.2 µm filtered (Minisart, Sartorius) seawater in a ratio of 1:25, giving a 0.04% CBBG 

solution.  

 

2.7.3 TEP and CSP Filtration 

Melted sea ice was filtered onto 0.4 µm PC-filters (25 mm diameter; Whatman, Maidstone, 

USA) at low and constant vacuum (< 150 mmHg). For microscopic analysis 30 to 60 mL were 

filtered, whereas for photometric analysis 25 mL (experiment) and 150 mL (stations) were 

filtered.  

Immediately after the filters fell dry, vacuum was released and 750 µL AB working solution 

for staining TEP or CBBG working solution for staining CSP was added and allowed to react 

with the material on the filter for approximately 4 and 30 s, respectively. Then the vacuum 

pressure was reestablished to remove excess stain and the filters were rinsed with MilliQ 

water.  

Between filtration of samples, filter holders and funnels were rinsed with MilliQ water. 

Filters for microscopic analysis were prepared in duplicates, filters for photometric analysis in 

triplicate. Blank filters were prepared for every station and sampling event of the experiment 

from MilliQ water.  

For microscopic analysis filters were mounted sample side up onto CytoClear slides with a 

drop of immersion oil underneath and on top. CytoClear slides are glass slides that are glazed 

on one side that removes the interference with the filter pores under bright field and 
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epifluorescence microscopes. Thus, particles can be viewed directly on the filter. Before 

storing the slides a cover slip was put on top. For photometric analysis filters were folded 

twice and stored in Eppendorf cups at -20 °C. 

 

2.7.4 Microscopic Analysis of TEP and CSP 

The microscopic analysis gives an estimate of the abundance and size frequency distribution of 

a certain class of gel particles. Filters were transferred to a compound light microscope 

(Axioskop 2 plus; Zeiss, Oberkochen, Germany) equipped with a digital camera (AxioCam HRc, 

Zeiss) and a PC. Using the software AxioVision (version 4.6, Zeiss), filters were screened at 

100x magnification and 30 pictures per filter were randomly taken in a cross section (15 

pictures on the vertical axis, 15 pictures on the horizontal axis).  In addition, five pictures were 

taken randomly to have spare photos in case that phytoplankton cells disturb the analysis.  

Then, the image analysis software WCIF ImageJ (Version 1.44, Public Domain, developed 

at the US National Institutes of Health, courtesy of Wayne Rasband, National Institute of 

Mental Health, Bethesda, Maryland) was used to semi-automatically analyze particle number 

and area.  

First, all pictures of each filter were stacked and split into their color channels red, green 

and blue. All but the red channel was discarded, since here the contrast between particle and 

background is highest. After manually choosing a threshold range that tries to encompass all 

stained gels but no other particles, the minimum area size to be analyzed was set to 0.2 µm2.  

Finally, ImageJ calculated area and size for each individual particle. The number of 

counted particles on approximately 30 pictures was extrapolated to full filter size and per 

volume of sample using the formula: 

 

𝑁 (𝐿−1) =  −
𝐴𝑝 × 𝑛

𝑏 × 𝑀 × 𝑉
 

 

where Ap is the total filter area (mm2) stained with AB or CBBG solution, n the number of 

exopolymeric particles counted, b the number of fields examined, M the area size of one field 

of view (mm2), and V the volume (L) of sample. Total area per filter and volume was calculated 

accordingly.  
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2.7.5 Colorimetric Method for Analyzing TEP and CSP 

2.7.5.1 Colorimetric Method for Analyzing TEP 

The principle of TEP colorimetry is to photometrically determine the amount of AB dye bound 

to transparent exopolymeric particles in a sample. Comparing the absorption values to those 

of a standard reference yields estimates of TEP concentration. Gum Xanthan (G-1253; Sigma) 

was used as a standard. Therefore, AB stained filters were transferred into acid-resistant 

tubes, 6 mL of 80 % H2SO4 was added and tubes were tightly sealed. The tubes were agitated 

to ensure that the whole filter is covered by the acid. During incubation for 2 h, particulate 

organic matter (POM) is decomposed while AB is released from its binding sites. About 2 times 

during incubation tubes were agitated gently. Afterwards, the absorbance of the amount of 

AB was measured with a photometer (Spectronic Genesys 5; Milton Roy, Philadelphia, USA) at 

787 nm in a 1 cm cell against sulfuric acid (80% H2SO4). TEP concentrations are given in 

micrograms of Gum Xanthan equivalents per liter (µg Xeq. L-1) and calculated using: 

 

                                                   𝑇𝐸𝑃 (µg Xeq. L-1)=
(𝐸787− 𝐶787)

𝑉
 × 𝐹(𝑥) 

 

where E787 is the absorption of the sample at 787 nm, C787 the absorption of the blank at 

787 nm, V is the volume in L and F is the calibration factor determined for the standard 

polysaccharide Gum Xanthan. 

 

2.7.5.1.1 Calibration of AB Solution 

For the calibration of the AB working solution the exact concentration of stain needs to be 

determined using the standard polysaccharide Gum Xanthan. Gum Xanthan is a 

heteropolysaccharide that contains D-glucuronic acid and is produced by the bacterium 

Xanthomonas campestris. The amount of AB absorbed is directly related to the weight of the 

standard. The calibration factor is the slope of the linear relationship between the weight of 

the standard polysaccharide and the amount of stain absorbed. Using the calibration factor, 

the equivalent mass of Gum Xanthan is calculated from the sample absorption.  
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The standard was prepared by adding 15 mg Gum Xanthan to 200 mL MilliQ water. The 

solution was allowed to swell for 15 min. To obtain a size distribution of the polysaccharide 

similar to what is expected for TEP, the solution was treated with a tissue grinder.  

 

A 5-point calibration was carried out with volumes 0.5, 1, 2, 3, and 4 mL of standard solution. 

Triplicate filters of each volume were stained and analyzed according to TEP filtration and the 

colorimetric method, respectively, as explained above. Three blank filters were prepared to 

determine AB adsorption to the filter.  

For determination of Gum Xanthan weight retained on the filter, a second series of the 

aforementioned volumes was filtered onto preweighed 0.4 µm PC-filters. Five replicate filters 

were prepared for each volume of standard solution. After filtration, filters were dried at 60 °C 

for 12 hours, cooled to room temperature and stored in a dessicator.  

Prior to weighing, filters were allowed to equilibrate with temperature and moisture in 

the room. The weight of each filter was determined three times before and after filtration 

using a Mettler Toledo UMX-2 microbalance (1 µg accuracy; Mettler Corp., Germany). 

Electrostatic charges of dry Nuclepore filters were neutralized by an ionization system before 

weighing (Haug PRX U Small SET; Haug Corp., Germany). Filters were kept in combusted glass 

petridishes during all times to avoid contamination (Engel, 2009). To retrieve the weight (Wi) 

of Gum Xanthan on the filters for the respective volumes, the average weight of empty filters 

(Wfe) is subtracted from the average weight of filters containing Gum Xanthan (Wfi). To 

account for weight fluctuations due to moisture change, the average weight of blank filters 

(Wbl1 - Wbl2) is also subtracted: 

 

𝑊𝑖 = (𝑊𝑓𝑖 − 𝑊𝑓𝑒) − (𝑊𝑏𝑙1 − 𝑊𝑏𝑙2) 

 
The calibration factor F(x) of the standard is calculated from the slope of the regression of 

weight (µg) against the corresponding absorbance (ABS): 

 

𝑓(𝑥) =
∆𝑊

∆𝐴𝐵𝑆
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2.7.5.1.2 TEP-Carbon Determination 

TEP-Ccolor was estimated using the following relationship: 

 
𝑇𝐸𝑃 − 𝐶𝑐𝑜𝑙𝑜𝑟 = 0.75 × 𝑇𝐸𝑃𝑐𝑜𝑙𝑜𝑟 

 

where the carbon content of TEP is given in µg and TEPcolor in µg Xeq. (Engel & Passow, 2001). 

As species-specific differences were statistically significant, this relationship assumes that the 

polysaccharide composition of TEP is similar to that released by the mix of diatoms used 

during the study (Engel & Passow, 2001). 

 

2.7.5.2 Colorimetric method for analyzing CSP 

This method is analogous to the colorimetric method for TEP determination in many ways and 

follows the description by Cisternas-Novoa et al. (2014) with minor modifications. The amount 

of CBBG dye bound to CSP is determined. By comparing absorption values to those of a 

standard reference, estimates of CSP concentration are yielded. Therefore, CBBG stained 

filters were transferred into acid-resistant tubes. To elute CBBG dye, 6 mL of extraction 

solution (3% SDS in 50% isopropyl alcohol) was added. The tubes were sonicated in a water 

bath (35 kHz) for 2 h at 37 °C. Afterwards, the absorbance of the amount of CBBG was 

measured with a photometer (Spectronic Genesys 5; Milton Roy, Philadelphia, USA) at 615 nm 

in a 1 cm cell against the extraction solution. CSP concentrations are given in micrograms of 

Bovine serum albumin (BSA) equivalents per liter (µg BSAeq. L-1) and calculated using: 

                    

                                 𝐶𝑆𝑃 (µg BSAeq. L-1)=
(𝐸615− 𝐶615)

𝑉
 × 𝐹(𝑥) 

 
where E615 is the absorption of the sample at 615 nm, C615 the absorption of the blank at 

615 nm, V is the volume in L and F is the calibration factor determined for the standard 

protein BSA. 
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2.7.5.2.1 Calibration of CBBG Solution 

For the calibration of the CBBG working solution the exact concentration of stain needs to be 

determined using the standard protein BSA. BSA is a serum albumin protein derived from 

cows. The amount of CBBG absorbed is directly related to the weight of the standard. The 

calibration factor is the slope of the linear relationship between the weight of the standard 

protein and the amount of stain absorbed. Using the calibration factor, the equivalent mass of 

BSA is calculated from the sample absorption.  

The stock solution of the standard was prepared by adding 1 mg BSA (Sigma) per mL 

MilliQ water. The solution was homogenized by stirring for 30 min. To form gel aggregate 

particles, the BSA solution was first put in a heating bath at 85 °C for 2 h, immediately cooled 

in a water bath at 25 °C and refrigerated overnight at 4 °C. Second, the solution was treated 

with a tissue grinder to break apart excessively large aggregates. A set of five calibration 

standards of increasing concentration (16, 32, 80, 200, and 400 µg mL-1) was prepared by 

diluting the BSA stock with MilliQ water. 

 

The calibration of the CBBG solution is similar to the calibration of the AB solution with slight 

modifications. A 5-point calibration was carried out with the aforementioned concentrations 

of BSA solution. Triplicate filters of each volume were stained and analyzed according to CSP 

filtration and the colorimetric method, respectively, as explained above. Three blank filters 

were prepared to determine CBBG adsorption to the filter.  

For determination of BSA weight retained on the filter, a second series of the same 

concentrations was filtered onto preweighed 0.4 µm PC-filters. Five replicate filters were 

prepared for each volume of standard solution. After filtration, filters were treated and 

weighed in the same manner as mentioned above. To calculate the weight of BSA (Wi) on the 

filters for the respective volumes and the calibration factor F(x) of the standard, same 

equations were used as for Gum Xanthan.  

 

http://en.wikipedia.org/wiki/Serum_albumin
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2.8 Statistical Analyses 

Statistical analyses were performed using SigmaPlot (Systat Software Inc., San Jose, USA). 

Potential relationships between TEP, CSP and bacterial measurements with sea ice parameters 

were tested using multiple linear regression. The equality of the variances and the normality 

of the residuals were tested by a Brown-Forsythe test and a Shapiro-Wilk test, respectively.  

Differences in sea ice parameters between bottom and top ice core sections as well as 

between different ice types were tested using one-way analysis of variance (ANOVA). When 

the assumptions of ANOVA were not satisfied, a Kruskal Wallis ANOVA on ranks was 

performed.  

