

Federal Ministry of Education and Research

Assessing the Influence of Water Constituents on the Radiative Heating of Laptev Sea Shelf Waters

Mariana A. Soppa¹, Vasileios Pefanis¹, Sebastian Hellmann², Jens Hölemann¹, Markus A. Janout¹, Fedor Martynov³, Birgit Heim⁴, Vladimir Rozanov⁵, Svetlana Loza¹, Tilman Dinter¹ and Astrid Bracher^{1,5}

Motivation .

- Optically active water constituents \rightarrow attenuation of light penetration \rightarrow impact ocean heat content \rightarrow potentially contribute to sea ice melting.
- Laptev Sea shelf and Lena River (Arctic Siberia, Fig. 1A) → river system with highest annual flux of dissolved organic carbon and silica to Arctic Ocean [1,2].
- Aim: to investigate influence of coloured dissolved organic matter (CDOM) and total suspended matter (TSM) on radiative heating of Laptev Sea shelf waters.

Data and Methods

- Absorbed Energy and Radiant Heat ·

- Validation of MERIS Chla and a_{CDOM}(443) from C2RCC and C2X algorithms (Fig. 1B, blue) + Evaluation of RTM SCIATRAN (Fig. 1B, green) + Radiative Transfer **simulations of radiative heating** (Fig. 1B, red).

Figure 1. A) The Laptev Sea and location of sampling stations of TRANSDRIFT-XVII (black) and TRANSDRIFT XIX (red) expeditions. Stations matched with satellite data for validation of ocean colour products were circled in black and stations used for RT simulations in green. One station was used in both analysis and is showed in blue. *B)* Scheme summarizing the methods.

- In situ dataset: vertically resolved a_{CDOM} spectra, SPM, Chla, temperature and salinity taken during August-September 2010 and 2011 by the TRANSDRIFT-XVII (2010) and TRANSDRIFT-XIX expeditions (Fig. 1A).
- **Simulations with RTM SCIATRAN:**
 - spectral RT calculations for a coupled atmosphere-ocean system [3];
- atmosphere: thermal emission, absorption by several trace gases, Rayleigh scattering and scattering by aerosol and cloud particles.

- E_0 abs (Fig. 3): incident solar radiation strongly absorbed in the first meters of the water column \rightarrow increased rate of sea ice melt (dH/dT, mm/h) compared to clearer waters.
- Greater E_0 abs by CDOM and TSM increased the radiant heating rate (RH, °C/day).

Figure 3. Profiles of absorbed energy (E_0 abs).

Scenarios	$\Delta E_0 abs$	$\Delta E_0 abs$	$\Delta E_0 abs_{2-9 m}$	∆RH	∆dH/dT
S01 - S01 no CDOM	14170	15.8%	-9500	1.76	0.61
S03 - S03 no CDOM	17046	20.0%	-10232	2.12	0.73
S16 - S16 no TSM	4425	4.6%	-4095	0.55	0.19
S16 - S16 pure water	27967	38.0%	-3936	3.44	1.2
S01 - S40	11831	12.87%	-10928	1.47	0.5

Spatial Distribution –

- ocean: scattering by water and TSM, absorption by water, CDOM, Chla and \bullet TSM.
- **simulations**: spectrally scalar irradiance (E_0 , W/m², 300 900 nm) for July 1 at 76°N, 126°E, for 24 solar zenith angles and using MERIS imaging geometry information.
- input data: *in situ* and satellite Chla, CDOM and TSM.

Station	Date	Longitude	Latitude	Bottom Depth	Temperature	Salinity	a _{CDOM} (443)	TSM	Chla
S01	09.09.10	131.00	71.5	14	7.66	7.80	1.77	1.60	2.03
S03	09.09.10	131.00	72.47	18	7.77	7.02	1.67	0.40	1.95
S16	13.09.10	123.99	74.33	17	4.10	19.05	1.08	7.20	0.84
S40	19.09.10	116.69	76.84	42	-0.19	28.04	0.20	0.17	0.40

a _{CDOM} (443)							
Algorithm	r	RMSE	Bias	Slope	Ν		
C2RCC	0.68	0.44	-0.39	0.43	8		
C2RCC Laptev Sea							
C2X	0.81	0.57	0.01	2.57	7		
C2X Laptev Sea							

		Chla			
Algorithm	r	RMSE	Bias	Slope	Ν
C2RCC	0.68	0.80	0.50	3.05	8
C2RCC Laptev Sea	0.68	0.63	0.07	3.05	8
C2X	0	0.82	0.61	-0.01	7
C2X Laptev Sea	0	0.58	0.18	-0.01	7

Figure 4. A) Spatial distribution of absorbed energy (E_0abs , KJ/m² - left) and radiant heat difference (ΔRH , °C - right) on August 04, 2010. B) scatterplot of E_0abs , a_{CDOM} (443) and TSM (left) and scatterplot of E_0 abs, a_{CDOM} (443) and Chla (right).

RTM Evaluation

 \checkmark Radiative processes are well implemented in the model.

·Validation of MERIS a_{CDOM}(443) and Chla —

a_{CDOM}(443): underestimation by C2RCC and small overestimation by C2X.

✓ Chla: overestimation by all four products, but at less extent using the Laptev Sea conversion factor for

a_{ph}(443) to Chla [4] of 7.8 (default is 21)

Figure 2. MERIS a_{CDOM}(443) (top) and Chla (bellow) on August 04, 2010. White areas correspond to flagged pixels (Rtosa_OOS, Rtosa_OOR, Rhow_OOR and I1_flags).

Figure 5. A) Evaluation of simulated top-of-atmosphere radiance (L_{TOA}) against collocated MERIS L_{TOA}. B) Comparison of SCIATRAN simulated (black) and MERIS-L1b (red) LTOA at S35. C) Water leaving radiance (L_w) spectra of stations selected for simulations.

Acknowledgements

This study was funded by the German Science Foundation (DFG) Trans Regio SFB "Arctic Amplification TR 172" and Helmholtz Climate Initiative REKLIM (regional climate changes). Additional funding was provided by the Federal Ministry of Economics and Technology (BMWi) and the German Aerospace Centre grant number 50 EE 1620. The long-term Russian-German TRANSDRIFT expeditions in the Laptev Sea region were supported by the German Federal Ministry of Education and Research and the Russian Ministry of Education and Science. ESA is acknowledged for the MERIS satellite data and the SNAP software. The NASA EOSDIS Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory, Pasadena, CA, is acknowledged for the SST data.

References

[1] Stedmon, C. et al. 2011. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Marine Chemistry 2011, 124, 108–118.

[2] Holmes, R.M. et al. 2012. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts 2012, 35, 369–382. [3] Rozanov, V. et al. 2017. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN. Journal of Quantitative Spectroscopy and Radiative Transfe, 2017.

[4] Örek, H.; Doerffer, R.; Röttgers, R.; Boersma, M.; Wiltshire, K.H. Contribution to a bio-optical model for remote sensing of Lena River water. Biogeosciences 2013, 10, 7081.

¹ Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany ² ETH, 8092 Zurich, Switzerland

³ Arctic and Antarctic Research Institute, 199397 St. Petersburg, Russia

⁴ Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany

⁵ Institute for Environmental Physics, University Bremen, 28359 Bremen, Germany

* Correspondence: msoppa@awi.de; Tel.: +49-471-4831-18