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Assessing the role of sea ice algal biomass and primary production for polar ecosystems

remains challenging due to the strong spatio-temporal variability of sea ice algae.

Therefore, the spatial representativeness of sea ice algal biomass and primary production

sampling remains a key issue in large-scale models and climate change predictions

of polar ecosystems. To address this issue, we presented two novel approaches to

up-scale ice algal chl a biomass and net primary production (NPP) estimates based

on profiles covering distances of 100 to 1,000 s of meters. This was accomplished

by combining ice core-based methods with horizontal under-ice spectral radiation

profiling conducted in the central Arctic Ocean during summer 2012. We conducted

a multi-scale comparison of ice-core based ice algal chl a biomass with two profiling

platforms: a remotely operated vehicle and surface and under ice trawl (SUIT). NPP

estimates were compared between ice cores and remotely operated vehicle surveys.

Our results showed that ice core-based estimates of ice algal chl a biomass and NPP

do not representatively capture the spatial variability compared to the remotely operated

vehicle-based estimates, implying considerable uncertainties for pan-Arctic estimates

based on ice core observations alone. Grouping sea ice cores based on region or ice

type improved the representativeness. With only a small sample size, however, a high

risk of obtaining non-representative estimates remains. Sea ice algal chl a biomass

estimates based on the dominant ice class alone showed a better agreement between

ice core and remotely operated vehicle estimates. Grouping ice core measurements

yielded no improvement in NPP estimates, highlighting the importance of accounting

for the spatial variability of both the chl a biomass and bottom-ice light in order to

get representative estimates. Profile-based measurements of ice algae chl a biomass

identified sea ice ridges as an underappreciated component of the Arctic ecosystem
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because chl a biomass was significantly greater in this unique habitat. Sea ice ridges

are not easily captured with ice coring methods and thus require more attention in future

studies. Based on our results, we provide recommendations for designing an efficient

and effective sea ice algal sampling program for the summer season.

Keywords: ice algae, ice core, chl a, remotely operated vehicle, surface and under-ice trawl, net primary

production, spectral irradiance, bio-optics

INTRODUCTION

There is mounting evidence for an overall increase in Arctic-wide
net primary production (NPP) as a result of the declining sea
ice cover and increasing duration of the phytoplankton growth
season (Arrigo and van Dijken, 2011, 2015; Fernández-Méndez
et al., 2015). However, it remains uncertain how sea ice algae NPP
will respond to continued changes of the sea ice environment. It
has been suggested that a thinning Arctic sea ice cover, which will
lead to increased light transmittance, will also result in increased
sea ice algal NPP rates due to more available photosynthetically
active radiation (PAR; Nicolaus et al., 2012; Fernández-Méndez
et al., 2015). On the other hand, some forecasts predict increased
snow precipitation in the Arctic (IPCC, 2013), which would result
in less available light for bottom-ice algal growth during spring.
Other than available light, other variables may have an equal
or greater influence on Arctic primary production depending
on region and season. Such variables include nutrient supply,
temperature, and CO2 intake (Tremblay et al., 2015). Declining
sea ice may increase oceanic CO2 intake, which would result in
increasedNPP, but could be counteracted by increased runoff and
higher temperatures expected throughout the Arctic (Tremblay
et al., 2015).

In the central Arctic Ocean sea-ice algae has been documented
to contribute up to 60% of the NPP during summer (Gosselin
et al., 1997; Fernández-Méndez et al., 2015). However, net
sympagic (ice-associated) primary production is relatively low
accounting for 1–10% of total NPP in the Arctic Ocean (Dupont,
2012; Arrigo and van Dijken, 2015). Regardless of the overall
low contribution of sympagic NPP, both sympagic and pelagic
organisms showed a high dependency on ice-algae produced
carbon within the central Arctic Ocean (Budge et al., 2008;
Wang et al., 2015; Kohlbach et al., 2016, 2017). The key role
of sea ice algae in Arctic foodwebs, particularly in terms of
reproduction and growth of key Arctic organisms, such as:
Calanus glacialis (Michel et al., 1996; Søreide et al., 2010),
highlights the importance of timing and duration of ice algal
growth, and the availability of algal biomass throughout different
times of the year.

Spatial variability of springtime ice algal chl a biomass has
been related to the distribution of snow on first-year sea ice
(FYI), due to the large influence of snow on light transmission
by the reflection and scattering of light near the surface. This
relationship explains the similar patch sizes observed for snow
and sea ice algae biomass on the same study sites. Between study
sites, however, patch sizes had a large range between 5 and 90m,
which was the result of differences in the snow distribution and
drifting patterns over relatively level FYI (Gosselin et al., 1986;

Rysgaard et al., 2001; Granskog et al., 2005; Søgaard et al., 2010).
In contrast, the undulating surface topography of MYI plays an
important role in the distribution of snow, which has been linked
to the presence of high ice algal chl a biomass at the bottom of
thick MYI hummocks with little or no snow cover (Lange et al.,
2015, 2017). Gradinger et al. (2010) identified sea ice ridges as
important accumulation regions of sea ice fauna during advanced
melt. This further highlights the ecological importance of thick
sea ice features. Using traditional coring methods, however, it is
very difficult to sample ridges and hummocks resulting in sparse
observations for ice algae at the bottom or within these features.

In summer when the snow is melted and melt ponds are
present, light availability has a less important role in controlling
the distribution of ice algal chl a biomass. This is due to increased
melt induced algal losses during late-spring and early-summer,
which becomes the limiting factor controlling the ability of algal
communities to remain in the bottom-ice environment (Grossi
et al., 1987; Lavoie et al., 2005). The spatial distribution of ice algal
chl a biomass during mid- to late-summer, however, remains
poorly understood and under-sampled, particularly in the central
Arctic Ocean (Wassmann et al., 2011; Miller et al., 2015).

The high spatial and temporal variability of sea ice algae, in
addition to sparse sampling, results in poorly constrained sea
ice algal chl a biomass and PP estimates for the central Arctic
Ocean (Miller et al., 2015). Large-scale estimates of sea ice algal
chl a biomass and PP are limited to modeling studies as satellites
are unable to observe the underside of sea ice. Lee et al. (2015)
demonstrated that pelagic phytoplankton PP models for the
Arctic Ocean were highly sensitive to uncertainties in chlorophyll
a (chl a) and performed best with in situ chl a data. In situ ice
algal chl a estimates used in models, however, are typically based
on a small number of ice core observations (e.g., Fernández-
Méndez et al., 2015). A recent study comparing ice core chl a
biomass to sea ice algal chl a biomass derived from an 85m ROV
transect of under-ice spectral radiation measurements showed
large differences, which could carry high uncertainties for large-
scale estimates based on these ice core data alone (Lange et al.,
2016).

Miller et al. (2015) reviewed the different methods for PP
measurements with spatial sampling resolution on the order of
0.01m for ice coring-based in vitro incubations (e.g., Gosselin
et al., 1997; Gradinger, 2009; Fernández-Méndez et al., 2015) or
in situ incubations (e.g., Mock and Gradinger, 1999; Gradinger,
2009). At larger scales the under-ice eddy covariance method
integrates primary production over an area of 100m2 (Long et al.,
2012). Thus there is a large gap in spatial coverage between the
0.01 to 100 m2 scales, which is not resolved by these methods. It
is within this spatial range that many sea ice and snow properties
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(such as thickness, porosity, temperature) can vary, which can
have a large influence on light availability, ice melt and growth,
nutrient availability, and therefore, the spatial distribution of ice
algae. Typical patch sizes of snow have been reported in the
range 20–25m (Gosselin et al., 1986; Steffens et al., 2006). Surface
properties such as albedo have patch sizes of ∼10m (Perovich
et al., 1998; Katlein et al., 2015a) and sea ice draft can vary at scales
of around 15m (Katlein et al., 2015a).

Here we present a novel approach to fill this important gap in
the spatial scales of ice algal chl a biomass and NPP estimates
by combining in vitro photosynthetic parameters of ice algae
with chl a biomass derived from under-ice spectral radiation
measurements and under-ice available PAR measurements
obtained from a moving under-ice profiling platform, the ROV.
Furthermore, we investigate the spatial patterns of chl a biomass
and NPP estimates, using two under-ice profiling platforms: the
ROV and Surface and Under Ice Trawl (SUIT), with special
emphasis on sea ice ridges, and evaluate potential discrepancies
between the up-scaled and ice core-based estimates. Based on our
results, we provide recommendations for designing an efficient
and effective sea ice algal sampling program for the summer
season.

MATERIALS AND METHODS

The Profiling Platforms
All surveys were conducted during the RV Polarstern expedition
PS80 to the central Arctic Ocean in August and September 2012.
Under-ice profiling platform surveys were conducted using an
under-ice Remotely Operated Vehicle (ROV) V8Sii-ROV (Ocean
Modules, Åtvidaberg, Sweden) and a SUIT (van Franeker et al.,
2009), with mounted sensor arrays, described in Nicolaus and
Katlein (2013), David et al. (2015), and Lange et al. (2016).
Simplified diagrams and images showing the deployment of the
under-ice profiling platforms were presented in Lange et al.
(2016). The ROV is an under-water vehicle with mounted sensor
array deployed through a small 2 × 2m man made hole in
the sea ice, and is attached by a 300m long fiber optic cable.
The ROV is controlled remotely from a sheltered base station
(e.g., tent) located adjacent to the deployment hole. A detailed
description of the ROV spectral measurements, calibration and
calculations, and ROV operation was provided by Katlein et al.
(2015b) and Nicolaus and Katlein (2013). The V8ii ROV was
equipped with an altimeter (DST Micron Echosounder, Tritech,
UK), a sonar (Micron DST MK2, Tritech, UK), one zoom-
camera (Typhoon, Tritech, UK), and one fixed focal length
camera (Ospray, Tritech, UK). The SUIT is a net developed for
deployment in ice covered waters, typically behind an icebreaker,
for sampling sea ice associated zooplankton and micronekton
in the upper 2m of the water within the ice-water interface.
During this cruise the sensor array was specifically enhanced
to measure the variability of sea ice algae chl a biomass
within the sea ice and sea ice habitat properties along the
SUIT hauls. The new sensor package included an Aquadopp
Acoustic Doppler Current Profiler (ADCP; Nortek AS, Rud,
Norway), a Conductivity Temperature Depth probe (CTD; Sea
and Sun Technology, Trappenkamp, Germany) with a built-in

Cyclops 7 fluorometer (Turner Designs, Sunnyvale, CA, USA), an
PA500/6S altimeter (Tritech International Ltd., Aberdeen, UK),
one RAMSES-ACC irradiance sensor (Trios, GmbH, Rastede,
Germany), one RAMSES-ARC radiance sensor (Trios GmbH,
Rastede, Germany) and a forward-looking video camera (GoPro
Hero 2).

