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Abstract
The shapes of phytoplankton units (unicellular organisms and colonies) are extremely diverse, and no unique

relationship exists between their volume, V, and longest linear dimension, L. However, an approximate scaling
between these parameters can be found because the shape variations within each size class are constrained by
cell physiology, grazing pressure, and optimality of resource acquisition. To determine this scaling and to test
for its seasonal and interannual variation under changing environmental conditions, we performed weighted
regression analysis of time-dependent length–volume relations of the phytoplankton community in large deep
Lake Constance from 1979 to 1999. We show that despite a large variability in species composition, the V(L)
relationship can be approximated as a power law, V~Lα, with a scaling exponent α = 3 for small cells (L < 25
μm) and α = 1.7 if the fitting is performed over the entire length range, including individual cells and colonies.
The best description is provided by a transitional power function describing a regime change from a scaling
exponent of 3 for small cells to an exponent of 0.4 in the range of large phytoplankton. Testing different
weighted fitting approaches we show that remarkably the best prediction of the total community biovolume
from measurements of L and cell density is obtained when the regression is weighted with the squares of species
abundances. Our approach should also be applicable to other systems and allows converting phytoplankton
length distributions (e.g., obtained with automatic monitoring such as flow cytometry) into distributions of bio-
volume and biovolume-related phytoplankton traits.

Phytoplankton can appear as unicellular organisms or colo-
nies. The volume of these units is a complex function of their
linear extents and shape. The volume of spherical cells
increases as a cube of cell diameter (Menden-Deuer and Les-
sard 2000; Young and Ziveri 2000), while for flat cells it might
scale as a second power and for needle-like cells as a first
power (linearly) of the cell longest linear dimension (Sun and
Liu 2003). Similar rules hold for phytoplankton colonies. We
use for simplicity the term “cells” to address both unicellular
organisms and colonies unless stated otherwise.

There are fundamental reasons which suggest a generic rela-
tion between the geometry and the size of phytoplankton cells.
One reason is that both cell size and cell shape are important
drivers of cell fitness through their effect on the surface to vol-
ume ratio, nutrient uptake (Karp-Boss and Boss 2016), grazing
rates of zooplankton (Reynolds 2006), as well as sinking and
diffusion rates (Padisák et al. 2003). Furthermore,

environmental, metabolic, and other constraints demand an
adjustment of cell shape with size. Indeed, it is known that the
shape of a phytoplankton cell varies systematically with its size
(Niklas 2000). For instance, small cells are typically spherical,
while larger cells are frequently found to be elongated. Thus,
although there may be no formula which would describe a per-
fect one-to-one relationship between cell volume and linear
dimensions in general, we can expect to find a mathematical
expression which successfully approximates this dependency
on average among dominant phytoplankton species.

The phytoplankton composition, and therefore also the dom-
inant species and average cell sizes, permanently change
depending on factors such as season, resource availability, and
grazing pressure (Cermeño et al. 2006; Acevedo-Trejos
et al. 2013). These changes may favor phytoplankton species of
one specific cell shape over the others. Thus, the aggregated cell
size–volume relationship in a given habitat may also change
with time. Finding such a relationship has an important practi-
cal aspect: Numerous studies show that cell volume is a good
predictor of cell metabolism (Marañón et al. 2012; Enquist
et al. 2015) and cell abundance (Cermeño et al. 2006). Thus,
identifying a relation between cell length and volume opens up
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a new perspective in determining dynamic changes in total phy-
toplankton biovolume and in cell volume-related phytoplank-
ton traits, even if only information on cell length is available.

In this article, we determine the length–volume relationship
for the phytoplankton community in large deep Lake Con-
stance, using 893 samples of phytoplankton composition
obtained during microscopic long-term monitoring from 1979
to 1999 (Weithoff and Gaedke 2017). The data contain time
series of the abundance of 36 phytoplankton morphotypes,
each characterized by a specific (time-independent) longest lin-
ear dimension and volume. The measurements were performed
2–8 times a month during each year, and thus allow to test for
interannual and seasonal changes in the length–volume rela-
tionship. Finally, these results can be related to varying nutrient
conditions, which have changed in Lake Constance from rather
eutrophic to more oligotrophic conditions during the study
period (Gaedke and Schweizer 1993; Gaedke et al. 1998).

