

The FESOM model family - recent applications

Sven Harig, Andrey Babeyko⁽¹⁾, Antonia Immerz, Natalja Rakowsky, Alexev Androsov, Tri Handavani⁽²⁾

Sergey Danilov, Dmitry Sidorenko, Qiang Wang, Dmitry Sein, Claudia Wekerle, Nikolay Koldunov, Vadym Aizinger et al.

Alfred Wegener Institute for Polar and Marine Research, Bremerhaven ⁽¹⁾ Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ

⁽²⁾ Badan Meteorologi, Klimatologi, dan Geofisika, Jakarta

IMUM 2017, Stanford, 29 Aug. - 1 Sep. 2017

Overview

OAV/

BREMERHAVEN-SÜD | 15

Hinter Olli steckt ein Supercomputer

Alfred-Wegener-Institut rüstet sich für die Zukunft: Neuen Hochleistungsrechner angeschafft – Große Hilfe für Wissenschaftler

Von Ursel Kikker

GEESTEMÜNDE, Die Komiker Stan Laurel und Oliver Hardy sind die Namensvettern, Der schlanke Stan stand bereits im Rechenzentrum des Alfred-Wegener-Instituts (AWI), Am Mittwoch kam der dicke Olli dazu ein Supercomputer, der gleich siehen Rechenschränke braucht. Er wird den Wissenschaftlern eine große Hilfe sein.

So ist die Freude groß im dritten Stock des AWI-Hauptgebäudes. "Damit sind wir gut aufgestellt", sind sich die Mitarbeiter im Rechenzentrum einig. Dr. Dirk Barbi hat mal auf die Liste der 500 größten Hochleistungsrechner der Welt geguckt. Danach würde sich Olli aus Bremerhaven etwa auf Platz 270 einreihen.

Bestellt wurde bei dem ameri-Sitz in Seattle/Washington. Der Supercomputer yom Typ Cray nen ausgestattet. Haushaltsübliche Computer haben serade einmal ein oder zwei Rechenkerne, bessere Geräte vielleicht vier bis acht. Dazu hat Barbi Intel Xeon Prozessoren der neuesten Generation auszewählt. "Wir stellen uns darauf ein, dass wir lernen müssen", sagt Barbi, Doch dafür haben sie eben die neuesten Prozessoren. Das AWI hat auf seiner Internet-Seite die wichtigsten Daten zu Olli aufgelistet. Eine Zahl wie mehr als 400 Billionen Rechenoperationen pro Sekunde

Schnellere Berechnungen

"Dieser neue Rechner ist so schnell, dass wir für die Berechnen nur noch die Hälfte der bisherigen Zeit brauchen werden",

Haben gut lachen: Mit dem neuen Hochleistungsrechner, der im Hintergrund aufgestellt wird, können AWI-Mitarbeiter Martin Losch, Malte Thoma, Natalia Rakowsky und Dirk Barbi besser und schneller arbeiten beziehungsweise ihre Kollegen unterstützen. Foto Scheschonka

der AWI-Arbeitsgruppe "Wissenschaftliches Rechnen". Sie ist eine von vielen AWI-Forschern, deren Arbeitsbedingungen sich gibt eine leise Ahnung von dem, durch den Kauf des Hochleiswerden. Mit Hilfe des neuen Systems könnten sie direkt am AWI größere Rechnungen ausführen, zum Beispiel zur arktischen Meereisbedeckung, ergänzt der Klimawissenschaftler Dr. Martin Losch. Dafür mussten sie bisher

Hamburg oder sogar Großbritannien ausweichen. "Das große Problem ist, die Daten dann wieder zurückzukriegen", sagt Losch. Anders gesagt: Künftig sparen sie viel Zeit und Nerven

Bislang, überschlägt Administrator Malte Thoma grob, mussten sie 80 Prozent ihrer Berechnungen auslagern. Das wird dank beitenden Supercomputers deutlich weniger werden. Die AWI-

projekte mittlerer Größe vollstän-Supercomputer kostet drei Milliodig am AWI rechnen und größere mit Testläufen vorbereiten.

