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Abstract 

  With the seawater temperature rising more than 1.5°C (IPCC) from the 

pre-industrial time, marine organisms are facing more and more severe climate 

changes. As temperature is an important factor influencing the physiology of animals, 

species specific adaptations has been well observed. Subtidal species are one of the 

most seawater temperature influenced animals. In previous researches, NMR 

metabolic profiling has been proved to be a decent technique of animal physiological 

studies. In this work, the king scallop, Pecten maximus was studied to test if (1) 

consuming labeled phytoplankton would be a stable way of C13  labeling marine 

filter feeders such as scallops; (2) the metabolism of P. maximus would also change 

with increasing temperature, which reflects as the different filtration rates from the 

outside and changing metabolic pathway inside organs. The scallop P. maximus were 

incubated under two different temperatures, 15°C and 20°C, fed with C13  labeled 

diatom Phaeodactylum tricornutum. After three days’ filtration rate measurement, 

the tissue samples of digestive gland and striated adductor muscle were dissected 

and extracted. Both qualitatively and quantitatively metabolic profiling was done via 

C13  NMR analyzation. 

  The performance of experiment animal, Pecten maximus were quite different 

under two temperature treatments. Higher filtration rate was observed at 20°C 

whereas faster digestion and incorporation of algal lipids was also found inside the 

digestive gland from 20°C treatment. As for the muscle tissues, incorporation of C13  

labeling was observed in both temperature groups, proving this labeling technique is 

applicable for marine filter feeders.  
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1. Introduction 

1.1 Climate change and its impact 

  Climate change, which refers to changes in climate over time, includes changes of 

natural variability (e.g. temperature, precipitation, solar radiation, relative humidity 

and wind speed) and human impacts (e.g. CO2 emission) (IPCC; Hulme, 1999). It 

appears and influences on global, subcontinental, national and local levels (Gupta, 

2007). The rise of temperature is quite significant and evident worldwide (Bozinovic 

et al., 2015), which has already lead to observable changes such as rising seawater 

temperature, melting sea ice and changing sea surface levels (NASA). This leads to 

changes on marine ecosystem such as geographical distribution, population, 

migration, biological seasonal timings and food availability will in turn influence the 

physiology of marine organisms (Pörtner and Farrell, 2008). From the special report 

of IPCC (2018), a temperature increase of 1.5°C above pre-industrial levels has been 

observed. However, the temperature changes on regions differ from each other 

(Fig.1), whereas the impact of global warming also works differently for various 

marine organisms (Kroeker et al., 2013). 

 

 
Figure 1 Temperature change in global surface temperature relative to 1951-1980 average 

temperatures of year 2017. Data source: NASA/GISS. 

 

An increase of seawater in Atlantic Ocean was observed. In the research region: Vigo, 

Spain, the seawater temperature ranges from 15°C to 20°C (Fig. 2). The scallops, 
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P.maximus were mostly subtidal species (Artigaud, 2014; Saavedra, 2005), which 

means the seawater temperature would be the environment temperature for them. 

 

 
Figure 2 Monthly seawater temperature change in research region: Vigo, Spain. Orange line 

represents the maximum temperature while the blue line shows the minimum temperature. 

Source from World Sea temperature. 

 

Temperature as an important influential factor on animal physiology as it could 

affect food consumption (Laing, 2014), energy uptake (MacDonald, 1986), metabolic 

rates (Robson, 2016) and has been investigated in many previous studies. Study by 

Huey (2012) suggested that the ability of animal species adapting to climate change 

depends on its sensitivity, the extent of exposure and disturbance as well as its 

potential of adaptation. Thermal windows of aquatic animals have been reported by 

Pörtner in 2008, describing the animal performance according to the changing 

temperature (Fig.3). In the graph, when temperature is outside the pejus 

temperature range, the animal’s performance is turning worse; when outside the 

critical temperature range, the metabolism will switch from aerobic to anaerobic. 
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Figure 3 Thermal window showing temperature effects on aquatic animals. Source from Pörtner, 

2008 

 

  High temperature, which always combined with hypoxia, could lead to stress and 

worse performance on marine animals, such as reduced feeding and anaerobic 

metabolism (Artigaud et al., 2015), change in metabolic rates (Gillooly et al., 2001), 

less reproduction and mortality (Doney et al., 2012). 

