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The deep sea is a major sink for debris; however, temporal changes and underlying
mechanisms of litter accumulation on the seafloor remain unclear. Photographic surveys
at the long-term ecological research (LTER) observatory HAUSGARTEN, in the eastern
Fram Strait, have enabled the assessment of spatial and temporal variability of seafloor
litter in the Arctic. Previous studies of time-series data (2002–2014) reported an increase
in litter quantities from the northernmost and central stations. Here, we extended the
analysis by three years until 2017 and included data from the southernmost station.
A total of 16,157 images covering 60.5 km2 were analyzed and combined with previous
studies, to determine litter density, type and size compositions. Moreover, the interaction
of litter with epibenthic megafauna was evaluated. Indicators of local maritime traffic,
fisheries activity and summer sea ice extent were examined as potential drivers. The
mean annual litter density ranged between 813 ± 525 (SEM) and 6,717 ± 2,044
(SEM) items km−2. Litter density clearly increased over time, and the northernmost
station experienced the strongest increase. Plastics dominated at two of the stations
whereas the northern station harbored mainly glass. Small-sized items accounted for
63%. Interaction with epibenthic fauna was frequent, especially with sessile organisms.
Litter densities correlated with fishing and tourism vessel abundance, but no correlation
was found with summer sea ice extent. This 15-year record of marine litter shows that
even secluded Arctic ecosystems become increasingly subject to plastic pollution and
that it will likely continue in the face of growing global plastic production rates and
ineffective waste management policies.

Keywords: litter, seafloor, plastic, sea ice, Arctic, marine debris, deep sea, pollution

INTRODUCTION

Marine litter is a global problem whose lasting effects are unlikely to vanish since the leakage
of debris into the oceans will likely continue to increase. Plastic accounts for ∼73% of marine
debris globally (Bergmann et al., 2017b), and it has been estimated that every year ∼8 million
tons of plastic waste enter the oceans from land (Jambeck et al., 2015), approximately two of
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which come from rivers (Lebreton et al., 2017). The global
input from sea-based sources is currently unknown but may
be substantial given local estimates of 46 and 99% in the
North Pacific and Arctic, respectively (Bergmann et al., 2017a;
Lebreton et al., 2018). Plastic pollution continues to increase
(Ostle et al., 2019) along with its production, which reached
359 million tons y−1 in 2018 (PlasticsEurope, 2019) and will
continue to grow given industry plans to expand production
significantly as a byproduct of the shale gas boom. Plastic debris
has spread to all ocean compartments, including coastlines, sea
ice, surface waters, the water column, seafloor, and biota (Law,
2017). However, surface waters and coastlines have received most
attention (Basurko et al., 2015; Suaria et al., 2016; Arcangeli
et al., 2018; Goddijn-Murphy et al., 2018) because of their
accessibility and the obviousness of deleterious effects on their
fauna. While the main sources of litter have been identified (waste
production on land, leakage from landfills, littering behavior,
discharges from vessels and offshore platforms, derelict fishing
gear) (Ryan, 2015) its ultimate fate in the ocean remains unclear.
The amount of plastic debris entering the oceans does not
match the estimates of global budgets by a missing fraction
of 99% (van Sebille et al., 2015). Accumulation areas, hidden
sinks and retention of debris are driven by hydrography and
geomorphology (Schlining et al., 2013) that point to the deep
ocean as a sink for marine debris (Watters et al., 2010; Woodall
et al., 2014). The lightweight plastic fraction remains at the sea
surface for some time before organisms colonize them or particles
adhere turning them negatively buoyant such that they sink
(Lobelle and Cunliffe, 2011). Over time, the integrity of plastics
is compromised by sunlight, wave action, mechanical abrasion
(Andrady, 2015), and biotic interaction such that it fragments
into smaller pieces including microplastics (<5 mm). Recent
studies highlight that plastic litter is taken up by Arctic biota
and has invaded all ocean compartments in the Arctic from
beaches, sea ice and snow to the sea surface, water column, and
the deep ocean floor (Schulz et al., 2010; Nielsen et al., 2014;
Obbard et al., 2014; Woodall et al., 2014; Lusher et al., 2015;
Trevail et al., 2015; Amélineau et al., 2016; Bergmann et al.,
2016; Cózar et al., 2017; Kanhai et al., 2018; Kühn et al., 2018;
Morgana et al., 2018; Peeken et al., 2018; Tekman et al.,
2020), which hold fragile ecosystems. These ecosystems are
threatened by accelerated global warming causing a severe
decrease in sea ice coverage (De Lucia, 2017) changing the
ecosystem dynamics in turn (Soltwedel et al., 2016). The urge
for marine litter related policy requires long-term monitoring
programs capable of assessing the effectiveness of implemented
measures. Accordingly, the aim of this study is to continue the
long-term observations of litter on the deep Arctic seafloor at
the HAUSGARTEN observatory (Bergmann and Klages, 2012;
Tekman et al., 2017). In addition to already published data
from the northern and central stations, we analyzed footage
from the southernmost station to assess if there were latitudinal
differences and if litter quantities increased over time at this
station, too. Furthermore, we analyzed the spatial and temporal
variability in litter material and size composition and quantified
for the first time the proportion of epibenthic fauna that interact
with litter. We tested possible drivers of temporal trends for

correlations with maritime activities, fishing effort in the region,
and summer sea ice extent.

MATERIALS AND METHODS

Study Area
The stations of the HAUSGARTEN observatory are located in the
Arctic at ca. 79◦ N along a latitudinal and bathymetric gradient,
crossing the Fram Strait at water depths ranging between 250
and 5,500 m (Soltwedel et al., 2016). Previous assessments of
litter covered the central station HG-IV (Bergmann and Klages,
2012; Figure 1) and the northern station N3 (Tekman et al.,
2017). Here, images from the southernmost station S3 were
analyzed to assess latitudinal differences of litter on the seafloor.
In addition, the time series of N3 and HG-IV were extended
through the analysis of new footage. The stations N3 and HG-
IV are ∼300–400 m deeper than S3, which is at ∼2,300 m
depth. While N3 experiences the greatest sea ice coverage as
it is located close to the marginal ice zone (MIZ), HG-IV is
only subject to temporary ice coverage and S3 is ice-free in
most years and characterized primarily by Atlantic water masses
(Taylor et al., 2017). Overall, the expeditions to the Arctic have
produced data on marine litter through photographic surveys
conducted in 2002, 2004, 2007, and almost annually since 2011
(Supplementary Table S1).