The ROV spectral surveys were conducted during seven ice
stations (Table 1; Figure 1). The SUIT spectral surveys were
conducted at 6 stations (Table 1; Figure 1). Stations conducted
in relatively close proximity (<50 km) to each other were
grouped into similar locations represented by the letters A to
I (Figure 1). Two profiles separated by small distances were
sampled using the SUIT (<10 km) at location B, and using the
ROV (<500m) at locations C and D. Incoming solar radiation
observations were measured on-ice for ROV-based spectral
measurements, and from a ship-mounted sensor for SUIT-based
spectral measurements. To ensure high quality spectra, data were
limited to observations at a distance to the ice-bottom of ≤1m
and with a pitch and roll between −10◦ and 10◦, as suggested by
Nicolaus and Katlein (2013) and Katlein et al. (2016). Reducing
the pitch and roll, and distance to ice bottom also reduced the
potential influence of spectral absorption by the water. Since the
SUIT behaves less predictable near ridges (e.g., it hits the ridge
and is redirected in an unpredictable direction), we manually
inspected the spectra to identify reliable spectral measurements
at sea ice ridges (e.g., noisy spectra). Less than 1% of the spectra
were excluded from analyses.

Sea ice draft was calculated based on sensor measurements
of depth and distance to ice bottom, and corrected for pitch
and roll angles as described in Lange et al. (2016) and David
et al. (2015). Sea ice ridges were identified from the SUIT ice
draft profiles using the Rayleigh criteria, following procedures
described by Rabenstein et al. (2010) and Castellani et al. (2014)
for the sea ice surface topography, and Castellani et al. (2015)
for the sea ice bottom profile. Ice draft local minima (thicker
sea ice draft values are more negative) identified along the SUIT
profiles with a threshold of 1.5m deeper than the surrounding ice,
following Castellani et al. (2015), were selected as potential ridges.
Adjacent minima needed a separation distance between points
which was less than half the depth of the first minima in order
to be identified as two single elements not belonging to the same
ridge. Ridge depth and width were measured in order to calculate
ridge density (ridges km−1) and percent coverage of ridges. Here,
ridge depth was calculated as the width at half maximum. During
one SUIT haul (station 358, location H) there were no altimeter
measurements. Because the SUIT generally travels directly under
the ice, the depth measurements can be used to reliably (R2 =

0.78) derive level ice draft using a simple linear model (David
et al., 2015).We could calculate ridge density, ridge coverage, and
ridge width from these ice draft measurements without altimeter
data. The absolute draft values at ridges, however, were less
accurate and therefore excluded from analysis.

All profiling platform-derived observations (i.e.,
transmittance, sea ice algal chl a, NPP, draft) were divided
into 5 ice classes based on the sea ice draft values in the
following ranges: (1) 0–0.5m; (2) 0.5–1.0m; (3) 1.0–1.5m; (4)
1.5–2.0m; and (5) >2.0m. Furthermore, we separated profiling
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TABLE 1 | Summary of downwelling surface and bottom-ice light, chlorophyll a biomass (chl a), net primary production (NPP), and explained variance of NPP per location

(shown in Figure 1) and sampling method (gear): ice cores (FM or LA), remotely operated vehicle (ROV) and surface and under-ice trawl (SUIT).

Group Geara Sample size Station Downwelling

surface PARb
Scalar PAR (I)b Chl ac mg m−2 NPPcmg C m−2 d−1 Explained variance

(R2) of NPP by

µmols photons m−2 s−1 I Chl a

A SUIT 46 216 – – 0.0 (0.0–0.2) – – –

B FFM 1 224 249 ± 90 40.8 ± 14.7 1.2 10.16 – –

LLA 8 224 – – 0.3 (0.2–0.5) – – –

CORES 9 224 – – 0.4 (0.2–0.7)* – – –

ROV 468 224 211 ± 72 51.2 ± 25.0 1.0 (1.0–1.2) 8.45 (5.59–12.29) 0.64 (0.54–0.70) 0.10 (0.07–0.19)

SUIT 43 223 – – 0.2 (0.0–0.7) – – –

SUIT-2 45 233 – – 0.1 (0.0–0.4) – – –

C FM 1 237 174 ± 90 28.5 ± 14.7 1.7 (+)• 0.56 (−)• – –

LA 12 237 – – 0.6 (0.5–1.1) – – –

CORES 13 237 – – 0.7 (0.5–1.2)* – – –

ROV 156 237a 137 ± 59 28.9 ± 23.2 1.0 (0.8–1.1)• 0.60 (0.30–0.98) 0.61 (0.37–0.82) 0.11 (0.02–0.24)

ROV-2 1378 237b 137 ± 59 18.7 ± 8.2 1.3 (1.1–1.5)• 0.89 (0.62–1.03)• 0.61 (0.38–0.79) 0.09 (0.03–0.17)

D FM 1 255 104 ± 71 26.7 ± 18.2 0.6 (−)• 0.62 (−)• – –

LA 4 255 – – 0.8 (0.7–1.2)* – – –

CORES 5 255 – – 0.7 (0.6–1.2) – – –

ROV 186 255 93 ± 60 36.3 ± 20.3 1.4 (1.4–1.5)• 1.73 (1.48–1.91)• 0.12 (0.0–0.25) 0.70 (0.52–0.93)

E FM 1 277 101 ± 57 25.9 ± 14.6 0.4 (−)• 0.45 – –

SUIT 91 285 – – 0.1 (0.0–0.9) – – –

F FM 1 323 81 ± 63 24.2 ± 18.8 0.3 (−)• 0.02 (−)• – –

LA 6 323 – – 0.2 (0.1–0.2)* – – –

CORES 7 323 – – 0.2 (0.0–0.3) – – –

ROV 1145 323 67 ± 49 7.7 ± 8.8 1.5 (1.3–1.7)• 0.14 (0.10–0.19)• 0.84 (0.72–0.90) 0.18 (0.14–0.23)

SUIT 63 321 – – 0.9 (0.0–1.7) – – –

G FM 1 335 49 ± 43 5.9 ± 5.2 0.4 (−)• 0.05 (−)• – –

LA 6 335 – – 0.9 (0.4–1.1)* – – –

CORES 7 335 – – 0.8 (0.3–1.1) – – –

ROV 762 335m 46 ± 39 3.0 ± 7.6 2.3 (1.9–2.8)• 0.13 (0.07–0.22)• 0.93 (0.89–0.94) 0.01 (0.01–0.02)

ROV-2 302 335f 46 ± 39 2.3 ± 2.7 2.7 (2.3–3.1)• 0.13 (0.08–0.23)• 070 (0.68–0.70) 0.09 (0.08–0.10)

SUIT 18 345 – – 1.9 (0.0–4.4) – – –

H FM 1 349 25 ± 15 1.4 ± 0.9 8.0 (+)• 1.00 (+)• – –

LA 7 349 – – 0.6 (0.3–2.3) – – –

CORES 8 349 – – 0.8 (0.3–4.7) – – –

ROV 282 349 23 ± 13 2.4 ± 1.5 1.3 (1.2–1.5)• 0.14 (0.08–0.21)• 0.16 (0.11–0.21) 0.61 (0.56–0.68)

SUIT 101 358 – – 0.9 (0.4–1.7) – – – –

I FM 1 360 13 ± 7 0.9 ± 0.5 8.0 (+)• 0.39 (+)• – –

LA 4 360 – – 7.3 (4.9–9.0) – – –

CORES 5 360 – – 8.0 (4.3–9.3) – – –

ROV 647 360 10 ± 5 0.4 ± 0.4 4.3 (2.8–6.6)• 0.07 (0.05–0.12)• 0.79 (0.78–0.80) 0.15 (0.15–0.16)

a“FM” corresponds to FM-cores from Fernández-Méndez et al. (2015); “LA” correspond to LA-cores from Lange et al. (2016); “ROV” correspond to the up-scaled remotely operated

vehicle estimates; and “SUIT” correspond to the up-scaled surface and under-ice trawl estimates.
bDownwelling surface PAR and bottom ice scalar PAR (I) are presented as mean ± sd to maintain consistency with Fernández-Méndez et al. (2015).
cChl a and NPP are presented as median (interquartile range).
•Correspond to FM-cores not representative of the corresponding up-scaled ROV estimates for that location, i.e., FM-core estimate outside the interquartile range of ROV estimates.

(+) indicates over-estimate; (−) under-estimate of the FM cores compared to up-scaled ROV estimates.
*Represents significant difference between the CORES (FM and LA cores combined) and the up-scaled ROV estimates.
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FIGURE 1 | Map of the Arctic Ocean with sea ice extent and concentration

data, and the locations of the corresponding station groupings conducted

during the 2012 PS80 cruise (station numbers for each grouping are listed in

Table 1). Locations are color coded to identify which variable, light (red) or chl

a biomass (white), explains the dominant portion of the net primary production

variance. The ice station with identified ridges, station 224 (location B), is

identified by a triangle. Sea ice concentration data acquired from www.

meereisportal.de according to algorithms in Spreen et al. (2008). Sea ice

extent correspond to the 2012 September monthly mean (extent data

acquired from NSIDC, (Fetterer et al., 2002, updated 2011).

platform-derived observations into level ice and ridged ice.
This was done by manually identifying all observations acquired
under the identified ridges.We identified dominant ice classes for
each location using the modal ice thickness (converted to draft
by multiplying by 0.9) from electromagnetic induction sounding
ice thickness surveys, using an EM31 instrument, of the entire
floe (data presented in Boetius et al., 2013; Fernández-Méndez
et al., 2015; Katlein et al., 2015b). We used these larger scale ice
thickness surveys to assign the dominant ice class because these
surveys were conducted specifically for the purpose of assessing
the distribution of ice thickness at the ice floe. Ground-based EM
surveys are a common method to representatively capture the
spatial variability of ice thickness on floe scales (Haas et al., 1997;
Haas, 2004).

Sea Ice Algal Chl a Biomass Estimates
Derived from Under-Ice Spectral Radiation
Ice algal chl a biomass estimates were derived from under-
ice profiling platform-based spectral transmittance observations
using empirical orthogonal function (EOF) analysis combined
with generalized linearmodels (GLM), as described in Lange et al.
(2016). EOF analyses reduce the dimensionality of the data while
maintaining the variability of key spectral absorption properties,
which can then be used to relate to chl a concentrations or

other environmental variables. GLMs were fitted using ice core
chl a concentrations as a response variable and EOF modes
as predictor variables. All ice cores were extracted along ROV
spectral radiation profiles. The best set of EOF modes used
as predictor variables was selected by searching all possible
combinations of EOFmodes and using the Bayesian Information
Criterion (BIC) to assess the quality of the GLM. The EOFs used
represented the spectral variability that can best be explained by
the variability within the ice algal chl a biomass. Furthermore,
EOF analyses captured variability within multiple regions of the
PAR light spectrum (400–700 nm) where chl a light absorption
occurs. In addition, we used mean robustness R2 and true
prediction error estimates as ranking criteria to find the best
predictive model for our data set. Each model was applied to 5
data subsets not used to fit the model then we determined the
predicted vs. observed R2-value for each data subset then took
the mean R2-value as the mean robustness R2. To determine the
true prediction error estimate we used 10-Fold Cross-Validation
(10 FCV). In 10 FCV, data are randomly separated into 10 data
subsets then model fitting and error estimation are repeated 10
times. Each time the model is fitted to 9-folds then applied to
the 10th-fold. This is repeated 100 times and the mean of all root
mean square error (RMSE) values is used as the true prediction
error estimate. Based on these criteria we determined that the
combination of spectral transmittance, calculated according to
Nicolaus et al. (2010), and the EOF approach resulted in the
most reliable predictive model (EOF-Transmittance) with a
predicted vs. observed chl a R2 of 0.90, and a true prediction
error estimate (10-fold cross validated root mean squared error,
RMSECV), of 1.8mg chl a m−2 (model M15 from Lange et al.,
2016). In addition, the selected predictive model showed good
agreement between chl a estimates derived from independent
spectral data (spectra not used to fit the model) and ice core chl a
concentrations, which were all extracted along the ROV profiles.