To find an optimal fit to the relationship between the length
and volume of phytoplankton cells, we compare various
weighted fitting algorithms and fitting functions. As we show,
most fitting methods provide a relatively good approximation
to the observed length–volume relationship. However, the
choice of the fitting method strongly affects the estimates of
the total biovolume, calculated based on the obtained fitting
functions. Thus, we rank the fitting algorithms by the accuracy
for these estimates and show that the highest accuracy is
obtained when the fitting uses the squares of morphotype
abundances as weights. Finally, we study seasonal and inter-
annual variations of the optimal fitting parameters for Lake
Constance by comparing the median parameters calculated for
each month, year, and the entire period of observations. As
phytoplankton community of Lake Constance is typical for
many freshwater lakes of intermediate trophic state, we expect
our findings to be applicable to other freshwater systems.

Materials and methods
Data

We use data on abundance, average volume, and longest lin-
ear dimension of unicellular phytoplankton and colonies from
1979 to 1999 in Upper Lake Constance (https://fred.igb-berlin.
de/data/package/22). The list of morphotypes and their cell
sizes is found in Weithoff and Gaedke (2017). Upper Lake Con-
stance (Bodensee) is a warm-monomictic, large (472 km2), and
deep (water depth up to 253 m and 101 m on average) temper-
ate lake north of the European Alps. It underwent reoligotro-
phication as total phosphorus concentrations, the most
limiting nutrient for phytoplankton growth, declined from
more than 2.8 μM P in 1979 to 0.5 μM P in 1998, resulting in a
pronounced phosphorus depletion in the epilimnion during
summer (Tirok and Gaedke 2006). Phytoplankton samples were
taken weekly during the growing season (twice a week in 1981
and 1987, biweekly in 1999) and approximately every 2 weeks
in winter. Species-specific phytoplankton cell counts and the

linear extends of each species were obtained using Utermöhl’s
(1958) inverted microscope technique. The cell volume was cal-
culated by assuming a characteristic cell shape for each species.
All measurements were provided per unit area and comprise the
biovolume within the uppermost water layer from 0 m to 20 m
depth, which roughly corresponds to the epilimnion and the
euphotic zone. We considered the 36 most abundant morpho-
types of phytoplankton (constituting on average 92% of total
phytoplankton biomass) comprising individual species or
higher taxonomic units that are morphologically similar (Rocha
et al. 2011, 2012). This guaranteed a consistent resolution of
phytoplankton counts during the 19 yr of sampling.

For each of the 36 morphotypes, we include in our analysis
only one characteristic value for cell length and cell volume
and focus on the variations in morphotypes abundance only.
This means, we neglect intraspecific variability and potential
temporal variations in morphotypes cell length and volume as
the maximal range of these variations is typically constrained
by a factor from 2 to 5. This range is much smaller than the
range of interspecific variations, which extend up to 2 orders
of magnitude for the longest linear dimension and 4 orders of
magnitude for volume.

Fitting procedure
For every morphotype i, let us denote Li its cell longest lin-

ear dimension and Vi its volume, which we regard to be con-
stant in time. As a first order approximation to the size–
volume relationship, we apply a power law function

V Lð Þ¼V0Lα ð1Þ

which on a log-log scale describes a straight line with slope α

and intercept logV0. Fitting this line on a log-log scale leads,
however, to an uneven distribution of the residuals and sys-
tematic errors in the range of either small or large cells. To
obtain a second-order approximation, we tested various differ-
ent fitting functions and obtained the best fit to the empirical
results with a transitional power function

V Lð Þ¼ V0Lα

L=L0ð Þα−β +1, ð2Þ

which smoothly changes its slope in a double-logarithmic plot
from α to β with increasing L. Thus, this function exhibits two
distinct scaling regimes for small and large cells:

V Lð Þ≈V0Lα,L!0 and V Lð Þ≈V0L
α−β
0 Lβ,L! ∞ : ð3Þ

These two regimes intersect at the characteristic size L0,which
can be interpreted as a midpoint of the transition from one
scaling exponent to the other.

To account for the difference in abundance among morpho-
types, for each time instance t, we apply weighted regression
analysis using time-dependent weights Wi,t. The fitting can,
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however, be performed on a linear or logarithmic scale, and
various definitions of weights can be used. Generally, for each
sample, we need to find such time-dependent parameters αt, V0,t

(and βt for Eq. 2) that minimize the weighted mean square
deviation between the measured and predicted cell volume for
given cell longest linear dimensions. The mean square deviation
can be calculated either on a normal or logarithmic scale:

Flin αn,V0, tð Þ¼
X
i

Wi, t Vi−V Li,αt ,V0, tð Þð Þ2

Flog αn,V0, tð Þ¼
X
i

Wi, t logVi− logV Li,αn,V0, tð Þð Þ2

The choice of the weights and scale is crucial, as it strongly
affects the best fit parameters and the prediction accuracy. For
instance, fitting data on a logarithmic scale reduces the rela-
tive residuals across all size classes, while fitting on a linear
scale minimizes the absolute residuals. Similarly, different defi-
nitions of weights affect to a greater or lesser extent the accu-
racy obtained for dominant morphotypes at the expense of
the accuracy for rare morphotypes.