Photographic Surveys and OFOS
Specifications
All expeditions were undertaken in summer aboard the German
research icebreaker RV Polarstern, except for 2013 when RV
MS Merian was used, and HG-IV could not be surveyed due
to ice conditions.

Marine litter was assessed through photographic surveys of the
seafloor using a towed Ocean Floor Observation System (OFOS),
which is equipped with a video and still camera. The steel frame
currently carries four LED lights, an altimeter, telemetry, and
three red laser pointers positioned 50 cm from each other to allow
accurate area calculations and scaling of objects. The OFOS has
been modified and improved over time. Supplementary Table S1
gives the specifications of all deployments for each expedition.
In 2002 and 2004, camera tracks were established at ∼2,500 m
water depth at HG-IV, N3, and S3. The OFOS has been towed at
each station along the same linear track since the beginning of the
time series to assess changes in epifaunal assemblages (Figure 1).
The transects were photographed for 4 h at 0.5–0.7 knots and a
target altitude of 1.5 m, varying according to bottom topography
and sea state. The images were triggered automatically every 20–
30 s depending on speed and manually when an item of interest
occurred in the field of view.

Image Analysis
The images from each year and station were treated as individual
samples to allow temporal and spatial comparisons. All images
were analyzed using BIIGLE version 2.0 (Bio-Image Indexing and
Graphical Labeling Environment), a web-based image annotation

Frontiers in Marine Science | www.frontiersin.org 2 May 2020 | Volume 7 | Article 321

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00321 May 16, 2020 Time: 16:44 # 3

Parga Martínez et al. Marine Litter at HAUSGARTEN Observatory

FIGURE 1 | Location of the three stations and the HAUSGARTEN observatory and camera tracks at each site.

tool (Langenkämper et al., 2017). The same computer screen
was used to avoid variation from differences in resolution
at a zoom of 1× using BIIGLE’s lawnmower mode, which
divides an image into 36 sub-sections and scrolls through each
one of them to ensure complete analysis of the whole image.
For consistency with previous publications, every litter item
observed was labeled and categorized according to a 13-material
type classification similar to Mordecai et al. (2011), but rope
and food waste were added (Table 1). Unidentifiable litter
refers to items of non-mineral nor biological origin whose
material could not be determined due to limitations in image
resolution, but which was of anthropogenic origin judging by
its color, shape, and size. Examples of the items from each
category are included in Table 1. All images were screened

TABLE 1 | Categories of material types.

Material Example

Plastic Carrier bags, industrial packaging

Rubber Fragments

Styrofoam Polystyrene foam

Fisheries plastic Nets and fishing gear

Rope Synthetic cord

Glass Pieces of dark glass

Paper Wrapping paper

Metal Scrap

Timber Fragments of construction timbers

Food waste Fish carcass

Fabric Cloth

Pottery Fragments of ceramics

Unidentifiable litter (Unid.) Fragments of sharp and/or bright material

for putative litter items, followed by a second assessment to
ensure correct categorization and even out learning effects. In
a third run, all remaining objects were reviewed by 1–2 further
experts to exclude objects of low certainty of origin and ensure
comparability with Tekman et al. (2017) and Bergmann and
Klages (2012). Poor-quality images and those that showed overlap
with the previous image were excluded to avoid double counts.
The length of each litter item was measured using the BIIGLE
rectangle tool. Items were then grouped into three size categories:
small (<10 cm), medium (10–50 cm), and large (>50 cm)
(Bergmann and Klages, 2012). Epibenthic fauna interactions with
litter were annotated aiming for the highest possible taxonomic
resolution. The form of interaction was categorized as entangled,
colonized by or “in contact with.” The three laser points in
each image were detected automatically through a computer
algorithm (Schoening et al., 2015), enabling calculation of the
area covered by each image.

Data Processing
Data from Bergmann and Klages (2012) and Tekman et al.
(2017) were incorporated in the analysis to assess temporal
and spatial trends in mean annual litter density, material, and
size composition among and within years and stations, and at
HAUSGARTEN observatory combining all three stations. The
size composition of plastic items was analyzed to assess temporal
and spatial trends. Litter count was converted to litter density
according to:

LD =
ni
Ai

where LD, litter density (items km−2); ni, litter count per image;
Ai, area of the image (km2).
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TABLE 2 | Summary of the area covered (m2), mean annual litter densities (items km−2), material and size composition at all HAUSGARTEN stations combined.

HAUSGARTEN 2002 2004 2007 2011 2012 2013 2014 2015 2016 2017 Total Test p H or Pseudo-F

Area photographed 1,926 7,788 8,580 4,009 8,214 4,234 3,948 6,570 7,991 7,304 60,563

Image count 648 1,993 1,695 1,024 2,230 1,096 1,016 2,101 2,235 2,119 16,157

Mean annual litter density 3,523 813 871 5,744 5,173 4,568 6,717 6,121 6,224 5,970 4,571 K-W, M-W <0.0001 38.7

± SEM 1,354 525 556 3,344 1,638 1,618 2,044 1,766 1,610 1,779 1,628

Material type PERMANOVA 0.001 4.43

Plastic 1,927 306 386 2,866 1,693 2,295 3,964 1,599 2,203 2,556 1,895 K-W, M-W <0.0013 25.88

