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• Generally correct, but has errors

• all fields, fluxes on model grid

• Generally correct, but has errors

• sparse information: 
mainly surface, data gaps, some fields

Combine both sources of information 

quantitatively by computer algorithm

➜ Data Assimilation

Motivation

Information: Model Information: Observations

Model surface temperature Satellite surface temperature

Losa, S.N. et al. J. Marine Syst. 105 (2012) 152-162
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Data Assimilation

Methodology to combine model with real data

§ Optimal estimation of system state:

• initial conditions    (for weather/ocean forecasts, …)

• state trajectory (temperature, concentrations, …)

• parameters            (ice strength, plankton growth, …)

• fluxes                     (heat, primary production, …)

• boundary conditions and �forcing� (wind stress, …)

§ More advanced: Improvement of model formulation

• Detect systematic errors (bias)

• Revise parameterizations based on parameter estimates

€ 
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Interdisciplinarity of Data Assimilation

€ 

Data
Assimilation

Algorithms Applications

Software

Mathematics:
Optimization
Estimation

Inverse problems
Numerics

Earth Sciences,
Physics, 
Biology,

Cognitive science, 
...

Computer Science:
High-performance computing

Big data
Machine learning
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Outline

Ensemble Data Assimilation

Algorithms

• Understand behavior of different existing methods

• Develop efficient methods for high-dimensional nonlinear 
systems 

Software

• Make data assimilation easily usable

Applications

• Assess assimilation into realistic model configurations

• Develop methodology for new modeling applications and 
data types
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Algorithms
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Ensemble-based Filtering

Original EnKF by G. Evensen (J. Geophys. Res. 1994)

Kalman filter: express probability distributions by mean 
and covariance matrix

EnKF: Use ensembles to represent 
probability distributions 

observation

time 0 time 1 time 2

analysis

ensemble 
forecast

ensemble 
transformation

initial
sampling

state 
estimate

forecast
There are 

many 
possible 
choices!

What is 
optimal is a 

research topic
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Ø Properties and differences not well understood
Ø Learn from studying relations and differences

_
_

ETKF

Ensemble-based/error-subspace Kalman filters

A little �zoo� (not complete):

EAKF

ETKF

EnKF(94/98)

SEIK

EnSRF
SEEK

RRSQRT

ROEK

MLEF
EnKF(2003)

EnKF(2004)
SPKF

ESSE

ESTKF

EnKF(94/98)
SEEK

SEIK
Efficiency of SEIK 

(Nerger et al. 2005) SEIK

(Nerger et al. 2012)

New filter
formulation

RHF

anamorphosis

Which filter should one use?

DEnKF

ESTKF

EnSRF

EAKF

Filter instability
(Nerger 2015)

L. Nerger et al., Tellus 57A (2005) 715-735
L. Nerger et al., Monthly Weather Review 140 (2012) 2335-2345
L. Nerger, Monthly Weather Review 143 (2015) 1554-1567
S. Vetra-Carvalho et al., Tellus A 70 (2018) 1445364

ETKF
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Assessing Ensemble Kalman Filters

Mathematical assessment of ensemble Kalman filters limited by
• optimality only proven for Gaussian error distributions
• convergence properties only clear for large ensemble limit

but
• models are nonlinear -> non-Gaussian distributions
• only small ensemble feasible to run for high-dimensional models

My approach
• compare and characterize behavior of different methods
• reach general conclusions from analyzing differences mathematically 
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Localization: Why and how?