ROV Data Re-Sampling
We resampled the ROV chl a, ice draft and transmittance
observations in order to account for potential spatial sampling
biases (e.g., multiple or overlapping measurements at the same
location; Figure 2), and variable footprint size of the under-ice
ROV spectral measurements. Data were resampled to a grid (x,
y) of equally spaced 1m diameter circles (grid circles; Figure 2).
A grid of circles was created for the ROV measurements (ROV
circles) with each circle’s center location determined by the
measurement location (x, y) and the diameter determined by
the footprint of the measurement (i.e. distance to ice bottom
multiplied by 2, as described in Lange et al. (2016). For
each grid circle with only one overlapping ROV circle, which
had an overlapping area ≥0.2 m2 (25% of the 1m circle),
the corresponding ROV-based transmittance and chl a were
assigned to that grid circle. For each grid circle that had
more than one overlapping ROV circle, of which at least one
ROV circle had an overlapping area ≥0.2 m2, weighted means
of the corresponding ROV-based transmittance, draft and chl
a were assigned to the grid circle. Weighting factors were
calculated for all overlapping ROV circles in each grid as the
overlapping area of each ROV circle with the corresponding
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FIGURE 2 | Detailed diagram and example calculation of the re-sampling process. A grid of circles was created for the ROV measurements (e.g., ROV1-4 circles) with

each circle’s center location determined by the measurement location (x, y) and the diameter determined by the footprint of the measurement. An additional grid of

circles (e.g., GridA-D circles) was created where each adjacent circle was spaced 1m apart and each had a diameter of 1m. For each grid circle (e.g., GridB and D)

with only one overlapping ROV circle (e.g., ROV1 and 3, respectively), which had an overlapping area ≥0.2 m2 (e.g., WB,1 and WD,3, respectively), the corresponding

ROV-based transmittance and chl a were assigned to that grid circle. For each grid circle (e.g., GridA and C) that had more than one overlapping ROV circle (e.g.,

ROV2−4 and ROV1−2, respectively), of which at least one ROV circle had an overlapping area ≥0.2 m2 (e.g., WA,1-2 and WC,2-4, respectively), weighted means

(e.g., µA for GridAchl a) of the corresponding ROV-based transmittance, draft and chl a were assigned to the grid circle. Weighting factors were calculated as the

overlapping area of each ROV circle with the corresponding grid circle divided by the sum of all overlapping areas for that grid circle.

grid circle relative to the total ROV circle area. Figure 2 shows
a detailed diagram outlining the resampling process with an
example calculation. SUIT data were not re-sampled because they
represent a straight linear profile and therefore themeasurements
have no possibility to have overlapping footprints for the same
regions.

ROV-Derived Net Primary Production
Estimates
All NPP estimates were calculated based on the re-sampled ROV
observations of chl a and transmittance. Up-scaled daily ice algal
NPP estimates, P (mg C m−2 d−1), were calculated using the
photosynthesis equation from (Platt et al., 1980):

P =

∫

t

[(

P
B

s

[

1− e
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B
s

]

e
−βB

It/PB

s

)

B
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where PBs is the chl a-normalized maximum fixation rate with
no photoinhibition (mg C [mg chl a]−1 h−1); αB is the initial
slope of the saturation curve (mg C [mg chl a]−1 h−1 [µmol
photons m2 s−1]−1); and βB is strength of photoinhibition (same
units as α). PBs , αB, and βB correspond to the photosynthetic

parameters determined by Fernández-Méndez et al. (2015) using
the 14C method and incubating for 12 h, based on ice core
samples collected from the same seven ice stations. Derivation of
the photosynthetic parameters was conducted for upper-half and
lower-half portions (mean: 0.58m; range: 0.40–0.98m) of the sea
ice melted at 4◦C in the dark for 24 h. NPP estimates were only
calculated and compared for the bottom ice portions because
previous in situ incubations studies demonstrated bottom-
ice had the highest primary production rates, despite lower
irradiance levels (Mock and Gradinger, 1999). Furthermore,
because sea ice algal chl a biomass typically accumulates in
the bottom-ice portion it is safe to assume a large majority
of the primary production also occurred in the bottom-ice.
Accordingly, we used only chl a biomass estimates for the lower
portion, where 75% of the total chl a biomass was observed
Fernández-Méndez et al. (2015). ROV-based chl a correspond to
the total chl a biomass within the entire ice column, therefore we
multiplied by 0.75 to get the appropriate fraction of the total chl
a in the bottom ice portion. B represents the bottom-ice algae chl
a concentrations derived from ROV-based spectral transmittance
measurements. It is the hourly-averaged transmitted PAR (µmol
photons m2 s−1) at the ice-water interface, converted to
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bottom-ice scalar irradiance according to Katlein et al. (2014),
and calculated for each hour (t) over a 24 h period (t=1, 2, . . . 24)
by multiplying the ROV spectral (PAR) transmittance by hourly-
averaged (t) incoming PAR (µmol photons m2 s−1) measured
during each ice station.

Statistical Analyses
All statistical analyses were conducted using R software Version
2.15.2 with all relevant packages (R-Development-Core-Team,
2012) listed after the corresponding analysis description.

Ice core chl a data used for comparison were presented in
Fernández-Méndez et al. (2015), hereafter referred to as “FM”
cores (1 core per station), and were melted in filtered sea water.
Since the FM-cores were used to characterize the NPP for each
ice station (Fernández-Méndez et al., 2015) we assessed the
representativeness of the single cores compared to the up-scaled
ROV surveys of chl a biomass and NPP. NPP was not measured
on the LM-cores, thus we only compared NPP estimates for FM-
cores with the ROV estimates, which had both chl a biomass
and under-ice light measurements. FM-cores were considered
representative of the area if they were within the interquartile
range (IQR; 25–75 percentiles) of the up-scaled ROV and SUIT
estimates.

Cores from Lange et al. (2016), hereafter referred to as
“LA” cores (4–12 cores per station) were directly melted. For
comparisons of chl a biomass between ice core and ROV-
derived estimates and between level ice and ridged ice, FM and
LA cores were grouped together, referred to as CORES. The
significance of differences between these groupings was assessed
using the non-parametric Wilcoxon rank sum test (Wilcoxon,
1945). We used a non-parametric test because the assumption
of normality required for parametric tests (e.g., t-test) could
not be achieved for the entire datasets using common data
transformation methods (e.g., log, square root, squared, cube-
root).

The relative importance of each variable (B and It), in terms
of explaining the variance of NPP for each ROV station, was
assessed using the coefficient of determination (R2) for all up-
scaled NPP estimates (Pt) vs. chl a (B) estimates (i.e., explained
variance due to chl a), andNPP estimates (Pt) vs. bottom-ice light
(It) observations (i.e., explained variance due to light). The R2

was calculated for each hour (t) of the 24 h period to capture the
diurnal variability of light conditions. Values provided in Table 1

correspond to the daily mean R2.

Spatial Autocorrelation Analyses
Spatial autocorrelation was used to investigate the horizontal
patchiness of sea ice draft, transmittance, chl a biomass and NPP
measured at the seven ice stations (Table 1). Autocorrelation was
estimated using Moran’s I (Moran, 1950; Legendre and Fortin,
1989; Legendre and Legendre, 1998), which was calculated for
each of the eight sites at equally spaced (3m) distance classes.
Individual autocorrelation coefficients or Moran’s I estimates
were plotted for each distance class in the form of a spatial
correlogram (Legendre and Fortin, 1989; Legendre and Legendre,
1998). These analyses were conducted using the “R” software
function correlog from the “pgirmess” package. Autocorrelation

coefficients for each distance class were assigned a two-sided
p-value following methods in Legendre and Fortin (1989)
and Legendre and Legendre (1998). Global significance was
determined on the correlogram using the Bonferroni-corrected
significance level. The presence of spatial autocorrelation (i.e.,
spatial patterns or patchiness) was determined if the correlogram
was globally significant at p < 0.05. We identified the first x-
intercept of globally significant correlogram lines as the patch size
(P) of the variables (Legendre and Fortin, 1989; Legendre and
Legendre, 1998). Here, patches were identified for sea ice draft
(Pd), transmittance (Pt), chl a biomass (Pc), and NPP (Pp). This
methodology is consistent with spatial autocorrelation analyses
used in other snow and sea ice studies to identify patch sizes of
both biological and physical variables (e.g., Gosselin et al., 1986;
Rysgaard et al., 2001; Granskog et al., 2005; Søgaard et al., 2010).

We classified the correlograms according to correlogram
curve patterns described in Legendre and Legendre (1998): (i)
multiple-bumps; (ii) wave-like structure; (iii) single bump; (iv)
gradient; (v) step; or (vi) random. Because we do not have fully
gridded data, it is difficult to differentiate between i) vs. ii), or
iv) vs. (v), as the correlograms are very similar. Therefore, we
combined these pattern types together resulting in four categories
(1) multi-bump/wave; (2) one-bump; (3) gradient/step; and (4)
random/noisy. Interpretations of the correlograms together with
the xy gridded maps allowed for more detailed interpretation of
the patterns (Legendre and Legendre, 1998). Patches or regions
of high chl a biomass, high transmittance, thick draft, and high
NPP were identified manually by visually inspecting the gridded
maps. The identified patches were compared between variables to
identify coincident patches for different variables.

RESULTS

Sea Ice Algal Chl a Biomass Estimates
The median chl a concentrations were generally low (<3.0mg
m−2) at sampling locations A-H, irrespective of the method used
(Table 1). Only at location I, median chl a concentrations were
above 4mg m−2 for ice core and ROV estimates (Table 1). The
range of chl a concentrations observed, however, appeared to
be greater at locations G to I compared to locations A to F
(Figure 3A).

At 5 of the 7 locations sampled for ice cores and ROV
measurements, (B-D, F-G), sea ice cores had significantly lower
chl a biomass than ROV estimates (Wilcoxon test, p < 0.05).
No significant differences were observed at locations H and
I (Wilcoxon test, p > 0.05; Table 1; Figure 3A). On average,
ice core-based estimates of chl a concentration were 63% of
the ROV-based estimates from the same sampling sites. The
range was 13–62% for locations B to H, however, location I was
substantially larger at 182%. Excluding location H results in a
mean underestimation of core based estimates of 43% compared
to ROV based estimates. There was no significant difference
between integrated estimates of sea ice chl a concentrations of
ROV and nearby SUIT profiles (Wilcoxon test, p < 0.05).