Klima-Rechenmodellen Rei oder der Simulation einer Tsunavon zwei Terabyte und mehr er- wenn alles eingefahren ist, soll er zeugt. Aus diesem Grund hätten sie beim Kauf des Großrechners schr genau darauf geachtet, dass er mit besonders schnellen Festplatten ausgestattet ist, erläutern die AWI-Mitarbeiter.

Das alles hat seinen Preis Des

KOMPAKT

Einbrecher

Bargeld aus Bürg mitgehen lassen

GEESTEMÜNDE, Einbrecher hahen in der Nacht zu Mittwoch Bargeld aus einem Büro an der Georgstraße erbeutet. Die Täter hebelten mit Gewalt ein Toilettenfenster auf, das zum Bürokomplex gehört. Sie kletterten durch das in zwei Metern Hösuchten die Räumlichkeiten. durchwühlten die Schränke Ob sie noch weitere Beute machten, muss noch geklärt werden. Die Polizei (12 9534444) bittet um Hinweise.

Ludwig Köthe bleibt **RTV-Vorsitzender**

GEESTEMÜNDE Beim Bremerhavener Tennisverein von 1905 (BTV) standen Vorstandswahlen an, Ludwig Köthe wurde dabei als 1. Vorsitzender, Dr. Esko Unger als Sportwart, Andreas Seitz als 1. Jugendwart und Walter Hissenkemper als 1. Beisitzer wiedergewählt. Mit Glenn Schnittker (2. Sportzerin) erklärten sich zudem zwei "Neulinge" zur Mitarbeit im Vorstand bereit. Rita Wolff

Israel-Bilder

Frauenbund lädt zum Vortrag ein

GEESTEMÜNDE, Einen Lichtbildervortrag über das heutige Israel hält Pastor Michael Großkopf von der Petruskirche beim Montagstreffen des Deutschen Evangelischen Frauenbundes. Ortsverband Bremerhaven. Die Montag, 18. April, um 15 Uhr im Gemeindes al das M kirche, An der

kirche, An der sind ohne Ann HEI MHOLTZ GEMEINSCHAFT

Rakowsky et al.

FESOM

IMUM 2017

nen Euro, die vom Bundesforschungsministerium sowie den Ländern Bremen, Brandenburg und Schleswig-Holstein finanziert werden. Splitestens im Sommer. allen zeigen, was er kann. Am Mittwoch begannen die Aufbauarbeiten: das Team von Crav wird noch die nächsten Tage in der Stadt sein. Die ersten Nutzer werden Ende Mai mit Olli arbeiten.

FESOM

Examples

Overview

TsunAWI

- TsunAWI scenarios for the Indonesia Tsunami Warning System
- Comparison with EasyWave (regular mesh, near real time)

Rakowsky et al.

FESON

IMUM 2017

FESOM Overview

FESOM1.4 - finite element dynamical core

- Horizontal mesh: Triangular unstructured,
- Vertical: Prisms or tetrahedra,
- Working horse.

FESOM2.0 – finite volume dynamical core

- Ready and working, focus on model physics,
- Optimized data structure: vertical as first dimension allows for direct memory access,
- Less resources for same throughput,
- Different placement of velocities (node \rightarrow edge),
- Same meshes (vertical: prisms), input, sea ice component.

IMUM 2017

FESOM - Performance compared

Model, Setup	SYPD	#Cores	time step
NEMO (1/4)°	\approx 6	800	1440s - 1080s
1M wet nodes			
NEMO (1/12)°	≈2	3.500	360s - 240s
9M wet nodes			
NEMO (1/16)°	\approx 0.8	3.500	200s
STORM MPI-OM	≈2	2.000	n/a
5.6M wet nodes			
FESOM1.4, 1.3M nodes	\approx 6	2.400	600s
down to 8km res.			
FESOM1.4, 5M nodes	≈2	7.200	300s
down to 4km res.			
FESOM2.0, 2M nodes	\approx 18	1728	1.200s
15km uniform			
FESOM2.0, 6M nodes	≈1.5	1728	60s
down to 4km res.			

