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Abstract

The Arctic Ocean plays an important role on the global hydrological and
carbon cycles. It contributes 5-14% to the global balance of CO, sinks and
sources. Carbon is also cycled in the Arctic Ocean through the primary
producers, with high primary production observed in the marginal ice zones,
ice-free zones and melt ponds, with increased biogenic carbon export to the
deep layers. Although being the smallest ocean basin, the Arctic Ocean
receives ~11% of the global riverine runoff. Along with the freshwater, high
loads of organic carbon are introduced in the Arctic Ocean. Most of it is
observed in the fraction of dissolved organic matter (DOM). With the ongoing
global warming, glacier melt and permafrost thaw are observed and pointed
as the main drivers for increasing the freshwater discharge into the Arctic
basin. Along side, permafrost thaw coupled with increased coastal erosion
lead to an increase in mobilization of carbon from permafrost, which could
have critical implications for microbial processes, primary production,
terrestrial carbon fluxes to the shelf seas and, thus, carbon cycling in the
Arctic.

This thesis is focusing on tracing the mixing of DOM along the Siberian
shelves and developing potential applications of DOM as an environmental
tracer. Four main objectives have been pursed: (1) to quantify, characterize
and assess the distribution and transformation of DOM across the river-shelf
transition and provide insights into the fate of Arctic riverine DOM; (2) to
assess the potential of DOM, especially its fluorescent fraction (FDOM), as a
tracer of freshwater in the surface layers in the Arctic Ocean; (3) to
characterize the non-water absorption in the surface central and eastern
Arctic Ocean and further test whether bio-optical properties (such as
absorption and reflectance) can reproduce hydrographical variability; (4) to
evaluate the performance of ocean color algorithms frequently applied for
studies in the Arctic Ocean using novel data from a central-eastern Arctic
expedition.

In the first study the fluorescent components of DOM isolated with
PARAFAC model were characterized along the river to sea transition in the
Laptev Sea and Lena River delta region. Results showed a strong dominance
of visible wavelength DOM fluorescence (VIS-FDOM), which is associated to
terrestrial signal (or humic-like compounds). The results corroborate previous
reports showing strong removal of DOM at low salinity. However, our results
showed that the removal occurs preferentially for VIS-FDOM, whereas
ultraviolet wavelength  FDOM (UV-FDOM, associated to autochthonous
marine production) differed in behavior, with an increase during estuarine
mixing. DOM removal occurred primarily in the surface layer, under direct
influence of the Lena River runoff (salinity <10), which indicates that it was
mainly driven by photodegradation and flocculation.



The second study explored the potential of VIS-FDOM components
isolated with PARAFAC analysis as an environmental tracer in the Fram and
Davis Straits. VIS-FDOM was strongly correlated to the fractions of meteoric
water (fnw) in polar waters. Furthermore, a pattern allowed the distinction
between the sources of polar waters exiting the Fram Strait as being from the
Eurasian or Canadian basins. In the bottom waters of the Davis Strait, VIS-
FDOM was correlated to apparent oxygen utilization (AOU), tracing deep-
water turnover of DOM and production of VIS-FDOM fluorescence. The
findings presented in this study show which wavelengths carry information on
sources and mixing of DOM, which therefore can be applied to monitor
freshwater and carbon export to the North Atlantic.

The third study shows that colored DOM (CDOM) dominates the non-
water absorption in the surface waters of the central and eastern Arctic.
Spatial variability observed in the non-water absorbers (phytoplankton, CDOM
and non-algal particles—NAP) clustered the sampling sites in agreement with
hydrographic variability. Such variability was also detected by the analysis of
hyperspectral remote sensing reflectance (R:s). The empirical and semi-
analytical ocean color algorithms frequently applied in studies in the Arctic
Ocean were applied to in situ measured R;s to evaluate their performance.
The retrievals (chlorophyll-a, and the absorption coefficients of CDOM and
phytoplankton) were then validated to the correspondent in situ
measurements. The results showed that empirical algorithms have poor
performance, whereas the semi-analytical algorithms appeared to be robust
for application in the Arctic Ocean; however still with considerable errors
embedded to the retrievals.