Ø Combination of observations and 
model state based on ensemble estimates 
of error covariance matrices

Ø Finite ensemble size leads to 
significant sampling errors 

• errors in variance estimates

Ø usually too small

• errors in correlation estimates
Ø wrong size if correlation exists
Ø spurious correlations when true correlation is zero 

Ø Assume: long-distance correlations are small in reality

Ø Localization: damp or remove estimated long-range correlations
(Houtekamer & Mitchell, 1998, 2001)
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Adaptive localization radius in global ocean model

• Localization radius is usually hand-tuned
• Numerical analysis in small models shows:

errors minimal when localization radius chosen such that
local sum of observation weights = ensemble size

• Application with FESOM (Finite Element Sea-ice Ocean Model):
• Fixed 1000km radius leads to increasing errors in 2nd half of year
• Lower RMS error in sea surface height than fixed 500km radius

Error-reduction of sea surface height

Kirchgessner, Nerger, Bunse-Gerstner, Mon. Weather Rev., 142 (2012) 2165-2175

truemodel state. The analysis step is computed after each
forecast phase of 10 days with an observation vector
containing about 68 000 observations. Overall, the ex-
periments were conducted over a period of 360 days.
The experiments use the ETKF with OL. Two ex-

periments with fixed localization radii of l5 500 km and
l5 1000 km are performed. A third experiment uses the
localization radius determined such that the effective
observation dimension is equal to the ensemble size.
The inflation factor was set to r 5 1.1.

b. Assimilation performance

Figure 8 shows of the RMS errors of the sea surface
height over time relative to an experiment without data
assimilation for the three experiments. For the fixed
radius of l 5 1000 km, the relative RMS error is quickly
reduced below 0.5, but increases again after day 150. The
relative RMS errors for the fixed radius of 500 km and
the experiment with the localization radius based on the
effective observation dimension are similar and the er-
rors generally decrease over time.However, the variable
localization results in smaller RMS errors than the fixed
localization radius. In the second half of the experiment,
the RMS errors obtained with the variable localization
radius are even smaller than those for the fixed locali-
zation radius of 1000 km.
Overall, the experiments show that the effective ob-

servation dimension can be used to specify a spatially
varying localization radius that yields estimates of similar
quality than those produced by a fixed radius. However,
while the fixed radius has to be tuned with several ex-
periments, this is not required for the variable radius.

7. Conclusions

In this study, the optimal value for the localization
radius in domain localization and observation localiza-
tion was examined using numerical experiments. Using
the Lorenz-96model and a nonlinear shallow-watermodel
allowed for the assessment the localization behavior with
two simple nonlinear models with different dynamics.
The main focus was on dense observations with uniform
observational error, which are used in real assimilation
applications (e.g., as gridded satellite observations of the
ocean surface temperature or sea surface height). For this
type of observations, it was possible to assess the relation
of the localization radius to the ensemble size over the
whole model domain.
The localization radius is optimal if the estimation errors

are minimal. It depends on the ensemble size and varies
for different weight functions. Typically, the optimal
radius is determined by experimentation. Yet, one can
define an effective observation dimension given as the
sum of the observation weights involved in a local anal-
ysis. The optimal localization radius was obtained, if
the effective observation dimensionwas about equal to the
size of the ensemble. Moreover, the optimal value of the
effective observation dimension is constant for different
weighting functions. This situation can be explained by
the fact that the degrees of freedom for the analysis are
determined by the rank of the ensemble. The degrees of
freedom are optimally utilized if the ensemble size
equals the effective observation dimension. In the case
of constant observation errors, the degrees of freedom
are distributed over different numbers of observations
for different weight functions. If the observation network
is less dense, other effects, like sampling error for distant
observations, become more important so that this re-
lation is weaker. For multivariate data assimilation in the
shallow-water model, the optimal effective observation
dimension was the same for all three model fields. If the
observation density is reduced, the linear relation in the
shallow-water model was still conserved, but the slope
was different. For both models, the optimal value of the
effective observation dimension was roughly equal to the
ensemble size if a field was completely observed. For
dense observations that are distributed in two dimensions,
a simple relation between the ensemble size and the op-
timal localization radius was deduced from the experi-
ments. This relation can be used to define an adaptive
localization radius that ensures that the effective obser-
vation dimension is equal to the number of ensemble
members. The relation was tested using a global ocean
model where synthetic observations of the sea surface
height were assimilated. With the adaptive localization,
without tuning, a similar error reduction as using an

FIG. 8. RMS errors for the assimilation experiment using FESOM
relative to the errors from an experiment without assimilation.
Shown are the relative RMS errors for a fixed localization radius of
1000km (black), 500km (red), and the variable localization derived
from the effective observation dimension (blue).