One possibility to define the weights and scale is to require
that the resulting fitting function provides an unbiased predic-
tion for the biovolume of the whole community. The mea-
sured and predicted total biovolume of the whole community
at each time instance t can be expressed in terms of morpho-
type abundance Ai,t as

Bmeas, t ¼
X
i

Ai, tVi

Bpred, t ¼
X
i

Ai, tV Li,αt ,V0, tð Þ
ð4Þ

Their difference equals

Bmeas, t −Bpred, t ¼
X
i

Ai, t Vi−V Li,αt ,V0, tð Þ½ �:

The best agreement between predicted and measured bio-
volumes arises if the absolute value of each term in the sum
approaches zero. We can achieve this by minimizing the sum
of squares of these terms.

FAW αt ,V0, tð Þ¼
X
i

A2
i, t Vi−V Li,αt ,V0, tð Þ½ �2: ð5Þ

Thus, we need to minimize the mean square deviation from
the cell volumes on a linear scale using the squares of mor-
photypes abundances as weights. Below we refer to this
method as abundance-weighted (AW) fitting.

The differences in Eq. 5 can be written as [Ai,tVi − Ai,tV(Li,
αt, V0,t)]

2, where the first product expresses the observed biovo-
lume of morphotype i and the second product is the predicted
biovolume of this morphotype (see Eq. 4). Thus, the AW-fitting

can be reinterpreted as a (nonweighted) least square regression
to the total biovolume of each phytoplankton morphotype. As
a consequence, the sensitivity of AW-fitting to variations in
morphotype composition is much smaller than it might seem
at first glance. While both the cell abundance Ai, t and volume
Vi vary over many orders of magnitude separately, the variabil-
ity of their product (i.e., the biovolume) is much smaller
because cell densities tend to decrease with increasing cell vol-
ume (Mullin et al. 1966; Kruk et al. 2010).

To additionally test for the accuracy of the AW fitting, we
compare it against two other fitting approaches, where we per-
form the weighted regression on a logarithmic scale, assuming
that weights Wi,t either equal 1(0) for present (absent) mor-
photypes, or are proportional to morphotype biovolumes, Bi =
AiVi. Below we refer to these methods as presence/absence
(PA) and biovolume-weighted (BW) fitting. These approaches
seem to be intuitively more robust than AW-fitting, but, as we
show below, they lead to biased and less accurate estimations
of the total biovolume.

To evaluate the accuracy of the methods, we express the
match between the measured and predicted total biovolume
through the coefficient of determination R2

adj and the coeffi-

cients of the linear regression y = ax + b between these quanti-
ties (see an example in Fig. 1b). The coefficient of
determination characterizes the scatter of the data points
around the diagonal (red dashed line, Fig. 1b), and the linear
regression parameters show the tilt and vertical shift of the
cloud of data points with respect to the diagonal, thus, indi-
cating a systematic bias in the prediction. In an ideal case, all
data points should collapse on the diagonal, so that R2

adj ¼1,

a = 1, and b = 0.
To find the best fit parameters, we use the Levenberg-

Marquardt weighted nonlinear least squares algorithm (fitnlm
function in MATLAB 2016). The best fit parameters obtained
for the community observed at time t are subsequently
referred to as instantaneous parameters (V0, t, αt, etc.). These
parameters carry the information about the community com-
position for a given date and provide the closest match
between the modeled length–volume relationship and empiri-
cal data for each time instance (see Supporting Information
Fig. S1 for an example). We further test for the seasonal
dependence and interannual trends of the best-fit parameters
by calculating their median values for each calendar month

irrespective of the year (denoted as ~αm, ~V 0,m, etc.), and annual

median values (~αy, ~V 0,y, etc.). Finally, we determine the over-

all median values (~V 0, ~α, etc.) over the entire period.