For statistical analysis the three experiments were handled as individual replicates 

although they were performed with melted ice of different ice types (Table 2), since overall 

the ice type did not have a significant effect on the bacterial community composition living 

either free or particle attached. Paired t-tests were used to test for differences in the relative 

abundance of single probes (i) in the free living bacterial fraction during the course of the 

experiment, (ii) of attached bacteria between particle types and the free living fraction, and 

(iii) of the overall particle-attached and free living bacterial fraction. 
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3.1 Stations 

3.1.1 Environmental and Physical Sea Ice Parameters 

On the transect from the Greenland side of Fram Strait to Svalbard during Polarstern cruise 

PS 85 in June 2014 (Fig. 4), sea ice was sampled at in total 10 stations (Table 12). Sampled sea 

ice differed greatly in its size, thickness and snow cover.  Ice thickness ranged from 69 

(station 7) to 272 cm (station 5). Snow coverage was lowest at station 3 (3 cm) and highest at 

station 5 (27.5 cm). 

For comparison of different ice types, station 7 and 8 were grouped as small ice floes. 

Both were floating on warm Atlantic waters and were thinner than one meter. They can be 

considered to be rapidly melting ice floes since their under-ice water temperatures were 

above 0 °C. Small ice floes are thinner than either large ice floes and landfast ice (one-way 

ANOVA; p < 0.001 and 0.008 respectively), warmer than the other ice types (p < 0.001) and 

clearer than the other ice types, with higher light transmission through the ice (p < 0.001 and 

0.011, respectively).  Salinity was lowest in large ice floes (median 3.6) significantly different 

from landfast ice (p = 0.038). Except for small ice floes, under-ice water temperature was 

below 0 °C. Ice core temperatures were highest for large ice floes and lowest for landfast ice 

(median -0.71 and -0.99 °C, respectively). Except for station 2 and 3, the bottom half of ice 

cores were colder than the top.  
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Table 12: Environmental and physical parameters (average ± SD) within sea ice core sections of the 

sampling sites 

 

 

3.1.2 Biotic and Abiotic Sea Ice Parameters 

Total bacterial counts of bottom 5 cm sections ranged from 0.2x108 cells L-1 (very small ice 

floe) to 8.6x108 cells L-1 (landfast; Table 13). Lowest numbers were found for small ice floes 

significantly different from large ice floes and landfast ice (p < 0.001) as shown in Fig. 6.  

Chlorophyll a, particulate organic carbon (POC) and particulate organic nitrogen (PON) 

concentrations were lowest in small ice floes. Chlorophyll a measurements show highest 

values in large ice floes, whereas, POC and PON were highest in landfast ice. POC:PON ratios 

were statistically similar between different sea ice types, ranging from 7.6 for landfast ice to 

8.0 for large ice floes. In large ice floes and landfast ice, chlorophyll a concentrations were 

higher in bottom than top sections, with significantly higher values only for chlorophyll a 

smaller than 10 µm (median 0.33 and 0.05 µg L-1, respectively, p = 0,047). In small ice floes, 

higher concentrations of chlorophyll a were generally found in the top half of ice cores (one 

exception for chlorophyll a bigger than 10 µm at station 8). PON and POC concentrations over 

Ice Snow Trans- UIW

Ice thickness coverage miss ion temp. Core

Station Longitude N Lati tude type cm cm % °C section

Bottom -1,56 ± 0,23 4,53 ± 2,14

Top -0,99 ± 0,59 5,02 ± 0,62

Bottom -0,56 ± 0,30 4,42 ± 1,23

Top -0,84 ± 0,34 5,57 ± 1,28

Bottom -0,36 ± 0,24 3,54 ± 1,41

Top -1,06 ± 0,36 4,30 ± 0,81

Bottom

Top

Bottom -0,21 ± 0,26 3,91 ± 0,69

Top -0,14 ± 0,13 4,65 ± 0,76

Bottom -1,32 ± 0,25 3,60 ± 0,44

Top -1,07 ± 0,59 3,76 ± 1,17

Bottom -0,85 ± 0,16 3,42 ± 0,34

Top -0,66 ± 0,22 1,76 ± 1,42

Bottom -0,80 ± 0,10 4,23 ± 0,51

Top -0,41 ± 0,22 5,05 ± 1,04

Bottom -1,06 ± 0,15 5,02 ± 0,55

Top -0,65 ± 0,23 4,13 ± 1,48

Pos ition temperature

2  77 45.609  16 3.58W Landfast 190 -1,654 2,6

1  78 15.915  14 42.859W Landfast 135 9 2,8

Sal ini ty°C

3 2,73  78 49.0  8 46.167W Large floe 164 -1,36

27,5 0,85  78 52.091  4 29.551W Large floe 272 -1,64

24 1,86  78 30.403  2 47.951W Large floe 177 -1,42

4 10,27  79 3.044  4 9.188E Very s . floe 69 1,30

5 5,98  79 2.428  4 18.576E Smal l  floe 89 1,00

9 3,79  79 45.284  4 18.279E Large floe 173 -1,68

20 1,910  78 48.175  2 00.996W Large floe 213 -1,06

Ice core
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all stations were similar for the top and bottom half of ice cores. If differentiated by sea ice 

type, POC and PON dominated in the bottom section of landfast ice and in the top section of 

small ice floes, except for POC at station 8. In large ice floes, POC and PON were equally 

distributed within the ice.  

Bottom section of station 2 yielded much higher concentrations for chlorophyll a, POC and 

PON than all other stations. Since high concentrations were present in several 10 cm 

subsections of the bottom half of ice core, data were not excluded from further analysis. 

 

Table 13: Concentrations (average ± SD) of biotic parameters and particulate organic nitrogen (PON) and 

carbon (POC) within sea ice core sections of the sampling sites. Chlorophyll a (Chla) 

 

 

Core

Station section

Bottom 0,316 ± 0,541 0,259 ± 0,477 0,052 ± 0,057 88 ± 33 556 ± 232

Top 0,060 ± 0,058 0,050 ± 0,057 0,010 ± 0,003 80 ± 32 545 ± 221

Bottom 1,575 ± 0,730 0,893 ± 0,752 0,682 ± 0,244 157 ± 38 1500 ± 646

Top 0,084 ± 0,023 0,052 ± 0,021 0,032 ± 0,016 89 ± 14 720 ± 236

Bottom 0,953 ± 1,024 0,390 ± 0,455 0,564 ± 0,573 80 ± 34 523 ± 269

Top 0,106 ± 0,069 0,055 ± 0,031 0,051 ± 0,045 65 ± 6 538 ± 36

Bottom 0,929 ± 0,705 0,397 ± 0,407 0,532 ± 0,302 71 ± 12 605 ± 65

Top 0,058 ± 0,034 0,036 ± 0,024 0,022 ± 0,016 82 ± 38 703 ± 222

Bottom 0,986 ± 0,961 0,289 ± 0,385 0,697 ± 0,677 77 ± 59 651 ± 553

Top 0,045 ± 0,023 0,030 ± 0,015 0,015 ± 0,009 74 ± 22 467 ± 152

Bottom 0,906 ± 0,778 0,367 ± 0,267 0,539 ± 0,553 69 ± 62 556 ± 449

Top 0,059 ± 0,017 0,041 ± 0,016 0,018 ± 0,006 63 ± 18 618 ± 182

Bottom 0,068 ± 0,035 0,044 ± 0,014 0,023 ± 0,032 56 ± 5 436 ± 30

Top 0,077 ± 0,048 0,046 ± 0,016 0,030 ± 0,029 85 ± 39 635 ± 325

Bottom 0,207 ± 0,125 0,088 ± 0,065 0,119 ± 0,084 63 ± 9 473 ± 66

Top 0,216 ± 0,203 0,134 ± 0,177 0,082 ± 0,108 62 ± 20 435 ± 159

cell number Total  Chla

2 8,6 ± 2,9

3 3,1 ± 1,0

5 1,5 ± 0,6

6 3,6 ± 1,0

7 0,2 ± 0,2

8 0,4 ± 0,3

9 3,1 ± 0,9

10

< 10 µm Chla > 10 µm Chla PON POC

Bacterial

µg N L-1 µg C L-1108 L-1 µg L-1 µg L-1 µg L-1

1 1,5 ± 0,6
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Figure 6. Bacterial counts in different sea ice types. Average of stations (small floe and landfast n = 2, large 

floe n = 4) with standard error. Bars topped with different letters are statistically different. 

 

3.1.3 TEP and CSP Number, Area and Concentration in Sea Ice 

Over all, transparent exopolymeric particle (TEP) and Coomassie stainable particle (CSP) values 

including particle number, area and photometric measurements were lowest for small ice 

floes and highest for landfast ice. TEP area only showed the highest values in large ice floes 

(Table 14).  CSP number and area were significantly lower in small ice floes compared to large 

ice floes and landfast ice (Fig. 7).  

Over all stations, TEP microscopy yielded higher values for bottom sections, whereas 

values obtained photometrically did not show a difference between bottom and top sea ice 

sections. No difference in CSP values between bottom and top were detected, except for CSP 

area; here, values are higher for the top section of sea ice cores.  

If differentiated by sea ice type, all TEP measurements show the same pattern. Top half 

sections of small ice floes harbor higher values of TEP, whereas bottom sections show higher 

values for large ice floes and landfast ice. CSP measurements yielded less consistent results. 

Although values are highest in top sections of small ice floes, too, CSP values are higher in 

bottom or top sections of large ice floes and landfast ice depending on station and method. 
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 Carbon content of TEP follows the pattern of TEP photometry. TEP-carbon contribution to 

POC ranges from 10 to 24% (median 20%), with no apparent pattern. 64% of TEP-C variability 

can be explained by POC concentrations (Fig. 8). 

 

Differentiated by top and bottom half of sea ice, analysis of particle area and number of 

particulate extracellular polymeric substances (pEPS) yielded higher values for TEP in the 

bottom half section. In the top half of ice cores particle number is greater for TEP, whereas 

particle area is greater for CSP. Thus, TEP seems to dominate in the bottom half of arctic sea 

ice sampled during early summer. In contrast, CSP seems to dominate in terms of particle area 

and TEP dominates in terms of number in the upper half of sampled sea ice. 

 

Table 14: Total number, area and concentration (average ± SD) of TEP and CSP within sea ice core sections 

of the sampling sites 

 

 

Core Number Area % TEP-C Number Area

Station section 108 L-1 103 µm2 L-1
of POC 108 L-1 103 µm2 L-1

Bottom 21,5 230 160 ± 5 120 ± 4 22 0,7 401 364 ± 0

Top 0,2 18 166 ± 7 125 ± 6 23 1,3 489 458 ± 3

Bottom 59,4 529 207 ± 23 155 ± 17 10 0,9 348 803 ± 27

Top 1,4 147 118 ± 23 89 ± 17 12 1,4 392 393 ± 19

Bottom 1,1 305 140 ± 15 105 ± 11 20 1,1 205 388 ± 3

Top 13,5 317 150 ± 9 112 ± 6 21 0,7 338 367 ± 28

Bottom 19,2 279 149 ± 13 112 ± 10 18 0,5 310 388 ± 10

Top 1,2 158 159 ± 4 119 ± 3 17 0,7 525 378 ± 38

Bottom 2,2 386 144 ± 7 108 ± 5 17 1,0 518 489 ± 48

Top 1,0 195 144 ± 14 108 ± 10 23 0,7 236 447 ± 65

Bottom 2,5 695 155 ± 7 116 ± 5 21 1,0 224 553 ± 74

Top 1,0 129 132 ± 23 99 ± 17 16 0,3 376 347 ± 18

Bottom 0,3 142 137 ± 0 103 ± 0 24 0,1 118 362 ± 15

Top 0,5 213 162 ± 10 121 ± 7 19 0,3 97 471 ± 17

Bottom 0,4 54 102 ± 1 77 ± 1 16 0,2 132 360 ± 48

Top 0,5 82 140 ± 4 105 ± 3 24 0,2 277 391 ± 32

TEP Microscopy Photometry CSP Microscopy Photometry

TEP-C CSP

µg Xeq.L-1 µg L-1 µg BSAeq.L-1

8

9

10

1

2

3

6

7



III Results 

- 48 - 

 

Figure 7
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Figure 7. CSP number and area in different sea ice types. Average of stations (small floe and landfast n = 4, 

large floe n = 8) with standard error. Almost significant differences between all sea ice types for CSP number 

(one way ANOVA; small versus large p < 0.001, small versus landfast p = 0.007, large versus landfast p = 

0.061). CSP area of small ice floes is significantly different from large ice floes (p = 0.024) and landfast ice (p 

= 0.014).  
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Figure 8. Relationship between photometrically determined TEP-carbon and particulate organic carbon 

(POC) based on data from all stations. The adjusted r2 is 0.640, n = 18, p < 0.001. 
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3.1.4 Correlation of TEP, CSP and Bacteria with Sea Ice Parameters 

Relevant sea ice parameters were compared statistically to TEP, CSP and bacterial cell 

numbers via multiple regression to explore any relationships within sea ice. Results are listed 

in Table 15. Adjusted r2 is a measure of the percentage of variation that can be explained by 

the independent variables that actually affect the dependent variables. Fig. 9 shows linear 

regressions of the highest correlations of TEP and CSP with sea ice parameters. Neither TEP 

nor CSP measurements show any significant correlation to ice core temperature, snow 

coverage or salinity.  