± SEM 973 251 283 2,162 709 706 1,008 817 1,005 1,046 959

Rubber 0 0 0 276 0 0 0 130 116 0 60

± SEM 276 130 116 60

Styrofoam 0 0 0 276 0 0 0 0 0 438 82

± SEM 276 343 75

Fisheries plastic 0 0 0 0 0 0 0 396 135 658 137

± SEM 396 135 502 119

Rope 0 115 62 964 1,267 355 259 274 243 0 385

± SEM 4 2 51 47 10 7 10 9 16

Glass 0 0 0 195 1,025 1,734 2,493 2,335 1,618 174 942

± SEM 10 38 50 78 90 61 6 36

Metal 474 0 328 308 442 0 0 272 550 519 297

± SEM 19 15 18 16 10 21 19 11

Fabric 711 145 94 685 162 184 0 0 150 0 184

± SEM 28 6 3 37 6 5 6 8

Paper 410 147 0 0 0 0 0 400 0 120 93

± SEM 16 6 15 4 3

Timber 0 0 0 0 270 0 0 185 82 406 109

± SEM 10 7 3 15 9

Food waste 0 0 0 0 0 0 0 358 0 236 69

± SEM 14 10 3

Pottery 0 0 0 175 172 0 0 0 0 0 40

± SEM 9 7 2

Unidentifiable litter 0 100 0 0 141 0 0 172 1,128 864 277

± SEM 4 6 6 42 33 11

Size type PERMANOVA 0.001 4.62

Small 410 194 389 2,895 3,961 2,917 5,228 3,493 5,300 3,755 2,948 K-W <0.0001 55.76

± SEM 410 194 389 2,546 1,471 1,342 1,717 1,331 1,474 1,364 1,263 M-W

Medium 3,113 618 420 2,600 1,157 1,651 1,175 2,424 925 2,058 1,514 K-W 0.05 16.69

± SEM 1,292 475 374 1,420 639 885 527 1,091 541 934 790

Large 0 0 62 250 55 0 314 203 0 158 108 K-W 0.86 4.63

± SEM 62 250 55 314 203 158 108

The dataset obtained was used to calculate the mean and
standard error of the mean (SEM). The mean annual litter density
was calculated as the sum of litter densities divided by the total
number of images per year per station. The SEM was calculated
based on the mean litter density of each transect per year. Out of
the 13 material categories differentiated for statistical purposes, a
summary of four categories (plastics, glass, other, unidentifiable
litter) was used to illustrate the trends. The proportion of litter
items that interacted with epibenthic megafauna was calculated
and categorized as the percentage of items entangled, colonized
or in contact with fauna. In addition, the interaction between
megafauna and litter at the community and population level was
determined for the most frequently affected species from 2004
to 2015. Epibenthic megafaunal density data obtained from the

same OFOS surveys were used to quantify the proportion of
individuals affected by litter in every year at N3 and S3 (2004–
2015) and HG-IV (2002–2011) (Taylor et al., 2017; Bergmann
et al., 2011). The number of interactions were presented as
percentages of the mean count at the observatory. In the absence
of reference data on megafaunal densities litter, data from 2016
to 2017 had to be excluded. The interaction at the population
level refers to two species of sponges Cladorhiza gelida and
Caulophacus arcticus, whose mean abundance was combined to
assess sponge entanglement over time. The calculations were
computed per station per year as follows:

(1) Number of individuals for litter study area = species density
from literature× litter study area covered
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FIGURE 2 | Mean annual litter density and composition at HAUSGARTEN (all stations combined) and individual stations between 2002 and 2017. The percentage of
summer sea ice extent is shown only at N3 highlighting the inverse trend during the last 3 years of the time series.

(2) Proportion of individuals affected by

litter =
Number of litter items

Number of individuals for litter study area

Statistical Analysis
The litter density data were tested for significant differences
among years and stations by applying a Kruskal–Wallis test
performed in MINITAB (version 14.12.0). When significant
overall differences were found, pairwise Mann–Whitney U tests
were conducted to assess, which years and stations were different.
A Bonferroni correction was applied to avoid Type-1 errors
through multiple comparisons. This was done by dividing the
p-value by the number of comparisons among years. For material
and size composition, a one-way permutational multivariate
analysis of variance (PERMANOVA) was performed in PRIMER
(version 6.1.16) and PERMANOVA+ (version 1.0.6) on a Bray
Curtis similarity matrix. The data were 4th-root transformed
to decrease an importance of dominant categories. Station was
selected as a fixed factor to assess the differences in litter
composition among stations and the effect of depth and ice
coverage. Year was treated as a random factor since the surveys
could not be conducted every year between 2002 and 2017 due
to accessibility of the sampling site, availability of ship time
and equipment. When significant differences were detected, a
pairwise PERMANOVA was computed to assess, which years and
stations were different. We included only those years in statistical
comparisons, for which data were available at all stations.

Maritime Data and Summer Sea Ice
Extent
Vessel monitoring system (VMS) reports were obtained from the
Norwegian Directorate of Fisheries and used as a proxy of fishing
activity inside the 12-nm area west of Svalbard. VMS data refer to
vessel reports of time, position, course, and speed of EU fishing
vessels longer than 24 m and foreign vessels longer than 15 m
every 60 min. The number of reports was provided per country of
origin (Russia, Norway, and Others) for each year from 2001 to
2017. In addition, the Harbormaster of Longyearbyen provided
annual figures for the number of ships calling at the harbor of
Longyearbyen. The ship calls were divided in tourism activities
(cruises, coastal vessels, day-tour boats, and private yachts)
and other-type-of-activities (cargo, research, fishing, governor’s
vessels, navy, pilot boats). The number of passengers on tourism
vessels were also analyzed for temporal trends. We tested for a
correlation between all the maritime data and annual mean litter
density at HAUSGARTEN (Spearman’s rank correlation, for all
stations combined).