Results
Ranking the fitting methods

For the phytoplankton morphotypes observed in Lake Con-
stance, the longest linear dimension ranges over 2 orders of
magnitude and the volume over almost 4 orders of magnitude
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(Fig. 1a). To differentiate between common and rare morpho-
types, the size of the data points in Fig. 1 indicates the morpho-
type biovolume averaged over the monitoring period. The longest
linear dimension of most unicellular phytoplankton morpho-
types (blue dots) is below 40 μm, and all colonies are above this
limit (red dots). We first focus on the comparison of L(V) relation-
ships obtained with PA-weighted, BW, and squared AW fittings.

Fitting a power law over the entire range of cell lengths and
volumes gives an overall median slope ~α¼1:73 if the PA and
AW-methods are applied (Fig. 1a, blue dashed and blue solid
lines) and ~α¼1:9 when BW-fitting is used (green dashed line).
In all cases, we obtain a good visual match between the regres-
sion lines and data points. However, the difference in the
results becomes evident when the obtained L(V) relationships
are used to predict the total biovolume (see Eq. 4).

Compare, for instance, the measured biovolumes with bio-
volumes calculated based on the overall median parameters
obtained with PA-method (Fig. 1b). Using this simple
approach, we obtain a relatively good prediction of the total
biovolume (R2

adj = 0.88), and this prediction is unbiased

(b = 0.043 � 0.012 and a = 0.97 � 0.01). However, the accuracy

of this prediction does not increase if instead of the median
parameters we use their instantaneous values αt and V0,t

(R2
adj ¼0:89, Table 1). Thus, the presence-absence fit is not sen-

sitive enough to capture the current state of the community.
A comparison of the results obtained using PA, AW, and

BW methods demonstrates the advantages of AW fitting
(Fig. 2). First, only with AW and BW methods, we obtain a
substantially better prediction of the total biovolume, when
instantaneous parameters instead of the overall median values
are used as indicated by an increase of R2

adj (the bottom panel

in Fig. 2 and Table 1). Second, only AW and PA methods pro-
vide an unbiased estimation of the total biovolume, as is evi-
dent from the low value of the linear regression parameter b
(Fig. 2 middle panel). However, if the BW-method is applied,
the linear regression gives logBpred = 0.98 log Bmeas + 0.14,
meaning that the total biovolume is on average overestimated
by a factor of 100.14 = 38% (Supporting Information Fig. S2).
Finally, note that the slope a of the linear regression is always
around 1, indicating no tilt of the cloud of data points with
respect to the diagonal in all cases (Fig. 2, top panel). Thus, only
the fitting weighted by the squares of morphotype abundances
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Fig. 1. Fitting and evaluating the length–volume relationship. (a) Longest linear dimension L and volume V of unicellular phytoplankton (blue circulars)
and colonies (red circulars), the area of the circulars is proportional to the morphotype time-averaged biovolume. Approximated scaling relationships
plotted for the overall median parameters obtained with various fitting methods (lines, see Table 2 for parameters). The volume of small cells (L < 25 μm)
closely follows a cubic dependence on L (red dotted line). Fitting a power law (Eq. 1) over the entire range gives a slope α from 1.7 to 1.9, in dependence
on the method applied (blue dashed line – PA, green dashed line – BW, and blue solid line – AW), see Fig. 2 for the comparison of these results. The tran-
sitional power function (Eq. 2) provides the best fit over the entire range of cell length (red line is based on AW-fitting). (b) An example of the comparison
of the measured total biovolume and total biovolume predicted by Eq. 4 for the V(L) relationship obtained with PA-fitting. In an ideal case, for every sam-
ple, the predicted total biovolume should equal the measured biovolume, and all data points should collapse on the diagonal (red dashed line). The devi-
ation of data points from the diagonal is characterized by R2adj and by the linear regression parameters (solid line) a, indicating the tilt of the cloud of

points with respect to the diagonal, and b, showing the bias along the vertical axis. In an ideal situation, R2adj ¼1, a = 1, and b = 0.
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(AW method) gives best-fit parameters, which provide an unbi-
ased estimation of the total biomass and allow to take advantage
of the sample data if instantaneous parameters are used. Conse-
quently, we include only this method in the further analysis.