Most of the variation within TEP (number, area and concentration) can be explained by 

chlorophyll a (total, bigger and smaller than 10 µm), POC (except for area) and PON (except 

for area) concentrations, with highest values for TEP number with POC (69.4%), TEP area with 

total chlorophyll a (55.1%) and TEP concentration with chlorophyll a bigger than 10 µm 

(85.3%).  

For CSP (number and area) most of the variation can be explained by under-ice water 

temperature (only correlated to bottom half section), transmission of light through the ice 

(both being negatively correlated), ice type and ice thickness, with highest values for under-ice 

water temperature (72.9% for number and 50.6% area).  

TEP number and concentration seems to be mainly driven by biotic and abiotic factors 

(TEP area only by biotic factors), whereas variations in CSP area and number can be explained 

by physical parameters. However, CSP concentration shows the same pattern as TEP, 

possessing strongest correlation with POC (66.8%). 

 

Bacterial cell numbers are well correlated with TEP (number, area and concentration) as well 

as CSP concentration as shown in Fig. 10, with highest value for the correlation with TEP area 

(83.1%). Furthermore, ice type and under-ice water temperature explain a part of the 

variation in bacterial cell number by 47.6% and 36.8%, respectively.  
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Table 15: Linear regressions of TEP, CSP and bacterial measurements with sea ice parameters,  

biotic and abiotic factors of all stations  

 

Dependent Ice type Ice thickness UIW temp. Transmission  Core section 

parameter Adj r
2
 p Adj r

2
 p Adj r

2
 p Adj r

2
 p Adj r

2
 p 

TEP number 0,173 0,061 n.s. n.s. n.s. n.s. 

TEP area n.s. 0,220 0,038 n.s. n.s. 0,191 0,051 

TEP concentration n.s. n.s. n.s. n.s. 0,429 0,002 

CSP number 0,605 < 0,001 0,293 0,018 0,729 0,009 0,345 0,01 n.s. 

CSP area 0,409 0,005 0,232 0,034 0,506 0,044 0,409 0,005 n.s. 

CSP concentration n.s. n.s. n.s. n.s. n.s. 

Bacteria 0,476 0,002 n.s. 0,368 0,013 0,163 0,068 - 

 

Dependent > 10 µm Chla < 10 µm Chla Total Chla PON POC Bacteria 

parameter Adj r
2
 p Adj r

2
 p Adj r

2
 p Adj r

2
 p Adj r

2
 p Adj r

2
 p 

TEP number n.s. 0,661 < 0,001 0,388 0,006 0,670 < 0,001 0,694 < 0,001 0,723 0,009 

TEP area 0,538 < 0,001 0,458 0,002 0,551 < 0,001 n.s. n.s. 0,831 0,003 

TEP concentration 0,853 < 0,001 0,748 < 0,001 0,827 < 0,001 0,799 < 0,001 0,640 < 0,001 0,742 0,008 

CSP number n.s. n.s. n.s. n.s. n.s. n.s. 

CSP area n.s. n.s. n.s. n.s. n.s. n.s. 

CSP concentration 0,307 0,015 0,581 < 0,001 0,467 0,002 0,662 < 0,001 0,668 < 0,001 0,810 0,004 

Bacteria n.s. 0,265 0,029 n.s. n.s. 0,216 0,046 - 

Adjusted r
2
 (Adj r

2
); grey numbers: almost significant; bold numbers: highest adjusted r

2
 value 

TEP/CSP number and area n = 16, TEP/CSP concentration n = 18 

bacteria n = 8, under-ice water temperature n = 8 
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Figure 9
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Figure 9. Highest correlation of (a) TEP number with POC (µg C L-1), (b) TEP area with total Chla (µg L-1), (c) 

TEP (µg Xeq. L-1) with > 10 µm Chla (µg L-1), (d) CSP number with under-ice water temperature (°C), (e) CSP 

area with under-ice water temperature (°C), and (f) CSP (µg BSAeq. L-1) with POC (µg C L-1). The adjusted r2 

are given in Table 16. Regressions (a) and (f) were dragged by one outlier only. Outlier bottom section of 

station 2 was not excluded from analysis as explained in section 3.1.2.  
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Figure 10
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Figure 10. Significant results of the linear regression of bacterial cell number (108 L-1) with (a) TEP number, 

(b) TEP (µg Xeq. L-1), (c) TEP area, and (d) CSP (µg BSAeq. L-1). The adjusted r2 are given in Table 16.  

 

3.1.5 DGGE Analysis of Sea Ice Stations 

Denaturing gradient gel electrophoresis (DGGE) profiles of PCR amplified 16S rRNA gene 

fragments were obtained from eight sea ice stations in order to compare bacterial diversity 

and community structure of different sea ice types (Fig. 11). All bands of the same position 

between lanes were excised twice and sequenced. Table 16 lists the successfully sequenced 

bands and their closest relatives in the silva database (http://www.arb-silva.de). In general, 

the number of bands is a measure of community diversity, whereas the intensity of a band 

might tell something about the abundance. Landfast ice of station 1 and 2 look quite similar, 

with station 1 showing higher community diversity. Stations of large ice floes seem to be 

similar in diversity, but band intensity is reduced in station 6. The very small ice floe seems to 

be more reduced in diversity and intensity of bands than the small ice floe. Landfast ice and 

a 

b 

c 

d 
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large ice floes are quite similar in diversity and intensity of bands, but differing greatly in the 

upper section of lanes where mainly chloroplasts and Flavobacteria could be detected.  

In addition, melted sea ice samples were fractioned on filters of different pore size. The 

2.0 µm fraction, encompassing microbial organisms that are ≥ 2.0 µm, was chosen to exclude 

most of the free-living bacterial cells as long rods can measure up to 0.65 µm x 4.0 µm 

(Helmke & Weyland, 1995). The 0.2 µm fraction contains microbial organisms in the size range 

between 2.0 and 0.2 µm and should mainly comprise free-living bacteria. Basically, banding 

patterns and intensities of fractionated samples look similar across the different stations, but 

the diversity and intensity of bands in the lower section of lanes seems to be higher in the 

“free-living” fraction (< 2.0 µm). Highest bacterial diversity was detected in the “free-living” 

fraction of station 1 (landfast ice). DGGE profiles in general indicate that there is a high overlap 

in biodiversity between the particle-attached and free-living fraction of bacteria.  

 

Bacteria of the excised bands belonged most frequently to the γ-proteobacteria, here highest 

diversity of phylotypes was found with Glaciecola spp. as the dominant phylotype. Sequences 

retrieved from DGGE bands were closely related to members of Glaciecola spp., Alteromonas 

spp., Granulosicoccus spp., and Pseudomonas spp. (γ-proteobacteria), Polaribacter spp. 

(Flavobacteria) and the Roseobacter clade (α-proteobacteria). 
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Figure 11. DGGE profiles of 16S rRNA gene fragments of sea ice  

samples from different ice types and size classes based on different  

filters. Numbering on the right hand side of the lanes indicates the  

names of excised DGGE bands listed in Table 16 with their closest  

relative in the Silva database. The chromogram below shows the  

phyla that the excised bands belong to. 

 

 

Table 16: Sequence similarity of excised DGGE bands that appear in Fig. 11 and 14 based on SINA sequence 

alignment 

α-proteobacteria 
β-proteobacteria 
γ-proteobacteria 
Flavobacteria 
Acidobacteria 
Sphingobacteria 
Planctomycetes 
Chloroplast 
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3.2 Experiments 

The experiments were conducted to study if the presence of pEPS influences the bacterial 

community composition. Therefore, melted sea ice samples were treated differently (see 

section 2.2). Treatment “precursor” samples should only contain dissolved organic matter 

(potential particle precursors), whereas the “bubbled” treatment, which was air ventilated 

throughout the whole experiment, should contain precursors as well as pEPS. The control is 

the undiluted natural sea ice inoculum of the respective experiment.  

Experiment 1 was conducted with landfast ice, experiment 2 and 3 with sea ice from large 

floes. Since there was no significant difference detected for any of the parameters measured 

between landfast ice and large sea ice floes, the three experiments were handled as replicates 

for further analysis.  

 

3.2.1 TEP, CSP Concentration and Bacterial Abundance 

Bacterial cell numbers increased tremendously from day zero to day four by 464% (±24
115) and 

640% (±86
209) in the “precursor” treatment and control, respectively, but stayed constant for 

the “bubbled” treatment (increase of 0% ±11
34; Fig. 12). Thus, bacterial cell growth seems to be 

strongly repressed by air ventilation. Significantly highest bacterial cell numbers were 

detected in controls after four days of incubation (Table 17).  

TEP and CSP concentrations of different treatments within an experiment show similar 

patterns over time. Concentrations of TEP were highest in experiment 1, but over all there is 

no significant difference between experiments, treatments or days (three-way ANOVA). TEP 

concentrations correlate positively with bacterial cell numbers, explaining 48% (p < 0.001) of 

variation in bacterial abundance (Fig. 13). Concentration of CSP in the controls was similar 

between experiments and days. Treatments “bubbled” and “precursor” yielded negative 

values for CSP concentration. This might be due to comparably low sample volumes of 25 mL 

(150 mL for stations) and possible contaminated MilliQ water (onboard MilliQ filtration device 

did not run properly) that was used for blanks. Therefore, it can only be stated that there is no 

significant difference between treatments and days within experiment 1. Although the 

photometric determination of TEP and CSP seems to be highly susceptible to high standard 
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deviations and blanks, resulting in negative concentrations for CSP, TEP and CSP 

concentrations can be compared between treatments within the same experiment and day.  