JUNE 2014 K IRCHGES SNER ET AL . 2173
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Instability of serial observation processing

Synchronous assimilation
ETKF, SEIK, ESTKF, (EnKF)

• Assimilation all observation at a 
given time at once

• Usually using ensemble-space 
transformations

• Possible for arbitrary observation 
error covariance matrices

• Localization of  observation error 
covariance matrix

Serial observation processing
EnSRF, EAKF

• Perform a loop assimilating each 
single observation

• Efficient: Avoids matrix-matrix 
operations

• Requires diagonal observation 
error covariance matrix

• Localization of state error 
covariance matrix

(EnSRF: Whitaker & Hamill, 2002; EAKF: Anderson, 2001)

Two widely used filter categories:
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RMS error over number of observations
How does the RMS error develop during the loop over all observations? 

Test at first analysis step (Lorenz-96 toy model):
• EnSRF: Compute RMS errors at each iteration
• LESTKF: Do 40 experiments with increasing number of obs.
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L. Nerger, Monthly Weather Review, 143 (2015) 1554-1567

• Instability leads to larger error for EnSRF in full-length experiments
• Can be relevant in real applications: if observations have locally strong impact
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Inconsistent Matrix Updates

Kalman filter updates covariance matrix according to

With Kalman gain

this simplifies to

(1) and (3) yield same result only with gain (2)!

P
a = (I�KH)Pf (I�KH)T +KRK

T

K = P
f
H

T
�
HP

f
H

T +R
��1

P
a = (I�KH)Pf

(1)

(3)

(2)

State error covariance

Obs. error covariance

Observation operator

P
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Not fulfilled with localization: 

Ø Update of P is inconsistent in localized EnSRF

(noted by Whitaker & Hamill (2002), but never further examined)

Ø Inconsistency also occurs in localized synchronous assimilation ... 

but update is only done once followed by ensemble forecast

Kloc =
�
C �Pf

�
H

T
�
H

�
C �Pf

�
H

T +R
��1

Be careful when

introducing new

adaptions!
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• Represent state and its error by ensemble      of states

• Forecast:
• Integrate ensemble with numerical model

• Analysis:
• update ensemble mean

• update ensemble perturbations

(both can be combined in a single step)

• Ensemble Kalman & nonlinear filters: Different definitions of

• weight vector     

• Transform matrix  

Linear and Nonlinear Ensemble Filters

X

w̃

W

xa = xf +X0f w̃

X0a = X0fW

N
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• Ensemble Transform Kalman filter 
• Assume Gaussian distributions
• Transform matrix

• Mean update weight vector 

(depends linearly on y)

ETKF (Bishop et al., 2001)

A
�1 = (m� 1)I+ (HX

0f )TR�1
HX

0f

w̃ = A(HX
0f )TR�1

⇣
y �Hxf

⌘

N

W =
p
(m� 1)A�1/2⇤N

• Transformation of ensemble perturbations

(depends only on R, not y)
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• Nonlinear Ensemble Transform Filter
Ø Mean update from Particle Filter weights: for all particles i

NETF (Tödter & Ahrens, 2015)

w̃i ⇠ exp
⇣
�0.5(y �Hx

f
i )

T
R

�1(y �Hx
f
i )
⌘

Ø Ensemble update 
• Transform ensemble to fulfill analysis covariance

(like ETKF, but not assuming Gaussianity)
• Derivation gives

(     : mean-preserving random matrix; useful for stability)⇤

W =
p
m

⇥
diag(w̃)� w̃w̃T

⇤1/2
⇤

p
N

Tödter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347–1367

(Nonlinear function of observations y)
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• Double-exponential observation errors
• Run all experiments 10x with different initial ensemble