As shown in Fig. 1a, the cloud of data points has a concave
up shape. However, in the range of small cells (L < 25 μm),
the dependence is approximately linear on a logarithmic scale,
and fitting of a power law gives the overall median slope

PA BW AW AW, nonlin

Fitting method

0.85

0.9

0.95

1

R2

0.9

1

1.1(a)

(b)

Overall median parameters
Instant parameters

-0.2
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Fig. 2. Evaluation of L(V) relationships obtained for PA-weighted, BW, and squared AW fittings. The evaluation is done for overall median parameters
(blue bars) and instantaneous best-fit parameters (red bars). (Top) All methods lead to relatively low tilt, a, of the data points. (Middle) All methods
except of BW lead only to a small bias, b, in the estimation of the total biovolume. (Bottom) For all methods except of PA, instantaneous parameters in
comparison with median parameters provide better estimates (greater R2adj) for the total biovolume. See Table 1 for the values.

Table 1. Linear regression between the predicted and measured biovolume (logBpred = a log Bmeas + b). The predicted biomass is cal-
culated based either on instantaneous parameters αt and V0,t or on overall median parameters. p values are calculated for a t-statistic test
that the coefficient is zero.

Instantaneous parameters Overall median parameters

Estimate p value Estimate p value

Power law, log scale, PA a 1.00 � 0.01 <10−6 0.97 � 0.01 <10−6

b 0.036 � 0.013 0.005 0.043 � 0.012 0.0005

R2adj 0.89 — 0.88 —

Power law, log scale, BW a 0.98 � 0.01 <10−6 1.00 � 0.01 <10−6

b 0.14 � 0.006 <10−6 0.19 � 0.01 <10−6

R2adj 0.97 — 0.89 —

Power law, linear scale, AW a 1.03 � 0.007 <10−6 0.97 � 0.01 <10−6

b −0.075 � 0.007 <10−6 −0.009 � 0.012 0.475

R2adj 0.97 — 0.88 —

Power law, linear scale AW 2 ≤ L ≤ 25 μm a 1.00 � 0.002 <10−6 0.99 � 0.004 <10−6

b −0.02 � 0.001 <10−6 −0.033 � 0.003 <10−6

R2adj 0.998 — 0.987 —

Transitional power function, linear scale, AW a 1.02 � 0.01 <10−6 0.96 � 0.01 <10−6

b −0.056 � 0.005 <10−6 −0.020 � 0.010 0.04

R2adj 0.98 — 0.92 —
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~α¼2:97 (Fig. 1a, red dotted line; Table 2) with relatively small
variations of αt among samples. Thus, in this range of cell
length, we can neglect the seasonal dependence of the fitting
parameters and assume that the cell volume scales approxi-
mately as a cube of cell length.

Fitting the nonlinear power function requires the definition
of four parameters (see Eq. 2). However, these parameters are
interdependent and, for instance, an increase of L0 can be
compensated by decreasing α. This results in a large variability
and low significance of the best-fit values. To constrain the
parameter variability, we assume that the initial slope
~α¼2:97, as shown before. We also assume that the midpoint-
parameter L0 is the same for all samples and only βt and V0,t

change among the samples. We also assume that the cell vol-
ume on average increases with cell length, and therefore, βt > 0.
We tested different L0 and found the best match between the
predicted and measured biovolume for L0 = 25 � 1 μm, with a
vanishing dependence of the predicted total biovolume on the
value of L0. Thus, we chose L0 = 25 μm, which corresponds to
the upper border of the small cell range considered above (see
Table 2 for the values of the other parameters). The resulting

function with a median final slope of ~β ¼0:4 reflects better the
nonlinear shape of the cloud of data points (Fig. 1a, red line),
and allows for an unbiased estimation of the total biomass.
The comparison of the measured and predicted biomasses
gives R2

adj ¼0:92 if the overall median parameters are used and

shows an excellent agreement (R2
adj ¼0:98) if the instant

parameters are used (Fig. 2; Table 1).

Seasonal and interannual dynamics
To gain an idea about the seasonal dependence of L(V) rela-

tionships, consider the fitting functions plotted for the
median parameters calculated for each calendar month with-
out regard to the year of sampling (Fig. 3). For most calendar
months, the L(V) relationship varies little: the power law has a
median slope ~αm≈1:7 (blue lines) and the nonlinear power

function (red lines) has the final slope ~βm≈0:5. Only in April
and May, the exponents drop for both models below these sta-
tionary levels, and in June and October rise above them. How-
ever, in spite of the significance of these changes, they are
relatively small compared to the random variability among

samples obtained in different years (see Fig. 4 for more details).
Applying the monthly median parameters instead of the over-
all medians does not provide any increase of the accuracy of
the total biovolume estimates (details not shown).