TEP and CSP concentrations were usually highest in the undiluted control and similar in 

the “precursor” and “bubbled” treatment. This indicates that the incubation of flasks on 

shaking platforms (to keep solids in solution) resulted in shear stress that was strong enough 

to form pEPS from dissolved precursors. Since pEPS were generated in all treatments the 

initial concept of the experiment failed. Therefore, for the following analysis, the focus was 

put on the controls as they simulate what might happen to the bacterial community 

composition after sea ice had melted.  
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Table 17: Average values ± SD of TEP, CSP and bacterial cell number of subsamples  

taken after zero, two and four days of incubation 

 

 

 

Melted ice

and inoculum

Exp. Day Treatment from

Precursor 1166 ± 209 149 ± 32

Bubbled 1627 ± 101 154 ± 104

Control 2680 ± 310 140 ± 51

Precursor 530 ± 91 267 ± 44 1,16

Bubbled 591 ± 67 281 ± 46 0,38

Control 1109 ± 95 280 ± 112 10,90 ± 2,39

Precursor 586 ± 0 218 ± 7 3,78

Bubbled 586 ± 52 241 ± 30 0,50

Control 1387 ± 17 325 ± 32 21,76 ± 4,99

Precursor 589 ± 17 -57 ± 12 0,60

Bubbled 476 ± 81 -1 ± 23 0,50

Control 698 ± 24 213 ± 37 4,06 ± 1,11

Precursor 531 ± 26 -6 ± 28 0,96

Bubbled 501 ± 187 -277 ± 72 0,38

Control 655 ± 60 187 ± 28 2,89

Precursor 528 ± 34 158 ± 41 1,97

Bubbled 601 ± 17 205 ± 23 0,36

Control 595 ± 94 329 ± 74 16,77 ± 3,86

Precursor 200 ± 17 -514 ± 14 0,22

Bubbled 194 ± 43 -529 ± 30 0,24

Control 468 ± 140 -367 ± 65 2,40 ± 0,77

Precursor 226 ± 118 -770 ± 35 0,53

Bubbled 294 ± 140 -821 ± 16 0,27

Control 222 ± 17 -648 ± 101 2,01

Precursor 688 ± 71 -64 ± 25 1,18

Bubbled 765 ± 164 -23 ± 34 0,25

Control 785 ± 115 295 ± 20 7,19 ± 2,41
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Figure 12. Cell numbers of the free-living bacterial fraction of differently treated melted sea ice over the 

course of the experiment. Values represent average values of all experiments with standard errors. 

Bacterial cell numbers are significantly higher in the control treatment at day four compared to the other 

treatments, and to days zero and two of the same treatment (paired t-test, p < 0.001 and 0.002, 

respectively, n = 3). 
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Figure 13. Significant correlation between TEP concentration (µg Xeq. L-1) and bacterial cell number (108 L-1). 

The adjusted r2 is 0.48, n = 24, p < 0.001. 
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3.2.2 DGGE Analysis of Experiments 

DGGE profiles of PCR amplified 16S rRNA gene fragments were obtained from the three 

experiments after zero and four days of incubation. Each respective sea ice station served as a 

natural bacterial sea ice inoculum, such that we could identify changes in bacterial diversity 

and community structure between days and treatments (Fig. 11). Subsamples of the 

experiment were filtered onto 0.2 µm PC-filters. Flask 1, 2 and 3 are equivalent to treatment 

“precursor”, “bubbled” and control, respectively. All bands of the same position between 

lanes were excised twice and sequenced. Table 16 lists the successfully sequenced bands and 

their closest relatives in the silva database.  

Banding patterns after zero days of incubation are similar to the respective ice stations for 

all treatments, with less intense bands for treatments “precursor” and “bubbled” (10 mL 

inoculum were added to 100 mL filtered and autoclaved sea ice water). This indicates that no 

bacterial growth took place during preincubation of the two treatments.  

There was significant overlap in banding patterns between the different treatments and 

the inoculum after four days of incubation, with minor reductions in community diversity and 

clear reductions in abundance in the bubbled treatment. This is well in accordance with 

observed stagnant bacterial cell numbers over the course of the experiment in air ventilated 

flasks, pointing out that air bubbling affected all strains present. The high overlap in banding 

patterns indicates that the different treatments do not seem to affect bacterial community 

composition. Furthermore, there seems to be no apparent shift in bacterial sea ice community 

within four days after melting. Only two bands of experiment 1 (marked with arrows; Fig. 14) 

decreased in intensity over the course of the experiment. Both are affiliated to the marine 

group BD7-8 and were extracted from Antarctic lake water. In experiment 2 the bacterial 

diversity seems to be elevated in the “precursor” treatment after four days of incubation. 
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Figure 14. DGGE profiles of 16S rRNA gene fragments of sea ice samples from the experiments after zero 

and four days of incubation and their respective natural bacterial sea ice inoculum separated in two size 

classes (< 2 and > 2 µm). Flask 1, 2 and 3 are equivalent to treatment “precursor”, “bubbled” and control, 

respectively. Numbering on the right hand side of the lanes indicates the names of excised DGGE bands 

listed in Table 16 with their closest relative in the Silva database. Chromograms on the right hand side show 

the phyla that the excised bands belong to. 

 

3.2.3 Community Composition 

We used catalyzed reporter deposition fluorescence in-situ hybridization (CARD-FISH) to 

microscopically examine community structure and relative abundances of bacterial groups. By 

combining CARD-FISH methods with the particle specific staining techniques, DAPI-stained and 

probe-labeled bacterial cells could be directly enumerated on either TEP or CSP. Percent 

distributions of free living bacteria from the control treatment after zero (day two for 

experiment 1) and four days of incubation as well as TEP and CSP attached bacteria that 

hybridized with domain to species-specific probes are listed in Table 18. Phylogenetic groups 

detected by DGGE were also detectable with FISH in all cases.  

Most of the bacteria visualized with DAPI staining (~99%) were detectable with the 

EUB338 probe specific for bacteria. The background signal of samples observed with the probe 

NON338 was negligible (0 to 0.2%). For all substrates most of the DAPI-stained cells (89, 77, 

95, and 78% of free-living cells at day zero, day four, TEP and CSP attached bacteria, 

respectively; Fig. 15) could be assigned with probes targeting the larger phylogenetic groups 

within the domain Bacteria.  

For all substrates, highest percentage of bacterial cells (50, 44, 37, and 40%, respectively) 

was detected with the Bacteroidetes specific probe CF319a. The ɣ-proteobacteria and the β-

proteobacteria accounted for 21, 11, 25, and 15% and 8, 14, 16, and 10% of the total DAPI-

stained cells, respectively. α-Proteobacteria (in this study detected with probe ROS537 specific 

for the Roseobacter clade) were also detected, making up 9, 8, 18, and 14% of the total DAPI-

stained cells. Planctomycetes were not detectable neither with FISH nor DGGE. 

 

Figure 14 
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Table 18: Average percentages of DAPI stained cells for all horseradish-peroxidase (HRP)-labeled probes 

used in this study; Probe EUB338 targets bacteria, NON338 as negative control, ROS537 targets Roseobacter 

clade, BET42a - β-proteobacteria, GAM42a - ɣ-proteobacteria, ALT413 - Alteromonas-Colwellia, 

PSA184 - Pseudoalteromonas-Colwellia, GLAC227 – Glaciecola spp., MB-IC022a - Marinobacter spp., 

SF825 - Shewanella frigidimarina, CF319 - Bacteroidetes, POL740 - Polaribacter spp., PLA46 - Planctomycetes 

 

Exp. Day Substrate EUB NON ROS BET GAM ALT PSA GLAC MB SF CF POL PLA 

1 2 Free 99,3 0,0 3,9 13,5 29,5 2,8 21,8 27,9 < 1 < 1 49,4 16,2 < 1 

 
4 Free 97,8 0,0 2,9 22,2 15,6 9,0 26,5 24,5 < 1 < 1 42,0 41,2 < 1 

 
4 TEP 99,3 0,0 9,8 14,8 56,2 6,8 22,1 47,3 < 1 < 1 34,9 12,9 < 1 

 
4 CSP     4,3 14,0 26,9 5,7 30,1 41,8 < 1 < 1 40,7 26,0 < 1 

2 0 Free 99,6 0,0 7,8 5,8 19,4 0,0 3,0 5,7 < 1 < 1 58,6 17,4 < 1 

 
4 Free 99,4 0,0 10,9 8,0 7,1 0,3 9,4 10,7 < 1 < 1 47,2 33,1 < 1 

 
4 TEP 99,8 0,0 26,5 6,9 10,9   11,4 25,3 < 1 < 1 43,2 21,7 < 1 

 
4 CSP     16,7 10,4 14,1   30,5 27,9 < 1 < 1 37,8 20,4 < 1 

3 0 Free 98,4 0,0 15,2 6,6 15,5 0,7 4,7 3,6 < 1 < 1 40,5 14,0 < 1 

 
4 Free 99,0 0,2 8,7 12,7 9,7 0,7 8,7 23,4 < 1 2,4 42,1 35,5 < 1 

  4 TEP     34,2 16,9 19,9   15,6 20,3 < 1 < 1 49,5 16,9 < 1 

  4 CSP     37,9 14,2 13,3   14,4 21,1 < 1 < 1 40,5 21,2 < 1 
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Figure 15. Percentage of DAPI stained bacteria detected by FISH of main phylogenetic groups using probes 

ROS537 for the Roseobacter clade (α-proteobacteria), BET42a for β-proteobacteria, GAM42a for γ-

proteobacteria, and CF319a for the Cytophaga-Flavobacteria of the Bacteroidetes group. 
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A closer look at the community composition was taken using probes more specific for sea ice 

bacteria. ALT1413, PSA184, GLAC227, MB-ICO22a and SF825 belong to ɣ-proteobacteria and 

POL740 belongs to the bacteroidetes group. Most of the ɣ-proteobacteria could be assigned 

with probe GLAC227 targeting Glaciecola (Table 19). Abundances of probes SF825 targeting 

Shewanella frigidimarina (except for experiment 3, free living fraction after 4 days) and MB-

ICO22a targeting Marinobacter spp. (both ɣ-proteobacteria) were below the detection limit of 

FISH and were also not present in sequences obtained from DGGE gels.  

Application of two partially overlapping probes specific for the Alteromonas-Colwellia 

(ALT1413) and Pseudoalteromonas-Colwellia (PSA184) groups within the Colwellia assemblage 

resulted in quite different values. Probes ALT1413 and PSA184 hybridized with ~1 and ~10% of 

DAPI-stained cells in the free living fraction after zero days of incubation. This is in contrast to 

sequenced DGGE bands, here, 3 bands could be assigned to Alteromonas but none could be 

assigned to Pseudoalteromonas or Colwellia.  

ALT1413 and PSA184 match with 42 and 34% of Glaciecola sequencens. GLAC227 shares 

39 sequences (out of 41) with PSA184 but only two with ALT1413. In some cases, relative 

abundances of GLAC227 were higher than for PSA184 although GLAC227 targets no major 

outgroups and is almost entirely covered by PSA184. Higher percentages of DAPI-stained cells 

for GLAC227 cannot be explained by the two Glaciecola sequences that match with GLAC227 

but not with PSA184, since they were not extracted from polar habitats. But it might be 

explained by taking one possible mismatch into account, then, GLAC227 targets a 

Flavobacterium that was extracted from Antarctic sea ice.  

It is quite likely that the general probe GAM42a underestimates the total contribution of 

ɣ-proteobacteria to the sea ice community as it does not match with any Colwellia sequence 

targeted with ALT1413 or PSA184. Furthermore, only one Glaciecola sequence is targeted with 

both, probe GAM42a and GLAC227. Thus, in some cases, relative abundances of GLAC227 

and/or PSA184 were higher than GAM42a. 