• NETF beats ETKF for ensemble size N > 30

• Larger ensemble needed for Gaussian errors

Performance of NETF – Lorenz-96

20 30 40 50 60 70
ensemble size

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

M
R

M
SE

EKTF filter
NETF filter

Kirchgessner, Tödter, Ahrens, Nerger. (2017) Tellus A, 69, 1327766
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ETKF-NETF – Hybrid Filter Variants

1-step update (HSync)

• : assimilation increment of a filter
• !: hybrid weight (between 0 and 1; 1 for fully ETKF)

Xa

HSync
= X

f

+ (1� �)�XNETF + ��XETKF

�X

2-step updates
Variant 1 (HNK): NETF followed by ETKF

• Both steps computed with increased R according to !

Variant 2 (HKN): ETKF followed by NETF

X̃a

HNK
= Xa

NETF
[Xf , (1� �)R�1]

Xa

HNK
= Xa

ETKF
[X̃a

HNK
, �R�1]
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Choosing hybrid weight !

• Hybrid weight shifts filter behavior

• How to choose it?

Possibilities:

• Fixed value

• Adaptive

• According to which condition?

• Base on effective sample size 

set

(close to 1 if           small, i.e. small contribution of NETF)

�adap = 1�Neff/Ne

Neff =
X

i

1/(wi)2

Neff
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Test with Lorenz-96 Model (ensemble size N=50)

Ensemble size N=50
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• All hybrid variants improve estimates 

compared to LETKF & NETF

• Dependence on forgetting factor & 

localization radius like LETKF

• Similar optimal localization radius

• Largest improvement for variant HNK

(NETF before LETKF)

• Currently testing in a larger model ...
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Software
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single
program

Indirect exchange (module/common)
Explicit interface

state
time

state
observations

mesh data
Model

initialization
time integration
post processing

Ensemble Filter
Initialization

analysis
ensemble transformation

Observations
quality control

obs. vector
obs. operator

obs. error

Core of PDAF

Components of an Assimilation System

modify parallelization

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118
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PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework

§ a program library for ensemble data assimilation

§ provide support for parallel ensemble forecasts

§ provide fully-implemented & parallelized filters and smoothers 

(EnKF, LETKF, NETF, EWPF … easy to add more)

§ easily useable with (probably) any numerical model

(applied with NEMO, MITgcm, FESOM, HBM, TerrSysMP, …)

§ run from laptops to supercomputers (Fortran, MPI & OpenMP)

§ first public release in 2004; continuous further development

§ ~310 registered users; community contributions

Open source: 

Code, documentation & tutorials at 

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118
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Extending a Model for Data Assimilation

Extension for 
data assimilation

revised parallelization enables 
ensemble forecast

plus:
Possible 

model-specific 
adaption

e.g. in NEMO: 
treat leap frog
time stepping

Start

Stop

Do i=1, nsteps

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Model
single or multiple 

executables

coupler might be 
separate program

Initialize parallel. Aaaaaaaa

Aaaaaaaa

aaaaaaaaa

Stop

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Init_parallel_PDAF

Do i=1, nsteps

Init_PDAF

Assimilate_PDAF

Start

Initialize parallel.

Finalize_PDAF

(similar to EMPIRE, but more efficient)
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PDAF: User-friendliness

Assumption: Users know their model

� let users implement assimilation system in model context

For users, model is not just a forward operator

� let users extend their model for data assimilation 

Keep simple things simple:

Ø Define subroutine interfaces to separate model and assimilation 
based on arrays

Ø No object-oriented programming
(most models don’t use it; most model developers don’t know it;
not many objects would be involved)

Ø Users directly implement observation-specific routines 
(no indirect description of e.g. observation layout)
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Example: Value of Efficient Software