FM-cores were not representative (i.e., within the IQR) of
the ROV-derived chl a biomass estimates at all locations, except
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FIGURE 3 | Chl a and NPP summarized per sampling gear and location, and subset into dominant ice classes. (A) chl a biomass for the entire datasets of each

sampling gear; (B) NPP for the entire datasets of each sampling gear; (C) chl a estimates from only the dominant ice class; and (D) NPP estimates from only the

dominant ice class. Dominant ice classes for each location are listed in Table 3. Bars represent median and error bars the interquartile range. *Indicates significant

Wilcoxon rank sum test at p < 0.05 between the CORES and ROV data for the corresponding location. (A,C) CORES are the combined datasets of FM-CORES, data

from Fernández-Méndez et al. (2015); LA-CORES, data from Lange et al. (2016). (B,D) CORES are only the FM-CORES.

location B (Table 1). FM-cores at location C, H, and I, over-
estimated chl a biomass compared to the ROV-derived estimates
(Table 1). At locations D, E, F, and G the FM-cores under-
estimated chl a biomass compared to ROV-derived estimates
(Table 1). When chl a estimates were combined by FYI and MYI
stations for each samplingmethod, mean FM-core chl a estimates
were considerably lower than spatially integrated ROV- and
SUIT-based estimates, but these differences were not significant
due to the large variability of the datasets (Wilcoxon test, p >

0.05; Table 2). Regardless of the sampling method, MYI stations
had consistently higher chl a concentrations and lower PP rates
than FYI stations (Table 2).

All gridded ROV surveys of chl a, sea ice draft, transmittance
and NPP are shown in Figures S1–S8. SUIT profiles of chl a, sea
ice draft, and identified ridges are shown in Figures S9–S16.

ROV-Derived Sea Ice Algal NPP
We accounted for the spatial variability of NPP by combining the
variability of both chl a and bottom-ice light in the calculations of
the larger-scale NPP estimates. All gridded ROV surveys of NPP
are shown in Figures S1–S8. We then determined the explained
variance of NPP by each variable individually. At locations B, C,
F, G, and I, the spatial variability of bottom-ice light explained
most of the spatial variability of the up-scaled NPP estimates,
whereas at locations D and H, chl a explained most of the spatial
variability of NPP (Table 1; Figure 4).

The largest diurnal variabilities of light levels and explained
variances were observed at locations with the highest mean
bottom-ice light levels (Table 1; Figure 4). At all stations, the
explained variance of chl a was inversely related to light, which
is expected since NPP is a function of both variables and chl a
estimates were constant over the diurnal cycle while only light
varied. The inter-location differences regarding which variable
(chl a or light) explained most of the variance in NPP cannot
be stated for certain as we observed no significant correlations
between the explained variance for each station and any other
station variable (e.g., nutrient concentration, median and IQR chl
a or bottom-ice light).

FM-core NPP estimates were representative (i.e., within the
IQR) of the up-scaled estimates at station group B and one
ROV survey at station group C (Table 1; Figure 3B). FM-cores
under-estimated NPP at station groups C, D, F, and G, and
over-estimated NPP at station groups H and I compared to the
up-scaled ROV-based NPP estimates (Table 1; Figure 3B). The
differences between methods were likely the result of differences
in chl a and/or light. Location B had similar chl a biomass and
NPP for both the FM-core and up-scaled estimates (Table 1;
Figures 3A,B). Station groups D, F, and G had higher up-scaled
chl a biomass and NPP estimates compared to FM-core estimates
(Table 1; Figures 3A,B). Conversely, station groups H and I had
lower up-scaled chl a biomass and NPP estimates compared to
FM-core estimates (Table 1; Figures 3A,B). Only station group
C had higher chl a biomass but lower NPP estimates for
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TABLE 2 | Ice algal chlorophyll a biomass and NPP summarized for sampling gears into MYI and FYI. Means, range (min–max), and sample size [N] are provided for

comparison to values presented in Fernández-Méndez et al. (2015).

Sampling Method Summary statistics Chl a (mg m−2) Net Primary Production (mg C m−2 d−1)

MYI FYI MYI FYI

FM-CORES Mean (range) [N] 5.5 (0.4–8.0) [3] 0.84 (0.3 −1.7) [5] 0.48 (0.05 −1.0) [3] 2.36 (0.02 −10.16) [5]

ROV Mean (range) [N] 3.4 (0.0 −19.8) [1,993] 1.46 (0.0 −18.5) [3,333] 0.18 (0.0 −4.45) [1,993] 2.05 (0.0 −141) [3,333]

SUIT Mean (range) [N] 2.5 (0.3 −16.7) [132] 1.7 (0.0 −18.5) [242] – –

FM-CORES Median (IQR) 8.0 (4.2 −8.0) 0.6 (0.4 −1.2) 0.39 (0.22 −0.70) 0.56 (0.45 −0.62)

ROV Median (IQR) 2.6 (1.8 −3.9) 1.3 [1.1 −1.6] 0.11 (0.06 −0.20) 0.71 (0.17 −1.17)

SUIT Median (IQR) 1.8 (1.4 −2.7) 1.3 (0.8 −2.1) – –

the FM-cores compared to the up-scaled estimates (Table 1;
Figures 3A,B). Furthermore, light levels were comparable (237a)
or slightly higher (237b) for the FM-core derived NPP estimates
compared to the ROV surveys (Table 1; Figures 3A,B). When
FM-cores and the up-scaled NPP estimates were pooled into FYI
andMYI stations, we observed no significant differences between
the methods (Wilcoxon test, p > 0.05; Table 2). The median and
IQR-values had large differences between sampling methods for
the MYI stations but the mean values were similar (Table 2).

Sea Ice Algal Chl a Biomass and NPP in
Relation to Sea Ice Properties
Sea Ice Classes
Chl a biomass and NPP estimates were divided into the five
different ice classes. The values showed large variability between
ice classes and locations, and within ice classes and locations
(Figure 5). ROV-derived chl a biomass estimates at locations
B and I were highest in the thickest sea ice class (2.0m +;
Figure 5A). Locations B and C had high ROV-derived chl a
biomass in the thinnest ice class (0.0–0.5m; Figure 5A). The
three middle ice classes generally had uniform ROV-derived
biomass estimates, with the exception of location H which had
the highest ROV-derived chl a biomass in the 1.5–2.0m ice
class (Figure 5A). The SUIT-derived estimates were very low at
location B for all ice classes and highly variable within the ice
classes for all other stations with no obvious patterns (Figure 5C).
In general, at each location ROV-derived NPP estimates showed
a decreasing trend with increasing range of ice class thickness
values (Figure 5B).

The dominant ice class surveyed by the ROVwas identified by
the modal sea ice draft of ice floes based on EM31 measurements
(Table 3). Ice core and ROV chl a biomass estimates for the
dominant ice classes differed significantly (Wilcoxon test, p <

0.05) at 2 locations (F,G; Table 3; Figure 3C). NPP estimates
derived from FM-cores and ROV observations showed no
obvious changes and maintained the same patterns (i.e., non-
representativeness) for all locations. Most obvious differences
were observed between the entire chl a biomass surveys and
dominant ice class subsets for the SUIT at locations B, F and G,
and for the ROV at locations H and I (Tables 1, 3; Figures 3A,C).
Furthermore, the separation between low chl a biomass locations
B to F and high chl a biomass locations G to I is more obvious
from the large scale dominant ice class estimates (Figure 3C).

Two sea ice regimes were identified at station 349 of group
H: one thicker sea ice region and one thinner region (Figure
S7). The thicker region (median: 1.9, IQR: 1.2–3.5mg chl am−2)
had significantly higher (Wilcoxon test, p < 0.05) chl a biomass
than the thinner region (median: 1.3, IQR: 1.2–1.4mg chl a
m−2). NPP, however, was significantly lower at the thicker region
(median: 0.07, IQR: 0.04–0.19mg C m−2 d−1) compared to the
thinner region (median: 0.14, IQR: 0.12–0.21mg Cm−2 d−1). Ice
cores from the thicker region had higher chl a biomass (median:
0.3, IQR: 0.2–0.5mg chl a m−2) compared to ice cores from the
thinner region (median: 4.6, IQR: 2.8–6.2mg chl am−2) although
the p-value of the Wilcoxon test was 0.06 due to the low sample
size.

Sea Ice Ridges
At ice location B (station 224; Figure 1) we identified two sea
ice ridges based on the ROV draft measurements (Figure 6A).
Ridge 1 had a median sea ice draft of 4.5m and ridge 2 had a
median draft of 2.8m based on ROV measurements (Table 4).
Bottom-ice light was significantly higher in level ice compared
to both ridges (p < 0.05; Table 4). Nonetheless, both ridges had
significantly higher ice algal chl a biomass than the level ice (p
< 0.05; Table 4; Figure 6C). Ridge 2, however, had significantly
lower NPP compared to level ice, whereas ridge 1 had similar
NPP compared to the level ice (Table 4; Figure 6D). Conversely,
ridge 1 had both higher draft values and higher bottom-ice scalar
irradiance values I at the bottom compared to ridge 2 (Table 4;
Figures 6A,B,D). In the level ice, chl a biomass and bottom-
ice light explained comparable amounts of the NPP variance. At
ridges 1 and 2, however, chl a biomass explained relatively more
variance compared to bottom-ice light (Table 4).

Based on the ridge identification analysis for all SUIT stations
we calculated a mean (min–max) ridge density of 7.5 ridges
km−1 (2.5–18.0), mean ridge width of 68.7m (47.6–100.3), and
a mean percent total ice coverage by ridges of 9.2% (2.5–15.4%).
Ridge analysis summaries for each SUIT station are shown
in Table 5. SUIT profiles with identified ridges are shown in
Figure 7 (station 223) and for all other stations in Figures S9–S16.

High chl a biomass sea ice ridges were also identified within
three SUIT stations (station 223: Figure 7; stations 233, 285,
and 358 Figures S11, S13, S16). These identified high chl a
biomass ridges had chl a biomass estimates in the range 2–
9mg chl a m−2 (Table 5), which was larger than the overall
SUIT profile median values in the range 1.2–1.9mg chl a m−2
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FIGURE 4 | Explained variance (R2) of NPP by up-scaled chlorophyll a and bottom-ice PAR (light) per hour for each ROV station and survey listed in Table 1.

(Table 1). When comparing chl a biomass values at coincident
identified sea ice ridges with chl a biomass at level ice for
each SUIT haul separately, we observed significantly higher
(Wilcoxon test, p < 0.05) sea ice ridge chl a biomass than
level ice chl a biomass at 2 SUIT hauls (stations 223 and 233;
Table 5). When comparing all SUIT observations combined,
sea ice ridge chl a biomass (median: 0.7 and IQR: 0.2–1.4mg
chl a m−2) was significantly higher (Wilcoxon test, p < 0.05)
than level ice chl a biomass (median: 0.3 and IQR: 0.0–1.0mg
chl am−2).

Spatial Variability of Sea Ice Properties,
Algae Chl a Biomass, and NPP
Autocorrelation analyses for each station were conducted using
correlograms (i.e., Moran’s I vs. distance classes), and were all
globally significant at the Bonferonni corrected level (p < 0.05/n;
n = the number of distance classes). Patch sizes, identified as the
distance class at which the first zero value of Moran’s I occurred
in the correlograms, were highly variable between stations and
between measured variables (Table 6). Patch sizes for chl a
(Pc) had a lower range of values between 7 and 30m, whereas
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FIGURE 5 | Summary of chlorophyll a and NPP estimates per ice class and location for: (A) ROV derived chlorophyll a biomass; (B) ROV-derived NPP estimates; and

(C) SUIT derived chlorophyll a biomass estimates. Bars represent median and error bars the interquartile range. † Indicates missing values.

patch sizes for transmittance (Pt), draft (Pd) and NPP (Pp) were
slightly higher in the range 10–50m (Table 6). Pt and Pp were
comparable (within 5m) at all ROV stations except 224, which
had the two identified ridges. The shapes of correlogram curves
were similar for transmittance and NPP for all station surveys
(Figure 8 and Figures S17–S24). Correlogram shape comparisons
for all stations were highly variable with no obvious patterns for
all other measured variables (Figure 8 and Figures S17–S24).