To find potential long-term trends in V(L) relationships, we
performed a linear regression of the instantaneous values αt
and βt grouped by months (indicated by the colored dots and
colored lines in Fig. 5) and of all data points (black lines). The
p values show the probability that the null-model with no pos-
itive or negative trend holds. The regression of monthly aggre-
gated data gives in most cases insignificant trends. However,
most trends are positive (for 9 out of 12 calendar months) and
for three months, the slope αt shows a significant increase dur-
ing the observation period (shown by solid regression lines). A
superposition of these trends leads to a significant (p ≤ 0.01)
positive interannual trend in the instant slopes αt of the power
law, indicating a significant increase in the steepness of the V
(L) relationship with time, which is however small in absolute
terms (Fig. 5a black line). For the nonlinear power function,
we did not find any significant changes in the final slope βt
(Fig. 5b).

Discussion
The longest linear dimension, L, and volume, V, of phyto-

plankton cells and colonies vary over a wide range. To better
understand how V, which defines the total biomass, scales
with L, we performed a weighted regression analysis of long-
term phytoplankton data obtained in Lake Constance. We
used various fitting approaches and ranked the obtained V(L)
dependencies by the accuracy with which these dependencies
allow to estimate the total biovolume based on observed cell
length distributions. We found that in the entire range of cell
sizes the V(L) dependence can be approximated by a power
law with slope α ≈ 1.7, or by a transitional power function
which changes its slope from 3 in the range of small cells
(< 25 μm) to 0.4 in the range of large cells and colonies
(> 25 μm). Both fitting functions provide good estimates of
the total biovolume even based on the overall median parame-
ters, which neglect the between-sample variability (power law:
R2
adj ¼0:88; transitional power function: R2

adj ¼0:92). The appli-

cation of instantaneous best-fit parameters (obtained for each

Table 2. The median values and 25–75% interquartile range (in brackets) of the fitting parameters calculated over the entire period
for different fit functions and weights.

Function α β V0 L0

Power law, log scale, PA logV = log V0 + α log L 1.73 (1.64, 1.79) — 3.92 (3.27, 4.98) —

Power law, log scale, BW logV = log V0 + α log L 1.85 (1.64, 2.14) — 3.07 (1.54, 6.10) —

Power law, linear scale, AW V = V0L
α 1.73 (1.47, 2.02) — 3.42 (1.56, 5.55) —

Power law, linear scale, AW 2 ≤ L ≤ 25 μm V = V0L
α 2.97 (2.48, 3.00) — 0.14 (0.13, 0.62) —

Transitional power function, linear scale, AW V ¼ V0Lα

L=L0ð Þα−β +1
3.00 0.42 (0.03, 1.10) 0.20 (0.16, 0.24) 25 (24, 26)
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sample) further improves these estimates and leads to an
excellent match between the measured and predicted biovo-
lume with R2

adj ¼0:97 for the power law and R2
adj ¼0:98 for the

transitional power function. Finally, note that for the ecologi-
cally most relevant range with L < 25 μm comprising highly
productive and well edible morphotypes, we found an approx-
imately cubic scaling of volume with cell length which pro-
vides a nearly perfect estimation of total biomass for this
range with R2

adj ¼0:998.

What is the biological meaning of the obtained slope α and
intercept V0 of a power law, V(L) = V0L

α? It is important to
stress that the slope does not indicate the most common
shapes or dimensionality of cells. That is, a value of α = 2 does
not mean that the cells are flat, just as α = 3 does not mean
the cells are spherical or cubic. The meaning of α can be easily
seen in the range of small cells. The cubic slope in this range

indicates that phytoplankton cells scale approximately isomet-
rically with cell length, i.e., we should find approximately the
same proportional abundance of spherical, cylindrical, needle-
like, and so on, cells in each length class (see Appendix for
detail). By contrast, a smaller slope α (as found in the range of
large cells and cell colonies) indicates that, with increasing
longest linear dimension and assuming isometric scaling
(i.e., keeping the geometry and linear proportions of each
morphotype), the shape distribution monotonically shifts
toward the dominance of complex and elongated structures.
This can occur because, in particular for large cells, a prolate
shape may be more advantageous than a spherical, disk, or
oblate shape, as it enhances, e.g., the nutrient transport due to
an increased surface to volume ratio (Karp-Boss and Boss
2016). Because the slope α is small in the range of large cells,
we conclude that with increasing cell length the fraction of
elongated phytoplankton units monotonically increases.
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Fig. 3. Scaling relationships between length and volume of phytoplankton morphotypes for each calendar month averaged over the entire observation
period. Different morphotypes are shown by blue circulars with area proportional to the morphotype average biovolume for a given month. The median
slope α of a power function (blue line) and the final slope β of a nonlinear power function (red line) drop in April and May and rise in June and October.
During the other months, the scaling functions vary only little. The black dashed line is a reference line with a slope of 3.
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In contrast to α, the intercept V0 might give an idea about
an average cell shape as it shows the average volume of cells
with L = 1 μm. Fitting the power function V = V0L