1.2 Pecten maximus 

1.2.1 Morphology and ecology 

  Pecten maximus, also known as the great scallop, or the king scallop, is a marine 

bivalve mollusc in the family Pectinidae (Pechenik, 2010), mainly distributed in 

northeast Atlantic Ocean (Fig.4). The common size for Pecten maximus is from 10 to 

15cm (Fig.5) and shows no separate male and female size at maturity (Charlotte 

Marshall & Emily Wilson).  P.maximus has two valves: brown-pink left (upper) valve 

and white right valve, 12 to 17 radiating rib lines can be observed on the left valves.  
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Figure 4 Distribution of Pecten Maximus. Source: FAO 

 

As an intertidal benthic species, Pecten Maximus can be found from low tide until 

down to 250m. It is a free living animal, both burrower and swimmer. Its sediments 

include sand and mud.  

Because of the wide distribution and high market value, Pecten Maximus is the 

most important European fishery scallop species (Shumway and Parsons, 2016) and 

well-studied in aquaculture (review by Utting, 1998). 
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Figure 5 Pecten maximus (experimental animal 1501). 

  

 Pecten maximus’ reaction to predator includes closing the shell, jumping and 

swimming (Thomas and Gruffydd, 1971). Previous studies have looked into the 

swimming mechanism of Pecten maximus (Shumway and Parsons, 2016): Pecten 

maximus can move by clapping the valves and expelling the water on either side of 

the dorsal hinge. 

1.2.2 Filter feeding 

Adult Pecten maximus lives a benthic life as a filter feeder like most of the bivalves. 

Considering a filtration system, three elements are essential: (1) the dispersed 

particles, (2) the fluid medium and (3) the filter (Rubenstein, 1977). 

  Various food particles like pelagic phytoplankton, microphytobenthos, detrital 

material, nanoplankton, bacteria, zooplankton and macro-algae detritus (Lavaud, 

2014) could be consumed by this filter feeder. According to the study by Lavaud 

(2014), Pecten maximus are also able to choose from the food sources to obtain the 

better size (less than 10 μm with an optimal range of 2 to 5 μm (Rico-Villa, 2005)), 

higher quality or energetic value (lipid rich) ones. Among all, the most preferred are 

living algae cells. 

  P.maximus commonly lives at the water-sediment interface with right valve buried 

Scale bar: 

≈3cm 
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inside for stability and hiding from predators. Pecten maximus are opportunistic 

feeders and water flows could keep the water salinity at an acceptable level (Hardy, 

2008) and help to transport the organic matter into the scallops (Shumway et al., 

1987).  

  When the particles entered the scallop, the gills work as sieves to mechanically 

filter the water and retain the nutritious particles while the unusable materials are 

ejected as pseudo-faeces (Lavaud, 2014). 

1.3 Filtration rate 

Filtration rate (FR), is a fundamental parameter in bioenergetics studies of 

suspension feeding bivalves (Riisgård, 1991). Filtration rates are dependent on both 

exogenous and endogenous factors including water temperature, salinity, particle 

concentration, body size (Jørgensen 1990; Bayne 1998; Riisgård 2001c; Petersen et al, 

2004; Cranford & Grant 1990, Alber & Valiela 1996, Shumway et al. 1997, Velasco 

2006; Aya et al, 2013). Studies (Bayne and Newell, 1983; Bayne B.L. 1993) have 

shown that size of scallops and temperature are two important factors determining 

energy balance. 