The main findings of this thesis are that bio-optical measurements have
strong potential to trace environmental variability in the Arctic Ocean, and
those can therefore provide insights on the Arctic hydrological and
biogeochemical cycles. These parameters can be monitored by bio-optical
sensors (e.g., radiometers, transmissometers, fluorometers, etc.). Such
sensors can be further coupled to autonomous platforms such as satellites,
gliders, automated underwater vehicles (AUVs) and ice-tethered profilers
(ITPs), and significantly increase the amount of biogeochemical data in the
Arctic Ocean, filling the gap left by classical sampling methods (i.e.,
oceanographic expeditions) and ocean color remote sensing, restricted to
spring and summer seasons.



Zusammenfassung

Der Arktische Ozean spielt eine wichtige Rolle fur die globalen
hydrologischen und Kohlenstoffkreislaufe. Er tragt mit 5-14% zur globalen
Bilanz der CO»-Quellen und Senken bei. Kohlenstoff wird auch im Arktischen
Ozean durch die Primarerzeuger mit einer hohen Primarproduktion, die
insbesondere in den Randeiszonen, den eisfreien Zonen und den
Schmelztumpeln beobachtet wird, effizient in die tiefen Schichten des Ozeans
transportiert. Obwohl es sich um das kleinste Ozeanbecken weltweit handelt,
umfasst der Zufluss in den Arktischen Ozean ca. 11% des globalen
Flusseintrags in die Meere. Zusammen mit dem SuRwasser werden im
arktischen Ozean groRe Mengen an organischem Kohlenstoff eingetragen.
Der grofdte Anteil gehort dabei zur Fraktion des gelosten organischen
Kohlenstoffes (DOM). Die mit dem anhaltenden Klimawandel einhergehenden
Prozesse, wie das Schmelzen der Gletscher oder Tauen des Permafrosts,
gelten als wesentliche Faktoren fur einen erhohten SuRwassereintrag in das
arktische Becken. Daneben fuhrte das Tauen des Permafrosts in Verbindung
mit einer erhohten Kustenerosion zu einer Zunahme der Mobilisierung von im
Permafrost gespeicherten Kohlenstoff, was wiederum kritische Auswirkungen
auf mikrobielle Prozesse, Primarproduktion, terrestrische Kohlenstoffstrome in
die Schelfmeere und somit auf den Kohlenstoffkreislauf in der Arktis haben
konnte.

Diese Arbeit konzentriert sich auf die Analyse (oder Untersuchung) der
Vermischung von DOM entlang der sibirischen Schelfmeere und die
Entwicklung potenzieller Anwendungen von DOM als Umwelt-Tracer. Vier
Ziele wurden hierbei verfolgt: (1) die Quantifizierung, Charakterisierung und
Beurteilung der Verteilung und Veranderung von DOM im Ubergangsbereich
von den Flussen in die Schelfmeere und ein Einblick in die Bedeutung von
fluvialen DOM in der Arktis; (2) die Bewertung des Potenzials von DOM
insbesondere seiner fluoreszierenden Fraktion (FDOM) als Tracer von
Suflwasser in den Oberflachenschichten des Arktischen Ozeans; (3) die
Charakterisierung der Absorption von Wasserinhaltsstoffen in den
oberflachennahen Schichten der zentralen und ostlichen Arktis und daruber
hinaus eine Analyse, ob die abgeleiteten biooptischen Eigenschaften wie
Absorption und Streuung die hydrographische Variabilitdt reproduzieren
konnen; (4) die Bewertung der Leistungsfahigkeit von Ocean-Colour-
Algorithmen, die haufig fur Studien im Arktischen Ozean verwendet werden,
wobei hierzu Daten von einer Polarstern-Expedition in 2011 aus der zentralen
sibirischen Arktis verwendet wurden.

In der ersten Studie wurden die fluoreszierenden Komponenten des
DOM, die mit dem PARAFAC-Modell isoliert wurden, erstmals entlang des
Flusses zum Meeresubergang in der Laptev-See und dem Lena-Delta-Gebiet
charakterisiert. Die Ergebnisse zeigten eine starke Dominanz der DOM-



Fluoreszenz im Bereich des sichtbaren Lichts (VIS-FDOM), die mit dem
terrestrischen Signal (oder Humin-Anteilen) assoziiert ist. Die Ergebnisse
bestatigen frihere Untersuchungen, die eine starke Abnahme von DOM bei
geringem Salzgehalt zeigen. Jedoch zeigten unsere Ergebnisse, dass die
Abnahme bevorzugt fur VIS-FDOM erfolgt, wohingegen die Fluoreszenz im
Bereich ultravioletter Wellenlangen (UV-FDOM, assoziiert mit der
autochthonen marinen Produktion) im Bereich der Flussmindungen eher zu
nimmt. Die DOM-Abnahme erfolgte primar in der oberflachennahen Schicht
unter direktem Einflul des Lena-Abflusses (Salzgehalt <10), was darauf
hinweist, dass diese Abnahme hauptsachlich durch fotochemischen Abbau
und Ausfallung bedingt war.