A great proportion of Bacteroidetes could be assigned to Polaribacter, targeted with probe 

POL740. This is well in accordance with DGGE results; here, Polaribacter is the second most 

common genus. 
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Table 19: Percentage of DAPI stained cells by species-specific probes which group into the γ-proteobacteria 

 

Probe Probe target group 
Experiment 1   Experiment 2   Experiment 3 

free TEP CSP   free TEP CSP   free TEP CSP 

GAM42a  ɣ-subgroup of Proteobacteria  15,6 56,2 26,9   7,1 10,9 14,1   9,7 19,9 13,3 

    Alt1413 Alteromonas / Colwellia  9,0 6,8 5,7   0,3 < 1 < 1   < 1 < 1 < 1 

    PSA184 Pseudoalteromonas/ Colwellia 26,5 22,1 30,1   9,4 11,4 30,5   8,7 15,6 14,4 

        GLAC227 Glaciecola 24,5 47,3 41,8   10,7 25,3 27,9   23,4 20,3 21,1 
    MB-IC022a Marinobacter sp. strain  IC022  < 1 < 1 < 1   < 1 < 1 < 1   < 1 < 1 < 1 

    SF825 Shewanella frigidimarina < 1 < 1 < 1   < 1 < 1 < 1   2,4 < 1 < 1 

 

3.2.3.1 Free-living Bacterial Fraction 

Bacteroidetes, detected with probe CF319a dominate the non-attached living bacterial sea ice 

community after zero and four days of incubation, with ~50 and ~44% of DAPI-stained cells, 

respectively (Table 20). During the course of the experiment, relative abundances of β-

proteobacteria, Pseudoalteromonas-Colwellia, Alteromonas-Colwellia, Glaciecola spp. and 

Polaribacter spp. increase, whereas ɣ-proteobacteria and Bacteroidetes decrease. The 

contribution of the Roseobacter clade to the community does not change during four days of 

incubation. Significant changes in relative abundances over time are shown in Fig. 16. 

Percentage of DAPI-stained cells that hybridized with POL740 more than doubled, making up 

32% of Bacteroidetes after zero and 83% after four days of incubation. 
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Table 20: Mean percentages of DAPI stained cells of various bacterial  

groups and comparison between the free-living bacterial fraction after  

zero days (two days for experiment 1) and four days of incubation 

 

  Free-living Paired t-test 

  Day 0 / 2 Day 4 two tailed one tailed 

Probe Mean   SEM Mean   SEM p p 

ROS 8,7 ± 1,6 7,5 ± 2,4 n.s. n.s. 

BET 8,4 ± 1,6 14,3 ± 2,3 n.s. 0,048 

GAM 21,3 ± 1,6 10,8 ± 2,4 0,049 0,025 

PSA 10,3 ± 1,5 17,6 ± 2,0 0,019 0,010 

ALT 1,1 ± 1,5 3,4 ± 1,9 n.s. n.s. 

GLAC 13,2 ± 1,6 19,4 ± 2,0 n.s. n.s. 

CF 50,4 ± 1,5 44,2 ± 2,0 n.s. n.s. 

POL 15,9 ± 1,6 36,8 ± 2,1 0,017 0,008 

Mean values ± SEM were calculated from data of all experiments.  

n.s., not significant 
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Figure 16. Percentages of (a) β-proteobacteria, (b)γ-proteobacteria, (c) Pseudoalteromonas-Colwellia, and 

(d) Polaribacter in the free-living bacterial fraction of melted sea ice over the course of the experiment 

(green after 0 days (2 days for experiment 1) and 4 days of incubation, blue).Boxes show 50% quartiles, 

whiskers 10 and 90 percentiles, and dots 5 and 95 percentiles. Full central line shows median. 

 

3.2.3.2 Particle Attached Bacterial Fraction 

Bacteroidetes dominate both, the free-living fraction and the bacterial community attached to 

TEP and CSP, with ~37 and ~40% (Table 21). Roseobacter clade, β-, γ-proteobacteria and 

Alteromonas-Colwellia seem to prefer carbon-rich TEP. Protein containing CSP were preferred 

by Pseudoalteromonas-Colwellia and Polaribacter spp.. Galciecola spp. and Bacteroidetes did 

not show a preference for one of the particle types. Microscopic analysis of TEP and CSP did 

not reveal differences in colonization densities between the two particle types.  

Although, bacteria that belong to the Bacteroidetes group are well known for their 

attached life styles, relative abundances of CF319a and POL740 were reduced on both particle 
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types. The reduction in relative abundance of Polaribacter compared to the free-living fraction 

after four days of incubation (Fig. 17) is siginificant for CSP (p = 0.002) and almost significant 

for TEP (p = 0.058). 

 

Table 21: Mean percentages of DAPI stained cells of various bacterial groups and comparison between  

the free-living, TEP and CSP attached living bacterial fraction after four days of incubation 

 

                    Paired t-test two-tailed 

  Free TEP CSP Free vs. TEP Free vs. CSP 

Probe Mean   SEM Mean   SEM Mean   SEM p p 

ROS 7,9 ± 6,8 18,0 ± 2,8 13,9 ± 2,8 n.s. n.s. 

BET 14,9 ± 7,2 15,6 ± 2,7 10,3 ± 2,7 n.s. n.s. 

GAM 10,5 ± 7,2 24,5 ± 3,0 14,6 ± 2,8 n.s. n.s. 

PSA 17,4 ± 6,2 18,9 ± 2,8 24,3 ± 2,7 n.s. n.s. 

ALT 9,1 ± 12,4 13,8 ± 4,6 5,2 ± 4,6 n.s. n.s. 

GLAC 19,0 ± 6,5 33,7 ± 2,8 35,6 ± 2,7 n.s. n.s. 

CF 43,8 ± 6,0 36,9 ± 3,1 39,5 ± 2,8 n.s. n.s. 

POL 36,6 ± 6,5 17,7 ± 2,7 26,4 ± 2,7 0,058 0,002 

Mean values ± SEM were calculated from data of all experiments. n.s., not significant 
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Figure 17. Percentages of free-living (blue), TEP (green) and CSP (yellow) attached living Polaribacter within 

melted sea ice after four days of incubation. Contribution of Polaribacter to the free-living fraction is 

significantly greater than to CSP and almost significant to TEP (paired t-test, p = 0.002 and 0.058, 

respectively; n = 3).Boxes show 50% quartiles, whiskers 10 and 90 percentiles, and dots 5 and 95 

percentiles. Full central line shows median. 

 

Over all, the Roseobacter clade, γ-proteobacteria, Pseudoalteromonas-Colwellia and 

Glaciecola spp. are likely to prefer particles as habitat, whereas Bacteroidetes and Polaribacter 

spp. seem to be better adapted to a free-living lifestyle (Table 22). The relative abundance of 

bacteria that hybridize with POL740 is significantly reduced on pEPS (p = 0.026, Fig. 18). 

β-Proebacteria do not indicate a preference for one of the studied habitats.  
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Table 22: Mean percentages of DAPI stained cells of various bacterial  

groups and comparison between the free-living and particulate EPS (pEPS)  

attached living bacterial fraction after four days of incubation. 

 

              Paired t-test 

  Free Particle attached two tailed 

Probe Mean   SEM Mean   SEM p 

ROS 7,9 ± 6,9 15,9 ± 2,0 n.s. 

BET 14,9 ± 7,2 13,0 ± 1,9 n.s. 

GAM 10,5 ± 7,2 19,2 ± 2,1 n.s. 

PSA 17,4 ± 6,3 21,6 ± 1,9 n.s. 

GLAC 19,0 ± 6,5 34,7 ± 2,0 n.s. 

CF 43,8 ± 6,0 38,3 ± 2,1 n.s. 

POL 36,6 ± 6,5 22,1 ± 1,9 0,026 

Mean values ± SEM were calculated from data of all experiments.  

n.s., not significant 
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Figure 18. Percentages of free-living (blue) and particulate EPS (pEPS) attached (purple) living Polaribacter 

within melted sea ice after four days of incubation. Contribution of Polaribacter to the free-living fraction is 

significantly greater than to the pEPS attached fraction (paired t-test, p = 0.026; n = 3). Boxes show 50% 

quartiles, whiskers 10 and 90 percentiles, and dots 5 and 95 percentiles. Full central line shows median. 
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3.3 Gallery 

Collection of aggregates (Fig. 19 and 20), undefined particles (Fig. 21) and sea ice microalgae 

(Fig. 22) that were either stained with Alcian Blue (AB) to detect polysaccharide containing TEP 

or Coomassie Brilliant Blue G (CBBG) to detect protein containing CSP. Total bacterial cells and 

other DNA containing material was stained with DAPI and visualized under UV-light excitation. 

HRP-labeled bacteria-specific probes, ranging in specificity from genus to species level, were 

used to determine their relative contribution to the total bacterial community and were 

visualized under green-light excitation. Under the microscope TEP and CSP aggregates could 

not be distinguished from each other, they do not seem to differ in size nor structure. Sea ice 

microalgae that stain positive with AB were usually only surrounded by the stain, whereas 

microalgae that stain positive with CBBG in most cases seemed to be completely covered by 

the stain. This is the only apparent difference between TEP and CSP that could be recognized. 

TEP are well known to be sticky, resulting in big aggregates containing detritus and 

microorganism. It is very likely that CSP are sticky too. In this study, CSP aggregates tended to 

contain even more microorganisms than TEP.  
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Figure 19. TEP and CSP aggregates of the experiment after four days of incubation. (a) Alcian Blue stained, 

probe ROS537 (Roseobacter clade); (b) AB stained, probe BET42a (β-proteobacteria); (c) Coomassie Brilliant 

Blue stained, probe GAM42a (γ-proteobacteria); (d) AB stained, probe GLAC227 (Glaciecola) and (e) CBBG 

stained, probe POL740 (Polaribacter). Pictures were taken under brightfield, UV- and green light excitation 

(from left to right). 
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Figure 20. Densely colonized giant aggregates. (a) Alcian Blue stained, probe CF319a (Bacteroidetes); (b) 

Coomassie Brilliant Blue stained, probe BET42a (β-Proteobacteria). Pictures were taken under brightfield, 

UV- and green light excitation (from left to right). 

 

 

 
Figure 21. Particles of unknown origin. Both stained with Coomassie Brilliant  

Blue. Pictures were taken under brightfield and UV-light excitation (from  

left to right). 
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Figure 22. Sea ice microalgae surrounded by either TEP or CSP. (a) Alcian Blue stained, probe POL740 

(Polaribacter), microalgae with comparably thick TEP coating; (b) AB stained, probe PSA184 

(Pseudoalteromonas-Colwellia); (c) Coomassie Brilliant Blue stained, probe POL740; (d) CBBG stained, probe 

PSA184. Except for (a), microalgae seem to be attacked by dinoflagellates. Pictures were taken under 

brightfield, UV- and green light excitation (from left to right). 
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IV Discussion 
 

 

Particulate extracellular polymeric substances (pEPS) abundant in sea ice can alter the 

microbial ecology of sea ice through alteration of sea ice microstructure, improvement of ice 

habitability, as well as increasing the potential for increased primary production (Krembs et 

al., 2011). As hot spots of microbial activity, pEPS are also known to be densely colonized by 

bacteria within sea ice (Mock & Thomas, 2005). However, it has not been determined whether 

particle associated bacteria in sea ice differ from those living freely. Moreover, bacterial 

groups are likely to show a preference for different chemical fractions of pEPS, either 

transparent exopolymeric particles (TEP) identified with negatively charged carbohydrate end 

groups and stained with Alcian Blue (AB), or Coomassie stainable particles (CSP) stained with 

Coomassie Brilliant Blue G (CBBG), attaching preferentially to protein moieties. Here we made 

measurements of TEP and CSP particles in a transect across the Fram Strait, investigating 

environmental correlates of these particle types in sea ice. We then executed a detailed 

analysis of TEP- and CSP-associated bacteria and compared these to the free-living fraction. 

 

4.1 Particulate EPS 

4.1.1 Methodological Considerations 

We executed a number of different types of TEP and CSP analyses, including microscopic 

analysis of particles, and phototometric (colorimetric) analysis of extracted stain bound to 

particles which were collected on filters. We have documented several drawbacks to the 

photometric method. Both TEP and CSP are heteropolymeric particles of diverse origin and 

composition, and their chemical composition might change with their age. Hence, the amount 

of dye that binds to specific monomers within the gel particle will depend on the particle´s 



IV Discussion 

- 78 - 

 

origin and composition (Cisternas-Novoa et al., 2014). Moreover, the monomeric composition 

of marine gels varies widely among substances released by diatoms, depending on species and 

physiological stage (Myklestad, 1977). This heterogeneity limits the application of TEP and CSP 

staining techniques, since gel particle measurements are always semi-quantitative, and 

relative to a standard.  