Daily sea-ice concentrations over the three stations were
obtained from the Center for Satellite Exploitation and Research
(CERSAT) at the Institut Français de Recherche pour l’
Exploitation de la Mer (IFREMER, France) (Ezraty et al., 2007)
and ice coverage was calculated based on the ARTIST Sea Ice
(ASI) algorithm developed at the University of Bremen, Germany
(Spreen et al., 2008) at a 12.5 × 12.5 km resolution. Mean values
for summer months (May–September) during the study period
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TABLE 3 | Summary of the area covered (m2), mean annual litter densities (items km−2), material and size composition at HAUSGARTEN station N3.

N3
∼2,600 m depth

2004 2007 2011 2012 2013 2014 2015 2016 2017 Total Test p H or Pseudo-F

Area photographed 2,561 3,570 1,195 3,637 2,020 1,819 2,014 2,417 2,675 21,908

Image count 749 750 302 759 536 452 667 706 732 5,653

Mean annual litter density 346 1,049 1,642 4,284 4,731 8,082 8,237 10,358 7,374 5,123 K-W <0.0001 38.01

± SEM 346 546 1,168 1,739 1,642 2,372 2,233 2,117 1,750 1,546 M-W <0.0011

Material type PERMANOVA <0.03

Plastic 0 581 0 166 1,263 3095 793 1,644 3,388 1,214 K-W 0.01 21.54

± SEM 430 166 735 1386 560 962 1220 607

Rubber 0 0 0 0 0 0 0 348 0 39

± SEM 348 39

Styrofoam 0 0 0 0 0 0 0 0 361 40

± SEM 361 40

Fisheries plastic 0 0 0 0 0 0 610 404 0 113

± SEM 610 404 113

Rope 346 187 0 252 0 0 0 0 0 87

± SEM 13 7 9 3

Glass 0 0 0 2,636 3,468 4,986 4,614 3,258 0 2,107

± SEM 96 150 235 179 123 87

Metal 0 0 923 849 0 0 0 1,649 1,171 510

± SEM 53 31 62 43 21

Fabric 0 282 719 0 0 0 0 450 0 161

± SEM 10 41 17 8

Paper 0 0 0 0 0 0 589 0 0 65

± SEM 23 3

Timber 0 0 0 381 0 0 554 0 846 198

± SEM 14 21 31 7

Food waste 0 0 0 0 0 0 1,075 0 0 119

± SEM 42 5

Pottery 0 0 0 0 0 0 0 0 0 0

± SEM

Unidentifiable litter 0 0 0 0 0 0 0 2,605 1,608 468

± SEM 98 59 17

Size type

Small 0 381 923 3,485 3,517 8,082 5,604 9,619 5,746 4,151 K-W <0.0001 47.55

± SEM 381 923 1,673 1,488 2,372 1,880 2,000 1,550 1,363

Medium 346 481 719 633 1,214 0 2,023 739 1,628 865 K-W 0.74 3.49

± SEM 346 345 719 456 706 1,061 524 828 554

Large 0 187 0 166 0 0 610 0 0 107 K-W 0.75 3.46

± SEM 187 166 610 107

were analyzed for Spearman’s rank correlation with mean litter
densities at individual stations (Tekman et al., 2017).

RESULTS

Here, we present rare time-series data for litter in the deep
Arctic sea and data on interactions with epibenthic megafauna
at the population level. A total of 60.5 km2 were covered in
16,157 images for this study. The mean litter densities, at all
HAUSGARTEN stations combined, ranged between 813 ± 525
(SEM) and 6,717± 2,044 (SEM) items km−2.

Temporal and Spatial Trends in Litter
Density
Mean annual litter densities were significantly different over time
(K-W: H = 38.7, df = 6, p< 0.001) for all HAUSGARTEN stations
combined. An initial strong increase in 2011 was followed by
elevated levels above 6,000 items km−2 from 2014 and thereafter
(Table 2 and Figure 2). In terms of latitudinal differences, N3
was the most polluted station with the highest litter density
recorded so far in 2016 (10,358 items km−2, Table 3). It was
also the only station with a clear, continuous increase over time
and significant differences among years (K-W: H = 38.01, df = 6,
p < 0.001). The year 2004 was significantly different from the
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TABLE 4 | Summary of the area covered (m2), mean annual litter densities (items km−2), material and size composition at HAUSGARTEN station HG-IV.

HG-IV
∼2,500 m depth

2002 2004 2007 2011 2012 2014 2015 2016 2017 Total Test p H or Pseudo-F

Area photographed 1,926 2,471 2,747 1,427 2,661 2,129 2,302 3,189 2,632 21,484

Image count 648 658 449 379 812 564 747 827 834 5,918

Mean annual litter density 3,523 1,018 577 7,785 5,459 5,351 6,714 3,925 6,419 4,530 K-W 0.079 12.73