Die zweite Studie untersuchte das Potenzial von VIS-FDOM-
Komponenten, die mit der PARAFAC-Analyse als Umwelt-Tracer in den
Fram- und Davis-Stral3en isoliert wurden. VIS-FDOM Kkorrelierte stark mit den
Fraktionen von meteorischem Wasser (fnw) in polaren Gewassern. Aufderdem
erlaubten die Messungen weiter den Ursprung der polaren Wassermassen,
die die Framstral3e verlassen, entweder aus dem eurasischen oder aus dem
kanadischen Becken abzuleiten. In den Bodenwassern der Davis Stralle
wurde VIS-FDOM mit der offensichtlichen Sauerstoffnutzung (AOU) korreliert,
was dem Umsatz von DOM im Tiefenwasser und der Produktion von VIS-
FDOM-Fluoreszenz folgte. Die Ergebnisse dieser Studie zeigen, welche
Wellenlangen Informationen uber Quellen und die Vermischung von DOM
haben, welche daher angewendet werden konnen, um Suf3wasser- und
Kohlenstoff-Export in dem Nordatlantik zu bestimmen.

Die dritte Studie zeigt, dass farbiges DOM (CDOM) die Absorption der
Wasserinhaltsstoffe in den oberen Bereichen der Wassermassen der
zentralen und o6stlichen Arktis dominiert. Die raumliche Variabilitat, die in den
Wasserinhaltsstoffen (Phytoplankton, CDOM und Nicht-Algen-Partikel-NAP)
beobachtet wurde, ermoglichte eine Eingruppierung der Probenahmestellen in
Ubereinstimmung mit der hydrographischen Variabilitit. Diese Variabilitat
wurde auch durch die Analyse der mit hyperspektralen Satelliten gemessenen
Reflektanz (R.s) nachgewiesen. Die empirischen und semianalytischen Ocean
Color — Algorithmen, die haufig in Studien im Arktischen Ozean angewendet
wurden, wurden auf in-situ gemessene Reflektanzen (R;s) angewendet, und
dabei ihre Leistungsfahigkeit bewertet. Die aus den Algorithmen bestimmten
Daten (Chlorophyll-a, und die Absorptionskoeffizienten von CDOM und
Phytoplankton) wurden dann mit den entsprechenden in-situ-Messungen
validiert. Die Ergebnisse zeigen, dass empirische Algorithmen keine
verlassliche Ergebnisse erzielen, wohin gegen die semianalytischen
Algorithmen im Arktischen Ozean zuverlassig angewendet werden kdnnen,
jedoch immer noch deutliche Abweichungen im Vergleich zu den in-situ-Daten
aufweisen.



Die wichtigsten Ergebnisse dieser Arbeit zeigen, dass bio-optische
Messungen ein starkes Potenzial haben, um die Umweltvariabilitat im
Arktischen Ozean zu verfolgen. Sie konnen daher Einblicke in die
hydrologischen und biogeochemischen Kreislaufe der Arktis geben. Diese
Parameter konnen durch bio-optische Sensoren (z. B. Radiometer,
Transmissometer, Fluorometer usw.) langfristig gemessen werden. Solche
Sensoren konnen dartber hinaus an autonomen Plattformen wie Satelliten,
Segelflugzeuge, automatisierte Unterwasserfahrzeuge (AUVs) und am Eis
befestigt profilierend (sog. Ice-thetered profilers, ITPs) implementiert werden.
Dadurch konnen sie dazu beitragen, die Menge an biogeochemischen Daten
im Arktischen Ozean erheblich zu steigern, um so die Lucke zu schlie3en, die
durch die Methoden der klassischen Probenahme und Verwendung von
Ocean-Colour-Fernerkundungsdaten und ihre technisch bedingte Limitierung
auf das Sommerhalbjahr offen bleibt.
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Chapter 1