α in the
range of small cells, we found V0 = 0.14 μm3 (Table 2). This
volume is less than the volume of a sphere with diameter of
1 μm (Vsphere = 0.52 μm3). If we assume that the cells are pro-
late (the longest dimension is larger than the other two), then
we obtain an approximately equal volume for a cylinder with
1 : 0.4 ratio of height to diameter or a prolate spheroid
(a stretched sphere) with an aspect ratio of 1 : 0.5. Thus, the
dominating cells in this range have an aspect ratio of around
2. Note that this aspect ratio matches with one of two peaks
in the aspect ratio distribution found by Gibson et al. (2007),
for freshwater phytoplankton from five different classes
including diatoms, chlorophyceae, cryptophytes, dinoflagel-
lates, and cyanobacteria.

We have shown that various fitting methods can provide a
good visual match between data points and fitting curves
(Fig. 1a), but small variations in the best-fit parameters caused
by changes in weights or fitting scales can lead to large sys-
tematic errors in the calculation of an integral quantity such
as total biovolume. How should one select the most appropri-
ate fitting method? This decision depends on the purpose for
which the obtained V(L) dependence is used. Here, we focused
on calculating the total biovolume and showed that the best
unbiased estimates are obtained, if the fitting is performed on
a linear scale and weights equal to the squares of morphotype
abundances (AW fitting). Contrasting these results with other
fitting approaches we found that regression on a log-log scale
weighted by morphotype biovolumes (BW fitting) results in a
systematic overestimation of the total biovolume. Unexpect-
edly, even the regression weighted by PA data (PA-fitting) pro-
vides better results. Although such PA-fitting is insensitive to
fluctuations in morphotype composition and does not provide
an advantage when instantaneous parameters are used instead
of their median values, the overall best-fit parameters obtained
with PA-fitting are close to those obtained with AW-fitting.

At first, it might seem that the AW fitting (Eq. 5) is overly
sensitive to changes in morphotype composition, as this pro-
cedure uses cell volumes (which vary over 4 orders of magni-
tude), cell lengths (2 orders of magnitude), and squares of
morphotype abundance (up to 14 orders of magnitude). Intui-
tively, fitting a line to logarithms of cell dimensions and using
morphotype biovolume as weights seems to be a more reliable
approach. However, as explained in the “Materials and
methods” section, the actual variability in Eq. 5 is not as great
as it might seem since cell volumes, lengths, and abundances
are not independent. In fact, it has been often observed that
densities of phytoplankton cells tend to decrease approxi-
mately proportionally with cell volume (Mullin et al. 1966;
Gaedke 1992; Kruk et al. 2010). As a consequence, the variabil-
ity of biovolumes is much smaller than that of cell volumes
and abundances separately—thus rendering the AW fitting,
which minimizes the differences between the observed and

predicted total biovolumes, quite robust. This also explains
why the AW fitting gives the best estimate for the total biovo-
lume of the community.

Note that our approach neglects the variability of cell vol-
umes within each length class. This variability can be caused
either by interspecific differences when, for instance, two spe-
cies with the same length have different shapes and, therefore,
different volumes, or by intraspecific differences when indi-
viduals of the same species fall into different size classes. A fur-
ther improvement in defining the V(L) relationship can be
achieved by including the volume variability into the variance
of a probability density function providing the probability to
obtain a certain volume for a given length. Although we do
not anticipate a substantial increase in the accuracy of the
total biomass calculated based on such a function, this
approach might be beneficial for estimating a cell volume dis-
tribution based on the distribution of the cells longest linear
dimensions.

The periodic seasonal oscillations and monotonic inter-
annual trends in the V(L) relationship were small compared
to the random between-sample variability in the best-fit
parameters. During the calendar year, the V(L) relationship
was relatively stable and only deviated from this stationary
state in April, May, June, and to a lesser extent in October.
Thus, these deviations occurred only for 3–4 of 12 months in
a year and were relatively small in comparison with interann-
ual fluctuations in the phytoplankton community (see an
example in Supporting Information Fig. S1). This likely
explains the negligible increase in the accuracy of the total
biovolume estimates if the seasonal variation is taken into
account.