± SEM 1,354 603 419 3,710 1,495 1,716 1,763 1,275 1,609 1,549

Material type PERMANOVA <0.03

Plastic 1,927 578 577 3,017 2,997 4,833 2,982 2,962 3,165 2,560 K-W 0.39 8.41

± SEM 973 413 419 1,506 1,001 1,638 1,166 1,146 1,121 1,043

Rubber 0 0 0 828 0 0 390 0 0 135

± SEM 828 390 135

Styrofoam 0 0 0 828 0 0 0 0 953 198

± SEM 828 677 167

Fisheries plastic 0 0 0 0 0 0 577 0 347 103

± SEM 577 347 103

Rope 0 0 0 667 1,985 518 822 391 0 487

± SEM 34 70 22 30 14 19

Glass 0 0 0 585 0 0 0 327 521 159

± SEM 30 11 18 6

Metal 474 0 0 0 476 0 816 0 387 239

± SEM 19 17 30 13 8

Fabric 711 0 0 1,335 0 0 0 0 0 227

± SEM 28 69 11

Paper 410 440 0 0 0 0 611 0 359 202

± SEM 16 17 22 12 8

Timber 0 0 0 0 0 0 0 245 371 68

± SEM 9 13 2

Food waste 0 0 0 0 0 0 0 0 0 0

± SEM

Pottery 0 0 0 526 0 0 0 0 0 58

± SEM 27 3

Unidentifiable litter 0 0 0 0 0 0 515 0 317 93

± SEM 19 11 3

Size type

Small 410 244 220 2,182 3,086 2,374 2,621 2,219 2,587 1,171 K-W 0.44 5.82

± SEM 410 244 220 1,736 1,124 1,062 1,095 1,021 1,065 886

Medium 3,113 774 357 4,855 2,373 2,349 4,093 1,706 3,359 2,553 K-W 0.14 9.58

± SEM 1,292 552 357 2,185 995 1,053 1,392 770 1,122 1,080

Large 0 0 0 749 0 628 0 0 473 206 K-W 0.31 7.03

± SEM 749 628 473 206

years 2014 and thereafter (M-W: p < 0.0011). Litter densities at
HG-IV reached 7,785 items km−2 in 2011 and remained elevated
around 5,000 items km−2 (Table 4) with no statistical differences
(K-W: H = 12.73, df = 7, p = 0.079). At the southernmost
station S3, litter densities peak in 2011 followed by a decrease
but remained higher than in the early surveys (Table 5). There
were no significant differences among years (K-W: H = 8.62,
df = 6, p < 0.196).

Trends in Material Composition
The composition of debris observed at HAUSGARTEN
was significantly different throughout the years
(PERMANOVA: Pseudo-F = 4.43, p = 0.001) with no clear

temporal trend (Figure 2). Plastic bags, packaging material
and fishing gear were the most common form of plastic. This
material accounted for 41% (Figure 2) at the observatory,
with a significant boost after 2014 (K-W: H = 25.88, df = 8,
p < 0.001). The second most frequent type were pieces of
green glass (21%). Other material types such as metallic scrap,
synthetic cord, timber, fragments of ceramics, and a probably
discarded fish carcass accounted for less than 10% (Table 2).
There were significant differences in the litter composition of
different stations (PERMANOVA: p < 0.03). N3 held a distinct
composition, where glass was the single most important material
type (41%) while plastic accounted only for 24%. In contrast,
HG-IV and S3 harbored mainly plastic, 77 and 49%, respectively.
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TABLE 5 | Summary of the area covered (m2), mean litter densities (items km−2), material and size composition at HAUSGARTEN station S3.

S3 ∼2,300 m depth 2004 2007 2011 2012 2013 2015 2016 2017 Total Test p H or Pseudo-F

Area photographed 2,756 2,263 1,388 1,916 2,214 2,255 2,385 1,996 17,173

Image count 586 496 343 659 560 687 702 553 4,586

Mean annual litter density 1,074 985 7,805 5,775 4,406 3,412 4,390 4,116 3,996 K-W 0.196 8.62

± SEM 627 704 5,153 1,679 1,595 1,303 1,439 1,977 1,809

Material type PERMANOVA <0.03

Plastic 339 0 5,580 1,915 3,327 1,022 2,003 1,115 1,913 K-W 0.22 9.44

± SEM 339 4,978 960 1,384 724 906 797 1,261

Rubber 0 0 0 0 0 0 0 0 0

± SEM

Styrofoam 0 0 0 0 0 0 0 0 0

± SEM

Fisheries plastic 0 0 0 0 0 0 0 1,627 203

± SEM 1,158 145

Rope 0 0 2,225 1,565 710 0 339 0 605

± SEM 120 61 30 13 28

Glass 0 0 0 440 0 2,391 1,270 0 513

± SEM 17 91 48 17

Metal 0 985 0 0 0 0 0 0 985

± SEM

Fabric 434 0 0 487 368 0 0 0 1,290

± SEM

Paper 0 0 0 0 0 0 0 0 0

± SEM

Timber 0 0 0 429 0 0 0 0 54

± SEM 17 2

Food waste 0 0 0 0 0 0 0 709 89

± SEM 30 4

Pottery 0 0 0 515 0 0 0 0 64

± SEM 20 3

Unidentifiable litter 301 0 0 424 0 0 779 665 271

± SEM 12 17 29 28 11

Size type

Small 339 565 5,580 5,311 2,317 2,255 4,061 2,931 2,920 K-W 0.03 13.42

± SEM 339 565 4,978 1,615 1,195 1,017 1,402 1,478 1,574

Medium 735 421 2,225 465 2,089 1,157 330 1,185 1,076 K-W 0.52 5.14

± SEM 528 421 1,356 465 1,064 819 330 853 729

Large 0 0 0 0 0 0 0 0 0

± SEM

Temporal Trends in Litter Size
Composition
Overall, 63% of the litter was small whereas medium-sized
items accounted for 35% and large items were scarce
(2%). The size of litter varied significantly over time
(PERMANOVA: Pseudo-F = 6.08, p = 0.001) with the
quantity of small items increasing after 2011 (K-W, M-W:
H = 55.76, p < 0.001). These dominated (>70%) at N3 and S3
(Figure 3) although there were no significant spatial differences
(PERMANOVA: p > 1.22).

Temporal Trends in Plastics Litter Size
Overall, a similar proportion of small and medium-sized plastics
was observed at the observatory, 49 and 47%, respectively. Small
plastics came mostly from HG-IV in 2013 and S3 in 2011.
Coincidentally, both stations harbored exclusively plastics in
those years (Figure 2). Plastic is the main material type and
comes mostly in small size, which raises concern about further
fragmentation and microplastic pollution, especially because the
quantity of small plastics continued to grow after the 2014
maximum (K-W, M-W: H = 25.88, df = 8, p < 0.002).
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FIGURE 3 | Size composition of litter observed at the HAUSGARTEN observatory and at each station in terms of mean annual litter density between 2002 and 2017.