Earlier studies (Petersen et al, 2004) have tested three different methods of 

measuring filtration rates: (1) the flow-through method, (2) the bio-deposition 

method and (3) the indirect or filtration method. In the flow through method, 

seawater runs through the chambers and the particle concentration before and after 

feeding were measured for filtration rates determination. In the bio-deposition 

method, filtration rate will be determined by the egested and rejected inorganic 

material. Concerning the lab conditions and the experimental design, in this study 

the filtration rate will be measured by the (3) indirect method, which the decrease of 

the feed particle concentration in a closed system over a fixed time interval will be 

measured as filtration rate. 

According to Owen (1974), using indirect methods for filtration rates 

measurement always based on following assumptions: 

(1) Filtration is the only reason for the particle concentration decrease; (2) the 

exhalant flow (‘pumping rate’) of the bivalve is constant; (3) A constant percentage of 

particles are retained (usually 100%); (4) and the particles are evenly suspended 

inside the medium (Coughlan, 1969). 

Several filtration rates (clearance rates) expressions on scallops could be found 

in prior studies (Strohmeier et al., 2009; Comeau et al., 2008; Aya et al. 2013; Laing, 

2004). In most of the cases, the FR is always linked with dry weight of bivalves’ 

tissues. However, in this research, as the tissues were needed for metabolite studies 

and the dry weight could not be obtained, the filtration rates would be expressed as 

(Riisgård , 2001b): 

FR = (lnC1 – lnC2)×V× T−1 

, where C1 and C2 are the algal cell concentrations at the beginning and end of a 

time interval; V is the volume (5L) of the water and T is the time interval.  
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1.4 Digestion and energy storage 

  After processed in pallial organs including gill, mantle, labial palp and lip 

(Shumway and Parsons, 2016), the particles will then go into the digestive system, 

including important organs such as digestive gland and stomach.  

In Pecten maximus’s structure, the stomach is embedded in the digestive gland, 

and in this research, they are not separated from each other. The ingested material 

were transported to the stomach and together with digestive gland, they were 

digested and absorbed. The digestive gland also stores energy in terms of lipid (main) 

and glycogen (Pennec, 2001). 

  The adductor muscles of Pecten maximus consist of striated adductor muscle 

(large) and smooth adductor muscle (small), also regarded as phasic muscle and 

tonic muscle. The phasic muscle is the largest organ inside the scallop, responsible 

for fast reactions of scallops including opening and closing of the valves, swimming 

by expelling the water inside (Wilkens, 2006) mainly by anaerobic metabolism 

(Zwaan et al., 1980). The tonic muscle is much smaller comparing to the phasic 

muscle next by, and also smoother. The tonic muscle is able to keep the shell closed 

for long periods of time with little expenditure of energy, by producing energy 

through slow contraction (Shumway and Parsons, 2016). 

  The adductor muscle is the most important energy storage site in many marine 

bivalves (Shumway and Parsons, 2016). The muscle tissues function as reserves in 

two ways: (1) nutrient storage and (2) nutrient mobilization (Mathieu, 1993). In 

Pecten maximus, the phasic adductor muscle is rich in nutrients such as glycogen (5% 

to 22% dry weight (DW))and protein (ranging between 85% and 61% DW), which 

could also be provided for the reproduction of this species (Lee, 2015; Mathieu, 

1993), while the lipid content is not much, only 2.5% to 4% DW (Pazos, 1997). 

1.5 Temperature influences on P.maximus 

  The direct pattern of climate change is the rise of temperature, which reflects on 

seawater environment condition changes and would contribute to the changing 

living conditions of Pecten maximus. 

1.5.1 Food availability and quality 

Phytoplankton as the typical primary producers, are easily affected by sea 

environmental changes. Shifts of the rhyme of phytoplankton (Wiltshire, 2008; 

Sommer, 2008; Edwards, 2004) have been observed in several sea areas. As living 

algal cells are the most preferred food of scallops (Lavaud, 2014), the food availability 

for scallops might also get influenced, as a mismatch could take place under rising 

temperature. 