Another problem is that the spectrophotometric method does not differentiate between 

gel material attached to phytoplankton cells and free particles. Thus, TEP may be 

overestimated if organisms with stainable coatings are abundant, as per definition TEP should 

not contain cell coatings (Passow, 2002a).  

 Because different standards for the determination of TEP and CSP are used, it does not 

allow true quantitative comparison of the two types of gel particles. TEP and CSP 

concentrations measured spectrophotometrically sometimes yielded very high variations 

between replicates and high blank values (here likely an artefact of impure distilled water on 

board, since the MilliQ device did not run properly), thus results seem to be overall less 

reliable than the microscopic method.  

However, the spectrophotometric method allows a comparison of TEP and CSP 

concentrations in relative terms, in that temporal and spatial variations can be compared 

(Cisternas-Novoa et al., 2014), so it is worthwhile to further test the applicability of CSP 

photometry in different environments.  

The more labour-intensive microscopic analysis of gel particles allows the determination 

of the number and size of particles. Due to the flattening of particles during filtration and the 

calculation of the area which assumes a smooth particle surface, the actual surface area of 

gels is likely to be underestimated (Long & Azam, 1996). Furthermore, the threshold 

adjustment in ImageJ is prone to individual error. If not processed by the same person, 

number and size of gels cannot be directly compared. These values should therefore be 

interpreted with caution. 

 

Despite not being directly comparable, several studies reported that the results are consistent 

between the microscopic and photometric approaches (Passow & Alldredge, 1995; Engel, 

2000; Berman & Viner-Mozzini, 2001). In our study, this was true for TEP measurements 

across all ice types. Regardless of the method, TEP abundance seems to be statistically 
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correlated with the same parameters. However, depending on the method, CSP 

measurements showed quite different patterns, especially for large ice floes and landfast ice: 

In contrast to microscopic results, the photometric determination of CSP follows the pattern 

of TEP measurements and is statistically correlated with the same parameters.  

 

Generally, the choice of method depends on the focus of the study. If the goal is to determine 

changes in surface area, shape or the extent of bacterial colonization of gel particles, the 

microscopic method might be the better choice. But if the goal is to study how TEP and CSP 

are related to each other and other parameters in different environments or at different times 

(by different people), the spectrophotometry will be the method of choice. 

 

4.1.2 Characterization of Different Sea Ice Types 

The Fram Strait is an area where Atlantic (warm) and Arctic (cold) water masses exchange 

(Beszczynska-Möller et al., 2012; Fig. 1), which allows the sampling of sea ice exposed to 

different environmental conditions. Landfast ice is formed in nearshore areas, whereas ice 

floes (pack ice) had formed (e.g., on the Siberian shelves) and transported over the pole 

through the Fram Strait via the Transpolar Drift (Polyak et al., 2010). Despite their different 

origin, biological parameters of landfast ice and large ice floes were similar in many respects in 

our study, showing the strong correlation with the underlying water, whereas Atlantic-water-

influenced small ice floes seem to be significantly different from both landfast ice and large ice 

floes, across a number of parameters. 

Landfast ice is surrounded by cold Arctic waters. It is characterized by the lowest under-ice 

water- and ice-core temperature, and highest salinity, TEP and CSP values, but similar total 

chlorophyll a concentrations as large ice floes. This is consistent with the notion that sea ice 

algae exude higher amounts of TEP and CSP precursors at colder temperatures and higher 

salinity as a cryoprotectant (Krembs et al., 2002; Collins et al., 2007). Furthermore, despite 

representing the harshest conditions, landfast ice seems to be the most suitable habitat for 

bacteria, with highest values of TEP and CSP that serve as a potential food source and 

microhabitats protecting cells. Due to its close proximity to land, landfast ice probably also has 
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a higher terrestrial input of carbon, indicated by the lowest ratio of TEP-carbon to particulate 

organic carbon (POC) across all ice types. 

 

The large ice floes we sampled were mainly located in a transition zone between the cold 

Arctic and warm Atlantic water masses (Beszczynska-Möller et al., 2012). Station 9 is the 

northernmost station located at the eastern margin of Fram Strait, where warm Atlantic 

waters are flowing into the Arctic (Fig. 4). However, it has the lowest under-ice water 

temperature of all stations, which strongly implies that warm Atlantic waters already 

subducted under Arctic water masses in that region.  

 

Small ice floes were floating on warm Atlantic waters with temperatures above 1 °C. Small ice 

floes are characterized by highest transmission of light through the ice and significantly 

reduced bacterial cell number and CSP. In contrast to landfast ice and large ice floes, small ice 

floes did not have any melt ponds, and had considerably lower concentrations of particulate 

organic matter (POM; see Table 13 and 14) in the bottom half of ice cores, suggesting that 

melting from the bottom possibly exceeds melting processes at the top when floating on 

warm Atlantic waters. 

 

4.1.3 Abundance and Distribution of TEP and CSP within Sea Ice 

Our work measured TEP and CSP simultaneously in Arctic sea ice for the first time. We found 

TEP and CSP values to be highest in landfast ice and lowest in small ice floes.  

Generally it can be stated that pEPS, particularly TEP, occur in all horizons of sea ice 

(Krembs et al., 2002; Underwood et al., 2010). TEP within landfast ice and large ice floes was 

primarily located in the bottom half of the ice core, whereas CSP seemed to have a more even 

distribution within the ice. The study by Lemarchand et al. (2006) in a lake system presented 

results similar to our observations. Krembs et al. (2011) also detected more TEP near the 

growing ice front (where sea ice microorganisms (SIMCO) are most abundant), by applying the 

phenol/sulfuric acid assay based on sugar-monomer content. Compared to TEP, CSP in our 

study had a more uniform distribution within the ice. However, in small ice floes, both particle 

types were more abundant in the top half section of ice cores. 
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Our TEP areas (0.02 - 0.70 mm2 L-1) and TEP concentrations (102 - 207 µg Xeq. L-1) were on the 

low end of those measured in other studies, whose maximum values were 2 - 3 orders of 

magnitude higher (Krembs & Engel, 2001; Riedel et al., 2006).  

In fact, TEP and chlorophyll a concentrations observed in this study are quite similar to the 

pre-bloom conditions observed by Riedel et al. (2006) in March, and TEP:chlorophyll a ratio 

observed by Riedel et al. (2006) under low snow cover in June is similar to our results, 211 and 

201, respectively. TEP and chlorophyll a concentrations observed in this study were therefore 

unseasonably low, possibly characteristic for sea ice of later season with almost no remaining 

sea ice algae.  

TEP-carbon (estimated from TEP concentration) contributed on average 20% to the total 

POC. This is well in line with results obtained by other scientists in Arctic (Riedel et al., 2006; 

Krembs et al., 2002; Meiners et al., 2003) and Antarctic sea ice (Meiners et al., 2004) with 

average values ranging from 14 to 32%. This confirms that TEP may contribute significantly to 

polar ocean carbon cycles, not only within the ice, but after springtime release of organic 

matter into the water column and subsequent export to deeper regions (Krembs et al., 2001). 

Riedel et al. (2006) further recognized an increased contribution of TEP-carbon to total POC of 

up to 72% during melt period. As our sampling was conducted during June, we therefore 

might have expected a higher contribution of TEP-carbon to POC than we actually observed.  

The carbon content of TEP can only be seen as an approximation, since the formula was 

developed on the basis of lab experiments with different diatom species, which can differ 

significantly (Engel & Passow, 2001). TEP form a continuum between the particulate and the 

dissolved organic matter (DOM) and because some significant fraction of TEP is not retained 

on GF/F-filters (0.6 µm pore size), TEP (0.4 µm pore size) are only partially included in POC 

measurements, thus, our TEP-carbon contribution to POC is likely to be overestimated.  

 

To the best of my knowledge, this is the first study that investigated CSP area, number and 

concentration in sea ice. CSP number of Arctic early summer sea ice ranged between 2 and 

14x107 particles L-1 and a total area of 0.1 to 0.5 mm2 L-1. Results are similar to CSP numbers 

found in surface waters of Scripps Pier (west coast of USA; Long & Azam, 1996), yet, CSP area 
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of sea ice is three-orders of magnitude lower, indicating a comparably small size of the CSP 

pool in Arctic sea ice.  

 

4.1.4 Possible Drivers of TEP and CSP Concentration 

In general, we observed TEP values to be statistically correlated with chlorophyll a, POC and 

PON concentrations. In general, TEP positively correlates with chlorophyll a not only in sea ice 

(Krembs & Engel, 2001; Riedel et al., 2006, 2008) but also limnic environments (Lemarchand et 

al., 2006) and diatom blooms (Waite et al., 1997; Passow, 2002b). However, Krembs et al. 

(2002) did not find a correlation between TEP and chlorophyll a and macronutrients in Arctic 

winter sea ice. After long residence times, TEP and chlorophyll a can become decoupled, 

particularly post-bloom or after melting of sea ice (Passow, 2002b; Riedel et al., 2006).  

In the present study, TEP values were positively correlated with biotic and abiotic factors 

that are generally seen as a measure for the productivity and the nutritional status of the 

environment. The strong correlation between TEP and chlorophyll a further supports the 

observation of other scientists (Krembs & Engel, 2001; Meiners et al., 2003, 2008; Krembs et 

al., 2001) that ice algae are the main producers of TEP.  

Furthermore, as observed in this study, TEP strongly correlates with bacterial abundance 

in Arctic summer and winter sea ice (Krembs & Engel, 2001; Krembs et al., 2002) and lakes 

(Lemarchand et al., 2006). However, the interactions are likely to be complex. Bacteria might 

degrade or modify TEP. While they are able to produce TEP, their contribution to total TEP 

within sea ice is believed to be insignificant (Schuster & Herndl, 1995; Krembs et al., 2001). 

Another possible indirect relationship could be that both TEP and bacteria depend on the 

organic substances released by phytoplankton for formation and nutrition, respectively. In 

contrast, Junge et al. (2004) could not find a correlation between TEP and bacteria in 

springtime Arctic se ice, arguing that the relationship between both might be the 

cryoprotective role of TEP during winter. 

 

We observed CSP to be much less obviously dependent on the productivity of the system. CSP 

number and area seem to be mainly affected by under-ice water temperature, the type of ice, 

and the transmission of light through the ice. However, CSP concentration seems to be driven 
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by the same parameters as TEP. It is important to note that, as indicated above, the 

photometric determination of CSP concentration appears to be less reliable than the 

microscopic particle determination method. We therefore excluded photometric CSP 

concentrations in the following discussion.  

 

While Berman and Viner-Mozzini (2001) found a positive relationship between chlorophyll a 

and CSP in Lake Kinneret, our data and data by Lemarchand et al. (2006) did not show such a 

correlation.  

We observed CSP values in Arctic early summer sea ice to be mainly correlated with 

physical parameters, particularly low temperatures and light, which might in turn have 

negative effects on the survival of SIMCO due to changing sea ice conditions. Increased 

mechanical stress due to decreasing temperatures or lowered transmission of light could lead 

to cell lysis, death, or the release of anti-freeze proteins by diatoms (Raymond et al., 1994; 

Bayer-Giraldi et al., 2010). All of these responses to changing sea ice conditions possibly 

increase CSP abundance (Long & Azam, 1996).  

 

4.1.5 Dominant Particle Type 

Parallel studies of TEP and CSP are scarce and contradictory. CSP have been found either to be 

more abundant in marine systems (Long & Azam, 1996), or similar in abundance in the lab 

(Grossart et al., 1999), or less abundant during a diatom bloom (Prieto et al., 2002). Since 

different standards were used to determine concentrations of TEP and CSP, concentrations 

cannot be compared, only particle number and area can be directly compared.  