Based on the manually identified patches within the gridded
maps, coincident patches of high transmittance and high NPP
were observed at all stations. Coincident patches of only high chl
a and thick draft values were observed at stations 224 and 237b,
although the patches at 237b were more subtle (Figure 6 and
Figure S18). The two draft patches observed at 224 correspond
to ridge 1 and ridge 2 (Figure 6) described in the previous
section Sea Ice Ridges. Coincident patches of only high chl a,
transmittance and NPP were observed at stations 224, 335f,m,
and 360 (Figure 6, Figures S5, S6, S8).Coincident patches of
only high chl a and NPP were observed at stations 255 and 349
(Figures S3, S7).

DISCUSSION

Overall Representativeness of the Ice Algal
Chl a Biomass and NPP Estimates Using
Different Sampling Methods
Chl a Biomass
During land-based campaigns in coastal regions it is possible
to achieve ice core sample sizes well over 50 ice cores (e.g.,
Gosselin et al., 1986; Rysgaard et al., 2001; Granskog et al.,

2005; Mundy et al., 2007; Campbell et al., 2015). However,
such studies are conducted over a period of weeks to months
and are typically confined to a local study region. Furthermore,
land-based studies are generally conducted on landfast sea ice,
in regions dominated by seasonal sea ice. Thus, during the
advanced melt stages in seasonally ice covered regions sampling
sea ice is typically not done because it also coincides with the
termination of the algal bloom, and/or due to logistical and safety
constraints. Where sea ice survives into late-summer (e.g., the
central Arctic Ocean), ship-based sampling is the most effective
sampling approach. Although ship-based sampling has some
advantages (e.g., bringing the equipment and lab to the study
region), the main disadvantage is that sampling is generally time-
limited. Thus, ice core sampling during ship-based campaigns is
generally limited to <10 algal chl a biomass or NPP cores per
ice station making it difficult to conduct spatial studies of sea
ice algae (e.g., this study; Gosselin et al., 1997; Gradinger, 1999;
Schünemann andWerner, 2005; Fernández-Méndez et al., 2015).
Even during long term ship-based studies (e.g., Melnikov et al.,
2002) ice core sampling was limited to a small number of cores
for each sampling interval every 1–2 weeks.

Our results demonstrate large uncertainties in coring-based
methods for capturing the larger-scale variability of ice algal
chl a biomass observed by the ROV-based methods. However,
assessing the magnitude of this uncertainty for other studies is
not possible. In general, our ice coring results under-estimated
ice algal chl a biomass at the relatively lower chl a biomass
locations (B-F), which implies an overall under-estimation of
total chl a biomass. Only at the higher chl a biomass locations
(H and I) the ice cores accurately captured the variability of
ice algal chl a biomass. The higher chl a biomass observed at
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FIGURE 6 | Gridded x-y (meters) map of the remotely operated vehicle (ROV) station 224, showing: (A) draft (m); (B) transmittance; (C) chlorophyll a biomass (mg

m−2) derived from ROV spectral radiation measurements; and (D) net primary production-NPP (mg C m−2 s−1) derived from ROV measurements. R1 and R2 depict

ridge 1 and ridge 2, respectively. Gray circles represent values greater than the scale maximum value.

locations G-I was likely the result of less melt-induced algal losses
due to thicker ice and lower melt rates at these high-latitude
locations (Lange et al., 2016). This difference can be explained
because at low chl a biomass stations relatively higher chl a
biomass patches had a lower probability to be sampled by coring
compared to higher chl a biomass stations, and hence were not
accurately represented, whereas at high chl a biomass locations
the probability of sampling higher chl a biomass locations was
higher. We must also note that the possibility that the up-
scaled spectrally derived estimates over-estimated the true chl a
biomass is unlikely, because the model for spectrally deriving chl
a biomass had no directional bias related to chl a concentration
in sea ice (Lange et al., 2016).

The higher chl a biomass location I showed no significant
difference between the cores and ROV-based chl a biomass
estimates. In the individual core values, however (0.05, 6.46,
8.03, 8.00, and 11.83mg chl a m−2), only one core was within
the IQR (2.96–6.70mg chl a m−2). In this sample size, one
core with near-zero chl a biomass was highly influential and
may have impeded the detection of significant differences. A
similar pattern was also apparent at location H, which also
showed no significant difference, but also had only one core
within the IQR of the up-scaled chl a biomass estimates. The
discrepancy between the ice core-based and ROV-derived chl
a biomass estimates indicates the ice algal chl a biomass was
highly variable at small scales (<2m), which was difficult to
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TABLE 3 | Modal sea ice draft from literature (Boetius et al., 2013; Katlein et al., 2015b) and ROV measurements, dominant ice class based on literature modal draft,

interquartile range of chlorophyll a biomass observations for the dominant ice class using different gears (ice coring, ROV, and SUIT) summarized for each location.

Location Dominant ice class Floe drafta (m) Modal ROV draft (m) Modal SUIT draft Gear chl a (mg m−2) NPP (mg C m−2 d−1)

B 1.0–1.5m 1.1 1.0 CORES 0.4 (0.2–0.7) 10.16

ROV 0.99 (0.95–1.05) 8.43 (6.73–12.29)

SUIT 0.0 (0.0–0.27) nd

C 1.0–1.5m 1.1 1.2 CORES 0.7 (0.5–1.2) 0.56•(–)

ROV 1.26 (1.11–1.49) 0.92 (0.76–1.06)

D 0.5–1.0m 0.8 0.8 CORES 0.7 (0.6–1.2) 0.62•(–)

ROV 1.42 (1.37–1.53) 1.72 (1.45–1.86)

F 0.5–1.0m 0.7 1.3 CORES 0.2 (0.0–0.3)* 0.02•(–)

ROV 1.43 (1.34–1.60) 0.12 (0.06–0.22)

SUIT 0.8 (0.1–1.8) nd

G 1.0–1.5m 1.3 1.1/1.4 CORES 0.8 (0.3–1.1)* 0.02•(–)

ROV 2.48 (2.04–3.03) 0.13 (0.08–0.23)

SUIT 3.34 (3.34–3.34) nd

H 1.5–2.0m 1.7 1.2 CORES 0.8 (0.3–4.7) 1.00•(+)

ROV 2.87 (1.65–4.19) 0.17 (0.06–0.48)

SUIT 1.4 (1.3–3.7) –

I 1.5–2.0m 1.6 1.1 CORES 8 (4.3–9.3) 0.39•(+)

ROV 5.14 (2.62–9.46) 0.05 (0.02–0.10)

aLiterature modal ice thickness converted to draft by multiplying by 0.9. “–” indicates no data. Noteworthy wilcoxon test results are indicated by * for a significant difference at p < 0.05

for comparisons between cores and ROV chl a biomass for observations on ice within the dominant ice class. • Indicates a CORES NPP estimate outside the IQR of the ROV NPP

estimates for observations within the dominant ice class. (+) indicates CORES greater than ROV 75th percentile; and (−) indicates CORES smaller than ROV 25th percentile. nd refers

to no data.

FIGURE 7 | Horizontal profile of Surface and Under-Ice Trawl (SUIT) station 223 showing sea ice draft, identified ridges and chlorophyll a biomass derived from

spectral radiation measurements. Highlighted is an identified high chlorophyll a biomass sea ice ridge. Width of the white bars corresponds to the relative along-track

footprint of spectral radiation measurements. The black line corresponds to the smoothed sea ice draft curve used for the ridge identification procedure and was

determined from the ice draft measurements (gray shaded area).

capture with average measurement footprints between 1 and 2m
for ROV surveys. Individual data points of up-scaled estimates
averaged chl a concentration over a larger area, and were thus
less likely to capture small patches of extremely high chl a
biomass or extremely low chl a biomass (i.e., values in the range
8–12mg chl a m−2 or with near-zero chl a biomass). These
considerations highlight two important sampling constraints.
First, the cores did not capture the large-scale variability; and

second, we were unable to assess the small-scale variability
below 2m. The second limitation is less drastic since the signal
received from the sensor under the ice does capture the small-
scale variability within its measurement by averaging it over a
larger distance. Since little is known or has been reported on
summertime spatial variability of ice algal chl a biomass we
propose that observations from both core-based and under-ice
spectral profiling systems should be combined when making
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TABLE 4 | Comparison of chlorophyll a biomass and net primary production between sea ice ridges and level ice at station 224.

Variable Ridge 1 (N = 20) Ridge 2 (N = 21) Level Ice (N = 427)

Draft (m) 4.5 (2.4–5.0)* 2.8 (2.7–2.9)* 1.1 (0.95–1.4)

Chl a (mg m−2) 1.8 (1.7–17.9)* [0.91]a 3.4 (2.5–5.3)* [0.58]a 1.0 (0.97–1.1) [0.78]a

NPP (mg C m−2) 6.9 (5.7–17.9) 4.0 (2.9–4.2)* 8.7 (5.9–12.3)

I (µmol photons m−2 s−1) 11.6 (4.8–12.9)* [0.79]a 2.5 (2.2–5.6)* [0.0]a 39.0 (22.8–61.2) [0.71]a

Ridges are identified in Figure 7. * Indicates a statistically significant (p < 0.05) Wilcoxon test between the corresponding Ridge and Level Ice.
aValue within square brackets represents the explained variance of NPP by the corresponding variable and data subset of ridge or level ice. “I” is the bottom ice light levels (PAR).

TABLE 5 | Summary of ridge identification analysis from the SUIT hauls conducted during PS80.

SUIT station

(location)

Ridge

count

Chl a in ridges

(mg m−2)

Chl a in level ice

(mg m−2)

Total Distance

(km)

Density

(ridges km−1)

Mean ridge

width (m)

Ridge coverage

(% of total ice)

216 (A) 4 0.2(0.2–0.8) [3] 0.0(0.0–0.2) [43] 1.6 2.5 47.6 3.0

223 (B) 12 0.6(0.5–1.2) [9]* 0.0 (0.0–0.4) [34]* 0.8 15.8 79.5 10.5

233 (B) 12 0.5(0.1–0.7) [10]* 0.1(0.0–0.3) [35]* 1.5 8.1 60.8 4.1

248 (C) 4 0.6(0.4–1.1) [3] 0.3(0.1–0.7) [58] 1.5 2.7 91.1 6.2

285 (E) 4 0.5(0–1.1) [7] 0.2(0.0–0.9) [84] 1.3 3.1 91.5 7.1

321 (F) 3 0.0 (0.0–0.0)[3] 1.0 (0.0–1.9) [60] 0.7 4.6 100.3 15.4

345 (G) 8 4.7 [1] 0.0 (0.0–3.2) [17] 1.2 6.6 49.3 4.1

358 (H) 11 2.7(1.2–2.8) [9] 0.8(0.4–1.4) [92] 2.0 5.6 48.7 2.5

376 (-) 3 4.6(2.3–7.7) [3] 0.9(0.6–1.9) [10] 0.2 18.0 49.5 29.6

* Indicates a statistically significant (p < 0.05) Wilcoxon test comparing chl a biomass in ridges and level ice.

assumptions about multi-scale spatial variability of ice algal chl
a biomass.