Concerning the energy budget of scallops, lipid acts an important role in 
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reproduction processes (Shumway and Parsons, 2016), apart from which, the 

proteins and vitamins from phytoplankton are also important in nutritious activities. 

The high temperature impact on phytoplankton would also lead to the lower food 

quality of scallops. 

1.5.2 Metabolic rate of P. maximus 

The most commonly used energy budget was: C= P + R + F +U. C represents the 

food consumption, while the energy expenditures were: production (P), respiratory 

heat loss (R), faecal loss (F), executory products (U) (Shumway and Parsons, 2016). 

Regarding to the biochemical, physiological and behavioral processes of animals, 

temperature plays an important role as it is a fundamental factor, influencing 

metabolic activities including cell maintenance, enzyme activity, energy uptake, 

reproduction (Somero, 2002; Schulte, 2015).  

  According to the study of Robson (2016), Pecten maximus showed an incline of 

routine metabolic rate (measured by O2  consumption) under increasing 

temperature from 5°C to 20°C. The highest total metabolic rate appeared at 13°C, 

which in Robson’s study was recognized to be the optimum temperature for king 

scallop P.maximus. 

   

 

Figure 6 P. maximus metabolic rate against temperature: RMR (routine metabolic rate, scallops 

without moving): triangle-line; (2) total MR (total metabolic rate): square-line; (3) total MR 

excluding swimming and spinning: circle-line; (4) AMR (activity metabolic rate of swimming and 

spinning). Source from Robson (2016). 

1.6 Nuclear Magnetic Resonance (NMR) Spectroscopy 

  Nuclear Magnetic Resonance (NMR) Spectroscopy has been proved to be a useful 
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and standard tool for organic structure determination (Fan, 1996). Using the 

magnetic properties of nuclei from isotopes such as H1  and C13 , NMR can 

separate these isotopes in their specific chemical surrounding and is frequently used 

for structure elucidation and compound analysis of complex mixtures. For example, 

he C13  chemical shifts of 20 free amino acids were reported by Prabhu (1996) by 

research on Arabidopsis. Chauton (2003) used 1H NMR spectroscopy for detecting 

the metabolites inside the microalgae Phaeodactylum tricornutum. 

  Metabolic profiling, as Clark (2008) has described, is “the measurement in 

biological systems of the complement of low-molecular-weight metabolites and their 

intermediates that reflects the dynamic response to genetic modification and 

physiological, pathophysiological, and/or developmental stimuli“, usually based on 

the NMR spectroscopy by checking animal body fluids, tissue and/or cell extracts 

(Beckonert, 2007). 

  With the help of H1  NMR spectroscopy, the metabolites inside the American 

oysters were studied (Tikunov, 2010). While in the year 2014, Tikunov studied the 

metabolism of eastern oyster with isotope C13  and N15 − 𝑁𝑀𝑅 𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑠𝑐𝑜𝑝𝑦. By 

injecting 2- 𝐶13 / 𝑁15 -glycine and U- 𝐶13 -glucose, the metabolic profiling of four 

different tissues (gill, mantle, adductor muscle, digestive gland) was studied. Through 

metabolic profiling study, the substrates utilization, energy uptake as well as 

metabolic pathways were well-studied. 

  A previous study (Aursand, 1992) has studied the fatty acids of atlantic salmon 

(Salmo salar). By C13  labeling and lipid extraction, the compounds were identified 

quantitatively and fatty acids classified. 

1.7 Phaeoductylum tricornutum 

Phaeodactylum tricornutum is a common unicellular diatom which can be 

found in both brackish water and seawater (Prestegard, 2016). The diatom contains 

7–35 wt% of lipids in the form of fatty acids (Shoji, 2004) and has high lipid 

productivity up to 26.75 mgL−1d−1 (Longworth, 2016). Due to the simple structure, 

fast growth rate as well as cell composition, it is widely used as biofuels (Kim, 2015), 

also could serve as feed for marine filter feeders such as bivalves. 