Adaptive Localization (Kirchgessner et al, 2012)
• Original study done with small models (Lorenz-96, shallow water)
• Paper reviewer asked to apply it with full-scale forecast model
• FESOM with PDAF was fully coded without adaptivity

Ø Update PDAF library (just when recompiling)
Ø Adding adaptivity routine and running experiment

Kirchgessner, Nerger, Bunse-Gerstner, Mon. Weather Rev., 142 (2012) 2165-2175

Error-reduction of sea surface height

truemodel state. The analysis step is computed after each
forecast phase of 10 days with an observation vector
containing about 68 000 observations. Overall, the ex-
periments were conducted over a period of 360 days.
The experiments use the ETKF with OL. Two ex-

periments with fixed localization radii of l5 500 km and
l5 1000 km are performed. A third experiment uses the
localization radius determined such that the effective
observation dimension is equal to the ensemble size.
The inflation factor was set to r 5 1.1.

b. Assimilation performance

Figure 8 shows of the RMS errors of the sea surface
height over time relative to an experiment without data
assimilation for the three experiments. For the fixed
radius of l 5 1000 km, the relative RMS error is quickly
reduced below 0.5, but increases again after day 150. The
relative RMS errors for the fixed radius of 500 km and
the experiment with the localization radius based on the
effective observation dimension are similar and the er-
rors generally decrease over time.However, the variable
localization results in smaller RMS errors than the fixed
localization radius. In the second half of the experiment,
the RMS errors obtained with the variable localization
radius are even smaller than those for the fixed locali-
zation radius of 1000 km.
Overall, the experiments show that the effective ob-

servation dimension can be used to specify a spatially
varying localization radius that yields estimates of similar
quality than those produced by a fixed radius. However,
while the fixed radius has to be tuned with several ex-
periments, this is not required for the variable radius.

7. Conclusions

In this study, the optimal value for the localization
radius in domain localization and observation localiza-
tion was examined using numerical experiments. Using
the Lorenz-96model and a nonlinear shallow-watermodel
allowed for the assessment the localization behavior with
two simple nonlinear models with different dynamics.
The main focus was on dense observations with uniform
observational error, which are used in real assimilation
applications (e.g., as gridded satellite observations of the
ocean surface temperature or sea surface height). For this
type of observations, it was possible to assess the relation
of the localization radius to the ensemble size over the
whole model domain.
The localization radius is optimal if the estimation errors

are minimal. It depends on the ensemble size and varies
for different weight functions. Typically, the optimal
radius is determined by experimentation. Yet, one can
define an effective observation dimension given as the
sum of the observation weights involved in a local anal-
ysis. The optimal localization radius was obtained, if
the effective observation dimensionwas about equal to the
size of the ensemble. Moreover, the optimal value of the
effective observation dimension is constant for different
weighting functions. This situation can be explained by
the fact that the degrees of freedom for the analysis are
determined by the rank of the ensemble. The degrees of
freedom are optimally utilized if the ensemble size
equals the effective observation dimension. In the case
of constant observation errors, the degrees of freedom
are distributed over different numbers of observations
for different weight functions. If the observation network
is less dense, other effects, like sampling error for distant
observations, become more important so that this re-
lation is weaker. For multivariate data assimilation in the
shallow-water model, the optimal effective observation
dimension was the same for all three model fields. If the
observation density is reduced, the linear relation in the
shallow-water model was still conserved, but the slope
was different. For both models, the optimal value of the
effective observation dimension was roughly equal to the
ensemble size if a field was completely observed. For
dense observations that are distributed in two dimensions,
a simple relation between the ensemble size and the op-
timal localization radius was deduced from the experi-
ments. This relation can be used to define an adaptive
localization radius that ensures that the effective obser-
vation dimension is equal to the number of ensemble
members. The relation was tested using a global ocean
model where synthetic observations of the sea surface
height were assimilated. With the adaptive localization,
without tuning, a similar error reduction as using an

FIG. 8. RMS errors for the assimilation experiment using FESOM
relative to the errors from an experiment without assimilation.
Shown are the relative RMS errors for a fixed localization radius of
1000km (black), 500km (red), and the variable localization derived
from the effective observation dimension (blue).