FIGURE 4 | Examples of marine litter photographed by OFOS at HAUSGARTEN: (A) Styrofoam lying on Caulophacus debris, (B) plastic film in contact with two
Bythocaris shrimps, (C) Bythocaris sp. resting on plastic bag, (D) plastic wrapping material entangled in C. arcticus and colonized by B. margaritacea, (E) fisheries
plastics and probably food waste, which attracted scavenging amphipods and eelpout (Lycodes frigidus), (F) piece of rubber colonized by anemones, Verum
striolatum and calcareous tube worm, (G) piece of plastic entangled in Cladorhiza gelida and colonized by sea anemones.

Litter Interaction With Epibenthic
Megafauna
Overall, 45% of the litter items interacted with epibenthic fauna
either by entanglement, colonization or by being “in contact”
(Figure 4). The most common material observed to encounter
fauna was plastic (30%), other material types accounted for
less than 5% each. The highest proportion of interactions was

recorded at HG-IV (66%) followed by N3 (22%), and S3 (12%).
Litter items interacted with 158 individuals of 12 taxa. Litter was
frequently entangled in sponges, especially of the species C. gelida
(26%). C. arcticus, another species of sponge, was also entangled
regularly with litter (11%), its debris even more often (17%)
with almost half of those interactions seen at N3. The second
most common interaction entailed anemones colonizing litter,
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FIGURE 5 | Proportion of the sponges Cladorhiza gelida and Caulophacus
arcticus entangled with marine litter at N3 (white circles) and S3 (black
triangles) between 2004 and 2015.

particularly of the family Hormathiidae (22%), well over half
of these colonizations were observed at HG-IV. This form
of interaction occurred with another anemone, Bathyphellia
margaritacea (5%) and the sea lily Bathycrinus carpenterii (8%).
Other interactions (<4%) included crustaceans (Bythocaris sp.,
Birsteiniamysis inermis), goose barnacles (Verum striolatum), soft
corals (Gersemia fruticosa), other sponges (cf. Pachastrellidae)
and sea cucumbers.

For the first time, we present figures on the proportion
of epibenthic megafaunal organisms interacting with litter
at HAUSGARTEN. The proportion of epibenthic megafaunal

organisms interacting with litter was low ranging between 1 and
31% with no clear temporal trend over time. When looking
into populations of species, however, there was an increase in
the number of sponges (C. gelida and C. arcticus) entangled
with litter at N3, the highest percentage was observed in 2015
(10%) (Figure 5). At S3, the proportion of entangled sponges
was even higher and remained elevated after an initial peak in
entanglements in 2011 (20%). While a greater proportion of
C. gelida suffered from entanglement at N3 (up to 28%), at S3
most litter got entangled in C. arcticus (up to 31%).

Maritime Traffic
The fishing activity from Russian vessels, inside the 12-nm
range of Svalbard, was positively correlated with the overall
litter density at HAUSGARTEN (ρ = 0.794, p = 0.006), where
the number of VMS reports were particularly high in 2014
and 2017 (Figure 6). Likewise, vessels from other countries
were positively correlated with litter densities (ρ = 0.656,
p = 0.039) while there was no correlation with Norwegian
vessels (ρ = −0.527, p = 0.117), probably because their numbers
decreased over time.

The tourist ships calling at the port of Longyearbyen as well
as the number of passengers, correlated positively with litter
densities at HAUSGARTEN (ρ = 0.69, p = 0.025; ρ = 0.67,
p = 0.033, respectively). Tourism and the number of passengers
of leisure craft have steadily increased in the time frame of
almost two decades. The latter reached 87,000 passengers per
year in 2017 (Figure 6). When testing tourism ship categories
individually, private yachts were most strongly correlated

FIGURE 6 | Temporal trend in the number of VMS reports from Russia, Norway, and other countries (upper panel, from left to right, source: Norwegian Directorate of
Fisheries). Number of ships calling at the port of Longyearbyen (Svalbard) from tourism, other-type activities, and number of passengers of leisure craft (bottom
panel, source: Harbormaster of Longyearbyen).

Frontiers in Marine Science | www.frontiersin.org 10 May 2020 | Volume 7 | Article 321

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00321 May 16, 2020 Time: 16:44 # 11

Parga Martínez et al. Marine Litter at HAUSGARTEN Observatory

(ρ = 0.74, p = 0.013). However, the strongest correlations were
found with other-type-of-activities ships (ρ = 0.85, p = 0.002),
despite a low number of calls (<400 y−1).

Summer Sea Ice Extent
There was no correlation between the mean summer sea ice
extent and litter density at any station (ρ > 0.08, p > 0.556).
Nonetheless, N3 experienced a reverse trend in sea ice coverage
from 2015 to 2017: a decrease in sea ice cover coincided with an
increase in litter density (Figure 2). As for the other two stations,
HG-IV experienced a low sea ice coverage and S3 was ice-free
except for the summers of 2007 and 2013.

DISCUSSION

Temporal Trends in Litter Density
This 15-year record of observations at HAUSGARTEN shows
an increase in litter pollution over time with particularly high
densities in 2011, 2014, and 2016. The deep seafloor is considered
a sink for marine litter (Woodall et al., 2014) and as such, a
particularly suitable environment for long-term observations.
However, although litter remained at an elevated level after the
initial peak in 2011, there was no continuous increase across all
years and stations concurring with results from other time-series
studies (Law et al., 2010, 2014; Browne et al., 2015; Schulz et al.,
2015; Nelms et al., 2017; Beer et al., 2018; Maes et al., 2018).
Table 6 shows a comparison of litter densities and the proportion
of plastics among studies on the deep seafloor. Most of the items
recorded were only observed once and may have been eaten or
moved by epibenthic organisms or bottom currents (on average
7.8 ± 0.9 cm s−1, Meyer-Kaiser et al., 2019). Fragmentation
into smaller sizes including microplastics is another possibility
although environmental conditions in the deep sea such as low
temperatures, the absence of UV light and weak currents may
slow down this process compared with other realms. In addition,
litter items may have been hidden by a veneer of sediment
over time. This suggests that litter densities at the observatory
could be even higher. Assuming no transport and therefore a
continuous accumulation of debris over time, cumulative litter
densities could exceed our highest litter record tenfold (117,978
items km−2). Such densities have only been reported in the
Mediterranean Sea (>100,000 items km−2), which has been
considered the most polluted area in the world (CIESM, 2014).
Although sedimentation to the deep sea is a slow process Brandon
et al. (2019) reported that (micro-)plastic pollution in sediments
doubled every 15 years over a multidecadal time scale, showing an
exponential increase over time and clearly indicating the burial of
plastics in sediments.