This is the first study that investigated TEP and CSP of sea ice in parallel samples. Results 

suggest that TEP number and area possibly dominate in the more productive bottom half of 

Arctic sea ice, whereas in the top half TEP appears to dominate in number and CSP dominates 

in total particle area.  

This suggests that, since TEP significantly correlates with chlorophyll a concentrations, sea 

ice with high levels of primary production is likely to be dominated by TEP particles, especially 

at the sea ice-water interface. CSP might dominate at the air-ice interface, where SIMCO are 

exposed to most severe and less stable conditions, possibly leading to increased cell death or 
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the need to protect them against freezing. It is also likely that CSP dominates in newly formed 

ice. Microorganisms which are not adapted to life in sea ice might become encased during the 

formation of sea ice and die due to decreasing temperatures or increasing salinity, releasing 

proteins that possibly form CSP. Further we might speculate that CSP are released during sea 

ice formation as cryoprotectent (anti-freeze proteins have been shown to occur in sea ice; 

Bayer-Giraldi et al., 2010). 

 

4.1.6 Are TEP and CSP Distinct Particles? 

TEP and CSP characteristics overlap in many respects, and so far it is not known to what extent 

CSP and TEP represent different chemical subunits (proteins and polysaccharides, respectively) 

of the same gel particle (Engel, 2009). In line with observations by Long and Azam (1996), we 

observed TEP and CSP to be similar in both size range and particle shape. Furthermore, both 

particle types seem to be equally colonized by bacteria.  

The only apparent difference we could observe is the staining behavior of sea ice algal 

membranes or coatings. Under the microscope, sea ice algae that stain positive with AB (for 

TEP) appeared to be only framed by the stain, whereas microalgae that stain positive with 

CBBG (for CSP) in most cases seem to be completely covered by the stain.  

Due to their chemical composition TEP are sticky, thus it is very likely that TEP also 

coagulate with proteinaceous CSP, forming aggregates. However, we observed TEP and CSP to 

have statistically different distribution patterns and abundances within the ice. Moreover, TEP 

and CSP values seem to be statistically driven by different parameters. Thus, while TEP and 

CSP may overlap, the majority of particles appear to be discrete. However, it is possible that 

some particles stain for both, polysaccharide and protein, with an increased probability with 

age of the particle or turbulent conditions. 
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4.2 Bacteria 

4.2.1 Congruence of DGGE and FISH 

It is well known that several potential biases may affect denaturing gradient gel 

electrophoresis (DGGE) analysis of PCR amplicons. Although DGGE does not provide a 

complete or quantitative picture of the bacterial community composition, it can be seen as a 

simplified, low cost fingerprint of the community. Moreover, since DGGE is based on the 

analysis of 16S rRNA genes, the microbial diversity may be underestimated due to the 

conserved nature of this gene (Fuhrman et al., 1998; Ward & Campbell, 1998).  

However, in sea ice environments, results obtained with DGGE generally overlap with data 

obtained with FISH. The results highlight the exceptional nature of sea ice bacterial 

communities, which are likely to have highly active members despite extreme conditions in 

sea ice. There is a strong agreement between the cultivatable fraction and the PCR-detected 

fraction (Brown & Bowman, 2001; Brinkmeyer et al., 2003), that can reach 62% (Junge et al., 

2002). This is in contrast to other marine environments, where the culturability is assumed to 

be less than 0.01% (Amann et al., 1995).  

In line with other studies (Brinkmeyer et al., 2003; Junge et al., 2004; Pedrotti et al., 2009), 

we observed a high FISH detection yield of the horseradish-peroxidase (HRP)-labeled probe 

EUB338, which is specific for the domain Bacteria, with 99% of DAPI-stained cells. Since the 

threshold signal of FISH depends on the cellular rRNA content, FISH detection yields can be 

interpreted as a sensitive measure of active cells in the community (Karner & Fuhrman, 1997). 

The observed high proportion of probe-detectable cells indicates that almost all bacterial cells 

within early summer Arctic sea ice were active at the time of sampling.  

For marine environments, bacterial activity assessed by FISH is usually lower than 99%, 

possibly due to different substrate quantity and quality. High concentrations of DOM in Arctic 

(and possibly Antarctic) sea ice (Thomas et al., 1998; Herborg et al., 2001), exceeding surface 

seawater concentrations, might explain this phenomenon. Furthermore, sea ice DOM appears 

to be very labile, providing an easily utilizable substrate for bacteria (Amon et al., 2001). 

Thus, although we observed relatively low chlorophyll a, POC and PON concentrations, the sea 

ice we sampled can still be described as a highly productive environment compared to the 

water column. 
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4.2.2 Bacterial Sea Ice Community and Abundance 

Our observed bacterial cell numbers (0.2 to 8.6x105 mL-1 for the very small ice floe and 

landfast ice, respectively) were in the same range as reported by other scientists. Brinkmeyer 

et al. (2003) found bacterial cell numbers to range from 0.98 to 14.9x105 mL-1 in Arctic 

summer sea ice, and Krembs et al. (2002) reported a bacterial abundance of 12x105 cells mL-1 

in the lower section of Arctic sea ice in May.  

Our study suggested that the bacterial abundance was primarily affected by the ice type, 

under-ice water temperature and the abundance of sea ice algae (with multiple interactions 

with TEP). Highest concentrations of bacterial cells were observed in landfast ice, 

characterized by lowest under-ice water temperature (-1.65 °C) and highest chlorophyll a 

concentration (1.6 µg L-1). A statistical correlation between bacterial abundance and TEP 

abundance has been reported previously by Mari and Kiørboe (1996). 

 

In general, the most abundant phylogenetic groups identified with DGGE and FISH agree well 

with results obtained by other scientists. Sea ice samples from landfast ice and large ice floes 

were dominated by Bacteroidetes, γ-, α-, and β-proteobacteria contributing on average 50, 21, 

9, and 8% to the total bacterial community. Studies by Brown and Bowman (2001), Petri and 

Imhoff (2001), Brinkmeyer et al. (2003), and Groudieva et al. (2004) further identified high- 

and low-G+C Gram positives, the Bacillus-Clostridium group and Actinomycetales to live within 

sea ice. In Arctic summer sea ice ɣ-proteobacteria (Brinkmeyer et al., 2003) or 

α-proteobacteria (Han et al., 2014) were observed to dominate in terms of number. However, 

in our study during early summer Bacteroidetes were most abundant although their 

contribution to the community is assumed to increase with decreasing temperatures (Junge et 

al., 2004).   

In line with our results, highest diversity was detected within the ɣ-subclass of 

Proteobacteria (Brinkmeyer et al., 2003; Groudieva et al., 2004). With both methods, we 

identified Glaciecola spp. to be the dominant phylotype, whereas Brinkmeyer et al. (2003) 

observed Marinobacter spp. to be most abundant. In contrast to their results, we could not 

detect Marinobacter spp. with any of the applied methods.  

The most striking difference to the study of Brinkmeyer et al. (2003) is that we observed 

Polaribacter spp. to be the dominant phylotype within the Bacteroidetes group, whereas the 
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former study detected only 1% of cells to belong to Polaribacter spp.. It is worthwhile to 

mention that Brinkmeyer et al. (2003) used another probe (PB223) to detect Polaribacter. 

PB223 shares 90 sequences (out of 101) with POL740, five of those only targeted by PB740 

were extracted from polar habitats. However, in Antarctic sea ice samples using the probe 

PB223, Polaribacter spp. dominated the Bacteroidetes fraction (Brinkmeyer et al., 2003), as 

observed in our study.  

On the genus level, Polaribacter spp. and Glaciecola spp. were identified to dominate in 

early summer sea ice of the Arctic. The general dominance of ɣ-proteobacteria and 

Bacteroidetes within sea ice could be explained by their ability to degrade a broad spectrum of 

substrates (Thomas & Dieckman, 2003). 

 

Although differences in banding patterns and band intensities could be observed for the 

different stations/ice types, the resolution of DGGE was not great enough to clearly identify 

statistically relevant differences in the bacterial community composition, suggesting no major 

differentiation of the bacterial community across the different water masses observed. 

Nevertheless, it is noteworthy that some close relatives to the 16S rRNA sequences obtained 

from sea ice have been isolated from meltponds (band 58, sequenced from very small ice floe) 

indicating apparent melting processes at the air-ice interface, from deep sea hydrothermal 

vents, from sediments that might have been recruited during ice formation via attachment to 

anchor ice (Thomas & Dieckmann, 2003), and from Arctic and Antarctic surface waters that 

might have become incorporated via enclosure of water during ice formation, adherence of 

cells to ice crystals moving through the water column (Gleitz & Thomas, 1993) or active 

colonization (Thomas & Dieckmann, 2003). The terrestrial influence on the Arctic sea ice 

community was further confirmed by a number of closest relatives reported from soil and lake 

waters. These results represent possible mechanisms by which bacteria might become 

encased in the ice. 

 

4.2.3 Experiments 

Experimental treatments were used to simulate natural melting processes beneath the ice in 

small scale lab experiments, thus providing insight into how melting processes affect the 

bacterial sea ice community. As the ice melts, bacteria, along with pEPS, sea ice algae, 
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particulate and dissolved matter, are released into the under-ice water. In the under-ice 

water, sea ice bacteria are exposed to increased temperatures, lower salinity, 

currents/turbulence and lower concentrations of dissolved and particulate nutrients. We note 

that the effect of the natural under-ice water bacterial community, which is known to differ 

from the sea ice community (Helmke & Weyland, 1995; Bowman et al., 1997; Collins et al., 

2007), was neglected in our experiment. 

 

4.2.3.1 Free-living Bacterial Community 

After melting, bacterial abundance increased by 640% within four days (suggesting a growth 

rate of ˷1.6 d-1, or a turnover time of 0.625 d).  The free-living bacterial groups Bacteroidetes 

and ɣ-proteobacteria/Glaciecola spp. dominated in the just melted samples (day 0 resembles 

the community composition in sea ice) and after four days of incubation.  

FISH analysis revealed a significant increase in the contribution to the bacterial community 

of β-proteobacteria, Pseudoalteromonas-Colwellia and Polaribacter spp. and a significant 

decrease of ɣ-proteobacteria after melting. The contribution of Polaribacter spp. to the 

Bacteroidetes group increased from 32% directly after melting to 83% at the end of the 

experiment (a replacement time of ˷ 8 days). DGGE results were consistent with FISH, 

underscoring the likely reduction in the contribution of ɣ-proteobacteria to the bacterial 

community in the melted treatment.  

However, differences in the bacterial community composition could also be an artefact 

caused by incubation. In bottle experiments, organic matter might become absorbed and 

concentrated onto the surface, increasing adhesion of bacteria to solid surfaces, where 

nutrients are more available (Morita, 1997). For seawater, Zobell (1943) observed that the 

number of bacteria on surfaces was dramatically higher than in the surrounding medium. The 

so called “bottle effect” leads to a high increase in cell numbers (Zobell & Anderson, 1936), 

potentially favoring bacteria with the ability to attach to surfaces. The greater the surface area 

in relation to the volume of water, the more rapidly growth of bacteria takes place (Morita, 

1997). Hence, for future experiments, the bottle effect could be reduced by decreasing the 

surface:volume ratio. 
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None of the tested bacterial groups were displaced over the 4 d period of the experiment. 

Since bacteria were exposed to significantly different environments (sea ice and “under-ice 

water”), we might have expected greater changes in the bacterial community composition 

than we actually observed. The apparent resilience of the bacterial community could be 

explained by the ability of sea ice bacteria to acclimate rapidly to changing physicochemical 

conditions within sea ice brines. Even small temperature changes greatly influence the 

structure as well as the chemical and physical properties of the ice (Mock & Thomas, 2005). 

The capability of responding to rapid changes in their environment is of major importance to 

survive in the ice and might also enable sea ice bacteria to thrive in the water column after sea 

ice had melted.  