JUNE 2014 K IRCHGES SNER ET AL . 2173

Localization radius [meter]

x 105

1 day!
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Applications



Lars Nerger – Ensemble Data Assimilation

Application Example

Coupled Atmosphere-Ocean 
Data Assimilation

Qi Tang
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Example: ECHAM6-FESOM (AWI-CM)

Atmosphere
• ECHAM6
• JSBACH land

759ECHAM6–FESOM: model formulation and mean climate

1 3

2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

Atmosphere Ocean

fluxes

ocean/ice state
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2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

OASIS3-MCT

Ocean
• FESOM
• includes sea ice

Coupler library
• OASIS3-MCT

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for
cross-domain assimilation (“strongly-coupled”)
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ensemble size
0 4 8 12 16 20

tim
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[s
ec

]

26

27

28

29

30

31

32

33
integration time for different ensemble sizes

Execution Times (weakly-coupled, DA only into ocean)

MPI-tasks

• ECHAM: 144

• FESOM: 384

Timings (1 day):

• Ens. forecast:  27 – 33 sec

• Analysis step: 0.5 – 0.9 sec

Scalability: 

• Slowly increasing integration time with growing ensemble 
size (only 16% due to more parallel communication)

• some variability in integration time over ensemble tasks

• Need optimal distribution of programs over compute 
nodes/racks (here set up as ocean/atmosphere pairs)

10,560 
processor 

cores
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RMSE: 2.04oC RMSE: 1.60oC

Assimilation Effect on Surface Temperature

Day 10
No Assimilation Assimilation

Difference between model simulations and observations

Day 30

RMSE: 2.12oC RMSE: 1.01oC

Surface temperature assimilation successful over 1 year
• Vertical localization required to avoid unrealistic subsurface temperatures

Current work
• Add subsurface profile data (temperature & salinity)
• Assess effect on atmosphere

• Final aim: strongly-coupled assimilation 
(e.g. improve atmospheric state using ocean observations)
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Application Example

Assimilation of Satellite Ocean Color Data 
into Ocean-biogeochemical Model 

Himansu Pradhan

IPSO
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Coupled <odel: MITgcm - REcoM

Global configuration
80oN - 80oS, 30 layers

Resolution:
lon : 2 deg
lat : 2 deg in North

up to 0.38 deg in South
layers : 10 m – 500 m

MITgcm
General ocean circulation model
of MIT (Marshall et al., 1997). 

REcoM-2
Regulated Ecosystem 
Model – Version 2
(Hauck et al., 2013)
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Assimilation:
• Assimilate satellite total 

chlorophyll (ESA Ocean color
- climate change initiative)

• Handle logarithmic
concentrations

• How are both phytoplankton
groups influenced?

• Validate with satellite and
in situ data

Verification: Phytoplankton group data 
SynSenPFT (Losa et al. 2018)

mg/m3Small phytoplankton

Diatoms mg/m3

Assimilated: 
Total chlorophyll from ESA OC-CCI

Assimilation of Total Chlorophyll 

logarithmic observation errors

Total chlorophyll (5 day composite) mg/m3
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• Assimilation improves groups 
individually through cross-
covariances

• Stronger error-reductions for 
Diatoms

• Southern Ocean: Particular effect 
for small phytoplankton at very 
low concentration

• Current work
• Asses impact of assimilating 

chlorophyll group data

logarithmic RMS errors (southern regions)
DiatomsSmall phytoplankton
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Lars Nerger – Ensemble Data Assimilation

Ensemble-estimated Cross-correlations

• Significantly different correlations for small phytoplankton and diatoms
• Negative correlations exist

 Cross correlations between total and group chlorophyll