The strong increase in litter in 2011 may be partly due to a
switch to a new camera (Canon EOS-1Ds Mark III) fitted to the
OFOS. This could potentially have increased object recognition
although care was taken to include objects, which could only be
identified with low certainty.

Plastic was the most frequent type of litter. This is not
surprising given that plastic debris has spread to the abyss
in various parts of the World’s Oceans (Debrot et al., 2014;

Pham et al., 2014; Woodall et al., 2014; Chiba et al., 2018;
Gerigny et al., 2019; Pierdomenico et al., 2019) even reaching
its deepest parts, the hadal zone (Peng et al., 2018). Some of
these locations bear exceptionally high mean densities, e.g., La
Fonera (15,057 items km−2) and Cap de Creus canyons (8,090
items km−2) in the Mediterranean (Tubau et al., 2015), which
are in a similar range with our highest records from N3 (10,358
items km−2). Unlike those places, however, the observatory is
secluded from populated and industrial regions. Although, the
largest proportion of litter in the Arctic originates most likely
from long-distance transport from industrialized European and
Atlantic destinations and drifts to the North via the thermohaline
circulation (Cózar et al., 2017) our data show that the region is
subject to increasing local shipping activity, especially in terms
of tourist cruises and fishing. Shipping in the tourism sector
increased to more than 1,000 ships per year in 2016 coinciding
with a peak in litter densities recorded in that year. Similarly, the
VMS reports of vessels from Russia grew to >17,000 in 2014 and
from “other countries” to >10,000 in 2016, which may also have
contributed to the peaks observed. These increases in shipping
could be a response to the declining sea ice and changes in the
ranges of fish stocks. Merchant shipping is likely to increase in
the future as the Northern Sea route represents 50% of savings
over the Asia to Europe via the Suez Canal route (Aksenov et al.,
2017), and sea ice is likely to decrease further given rapidly rising
greenhouse gas emissions enhancing global heating. Indeed, the
high quantities of glass recorded at N3 point to local emissions.
Given its high density, glass can be assumed to sink to the seafloor
directly. It should be noted that the disposal of glass in the Arctic
was banned by MARPOL in 2013.

Material and Size Composition
Plastic materials have become a common feature of our oceans
and the situation in the secluded Arctic is no exception. It
accounted for 41% of the material observed on the seafloor,
which is lower compared with the world’s average of ∼62%
on the seafloor (LITTERBASE, 2019). The global increase in
plastic production has led to a cumulative plastic production
of 8.3 billion MT in 2017 (Geyer et al., 2017). Along with its
extensive usage, buoyancy capacity and durability (Andrady,
2015), the inefficient recycling and waste export schemes (Brooks
et al., 2018) explain the subsequent mismanaged fraction that
enters the ocean (Jambeck et al., 2015).

Positively buoyant items such as polyethylene and
polypropylene, are commonly found in the surface layer
and shorelines and can drift for extended periods of time. It is
striking that some of these (fragments of) plastic items make it
to the seafloor. This is often explained with a ballasting effect of
fouling organisms (Fazey and Ryan, 2016), which reduces their
original buoyancy. Still, the items in our images did not show
any sign of the typical rafting biota (e.g., barnacles, mussels,
hydroids, algal film). While fouling biota experience changes in
temperature, pressure, and food supply during their passage to
the seafloor likely leading to mortality, we think it is unlikely
that their remains would fall off entirely. If this was the case, the
buoyancy of such items may increase such that they could rise
back to the sea surface unless they were entrapped by sediments,
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TABLE 6 | Litter densities and plastic proportion of studies from the deep seafloor worldwide.

Region Litter density
(items km−2)

Proportion of
plastic (%)

Proportion of
fisheries debris (%)

Average water
depth (m)

References

HAUSGARTEN observatory 813–6,717 41 Present study

N3 5,123 24 3 2,600

HG-IV 4,530 77 4 2,500

S3 3,996 49 7 2,300

Norwegian Sea 279 n.a. Dominant 1,600 Buhl-Mortensen and
Buhl-Mortensen, 2017

Barents Sea 202 n.a. Dominant 230

Tyrrhenian Sea 258 56 Abundant 740–1,740 Cau et al., 2018

Pacific Ocean 11–342 33 1.7 1,085–6,037 Chiba et al., 2018

ABC Islands, Dutch Caribbean 2,700 29 28 80–900 Debrot et al., 2014

Santa Maria di Leuca,
Mediterranean Sea

2,270 Dominant Dominant 453–1,143 D’Onghia et al., 2017

European Coasts

Bay of Biscay 142 62 6 >1,400 Galgani et al., 2000

Gulf of Lion 143 70 3 Unknown

Celtic Sea 528 29 65 Unknown

NW Mediterranean 1,935 n.a. n.a. >1,000

French Mediterranean 50–289 71 5 150–800 Gerigny et al., 2019

United States West Coast 67 Abundant n.a. 55–1,280 Keller et al., 2010

Portuguese submarine canyons 1,100 68 10 Mordecai et al., 2011

Lisbon canyon 6,600 86 9 1,602

Setúbal canyon 2,450 30 9 2,194

Cascais canyon 1,050 54 9 4,574

Nazaré canyon 417 25 31 3,144

Northern South China Sea 36,818–51,929 Prevalent Abundant 1,729–3,378 Peng et al., 2019

European Seas 30–6,620 41 34 35–4,500 Pham et al., 2014

Sub-Saharan Africa 3.4 88 22 33–910 Ryan et al., 2020

Monterery Canyon, California Relative abundance 33 5 25–3,971 Schlining et al., 2013