As has been discussed above, scallops prefer living microalgae as feed rather 

than other organic particles (Lavaud, 2014). Due to the reason that they could not 

produce polyunsaturated fatty acids (PUFAs) themselves (Shumway and Parsons, 

2016), the only way of obtain these PUFAs is by consuming phytoplankton. 

Phaeoductylum tricornutum as food source could provide these essential fatty acids 

(PUFAs) to scallops, however, the cell walls of P.tricornutum also makes it difficult for 

scallops to digest (Spencer, 2008). 
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1.8 Aim of the study and working hypotheses 

  As discussed above, temperature is an important influential factor to the life and 

metabolism of scallop, Pecten maximus. On facing the more and more serious 

climate change causing seawater temperature rise, this study will test the following 

hypotheses: 

(1) An increase of seawater temperature has an impact on the energy uptake on 

the scallop Pecten maximus. Filtration rates as a direct outer performance would also 

change accordingly. By rising the temperature from 15°C to 20°C, the filtration rate 

will also increase. 

(2) By consuming isotope labeled material, in this study, C13  labeled algae 

Pheodactylum tricornutum, the filter feeder, P. maximus will be properly labeled for 

metabolic profiling via NMR spectroscopy. 

(3) With changing temperature, substrates utilization and metabolic pathways also 

change accordingly, which also differ between tissues. 
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2. Material and methods 

2.1 Label material 

C13 -labeled diatoms of Phaeodactylum tricornutum was used as labeled substrate 

source for bivalves. Before the experiment started, the diatom has been incubated in 

a 5L glass bottle with f/2+Si medium (Guillard, 1975, see Appendix), 3mM sodium 

C13 -bicarbonate was added inside as label material and carbon source.  

The labeling of P.tricornutum was not checked via NMR as we already have 

successful experience with it and the diatom incubation conditions were not changed. 

The diatom P.tricornutum was assumed to be well labeled after 10 days of incubation 

without disturbance. 

2.2. Acquisition and incubation of Pecten maximus 

The Pecten maximus used in this experiment were all collected from Vigo, Spain, 

transported to AWI Bremerhaven, Germany and incubated in the aquarium at 15°C 

for 1 month for acclimation before the experiment. 

 

Table 1 Number of scallops used in each group 

 unlabeled Labeled 

Test group 1 1 

15°C 0 3 

20°C 0 3 

 

A pre-experiment was set up to test the labeling method. Two scallops were 

incubated at 15°C, with one scallop feed with labeled Phaeoductylum tricornutum 

and the other scallop with unlabeled. The incubation took place in the 15°C TK 

(temperature control) room. Each scallop was put inside a 10L black bucket, filled 

with 10L 0.2μm filtered seawater (by GF/C filter). Every day 2X109  C13  

Phaeodactylum tricornutum cells were provided to each scallop. 

Two temperature groups of 15°C and 20°C were set up. For each group, 3 Pecten 

maximus were used. Each scallop was put inside a 10L black bucket, filled with 5L 

0.2μm filtered seawater (by GF/C filter). Every day 4X109  C13  labeled 

Phaeodactylum tricornutum cells were provided to each scallop.  

The scallops of 15°C group were incubated in a TK room with a constant 

temperature of 15±0.1°C. Temperature control of the 20°C group was managed 

placing the set-up in a cooling box in a room at around 22°C by cooling thermostats 

(Launda eco re630 gold), with water temperature around the bucket set to 19.8°C 
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(Fig. 7). Air stones were used for bubbling and mixing up the water to keep water 

flow for the filter feeders. Also, iron “donuts” were used for the right valve of the 

Pecten maximus to maintain the stability and keep them at the same position. 