The fact that no statistical differences (Wilcoxon test, p >

0.5; Table 2) were observed between ROV-based and ice core-
based estimates (both chl a and NPP) when they were grouped
into MYI and FYI stations, an approach taken by Fernández-
Méndez et al. (2015), may suggest an improvement because it
increased the probability of the ice cores to be representative of
the larger area. In this case the sample sizes and range of chl
a biomass values were sufficient to obscure any differences at
the station level. This method should only be considered when
other options are not possible, because large uncertainties are
still present even though significant differences were not found.
For example, even though in this case the mean MYI FM-core
chl a biomass values were not significantly different (Wilcoxon
test, p > 0.05), each MYI FM-core value was higher or lower
than the IQR of the larger-scale estimates. A similar pattern
was observed with the FYI grouping comparison although not
as drastic because overall the values were smaller, particularly
the range of values. Potential uncertainties of grouping ice
cores should also be considered depending on the objectives of
your study. Grouping the ice cores into MYI and FYI would
result in mean ice core MYI algal chl a biomass estimates
160% larger than the ROV MYI estimates. In contrast, FYI
ice core estimates would be around 60% of the ROV FYI
estimates. For grouped ice core-derived NPP the difference for
MYI is even more pronounced at 270% larger compared to ROV
estimates. FYI NPP values, however, were comparable between
both methods.

Photoacclimation may be another potential factor
influencing the chl a to carbon ratios, which could in
turn explain the increased chl a biomass at higher latitude
stations due to increased chl a production under lower light
conditions. Fernández-Méndez et al. (2015) measured lower
photoacclimation indices for the higher latitude stations (Ik;
mean: 30 µmol photons m−2 s−1, range 17–45) compared to the
lower latitude stations (mean: 60 µmol photons m−2 s−1, range:
34–77). However, we did not observe any variability (<1 g C:
g chl a) between high and low latitude stations in the chl a to
POC ratios (data not presented here), therefore it is unlikely that
photoacclimation explains the regional chl a biomass differences.

NPP
In general, NPP sampling involves measuring available PAR
levels through a hole in the ice (Gosselin et al., 1997), which
may produce higher than expected values due to the hole.
PAR available for bottom-ice algae may also be modeled by
using simple light extinction models (Fernández-Méndez et al.,
2015). Both methods are established and regularly employed,
however, both are limited in the fact that they do not account
for the spatial variability of the bottom-ice PAR levels. During
spring, ice algae are typically light-limited and therefore have
higher chl a biomass where light levels are higher (e.g., Gosselin
et al., 1986), assuming there is no or limited photo-inhibition.
During our summer sampling period, however, we found no
strong correlation at any station between the ROV-derived chl
a estimates and available under-ice light (maximum spearman
correlation coefficient, r = 0.22). This means the under-ice light
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TABLE 6 | Summary of the autocorrelation analyses per location and ROV survey.

Location Station P*
c Pt

* P*
d

P*
p Pattern chl a Pattern TM Pattern draft Pattern NPP Similar

Correlogramsa
Coincident patchesb

B 224 10 12 25 30 Bumps-waves Bumps-waves Bumps-waves Bumps-waves Chl a-TM-NPP 2 × chl a-draft;

4 × TM-NPP;

1 × chl a-TM-NPP;

C 237a 10 18 30 20 Random-noisy Bumps-waves Step-gradient Bumps-waves TM-NPP 3 × TM-NPP

237b 23 15 19 15 Bumps-waves

or 1-bump

Bumps-waves Bumps-waves Bumps-waves Chl a-draft-NPP;

TM-NPP

1 × chl a-NPP-draft;

3 × TM-NPP

D 255 7 10 12 10 1-bump or

random

Bumps-waves Bumps-waves Bumps-waves TM-NPP 1 × chl a-NPP;

1 × TM-NPP

F 323 14 31 47 35 Bumps-waves 1-bump 1-bump 1-bump TM-NPP-Draft 1 × large/multi-patch TM-NPP

G 335m 13 14 24 14 Bumps-waves Bumps-waves 1-bump Bumps-waves TM-NPP-chla 1 × chl a-TM-NPP;

2 × TM-NPP

335f 15 50 47 51 Bumps-waves Step-gradient Step-gradient Step-gradient TM-NPP 1 × large/multi-patch chl

a-NPP-TM

H 349 25 39 41 40 Bumps-waves Step-gradient Step-gradient Step-gradient TM-NPP 1 × large/mulit-patch chl a-NPP;

2 × TM-NPP

I 360 30 29 33 29 Bumps-waves 1-bump 1-bump 1-bump TM-NPP-Draft 1 × chl a –TM; 1 × TM- NPP

Patch sizes for chl a, Pc; transmittance, Pt; draft, Pd ; and NPP, Pp. TM corresponds to transmittance, and NPP to net primary production.
*All correlograms globally significant at the Bonferonni corrected level (p < 0.05/n; where n is number of distance classes; Legendre and Legendre, 1998).
a Identifies correlogram curves which are similar in shape to each other (e.g., chl a-TM-NPP means the correlogram curves are similar for the chl a, transmittance and net primary

production).
bManually identified patches that are coincident in location to each other. The number of patches per ROV survey is followed by which patches are coincident (e.g., TM-NPP refers to

a transmittance patch coincident to an NPP patch). Large/multi refers to a larger area with multiple small patches in close proximity.

and chl a varied independently of each other. This behavior is
expected, because in late-summer biomass losses due to high
melt rates have a dominant influence on bottom-ice biomass
(e.g., Grossi et al., 1987; Lavoie et al., 2005; Lange et al., 2016).
These conditions would not have sustained a bottom-ice algal
community, and therefore even if light conditions were suitable
for high primary production rates the NPP would have been
almost zero if no algae were present. With an additional variable
(i.e., melt), which can influence NPP, the spatial distribution of
NPP may be more complex in late-summer than during the
spring to summer transition making it even more important to
understand and account for the spatial variability of both chl a
biomass and the bottom-ice light field.

Location B had similar NPP estimates for the FM-core and
up-scaled observations (Table 1; Figure 2), which we attributed
to the similar chl a biomass estimates (Table 1; Figure 1). Even
though light levels and chl a biomass were only slightly larger
at location B compared to groups C and D, group B had NPP
estimates almost an order of magnitude larger than groups C
and D. This was attributed to the substantially higher value
of the photosynthetic parameter PBs determined for this station
(Fernández-Méndez et al., 2015), compared to all other stations.
This demonstrates that the combination of data from several
stations, an approach described by Fernández-Méndez et al.
(2015) and used by others (Mundy et al., 2011; Campbell et al.,
2016), was not only able to improve the spatial representativeness
of light and chl a but also accounted for the potential variability
of the derived photosynthetic parameters. Our results suggest

pooling ice core samples increases the chance for the samples
to be representative of both chl a biomass and NPP estimates.
Because of the large range of chl a biomass and NPP estimates,
and the small number of samples, however, this approach can still
carry a high risk of obtaining non-representative estimates (e.g.,
overestimates of up to 270% for MYI).

The same directional difference of chl a biomass and NPP
observed between up-scaled and FM-core estimates for all station
groups, except group C, suggests the differences between the FM-
cores and up-scaled NPP estimates were driven by the differences
in chl a biomass. This was further confirmed by the fact that the
bottom-ice light levels used for each method were comparable
for each station (Table 1). The opposing pattern of chl a biomass
and NPP between up-scaled and FM-core estimates at location
C, even though light levels were comparable, suggests that the
spatial variability of both the chl a biomass and bottom-ice
light had a combined influence on the observed differences
that is not apparent from the overall survey estimates. The
explained variance of NPP by chl a and light showed large diurnal
variability and large inter-location variability, which indicates a
complex and highly variable relationship between ice algal chl
a biomass and light levels during our sampling period. These
results emphasize the importance of accounting for both the
spatial variability of ice algal chl a biomass and the bottom-
ice light field in order to make representative NPP estimates.
We must also note the possible influence of nutrients since
we found a significant (p < 0.05) positive correlation (r =

0.46) between explained variance of NPP by chl a with sea
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FIGURE 8 | Correlograms showing Moran’s I vs. distance classes at ROV station 224 for: (A) draft (m); (B) transmittance; (C) chlorophyll a biomass (mg m−2) derived

from ROV spectral radiation measurements; and (D) net primary production-NPP (mg C m−2 s−1) derived from ROV measurements. Red filled circles represent

significant values at p < 0.05.

ice NO3 concentrations (data from Fernández-Méndez et al.,
2015), and a significant (p < 0.05) negative correlation between
explained variance of NPP by bottom-ice light with sea ice NO3

concentrations (r = −0.55). These correlations provide some
indication that the sea ice nutrient regime could have also had
some influence on the relative (inter-station) importance of chl a
biomass vs. light on NPP.

Gosselin et al. (1997) measured ice algal NPP of up to 300mg
C m−2 d−1 in the high Arctic Ocean (>87◦N) during August.
Our results for September in the high Arctic Ocean (station
360) were over 3 orders of magnitude lower than those found
by Gosselin et al. (1997) in August for the same area. The
large difference in NPP estimates between the studies could
partially be explained by the higher incoming solar irradiance
in August compared to September. However, upscaling results
from Fernández-Méndez et al. (2015) for August were also
substantially lower with a mean (range) of 5.8 (0.06–42) mg
C m−2 d−1 and with a similar range of daily mean incoming
solar irradiance (101–249 µmols photons m−2 s−1). Therefore,
we applied the range of incoming irradiance values (∼125–
214 µmols photons m−2 s−1) observed at the high latitude
stations (>87◦N) during the Gosselin et al. (1997) study to
this studies ROV survey at station 360. We used our observed
chl a biomass and transmittance in order to calculate potential
NPP under higher incoming irradiance conditions typical for
August at these high latitudes. Overall NPP increased by
nearly the same relative amount as the available light, however,

with median values between 0.82 and 1.32mg C m−2 d−2

(Table 7) this remains two orders of magnitude lower than ice
algal NPP observed by Gosselin et al. (1997). This suggests
that something other than available light is influencing these
observed differences. This is likely explained by the fact that
the Gosselin et al. (1997) estimates were dominated by the sub-
ice algal species Melosira arctica, whereas Fernández-Méndez
et al. (2015) measured primary production on ice samples with
a lower contribution of M. arctica. Thus, our samples represent
a good estimate for in-ice algal NPP, however, a conservative
estimate for overall ice-associatedNPP (Fernández-Méndez et al.,
2015).