Ryukyu Islands, NW Pacific 1,200–7,100 Number of items n.a. 334–7,145 Shimanaga and Yanagi, 2016

NW Mediterranean Sea >8,000 72 17 140–1,731 Tubau et al., 2015

Bay of Biscay 3.2a 42 16 836 van den Beld et al., 2017

Northern Gulf of Mexico 2,840 Dominant n.a. Unknown Wei et al., 2012

Atlantic Ocean 452 <25 ∼25 200–3,000 Woodall et al., 2015

Indian Ocean 707 n.a. 84 100–1,500

aDensity determined as number of items per 100 images. n.a., which means Not applicable.

stones, emergent fauna, or colonized by sessile benthic fauna.
Indeed, 30% of the plastic items were subject to such interactions.
Not only biofouling, but also hydrographic processes such as
deep-water cascading and flash-flood events or eddies may
promote downward transport (Lalande et al., 2011; Tubau et al.,
2015; Pierdomenico et al., 2019).

As mentioned above, a large portion of glass (41%) was found
at our northernmost station and to a lower extent at the other
stations. This is important as it is an indicator of disposal from
intensifying local maritime activity. Since glass is denser than
seawater it immediately sinks. It is perceived as the least harmful
material despite being very durable. Being a hard substratum,
however, glass can be colonized by sessile biota and thereby
alter local community structure and thus biodiversity in soft-
sediment habitats.

Items smaller than 10 cm dominated at two out of the three
stations (>50%), while the central station was characterized by

medium-sized items (>40%). However, almost a decade ago,
medium-sized items were the frequent size at HAUSGARTEN
(67%) (Bergmann and Klages, 2012). These temporal changes
in size composition suggest fragmentation of plastics, the prime
contributor of litter. Known to break down into smaller pieces,
pollution from microplastics is also of great concern as these can
be taken up by a wider range of biota. Indeed, HAUSGARTEN
sediments harbored very high microplastic concentrations, with
highest concentrations found at the northern station (6,595
and 13,331 particles kg sediment−1) (Bergmann et al., 2017c;
Tekman et al., 2020). A feedback mechanism with sea ice is
suspected not only as a transport vehicle circling the Arctic
basin but also as an accelerator of plastics fragmentation rates
during subsequent melting and freezing seasons (Peeken et al.,
2018; Tekman et al., 2020). Smaller plastics are more likely
to sink due to a higher surface-to-volume ratio promoting
ballasting through biofouling. In addition, small plastics can
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act as aggregative devices and form hetero-aggregates with
algae (Fazey and Ryan, 2016; Long et al., 2017; Porter et al.,
2018), also in the MIZ of polar waters with aggregates of
sinking ice algae.

Litter Interactions With Epibenthic Fauna
Sixty-six percent of the organisms that encountered litter were
sessile, namely anemones and sea lilies colonizing litter and
entangled sponges. Like trees on land, emergent fauna such
as sponges likely intercept plastic drifting above the seafloor
and hold it in place as indicated by repeated observation
of the same litter-sponge entanglement. The actual impact
of these interactions is currently uncertain, but slow growth
rates of deep-sea biota counteract the resilience of these
fragile ecosystems (German et al., 2011). Colonization of
debris by hormathiid anemones accounted for the greatest
percentage (26%) of the observed interactions. Such associations
are common since plastic provides a substrate to attach to
(Watters et al., 2010). While it could be argued that plastics
increases local biodiversity by providing hard substratum
to sessile biota in otherwise soft-sediment environments, it
could alter local food web structure and ecosystem function
(Miyake et al., 2011).

The impact of entanglement in sessile organisms is uncertain
but it may lead to injury, or decreased water exchange
and respiration rates due to coverage of the affected body
surface (Bergmann and Klages, 2012), obstruction of filter-
feeding, and deleterious effects on reproduction affecting the
survival of colonies. The carnivorous sponge C. gelida was
the organism that encountered litter most frequently (26%),
almost exclusively plastic. In food-limited environments such
as the deep sea, a hindrance of prey capture could put
species at particular risk. Given that up to 28% of C. gelida
were entangled at N3, impacts on local populations do not
seem unlikely, especially during a period when the population
dropped from 0.260 to 0.049 individuals m−2 (Taylor et al.,
2017). C. arcticus, a suspension-feeding sponge, was most
frequently observed entangled with litter (11%), which could
obstruct the aquiferous system and prevent food uptake by
filter-feeding. In 2013 at S3, the number of litter items
decreased by 66% compared to the previous year. However,
the proportion of C. arcticus entanglements increased by 1%.
In the same year, the population of C. arcticus was cut to
half, changes in the environment might affect the population
resilience. A more detailed study on the anthropogenic impact
on this epibenthic megafaunal community is needed to further
understand how reactive the species are and how much they
are been affected.

CONCLUSION

For years, the Fram Strait has been fed with debris from lower
latitudes and the Arctic basin, leading to the elevated litter
densities that we have recorded over 15 years. As in other studies,
plastic accounts for the majority of litter on the observatory’s

seafloor and could become a continuous source of microplastics
pollution in the future as larger items continue to break down.
The post-2011 period of high litter density coincides with an
increase in maritime activity near Svalbard from both, tourism
and fishing vessels that may contribute to the pollution observed
at HAUSGARTEN. Litter finds its way into the study area via
local waste emissions or via pathways such as the ocean currents
from the North Atlantic. In addition, sea ice may possibly
play an important role in litter transportation and distribution.
In order to tackle the issue more rigorous waste management
systems are needed to avoid accidental litter leakages into the
ocean, especially in highly populated coastal areas where most
of the litter originates and travels long distances. Regulations
in the maritime industry require to be strengthened to prevent
discarding of litter, but also cost-efficient systems are needed to
properly dispose of fishing gears and waste of ships. Beyond these
measures, societal transformation is essential to better balance the
necessity covered by plastics and the comfort they provide.
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