 

4.2.3.2 Particulate EPS Attached Bacterial Community 

Several studies have revealed phylogenetic differences between organic aggregates and the 

surrounding water in marine environments (DeLong et al., 1993; Knoll et al., 2001), suggesting 

that the bacterial community attached to TEP and CSP differs from that of free-living cells. 

However, in sea ice, most bacterial strains were observed to contribute to both the free-living 

and the particle-attached fraction (Brown & Bowman, 2001; Junge et al., 2002), possibly due 

to high concentrations of highly bioavailable DOM compared to surface waters (Amon et al., 

2001). 

“DGGE fingerprints” of the free-living and the particle-attached bacterial fraction 

(separated by different pore sizes) of sea ice stations overlap strongly. Although the free-living 

bacterial fraction appears to be more diverse, there were no bacterial groups or strains that 

solely occurred in only one of the fractions. This might be due to the selected pore sizes that 

could have allowed small particles to remain in the free-living fraction.  

Our FISH data confirm that there are differences between the free-living and the particle-

attached fraction, but every particle-attached group was also present in the free-living 

fraction.  

High throughput sequencing by Bižić-Ionescu et al. (2014) revealed a significant overlap of 

particle-attached and free-living bacteria in marine systems, highlighting a largely 

underestimated connectivity between the two fractions. They suggested that a significant 
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number of taxa might hop on and off particles, for example due to changes in nutrient supply 

or grazer pressure (Riemann et al., 2000). Bacteroidetes have previously been observed to 

represent a significant part of both particle-attached and free-living bacterial communities in 

nutrient-rich environments (Fandino et al., 2005). Moreover, the presence of same strains in 

the free-living and particle-attached fraction is not surprising, as particle specialists need to 

have a free-living phase to disperse between particles (Bižić-Ionescu et al., 2014). This is 

certainly consistent with the patterns seen in our study. 

In line with most studies (Simon et al., 1999; Bidle & Azam, 2001), we observed 

Bacteroidetes and ɣ-proteobacteria (Glaciecola spp.) to dominate the particle-attached 

fraction in marine systems. Some other studies additionally identified Planctomycetes to be 

important members (DeLong et al., 1993; Bižić-Ionescu et al., 2014). Riemann et al. (2000) and 

Bižić-Ionescu et al. (2014) further identified α-proteobacteria to be abundant on particles. In 

contrast, limnic particles (TEP and CSP) seem to be dominated by Bacteroidetes and β-

proteobacteria, which have been shown to possess higher enzymatic activities than free-living 

bacteria (Lemarchand et al., 2006). However, we could not observe a difference in the 

bacterial activity between the free-living and particle attached fraction by FISH detection 

yields, indicating that the nutrient supply in the “melted sea ice” was still comparably high. 

 

The dominance of the Bacteroidetes group may be explained by their rapid colonization of 

particulate matter combined with high growth rates as well as high hydrolytic activities 

(Riemann et al., 2000). Although the diversity of Bacteroidetes is large, the ability to degrade 

polymeric substances seems to be a common feature (Cottrell & Kirchman, 2000; Bauer et al., 

2006), allowing them to use these substances as carbon and energy source, revealing their 

major role in the marine carbon cycle (Bauer et al., 2006). ɣ-Proteobacteria can also degrade a 

broad spectrum of substances (Thomas & Dieckman, 2003) and the Colwellia assemblage is 

known for its strong association with surfaces (DeLong et al., 1993), which might have led to 

the recruitment of these bacteria into sea ice. Even though Glaciecola spp. apparently utilize 

only a limited number of substrates as carbon and energy source, mostly organic acids 

(Bowman et al., 1998), we observed them to be one of the major groups attached to pEPS. 
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Within sea ice, pEPS may represent a crucial habitat for the survival of bacterial cells, 

protecting them from extreme physicochemical conditions and freezing temperatures. When 

the ice melts, bacteria are released to the under-ice water, where they are exposed to more 

stable physicochemical conditions on the one hand but decreased nutrient supply on the 

other hand. Thus, the major role of pEPS for bacteria might switch from protecting cells 

against harsh conditions, to pEPS providing the major source of nutrients. Particles are a 

concentrated source of organic compounds compared to the surrounding water, possibly 

promoting growth of bacteria that are particle specialists (DeLong et al., 1993; Lemarchand et 

al., 2006). Bižić-Ionescu et al. (2014) found ɣ-proteobacteria, Bacteroidetes and 

Planctomycetes to be enriched and α-proteobacteria to be reduced in the particle-attached 

fraction. In a lake system, Lemarchand et al. (2006) recognized a similar pattern. Bacteroidetes 

were enriched, whereas α-proteobacteria were found to be reduced, on particles (TEP and 

CSP). In contrast, we observed an enrichment of α-proteobacteria (Roseobacter clade) and 

ɣ-proteobacteria on pEPS and a significantly reduced relative abundance of Polaribacter spp. 

(Bacteroidetes) compared to the free-living fraction.  

The enrichment of the Roseobacter clade may be explained by their strong association 

with surfaces, which has been reported from marine waters (Dang & Lovell, 2000). 

Bacteroidetes have been observed to be dominant on various types of particles (DeLong et al., 

1993; Simon et al., 1999; Bidle & Azam, 2001; Lemarchand et al., 2006). 84% of the free-living 

Bacteroidetes were affiliated to Polaribacter spp., but only 58% of Bacteroidetes were 

identified as Polaribacter spp. on pEPS. This indicates that Bacteroidetes, except for 

Polaribacter spp., are potentially also enriched on pEPS.  

 

In spite of their ability to degrade polymers (Gonzalez et al., 2008), we observed Polaribacter 

spp. to be significantly reduced on particles. Factors such as nutrient supply, and the presence 

of grazers and viruses (Riemann et al., 2000) may explain their reduced relative contribution to 

the bacterial community. Since pEPS are highly nutritious, in-situ they might attract grazers, 

hence increasing feeding pressure on the attached bacterial community. Moreover, as 

aggregates, pEPS, especially TEP are known to sink (Alldredge et al., 1993), sequestering the 

attached bacterial community from the surface to deep waters. In deep waters, bacteria 
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would be exposed to a number of physical changes including increasing pressure. As a 

consequence, it might be beneficial for bacteria to detach from pEPS after the ice had melted.  

Gas vacuoles are a common feature among sea ice bacteria (Gosink et al., 1993). They 

reduce the cell density as compared with the cytoplasm, providing buoyancy (Walsby, 1972) 

and act as organelles of motility, regulating the vertical movement of cells via their synthesis 

and degradation (Staley, 1980). Within sea ice, bacteria are not known specifically to 

synthesize gas vacuoles, but the vacuoles might be of major importance in allowing bacteria to 

become incorporated into the ice (Gosink et al., 1997).  

Polaribacter irgensii and Polaribacter franzmannii were identified to be the closest 

relatives to common sequences obtained by DGGE. Both are known to produce gas vacuoles 

(Gosink et al., 1998). During melting, bacteria are exposed to severe changes in salinity and 

temperature, which might induce the synthesis of gas vacuoles by Polaribacter spp., resulting 

in their detachment from particles, but preventing sedimentation. Gas vacuoles could enable 

free-living Polaribacter spp. to stay close to the melting ice front or the surface after the ice 

had melted, were they encounter comparably high nutrient concentrations. Moreover, gas 

vacuoles increase the probability for a rapid resettlement of newly formed sea ice by 

Polaribacter spp.. So far, Polaribacter spp. is the only common bacterial genus detected in 

summer and winter sea ice (Collins et al., 2010). Thus, we hypothesize that Polaribacter spp. 

seems to be exceptionally well adapted to changing environmental conditions with seasons.  

 

4.2.3.3 Bacterial Colonization of TEP versus CSP 

Carrias et al. (2002) defined the bacterial colonization of pelagic detrital particles as a function 

of the nature of the particle and the productivity of the system, suggesting potential 

differences in the composition of bacteria attached to different types of particles. pEPS can be 

rendered accessible to bacterial permeases through polymer hydrolyses by exoenzymes. 

Enzyme profiles of isolates indicated specialization among marine heterotrophic bacteria for 

different polymeric substances (Martinez et al., 1996). The composition of the bacterial 

community attached to TEP and CSP thus depends not only on the increased substrate 

concentration found in the gel but also on the matching of polymer composition and the type 

and level of bacterial exoenzymes being expressed (Verdugo et al., 2004).  
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Although FISH data revealed no significant differences in the bacterial community 

composition of the two particle types, we observed a preference of ɣ-proteobacteria and 

Alteromonas-Colwellia for TEP. Polaribacter spp. seems to prefer CSP over TEP, whereas no 

preference could be detected for the Bacteroidetes group.  

Bacteroidetes are, as mentioned above, highly adapted to degrade a broad range of 

polymeric substances, thus, it is likely that this group does not show a specialization for one of 

the particle types. Both Polaribacter strains were reported to be able to utilize yeast extract 

and casamino acids, next to weak hydrolysis of starch (Gosink et al., 1998). Polaribacter 

franzmannii was further observed to hydrolyze gelatin, β-galactosidase and aesculin. 

Polaribacter spp. seem to be able to degrade a number of proteins, hence, the observed 

preference of Polaribacter spp. for protein-containing CSP is feasible.  

 

We observed both particle types to be densely colonized, not showing a general preference by 

bacteria for either TEP or CSP. But, since we did not count the number of attached bacterial 

cells in relation to the particle size, this observation cannot be verified by numbers.  

Berman and Viner-Mozzini (2001) found CSP to be more colonized, whereas Lemarchand 

et al. (2006) observed higher numbers of bacterial cells associated with TEP. Studies by 

Mattfeldt (2011) and Cisternas-Novoa et al. (2014) revealed low concentrations of CSP in 

deeper layers. Since proteins are a valuable carbon and nitrogen source for marine bacteria, 

CSP may be more labile than TEP, suggesting high consumption rates by bacteria, whereas TEP 

appeared to remain longer in the water column (Cisternas-Novoa et al., 2014). 
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4.3 Conclusion 

In general, we observed low concentrations of TEP and chlorophyll a across an Arctic transect, 

which are not typical for the spring to late summer season studied. In this sea ice, highest 

concentrations of TEP were located at the ice-water interface, whereas CSP was 

homogeneously distributed, suggesting different roles of these pEPS in sea ice. Both particle 

types show reduced concentrations in the bottom section of small ice floes, suggesting that 

melting at the ice-water interface exceeds melting at the air-ice interface of sea ice floating on 

warm Atlantic waters. TEP concentrations were mainly correlated with chlorophyll a 

concentrations. In contrast, CSP concentrations appear to be mainly driven by physical 

parameters that may in turn affect the survivability of sea ice microorganisms (SIMCO). TEP 

seem to dominate in the bottom section of sea ice, whereas CSP dominate in terms of particle 

area in the top section, where SIMCO are exposed to most severe conditions and where it 

might get incorporated during ice formation. With 20%, TEP-carbon makes up a significant 

portion of the total sea ice POC, indicating that TEP may contribute significantly to polar ocean 

carbon cycles.  

 

In early summer sea ice of the Arctic almost all bacterial cells were active. Based on the results 

obtained by FISH and DGGE, we conclude that sea ice bacteria are able to acclimate rapidly to 

changing physicochemical conditions. The composition of particulate EPS associated bacteria 

is different from that of free-living bacteria, but may overlap in many respects. Polaribacter 

spp. is the only genus that was observed to be significantly reduced on particles compared to 

the free-living fraction after the ice had melted. Identified Polaribacter strains are known to 

synthesize gas vacuoles, which enables them to move in the water column, possibly to avoid 

sedimentation and to stay in close vicinity of newly forming ice, indicating a high degree of 

adaptation to the seasonal sea ice cycle. We further observed preferences of some bacterial 

groups for either TEP or CSP, yet, no significant differences were detected in the bacterial 

community composition of the two particle types.  
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