Introduction



1. Introduction

1.1. Motivation and objectives of the thesis

With the climate change pressure on the environment, the scientific
community has sought a more comprehensive understanding on the carbon
cycle, its reservoirs and the processes governing their dynamics. Aquatic
systems play an important role for the carbon cycle, for instance, as provision
of a large pool of carbon (stored as dissolved and particulate organic and
inorganic carbon), important sink (by uptake of atmospheric CO, and carbon
burial in the sediments) and turnover of organic carbon (by microbial activity)
(Figure 1.1). As a consequence, increasing effort has been devoted to study
aquatic environments and processes governing the distribution and behavior
of both, organic and inorganic carbon. With more studies on the
characterization of stocks, sources, reactivity and fate of both organic and
inorganic carbon, a more comprehensive understanding of the carbon cycle
would be reached, which is of great importance for improving forecasts of
future climate scenarios.

Figure 1.1. The global carbon cycle. The diagram shows the storage and
annual exchange of carbon between the atmosphere, hydrosphere and
geosphere in gigatons of Carbon (GtC). Credit: NASA Earth Observatory.

Non-living organic matter is present in aquatic systems as particles,
colloids and dissolved molecules. The dissolved fraction of organic matter

20



(DOM) is operationally defined by filtration with specific pore size, with 0.45
um being the most accepted limit [Steinberg, 2003]. The DOM fraction
encompasses a wide range of compounds with variable molecular complexity,
and consists of a large active organic carbon reservoir [Hedges, 1992]. The
DOM-pool is most frequently composed by amino acids, carbohydrates, lipids,
pigments, lignins, tannins and proteins, whose relative contribution varies in
different environments, depending on its origin. For instance, the lignins,
which are formed exclusively in the cell walls of vascular plants, contain large
amounts of carbon in the form of aromatic carbons and phenols [Lebo et al.,
2000], and therefore is a good tracer of terrestrial DOM. Microbially derived
amino acids and proteins, on the other hand, contain a lower aromatic and
phenolic content in relation to terrestrial sourced DOM [Geider and La Roche,
2002]. These non-humic components of marine DOM are related to
autochthonous production, primarily from microbial community, rather than to
a terrestrial source [Coble, 2007].

The Arctic Ocean is of great importance for climate regulation and carbon
sequestration, contributing 5-14% to the global balance of CO, sinks and
sources [Bates and Mathis, 2009]. This uptake is highly influenced by physical
and biological processes such as seasonal phytoplankton primary production,
temperature effects (both cooling and warming), shelf-basin exchanges and
formation of dense winter waters, and river inputs of freshwater and carbon.
As the only pole-located ocean basin on Earth, the Arctic is also important for
the global overturning circulation [Broeker, 1991]. The formation of the dense
North Atlantic Deep Water is related to the advection of cold waters from the
Arctic Basin and to the deep convection system in the Labrador Sea
[Carmack and Aagaard, 1973; Clarke and Gascard, 1983]. Furthermore, the
Arctic plays a significant role on human life and economy, given its
importance for global fisheries [Chapin et al., 2005] and shipping [Lasserre
and Pelletier, 2011], with the possibility of opening the targeted North-West
passage.