The explained variance of NPP by bottom-ice light compared
to chl a using the increased incoming irradiance levels, which
were observed in August at high latitudes by Gosselin et al.
(1997), showed interesting differences (Table 7). As the incoming
irradiance increased, the explained variance of chl a biomass also
increased, while the explained variance of the bottom-ice light
decreased to nearly equal values of 0.39 and 0.48, respectively, at
an incoming irradiance of 214µmols photons m−2 s−1 (Table 7).
This indicates that under increased irradiance levels the spatial
variability of chl a biomass becomes more important in terms
of contribution to overall NPP estimates. Furthermore, these
results suggest a complex spatio-temporal relationship of the
relative importance of chl a biomass and available bottom-ice
irradiance for NPP estimates, which can only be accounted for by
characterizing biomass and under-ice light at spatial scales from
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TABLE 7 | Net primary production estimates for the ROV survey at station 360 with observed downwelling surface irradiance (PAR) and using different downwelling

surface irradiance conditions as observed for the same region (>87◦ N) earlier in the season (∼ mid-August) by Gosselin et al. (1997).

Station Chl a Downwelling surface PAR Scalar PAR (I)b NPP Explained Variance by:

(mg m-2) µmols photons m−2 s−1 mg C m−2 d−1 I Chl a

360 4.3 (2.8 −6.6) 10 ± 5 0.4 ± 0.4 0.07 (0.05–0.12) 0.78 0.15

125a 4.8 ± 5.7 0.82 (0.55–1.39) 0.61 0.29

214a 8.3 ± 9.7 1.32 (0.86–2.20) 0.48 0.39

aDownwelling surface irradiance data presented in Gosselin et al. (1997) from the same region as station 360.
bThe bottom-ice scalar irradiance used to calculate NPP.

meters to 100s of kilometers, and temporal scales accounting for
diurnal and seasonal variations.

Sea Ice Algal Chl a Biomass and NPP in
Relation to Sea Ice Properties
Sea Ice Classes
Electromagnetic (EM) sea ice thickness surveys are commonly
used to representatively characterize the overall ice thickness
distribution (Eicken, 2001; Haas and Eicken, 2001; Haas, 2004)
and thus represent a reliable characterization of the dominant
ice class for the surveyed floe and overall region. The differences
between the ROV-derived and EM-derived modal draft values at
several ice stations warranted the use of the EM data to determine
dominant ice types. The range of modal ice thicknesses for
locations B-G dominated by FYI (0.8–1.3m) were consistent with
previous studies that conducted large-scale airborne and floe-
scale ground-based electromagnetic ice thickness surveys for the
same region and season (Haas et al., 1997; Haas and Eicken, 2001;
Rabenstein et al., 2010). The two locations H and I dominated by
MYI had modal thicknesses between 1.6 and 1.8m, which were
also consistent with modal ice thickness values for second-year
sea ice from the same region and season (Haas and Eicken, 2001).

Since the dominant ice type thickness value (i.e., modal
ice thickness) is a commonly used metric to characterize the
sea ice environment it stands to reason that sea ice algal chl
a biomass from the dominant ice class would also provide a
representative metric to describe the overall sea ice algal chl a
biomass. Comparing the ice algal chl a biomass estimates solely
from the dominant ice classes showed better agreement between
ROV and ice core-derived values (Figure 3C). Therefore, we
suggest that using chl a biomass estimates from the dominant ice
class only may be an improvement on providing a single value,
which is representative of the large scale sea ice algal chl a biomass
for that region. There remain some limitations to this approach,
since these estimates do not account for the chl a biomass of the
other ice types/classes. Sampling other ice types/classes may be
of particular importance in regions of low chl a biomass (e.g.,
station 224) where high chl a biomass features such as ridges
may have a substantial contribution to the overall large-scale ice
algae chl a biomass. A further step to improve these overall chl
a biomass values could be to use the larger-scale ice thickness
density distributions (data not available for this study) to provide
weighting factors for chl a biomass values of each ice type/class.

The observed trend of higher chl a biomass at higher
latitude stations was more obvious within the dominant ice
class estimates (Figure 3C). This was previously attributed to
enhanced melt-induced algal losses at lower latitude stations,
although based on a smaller number of stations (Lange et al.,
2016). Here we have a larger sample size covering a larger
geographic region and confirmed the pattern related to latitude
and the presence of thicker ice. Enhanced melt is a common
mechanism for substantial losses of bottom-ice algae in summer
(Grossi et al., 1987; Lavoie et al., 2005). Gosselin et al. (1997) also
observed a shift from low to high bottom-ice chl a biomass with
a shift from low to high latitude, which is consistent with our
observed trend. Furthermore, the higher dominant ice class chl
a biomass estimates between 2.5 and 5.1mg chl a m−2 observed
at the three high latitude, thicker ice (1.4–1.9m) locations G–I
is consistent with previous studies from high latitude regions of
the central Arctic Ocean with bottom-ice algae concentrations in
the range of 3–14mg chl am−2 (Gosselin et al., 1997), and up to
22mg chl am−2 (Melnikov, 1997).

Castellani et al. (2017) introduced a pan-Arctic Sea Ice Model
for Bottom-Algae (SIMBA) coupled with a 3D sea-ice-ocean
model and also showed that within the eastern Eurasian basin
during late-summer (this studies sampling region/period) there
was an increasing trend in bottom-ice algal chl a biomass from
lower to higher latitudes. The SIMBA model, however, showed
the opposite trend with increasing chl a biomass from higher
to lower latitudes in the region from the North Pole toward
the northern coast of Canada and Greenland (the Lincoln Sea)
where the thickest ice in the Arctic Ocean is located. During late-
summer Castellani et al. (2017) identified sea ice thickness as
a main factor controlling bottom-ice chl a biomass by limiting
basal melt-induced algal losses during a period of advanced melt.
Based on observations alone, a purely latitudinal effect may have
been identified as driving the large-scale spatial patterns of sea
ice algae. Therefore, the modeling results of Castellani et al.
(2017) emphasize the need for more observations in the region
between Canada, Greenland and the North Pole (a region coined:
the “Last Ice Area”), and that modeling studies are essential in
the context of interpreting large-scale patterns of sea ice algae
observations. Furthermore, the SIMBA model included different
ice classes, such as sea ice ridges. The SIMBA results showed that
ridges, though exhibiting lower peak chl a biomass compared to
level ice, the maximum chl a biomass was reached later in the
season compared to level ice. More information is required in
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order to accurately parameterize sea ice features such as ridges
in pan-Arctic models, however, SIMBA is a big step forward
in terms of including ice classes within models, which we have
identified as an important component of sea ice algal spatial
variability.

In contrast to chl a biomass, NPP estimates showed no
improvement when comparing only the dominant ice class
(Figure 3D). This suggests that NPP estimates require a different
approach for up-scaling and parameterizing models. The
complex and highly variable relationship between ice algal chl a
biomass and light levels during our sampling period suggests that
more representative sea ice algal NPP estimates may be achieved
by accounting for the relative contribution of NPPwithin each ice
type. This would involve using larger scale ice thickness estimates
to assign weighting factors to each ice classes’ NPP estimate.
In the absence of larger scale observations it is not possible to
discover the spatial patterns of sea ice algal chl a biomass and
NPP, or assess if the ice cores are actually representative of the
area. To further improve upon the large scale pan-Arctic NPP
and chl a biomass estimates we suggest to integrate our five ice
classes, together with weighting factors for each ice class (based
on large-scale ice thickness surveys), into pan-Arctic studies
(e.g., Fernández-Méndez et al., 2015). Accurately assessing sea
ice associated NPP in models is of particular importance since
it can represent a dominant portion of total (water plus sea ice)
NPP in regions covered by sea ice for most of the year (e.g.,
Gosselin et al., 1997; Fernández-Méndez et al., 2015). In general,
pan-Arctic models of NPP, which include sea ice contributions to
NPP are very limited (e.g., Lee et al., 2015) highlighting the need
for improved sea ice algae model parameterizations.

Sea Ice Ridges
One source of variability in sea ice chl a concentrations, light
transmittance and derived NPP may be topographical features
of sea ice, such as ridges. Sea ice ridges are often under-sampled
due to the logistical challenges to sampling this type of ice.
Despite this fact, sea ice ridges have been reported to host high
abundances of sea ice fauna during advanced melt (Gradinger
et al., 2010). Furthermore, in the northern Baltic Sea high chl a
biomass were observed within the ice along the upper sides of
sea ice ridges and within the interstitial spaces, typically present
within the unconsolidated aggregation of ice blocks that form
ridge keels (Kuparinen et al., 2007). Therefore, we specifically
investigated sea ice ridges with the hypothesis that they could
host high abundances of ice algae during advanced melt due to
lower melt rates in these locations.

We showed that the identified sea ice ridges at ROV station
224 and all SUIT stations (measurements grouped together) had
significantly higher chl a biomass than measurements under
relatively more level ice (e.g., areas that are not ridges). It can
be assumed that ridges were under-represented in the ROV
sampling due to a preference for relatively uniform sampling
sites. In SUIT profiles, the natural distribution of ridges was likely
well-represented, because the sampled profile cannot be chosen
after the deployment of the net. The overall difference between
median level ice chl a biomass and median ridge chl a biomass
from the SUIT surveys, however, was relatively small (0.4mg chl

a m−2). The small difference is likely the result of not all ridges
having high chl a biomass.

Our results of sea ice ridge densities between 2.5 and 18.0
ridges km−1 are within the range of larger scale airborne surveys
with mean ridge sail densities between 4.3 and 7.2 ridges km−1

(Rabenstein et al., 2010). With the high resolution (0.5m)
under-ice topography measurements, we were able to accurately
estimate the widths of the ridge and determined that these
features represented up to 10% of the total sea ice area. Together
with the higher chl a biomass observed at sea ice ridges, this
indicates that these features require more in-depth investigations
and may have a significant impact on overall chl a biomass
estimates and availability of food for under-ice organisms.

Gradinger et al. (2010) showed sea ice ridges had elevated
concentrations of ice meiofauna and under-ice amphipods,
which was attributed to the flushing of the sea ice and low-
salinity stress imposed at the thinner sea ice environment. Sea ice
ridges may also extend into higher salinity water below the highly
stratified, fresher surface melt water, which accumulates adjacent
to the ridges under thinner ice (Gradinger et al., 2010). These
results suggest that higher ice algal chl a biomass at ridges may
be the result of reduced flushing and lower environmental stress.
Furthermore, the presence of high algal chl a biomass as a food
source may provide an additional explanation for the observed
accumulation of organisms at ridges by Gradinger et al. (2010).

In addition to the possibility of reduced flushing and lower
environmental stress at ridges, we suggest that the thicker ice
experienced lower melt rates than the surrounding level ice
resulting in lower algal losses. Perovich et al. (2003) indicated
that sea ice ridges experienced an overall greater amount of melt
than the surrounding undeformed sea ice, which may appear
to contradict our premise. The higher overall melt observed at
ridges by Perovich et al. (2003), however, was partially attributed
to a few very thick ridges extending deep into the water, which
were experiencingmelt the entire year even during winter. Except
for one weekly measurement in August, the melt rates for ridges
were lower than the mean and were among the lowest of all ice
types for that entire month during advancedmelt (Perovich et al.,
2003).