Rakowsky et al.

IMUM 2017

FESOM - Where are we?

- **CORE-II intercomparison project:** FESOM1.4 shows very good behaviour for meshes used in climate studies,
- FESOM1.4 is not slower than structured codes, but needs more resources,
- For the same number of nodes, we gain resolution where it is needed,
- FESOM1.4 and FESOM2.0 scale well,
- FESOM2.0 performance is competitive to codes on structured meshes.

IMUM 2017

Velocity field at 100m depth. All images by N. Koldunov.

Eddie resolving mesh (Sein et al., 2016), 8km - 60km res., 1.3M 2D-nodes, 40M 3D, 6SYPD coupled FESOM1.4+ECHAM6.

Rakowsky et al.

IMUM 2017

O[†]**AVI**

Rakowsky et al.

FESOM

IMUM 2017

MEINSCHAF

Rakowsky et al.

FESOM

IMUM 2017

See ice in the Arctic

Rakowsky et al.

FESOM

IMUM 2017

O[†]**AVI**

Rakowsky et al.

FESOM

IMUM 2017

FESOM2.0 Example

Velocity field at 100m North Atlantic max. resolution 25km

Rakowsky et al.

FESOM

IMUM 2017

FESOM2.0 Example

Velocity field at 100m North Atlantic max. resolution 8km

Rakowsky et al.

FESOM

IMUM 2017

FESOM2.0 Example

Velocity field at 100m North Atlantic max. resolution 4km

FESOM

IMUM 2017

FESOM2.0 - Status and Outlook

FESOM2.0 basis configuration is ready and running. We work on

- Arbitrary Lagrangian Eulerian vertical coordinates
- Transport algorithms with reduced spurious mixing
- Vertical transport algorithms with increased stability
- Vertical mixing parameterizations
- Mixed meshes (quads and triangles)
- Optimization of code and parallelization
 - Care for vectorized inner loops (vertical)
 - Better load balancing (2D, 3D, sea ice nodes)
 - Optimized MPI communication pattern (hierarchical partitioning)
 - Asynchronous MPI
 - Parallel asynchronous I/O

Rakowsky et al.

IMUM 2017

Please check

www.fesom.de

for images, videos, information on ongoing projects and more.

Rakowsky et al.

FESOM

IMUM 2017

GITEWS Timeline

German-Indonesian Tsunami Early Warning System

- 2005-2011 GITEWS project funded by BMBF
- Nov. 2008 Inauguration
- March 2011 Transfer of Ownership to Indonesia
- 2011-2014 PROTECTS PROject for Training, Education and Consulting for Tsunami early warning Systems, BMBF
 - 2014-... Support contract
- 2015-2017 Cooperation with Indonesia, funded by Australia

GITEWS System Overview

Warning Center Badan Meteorologi, Klimatologi dan Geofisika, Jakarta

HELMHOLTZ GEMEINSCHAFT

Rakowsky et al.

FESOM

IMUM 2017

GITEWS System Overview

TsunAWI

The computational domain reflects the characterics of tsunamis: Small triangles (50m-200m) at the coast, large triangles in the deep ocean (up to 25km).

TsunAWI

Model domain and epicenters for scenario database computed in 2011 and extended in 2013, 2017

Scenario data products

Coastal forecast points

Example: Magnitude 9.0 in the Eastern Sunda Arc, zoom to Lembar, Eastern Lombok

Scenario data products Example: Small tsunami on 7 April 2010

Rakowsky et al.

FESOM

IMUM 2017

24 / 23

OM

GEMEINSCHAFT

Comparison of modeling approaches and the resulting warning products in the framework of the Indonesia Tsunami Early Warning System (InaTEWS)

Sven Harig¹, Andrey Babeyko², Antonia Immerz¹

Natalja Rakowsky¹ and Tri Handayani³

¹Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany ²GFZ German Research Centre for Geosciences, Potsdam, Germany ³Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta, Indonesia

- Tsunami Early Warning Systems determine and disseminate
 - Estimated wave height (EWH)
 - Estimated arrival time (ETA)
- Warning is basis of e.g., evacuation of the potentially affected population
- Quality of the warning is of crucial importance
- All components of the Warning system need constant attention and improvement.