Regarding changes in the V(L) relationship over longer time
spans, we found a positive interannual trend of the scaling
exponent α in the 20 yr monitoring period (Fig. 5). When the
scaling exponents were aggregated by months, we saw in most
cases a positive but insignificant trend. This led, however, to a
significant positive trend in the entire time series of αt, which
increased on average from approximately 1.67 to 1.8 during
the observation period. Further data analysis revealed that this
increase was caused by a significant positive trend in average
cell volumes during the observation time, whereas we neither
found an increasing nor a decreasing trend in the average
length of cells. As the distribution of small cells was relatively
stable, this increase in the average volume and in the slope of
V(L) relationship likely arose from a shift in the shape distri-
bution in the range of large cells (L > 25 μm) from more elon-
gated cells with relatively small volumes to more spherical
cells with larger volume and smaller aspect ratio. To conclude,
we established scaling laws between phytoplankton cell vol-
ume and longest linear dimension delivering an excellent
agreement between the measured and predicted total biovo-
lume (R2 up to 0.998). We anticipate that our results are appli-
cable to other freshwater systems for the following reasons.
Lake Constance has a phytoplankton community typical for
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many freshwater lakes of intermediate trophic state (Sommer
et al. 1986). It exhibits a pronounced seasonality and the
phosphorous concentrations decreased threefold during the
monitoring period, resulting in distinct seasonal and long-
term taxonomic changes (Weithoff and Gaedke 2017). Never-
theless, our analysis did not reveal any strong seasonal signal
and the fitting based on the time-averaged median parameters
provided already very good estimates over the entire period of
observations. This suggests that the established relationship
between cell volume and longest linear dimension can be
directly transferred to roughly comparable systems. Further-
more, our detailed comparison and mechanistic understand-
ing of the performance of the different fitting procedures can
be used to establish corresponding relationships for phyto-
plankton communities with strongly deviating properties.

Our proposed method of establishing a relation between
phytoplankton cell length and volume has important practical
aspects. This is due to the different roles played by these two
quantities. While cell volume is frequently taken as a predictor
of cell metabolism (Marañón et al. 2012; Enquist et al. 2015)
and cell abundance (Cermeño et al. 2006), its direct micro-
scopic measurements of cell volume are complex and time con-
suming (Olenina 2006; Weithoff and Gaedke 2017). In
contrast, cell longest linear dimension, even though it does not
have similar straightforward ecological and physiological impli-
cations, can be determined via automatic measurement tech-
niques. One prominent example is flow cytometry, which can
provide a high spatio-temporal resolution and allows for detect-
ing rare species (Pomati et al. 2013). Thus, having established a
relation between cell longest linear dimension and volume
opens up a new perspective in estimating dynamic changes in
total phytoplankton biovolume and in cell volume related phy-
toplankton traits based on automatic in situ monitoring.

Appendix
Isometric scaling

Here, we show that an isometric scaling of a set of shapes
leads to a cubic relationship between length and volume, if
the shape distribution (i.e., the proportion of morphotypes
with different geometries) is preserved. Consider a simple
example assuming that for the smallest length class the shape
distribution includes p1 cylinders with height h and radius r1
and p2 balls with radius r2, and all other length classes are
obtained by isometric scaling of these shapes with the factor
α. For the smallest length class, the volume of cylinders will be
Vc,0 ¼ p1hπr21 and the volume of spheres Vsph,0 ¼ p24=3πr32 ,

leading to an average volume of Vt,0 ¼ p1hπr21 + p24=3πr
3
2

� �
=

p1 + p2ð Þ. Applying isometric scaling, the dimensions of other
length classes will be H = αh, R1 = αr1, R2 = αr2, giving rise to
the average volume of Vt ¼ p1HπR2

1 +
�

p2 4
3πR

3
2Þ= p1 + p2ð Þ¼ p1α3

�

hπr21 + p2
4
3πα

3r32Þ= p1 + p2ð Þ¼ α3r32π p1
hr21
r32

+ p2 4
3π

� �
= p1 + p2ð Þ. Thus,

the average volume of this set of shapes scales with the cube

of the class characteristic size αr2, unless p1 and p2 also depend
on α. The proportions of cylinders and spheres as well as the
cylinders aspect ratio will change only the factor

p1
hr21
r32

+ p2 4
3π

� �
= p1 + p2ð Þ, which defines the intercept of the

power law in double logarithmic axes. This derivation can be
easily extended to include other shapes and an arbitrary num-
ber of shapes.
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