Steps towards a global model of photochemical cycling of iron

Ying Ye and Christoph Völker

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

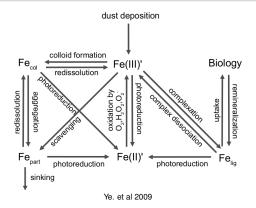
31 July 2018, TRSC

Fe(III) dominates in oxic seawater, inorganic solubility extremely low, 99% as FeL.....BUT!

• photo-induced redox cycle in the euphotic zone \rightarrow much higher Fe(II)

- photo-induced redox cycle in the euphotic zone \rightarrow much higher Fe(II)
- bioavailability of different Fe species differ

- photo-induced redox cycle in the euphotic zone \rightarrow much higher Fe(II)
- bioavailability of different Fe species differ
- Fe speciation like colloid formation and particle adsorption affected

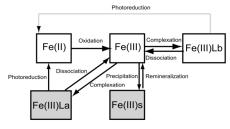

- $\bullet\,$ photo-induced redox cycle in the euphotic zone \rightarrow much higher Fe(II)
- bioavailability of different Fe species differ
- Fe speciation like colloid formation and particle adsorption affected
- spatiotermporal pattern of DFe distribution more related to light, temperature, pH, etc.

Fe(III) dominates in oxic seawater, inorganic solubility extremely low, 99% as FeL.....BUT!

- photo-induced redox cycle in the euphotic zone \rightarrow much higher Fe(II)
- bioavailability of different Fe species differ
- Fe speciation like colloid formation and particle adsorption affected
- spatiotermporal pattern of DFe distribution more related to light, temperature, pH, etc.

.....

Redox reactions implemented first in 1D models: Weber et al. (2005, 2007) and Ye et al. (2009)



- photochemical production of O₂⁻: proportional to irradiance;
- O₂ and H₂O₂ concentration fixed;
- no direct link to CDOM

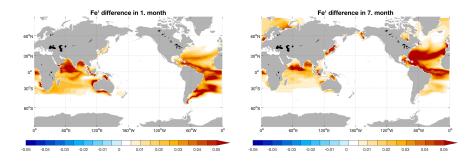
Ying Ye and Christoph Völker (AWI)

Implementation in global models

- Tagliabue et al. (2009): first order impact of light and temperature on Fe speciation
- Tagliabeu and Völker (2011): numerical problem solved for different time steps of reactions in the iron cycle
 - fast reactions in equillibrium: redox and organic complexation
 - slow reactions: scavenging, uptake and remineralisation
- oxidation by O₂ considered but not that by H₂O₂ and O₂⁻

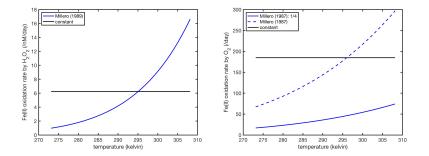
Tagliabue et al. (2009)

First step: offline calculation of redox species

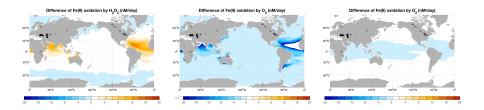

- redox species approach equilibrium;
- model output of DFe, total ligand and irradiance used as input;
- output species: Fe(III), Fe(II), FeL, L', O₂⁻
- rate constants derived first from measurements at 25°C

$$\frac{\partial}{\partial t} Fe(II) = k1_{red} \cdot Fe(III) + k2_{red} \cdot FeC + k3_{red} \cdot FeL -(k_{ox}^{O_2} + k_{ox}^{H_2O_2} \cdot H_2O_2 + k_{ox}^{O_2^-} \cdot O_2^-) \cdot Fe(II)$$

 \sim

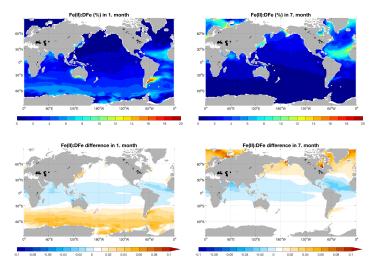

Effect of light on iron speciation: R_{ir0} and R_{const}

- two types of reactions depend on light: photoreduction of Fe(III), FeC and FeL, and production of O₂⁻
- photochemical reactions result in higher concentration of free Fe in tropical and subtropical Atlantic and Indian Ocean



Temperature-dependent Fe(II) oxidation: R_{const} and R_{temp}

- functions fitted based on measurements at different temperatures (Millero and Sotolongo, 1989; Millero et al. 1987);
- k^{O2}_{OX} is assumed to be 1/4 of measured rates (Millero and Sotolongo, 1989; Moffet and Zika, 1987).



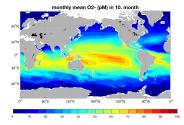
Effect on Fe(II) oxidation by H_2O_2 , O_2 and O_2^-

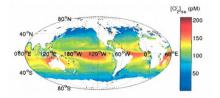
- oxidation by H₂O₂ dominates in the two runs R_{const} and R_{temp};
- oxidation by H₂O₂ increases at lower and decreases in higher latitudes
- oxidation by O₂ decreases, the stronger decrease at low latitudes is caused by the competition with H₂O₂ and lower O₂ saturation concentration;
- oxidation by O₂- decreases at lower latitudes and increases slightly in higher latitudes: oxidation by H₂O₂ and O₂ decreases in colder regions leading to more Fe(II) available for oxidation by O₂⁻

Total effect on Fe(II) fraction

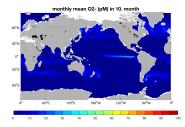
 \rightarrow strong increase in summer: high photoreduction of Fe(III) + lower oxidation

Effect of temporal and spatial variability of O₂⁻: R_{cdom}

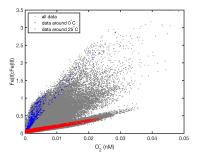

- R_{const}: related to irradiance;
- main process producing O₂⁻: CDOM photochemical degradation
- equation of CDOM degradation according to Dutkiewicz et al. (2015)


$$\frac{\partial}{\partial t}O_2^- = r_{phot}^{CDOM} \cdot MIN(\frac{PAR}{k_{phot}}, 1.0) \cdot CDOM$$

 r_{phot}^{CDOM} : photochemical degradation rate of CDOM; k_{phot} : light level for bleaching CDOM


modelled spatial variability of O_2^-

R_{temp}



- Powers and Miller (2014): H₂O₂ production estimated from satellite data, dismutation and additional first-order sink of O₂⁻;
- our calculation: constant H₂O₂ of 100 nM; O₂⁻ production estimated from CDOM photochemical degradation; dismutation and redox reaction with Fe and Cu as sink;
- midday steady state concentration compared with monthly averaged concentration!

Fe(II):Fe(III) ratio as a function of O_2^- concentration

- Fe(II):Fe(III) increases with O₂⁻
- temperature controls the slope

Things that need to be discussed and/or tested in sensitivity runs

- role of H₂O₂ spatial variability
- role of Cu(I)/Cu(II) (so far constant total Cu of 1 nM used)
- O₂⁻ source from CDOM degradation
- uncertainties in assumptions of rate constants and their dependence on temperature and pH

After this: implementing into 3D global model! $\ddot{-}$