HELMHOLTZ

GEMEINSCHAF1

The model components in InaTEWS

	EasyWave	TsunAWI
Developer	Andrey Babeyko at GFZ within GITEWS	At AWI within GITEWS branch of FESOM1.4
Governing equations	Linear SWE	Nonlinear SWE
Spacial discretization	Finite differences	Finite elements (triangles)
Resolution	Regular mesh, 30 arc seconds.	10 km in the deep ocean, 250 m in coastal regions, 50 m at gauge locations & priority areas.
Inundation	Coast line as boundary wall, Estimate of run up available	Inundation scheme included
Time stepping	explicit, typically 10s	explicit, typically 1s
Implementation	Use of GPUs possible	OpenMP parallel
Time for scenario calculation (12h integration time)	~5 min (6 million nodes) on 1 core Xeon Broadwell	~6h (11 million nodes) on 18 cores Xeon Broadwell

The model components in InaTEWS

	EasyWave	TsunAWI
Warning products: Determined by aggregation over model results in Points of Interest (POIs) along the coast	 Options: Calculations to nearest coast point, or Calculation to given water depth and projection (Green's law) 	Mesh covers coastal area up to terrain height of ~50m. Direct calculation of wave height in POIs

Points of interest (POIs)

97°0.000'

98°0.000'

99°0.000'

100°0

96°0.000'

2°0.000′

1°0.000'

0°0.000'

-1°0.000'

Defined within GITEWS by DLR POI resolution: generally 500m in priority areas 100m

Total number: 181459

-3°0.000′

-1°0.000'

00' 100°0.000' 101°0.000' 102°0.000' 103°0.000'

Warning zones and POIs

Sources for differences of model results

- Model resolution, boundary conditions
- Topography
 - easyWave: ETOPO or GEBCO
 - TsunAWI: GEBCO augmented by additional datasets (tcarta, SRTM, some local measurements)
- Governing equations: Additional terms in TsunAWI
 - Advection
 - Viscosity
 - Bottom friction
 - Coriolis force
- Determination of warning products: direct calculation vs. projection

Scenario overview

Magnitude	total nmb
7.0	497
7.2	495
7.4	486
7.6	454
7.8	412
8.0	273
8.2	326
8.4	271
8.6	214
8.8	142
9.0	66
Sum	3636

Central patches of the scenarios involved in the study

General Strategy

Model configurations:

- **TsunAWI (bathy. G08MOD)**
- easyWave
 - Calc. to coast (G08)
 - Calc. to coast (G08MOD)
 - Green's law (G08) -- resulted in systematic overestimation
- **Identical** sources
- Bathymetry varies
- Analyse POI values and aggregated warning zone results

EWH values obtained by the models

Occurring differences are visualized in box plots

60

EWH overview in single scenario

Bathymetry sections

Results after bathymetry adjustment

(1)

The overall mismatches are reduced

Correlation overview

		G08 and Green's law	G08 coast calc	G08MOD coast calc
Magnitude 7.0	EWH correlation	0.81466	0.8576	0.91898
	ETA correlation	0.93576	0.9410	0.94768
Magnitude 8.0	EWH correlation	0.8096	0.89876	0.95222
	ETA correlation	0.91045	0.94236	0.95046
Magnitude 8.4	EWH correlation	0.74616	0.87141	0.95171
	ETA correlation	0.86683	0.91786	0.92824

InaTEWS categories

(1)

None - Advisory mismatches

Advisory - Warning mismatches

Warning - Major Warning mismatches

Study ongoing - Conclusions so far

- Good overall consistency of warning products, in particular very little discrepancies for small magnitudes.
- Improvements of the consistency in the system are possible.
- Due to the vast range of the topographical settings, implications of adjustments are diverse.
- Many factors involved in deviating results improving one may increase the influence of another.
- Absolute agreement is not achievable by definition, nevertheless studies like this may help to reduce variations to the minimum.