Phytoplankton can attain high biomass not only in open waters and
marginal ice zones of the Arctic Ocean, but also in melt ponds and in the ice
itself (as sea-ice algae), reaching high primary production rates [Arrigo et al.,
2012; Fernandez-Méndez et al., 2015]. Such primary production can sustain
relatively high zooplankton biomass and production [Auel and Hagen, 2002;
Olli et al., 2007; Néthig et al., 2015], leading to increase in biogenic carbon
export from the surface layer in those areas [Lalande et al., 2014]. Besides,
the Arctic Ocean receives ~11% of global river runoff and represents only
~1.3% of world’s ocean by volume [Shiklomanov et al., 2000], making it a
globally important region for freshwater storage [Rabe et al., 2014]. Together
with the vast amount of freshwater, high loads of both dissolved and
particulate matter are brought into the Arctic, through the estuaries,
continental shelves and finally to the pelagic domain.
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The Arctic Ocean receives ca. 18—-26 Tg C year ' of dissolved- and 4-6
Tg C year' of particulate organic carbon (DOC and POC, respectively) via
riverine outflow. As a result the majority of organic carbon introduced in the
Arctic Ocean is dissolved. Furthermore, the DOM in the Arctic Rivers and
Ocean has a strong terrestrial character, being primarily dominated by
compounds with visible wavelength (VIS) fluorescence [Walker et al., 2013;
Guéguen et al., 2015], which are associated to lignin [Mann et al., 2016] .
Such a strong terrestrial characteristic can be easily detected in the
absorption spectra of DOM and can be further used to trace the freshwater in
the surface of the Arctic Ocean [Stedmon and Markager, 2001; Granskog et
al., 2012; Stedmon et al., 2015]. Although advances have been made on
determining the composition and spectral characterization of DOM and
several studies have addressed this issue in the Arctic rivers and seas
[Stedmon and Markager, 2001; Walker et al., 2013; Jorgensen et al., 2014;
Guéguen et al., 2015; Fichot et al., 2016; Mann et al., 2016], the fate of the
terrestrial DOM in the Arctic Ocean is still under debate. While some studies
point to a conservative mixing along the shelf [Dittmar and Kattner, 2003;
Semiletov et al., 2013], some studies have observed strong and rapid removal
of DOM [Alling et al., 2010; Letscher et al., 2011].

A fraction of the total DOM-pool is colored (CDOM) and therefore absorbs
light, primarily in the ultra-violet (UV) and VIS ranges; and a fraction of CDOM
is further able to emit light through fluorescence (FDOM) (Figure 1.2). Given
the interactions between CDOM molecules and light, especially in the VIS
range, it imparts a yellowish—brownish color to the water (Figure 1.3), easily
detectable by ocean color remote sensing. In short, the latter uses algorithms
to convert reflectance from the sea surface into inherent optical properties
(IOPs) of seawater. IOPs, e.g. absorption and scattering, are properties of the
medium and do not depend on the ambient light field. Those properties can
be further converted into biogeochemical parameters such as chlorophyll-a
(Chl-a) and POC concentration, CDOM absorption coefficients, among others.
Two kinds of algorithms are most commonly employed to perform those
retrievals: empirical and semi-analytical [[OCCG, 2006]. The former uses
simple remote sensing reflectance (R.s) band ratios to derive absorption
coefficients by empirical relationships. Semi-analytical ocean color algorithms,
on the other hand, apply nonlinear statistical inversion methods to retrieve
IOPs from R. These algorithms account for fundamental relationships
between I0Ps of the non-water absorbers (e.g., phytoplankton, CDOM and
non-algal particles), as well as for their spectral shapes, among other
properties. From the 10Ps, finally, the quantities (e.g. Chl-a concentration) of
the optical constituents are derived.
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Figure 1.2. Schematic diagram of the total DOM-pool with respect to the
chromophoric (CDOM) and fluorescent (FDOM) fractions. Examples of
CDOM absorption spectra and excitation-emission matrices are shown over
the CDOM and FDOM domains, respectively. Structure of tryptophan, a
natural amino acid, and vanillin, a constituent of lignin, are shown as
examples of fluorescent CDOM. The grey lines indicate the position of their
respective fluorescence excitation-emission peaks. Taken from Stedmon and
Alvarez-Salgado [2011].

Ocean color remote sensing has been frequently applied to monitor
biogeochemical processes in the global oceans. In the Arctic Ocean, it has
been primarily employed in studies concerning changes in Chl-a and primary
production [Pabi et al., 2008; Arrigo and van Dijken, 2011; Cherkasheva,
2014; Cherkasheva et al., 2014; Néthig et al., 2015], and also for monitoring
CDOM variability [Matsuoka et al., 2013; Heim et al., 2014]. A recent study
using CDOM and salinity satellite data showed the applicability of those
products for determining water masses end-members, especially with respect
to river water [Matsuoka et al., 2016]. Thus, with an improved spatial and
temporal resolution one can provide more insights into the freshwater and
carbon export from the Arctic Ocean.
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Figure 1.3. The brownish waters of the Lena River Plume. Surface waters
in the southern Laptev Sea during the Lena Expedition (September 2013).
The brownish color of the water denotes the strong influence of the Lena
River waters, with high loads of terrestrial organic matter (Photo: Rafael
Gongalves-Araujo).