NPP estimates for sea ice ridges showed some interesting
patterns at ROV station 224. Although both ridges had
significantly higher chl a biomass than the level ice, ridge 2
had significantly lower NPP rates than ridge 1 and the level ice,
whereas ridge 1 and level ice were not significantly different.
These differences were due to the available light measured under
the different types of sea ice. The higher chl a biomass at ridge
1 compensated for lower light levels compared to the level ice,
resulting in similar NPP estimates compared to the level ice.
However, the chl a biomass at ridge 2 was not sufficient to
compensate for the lower bottom-ice light levels. Even though
ridge 2 had a thinner median draft (2.8m) value compared to
ridge 1 it still had lower light levels. This shows that ridges
can have a considerable impact on the complex relationship
between chl a biomass and available PAR for NPP estimates at
larger spatial scales. Furthermore, these results imply that sea
ice features such as ridges have a different and perhaps more
complex relationship between available light and chl a biomass
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than the surrounding sea ice. As a consequence, ridges must be
sampled representatively, and both the variability of bottom-ice
light levels and the variability of chl a biomass are required to
make representative large-scale ice algal chl a biomass and NPP
estimates.

The identification of sea ice ridges as potential chl a biomass
and NPP hotspots warrants further dedicated research of these
features. Further work should include dedicated modeling of
the (bio)optical properties of sea ice ridges, which would
require ice core chl a biomass estimates from ridges and
high spatial resolution spectral radiation measurements under
ridges.

Spatial Variability and Patchiness of Sea
Ice Properties, Algae Chl a Biomass, and
NPP
Our results indicated high variability of patch sizes between
locations, which suggests that there is large regional and temporal
variability of ice algal chl a biomass. Patch sizes of algal chl
a biomass were within the range of springtime chl a biomass
patch sizes between 5 and 90m (Gosselin et al., 1986; Rysgaard
et al., 2001; Granskog et al., 2005; Søgaard et al., 2010). However,
the upper limit of this range is nearly the scale of some ROV
surveys. The above mentioned studies were limited to the spring
and found that ice algal chl a biomass and NPP typically
followed the light regime (Gosselin et al., 1986; Rysgaard et al.,
2001; Granskog et al., 2005), which is primarily controlled by
the overlying snow pack (Perovich, 1996). Furthermore, these
studies were conducted on uniform, landfast sea ice from coastal
regions and thus are not representative of sea ice from the
central Arctic Ocean. During our study, we also found that patch
sizes and spatial variability of NPP was controlled primarily
by light availability, albeit in the absence of snow. This was
evident by the high explained variance of NPP by bottom-
ice light, the similarity of NPP and transmittance correlogram
curves, and the coincidence of high NPP patches with high light
transmittance. Similar to a recent study by Campbell et al. (2017)
that demonstrated a disjoint in ice algal carbon biomass and
NPP over the spring to summer transition period, our chl a
biomass patches did not always follow the light and NPP regimes,
which clearly illustrates one key difference between the spring
and summer ice algal communities.

We also demonstrated that patches of high NPP were
associated with patches of high chl a biomass in the absence of
high light availability. The fact that both chl a and transmittance
show spatial patterns consistent with NPP patterns is not
surprising given the fact that NPP estimates were calculated from
light and chl a biomass. However, this emphasizes the need to
account for the spatial variability of both the bottom-ice light
and chl a biomass to properly characterize the spatial variability
of NPP in order to make accurate large-scale estimates. At a few
stations (most notably 360), however, we did observe high chl a
biomass patches directly adjacent to high transmittance locations
(e.g., melt ponds). NPP was also high at the high transmittance
locations and the adjacent high chl a biomass patches creating
one high NPP patch. We propose that the presence of high

chl a biomass adjacent to high transmittance regions could be
explained by a combination of lower melt rates in the thicker
ice adjacent to high transmittance regions and increased bottom-
ice light levels due to horizontal light scattering from e.g., melt
ponds. This would have allowed for higher NPP rates and
increased accumulation of chl a biomass while having reduced
melt-induced losses, however, we note that more work is needed
to confirm this hypothesis.

Sea Ice Algae Sampling Recommendations
In this section we provide some recommendations for
conducting the most representative sea ice algae sampling
possible under the typical time limitation of an ice station on
this cruise of ∼8 h. We assume that the dominant ice class (e.g.,
modal ice thickness) is known before sampling. Knowledge of
the dominant ice class is important to ensure representative
sampling; however, this depends on the objectives of the study.
Knowledge of the spatial distribution for all ice types and classes
will provide the best sampling protocol since a representative
sample of each ice type/class will provide the most accurate and
reliable estimates for the region.

Ice Core Chl a Biomass and NPP
A nested approach has been outlined inMiller et al. (2015), which
identifies four hierarchical levels of sea ice sampling. We suggest,
however, some modifications for sampling during summer. If the
main objective of the study is to acquire one representative ice
algal chl a biomass value for that ice station, then we suggest
following the quaternary scale of the nested approach according
to Miller et al. (2015) by extracting replicate cores (N = 3)
within a small area (<2m). This accounts for the small scale
variability. The tertiary scale of the nested approach should be
selected based on ice type/class. Here we have demonstrated that
a representative chl a biomass value may be best estimated by
the dominant ice class (NOTE: this should only be considered if
additional sampling is not possible). Therefore, ice cores should
be sampled in triplicate (quaternary scale) at three different
dominant ice class locations (tertiary scale).

To capture the spatial variability of chl a biomass using ice
coring alone, all ice classes should be considered. The nested
approach should sample triplicate ice cores (quaternary scale) at
10m intervals (tertiary scale) based on our observed patch sizes
between 10 and 30m. We further suggest that the replicates and
direction of tertiary scale transects should be designed to capture
all ice classes. A systematic approach would be to classify the sea
ice using 0.5m interval classes (as presented here). The sample
design must also consider other ice types such as melt ponds,
bare ice and thick ice features (e.g., ridges and hummocks).
We must also note that the time requirements for conducting a
spatial variability study using ice coring will be highly variable
depending on season and ice conditions. For example, to quantify
the spatial variability of thick MYI in early spring over a distance
of 100m (e.g., 3 cores at 11 sites = 30 cores) would take
30 h (based on previous experience coring spring MYI). This
same task could be accomplished by an ROV with a typical
deployment time of 8 h for two perpendicular survey transects
of 100m.
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We demonstrated that NPP estimates have a complex
relationship between light and chl a biomass. Therefore, in order
to acquire a representative estimate the spatial variability of both
the under ice light field and chl a biomass must be accounted
for. We suggest a nested approach similar to that proposed
for assessing the spatial variability of ice algal chl a biomass.
Triplicate ice cores (quaternary scale) should be sampled at
10m intervals (tertiary scale). In general, nested NPP sampling
schemes should be conducted at the 5 different ice classes, as
proposed earlier (N = 15).

ROV Chl a Biomass and NPP
ROV surveys should be conducted either over a grid or
perpendicular transects with at least 60m axis lengths in both
directions for chl a biomass (two times maximum patch size of
chl a) and at least 100m for NPP estimates (two times maximum
patch sizes for TM and NPP ∼50m). This ensures you cross the
boundary of the patch at least once. The survey should be chosen
so that it covers these dimensions depending on the objectives
of the study. However, the main criteria for setting transect/grid
dimensions should be so that all 5 ice classes are surveyed (or all
identified ice classes for the study site), of particular importance
is the inclusion of unique and under-sampled sea ice features
such as ridges or MYI hummocks (Lange et al., 2017). As we have
shown, even over distances of 100m the dominant ice classes and
all ice features such as ridges were not representatively sampled.
This is partly due to the location chosen and also due to filtering
of the data resulting in inconsistent sample spacing-coverage.
This in turn may over-sample some regions compared to others
and result in non-representative surveys for certain ice classes.
Therefore, we recommend that care is taken to choose ROV
transects or grids that cover all ice classes, and to ensure ROV
measurements are conducted while minimizing distance to the
ice bottom, and pitch and roll angles.

During data analyses one should always consider the
dominant ice class for the corresponding region based on larger
scale ice thickness surveys. Because universal algorithms are not
yet available for deriving chl a biomass from spectral radiation,
ice cores should always be conducted at as many locations
as possible along the ROV surveys for training bio-optical
models, deriving photosynthetic parameters for up-scaling ROV
NPP estimates and subsequently to parameterize algae models.
Because the time requirements for ice coring (this does not
include laboratory processing times) at the distances required for
spatial variability studies (e.g., >100m) are likely much greater
than a typical ROV deployment of 8 h, we strongly recommend to
conduct both ROV and ice core sampling particularly for spatial
variability studies of both chl a biomass and NPP.

This method does have limitations in terms of assessing the
temporality of ice algal chl a biomass and NPP due to the
limited period of sampling and logistical constraints. This is
a common drawback in observational sea ice biogeochemistry,
which results from the limitations of sample processing and
incubation times, and the shear difficulty of sampling within
the Arctic Ocean in order to cover the necessary periods of
weeks to months. However, our approach showed the successful
application on spatially extensive datasets and thus is an ideal

approach that should be applied to long-term studies (e.g., ice-
tethered sensor arrays; Nicolaus et al., 2010) in order to assess the
short- to long-term temporal variability of ice algal chl a biomass
and NPP.

CONCLUSIONS

We provided, for the first time, a detailed multi-scale
comparison of ice-core based ice algal chl a biomass and
NPP estimates with estimates derived from under-ice spectral
radiation measurements conducted over distances of tens
to thousands of meters. These approaches demonstrated
substantial improvements regarding representative sea ice
algae observations. Our results showed that ice core-based
estimates of summertime ice algal chl a biomass and NPP do
not representatively capture the spatial variability compared to
the spatially more extensive estimates of moving platforms. This
may carry similar uncertainties, with an overall negative bias of
∼60%, for pan-Arctic estimates based on ice core observations
alone.

Our autocorrelation analyses showed patch sizes of algal chl a
biomass (10–30m) and NPP (10–50m) that were highly variable
between locations and with scales of variability unlikely to be
captured by ice coring alone. Based on our results we presented
sampling recommendations depending on the objectives of the
study. To estimate ice algal chl a biomass alone, taking a
representative sample (N = 3) of each ice type/class using
the ice core method should provide a reliable estimate of the
overall area if there is also knowledge/observations of the ice
thickness distribution on large scales (>1 km). Upscaling chl a
biomass estimates would benefit from sampling all ice classes
and factoring in weights for the spatial coverage of different ice
classes in the region of interest. For NPP estimates, however,
a combination of larger scale (>100m) under ice light and
ice algal chl a biomass is required because of the independent
relationship between light and chl a biomass during the end of
summer. In order to get the most representative estimates and
to address the spatial variability of chl a biomass and NPP, we
recommend that future sea ice sampling should combine ice-core
based methods with the larger-scale under-ice spectral profiling
approaches presented and described here and in Lange et al.
(2016). This combined approach is also logistically justified since
the time requirements for ice coring, which does not include
processing times, at the distances required for spatial variability
studies are typicallymuch greater than a typical ROVdeployment
of 8 h.

We also identified high chl a biomass ridges within several up-
scaled surveys, which have been generally neglected in sea ice
biogeochemical studies. Sea ice ridges had significantly higher
chl a biomass than the level ice and accounted for up to 10%
of the total areal ice coverage. This suggests that these features
may represent important regions for sea ice algal growth that
are not easily captured by ice coring methods due to logistical
difficulties of coring such thick sea ice. Further dedicated sea
ice ridge studies are warranted particularly in terms of ice algal
chl a biomass, nutrients, primary production and bio-optical
properties.
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