Although ocean color remote sensing is a powerful tool for synoptically
monitoring the Arctic Ocean, the global empirical algorithms perform poor at
estimating Chl-a in the western Arctic [Cota et al., 2004; Matsuoka et al.,
2007; Ben Mustapha et al., 2012]. Regional tuned algorithms showed
improved performance related to global algorithms in that region [Cota et al.,
2004; Ben Mustapha et al., 2012]. The semi-analytical algorithms, on the
other hand, provide better retrievals of Chl-a, as well as reliable estimates of
CDOM and phytoplankton absorption [Matsuoka et al., 2013, 2014; Chaves et
al., 2015]. However, those studies are constrained to the western Arctic
Ocean [IOCCG, 2015], while such studies are limited in the eastern and
central Arctic, mainly due to logistic challenges to reach especially the
Siberian shelves.

Whilst providing high-resolution spatial and temporal biogeochemical
data, ocean color remote sensing in the Arctic is very limited due to the sea-
ice and cloud coverage, and winter polar night. In this sense, alternative
autonomous platforms, such as ice-tethered profilers (ITPs), automated
underwater vehicles (AUVs), gliders, Argo floats, etc. would not only increase
the amount of data available, but also provide more information about the
biogeochemical conditions under sea-ice and also during the polar night, with
no ocean color remote sensing data available.

Considering the abovementioned facts and the current gaps and
uncertainties related to dissolved organic matter in the Arctic Ocean, this work
primarily aims to complement and extend the existing knowledge on the field
through four main objectives:
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1. to quantify, characterize and assess the distribution and transformation
of dissolved organic matter in the river-ocean transition and, thus,
provide insights into the fate of Arctic riverine DOM,;

2. to assess the potential of DOM, especially FDOM, as a tracer of
freshwater in the surface layers in the Arctic Ocean,;

3. to characterize the non-water absorption in the surface central and
eastern Arctic Ocean and further test whether bio-optical properties
(such as absorption and reflectance) can reproduce hydrographical
variability;

4. to evaluate the performance of ocean color algorithms frequently
applied for studies in the Arctic Ocean using novel data from a central-
eastern Arctic cruise.

1.2. Thesis outline and author’s contribution

Chapter 2 is sub-divided into two sections. In the first section the Arctic
Ocean and its main aspects such as circulation, biogeochemistry and climate
change effects are introduced. In the second section a mini review published
in the proceedings of the YOUMARES 7 Conference [Gongalves-Araujo,
2016] briefly presents the state-of-art regarding analysis of DOM as well as its
applications as an environmental tracer.

Chapter 3 presents results from the expedition conducted in the Lena
Delta region (southern Laptev Sea) in September 2013 published in Frontiers
in Marine Science [Gongalves-Araujo et al., 2015b]. In this study, DOM was
quantified and characterized based on its optical properties (e.g., absorption
and fluorescence) and its behavior along the river-sea transition was
examined. For this study, the thesis’ author collected and analyzed the
samples and data, and wrote the manuscript.

Chapter 4 consists of a study published in Scientific Reports with existing
samples from expeditions in the Fram and Davis Straits in late summer
2012/2013 [Gongalves-Araujo et al., 2016]. This study investigates the
potential of using the spectral properties of visible wavelength range
fluorescence of DOM (VIS-FDOM) to trace and distinguish the origin of Arctic
surface waters, with focus on the freshwater export. Additionally, it addresses
the use of VIS-FDOM as a biogeochemical tracer in the Davis Strait. The
author of the thesis performed the data analyses and synthesis of results, and
prepared the manuscript.

Chapter 5 investigates the spatial variability in light absorption in the
surface waters of the central and eastern Arctic Ocean based on existing data
from an expedition carried out in August—October 2011. In this study non-
water absorbers were partitioned and further related to hydrographical
conditions, to evaluate whether bio-optical properties can reproduce
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hydrographical variability. Moreover, ocean color remote sensing algorithms
frequently applied in the global and Arctic Oceans were evaluated for their
performance in the central and eastern Arctic. This chapter consists of a
manuscript written by the author of the thesis, which is in preparation for
submission. The author performed the analyses of samples and data;
performed the calculations and compilation of results and elaborated the
manuscript.

Chapter 6 presents a summary of the main findings of the thesis along
with the outlook for future research.

In Chapter 7 the literature cited in this thesis is provided. And, finally, in
Chapter 8 the re