 

 
Figure 7 Temperature control set up for the 20°C group 

 

The incubation lasted for four days, including a first day of starving and 

temperature acclimation and then three days of feeding. Water samples from each 

bucket were taken at the starting time (0h), 1h, 2h and 4h to measure the cell 

concentration of Phaoductylum tricornutum. The water temperature of every bucket 

was also taken at the same time interval to ensure the right temperature (Table 3). 

Water was changed every 24h to remove residual algae and for water quality. Also, 

during the experiment time, the least human disturbance was ensured to keep the 

feeding going continuously. 

2.3 Scallop dissection and tissue extraction 

2.3.1 Dissection 

After three days’ feeding, the scallops were dissected and tissues separated. Five 

tissue blocks including: (1) digestive gland, (2) striated adductor muscle, (3) smooth 

adductor muscle, (4) gill and (5) mantle, were wrapped in aluminum folie and 

immediately frozen in liquid nitrogen. Tissues were then kept at -80°C. 
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Figure 8 Internal tissues of Pecten maximus. anu.: anus; cho.: chondrophore (ligament); dig.: 

digestive gland; fgo.: female gonad; gil.: gill (right fold); hea.: heart; int.: intestine (not seen, 

drawn); kid.: kidney; lip.: lips; pal.: labial palps; man.: mantle; stm. :striated adductor muscle; 

smm.: smooth adductor muscle. Source from Lavaud (2014). 

2.3.2 Tissue extraction 

Methanol-chloroform extraction (adapted from Bligh, 1959) was done for 2 tissue 

blocks: (1) digestive gland and (2) striated adductor muscle. Around 120mg frozen 

tissue (Table 2) were taken from each tissues sample. After grounding, around 60mg 

tissue pieces were weighed and transferred to ice chilled precyllys tubes (Precellys® 2 

mL Hard Tissue Homogenizing Ceramic Beads Kit (CK28)) filled with 400μL methanol 

and 125mL milli-Q water. Then the samples were all taken to the tissue homogenizer 

(Precellys 24, Bertin) with 2 cycles of 20s at 6000rpm. 400μL chloroform and 400μL 

milli-Q water were added to the tubes and vortexed for 15s, then the tubes were 

settled on ice for 10min. After that, the samples were centrifuged 10min for 

3000rpm at 4°C. The upper layer containing metabolites were transferred to 1.5mL 

Eppendorf tubes and were dried by the vacuum concentrator (Christ RVC 2-18 CD 

plus) for 12h. The lower part of lipid extractions were stored in open brown glass 

under a fume hood overnight. 

 

Table 2 The fresh weight of tissue samples used for methanol-chloroform extractions. 

 Test 15°C 20°C 
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 unlabeled labeled 1501 1502 1503 2001 2002 2003 

Digestive gland 

(mg) 

117.6 122.8 118.2 119 112.2 112.7 111.7 103.2 

Striated 

adductor 

muscle (mg) 

109.8 112.4 114.6 108.9 114.8 109.9 116.9 110.4 

 

2.4 𝑯𝟏  and 𝑪𝟏𝟑  NMR spectroscopy 

  After extraction, (1) digestive gland and (2) striated adductor muscle samples were 

dissolved for NMR measurements. 40μL D2O  was used as solvent for each 

metabolite sample, whereas 70μL chloroform was used for every lipid sample. All 

samples were measured by a vertical 400 MHz NMR spectrometer (AVANCE III HD 

400 WB; Bruker BioSpin GmbH) at 20°C NMR probe temperature. 

  In this research, C13  NMR was used to check the incorporation of isotope labeling 

to identify the specific substrates. Proton ( H1 ) NMR spectrum was also obtained for 

unlabeled metabolic profiling, however, as it is not the main study aim of this work, 

relevant spectra were not shown. 

2.5 Data analysis and statistics 

2.5.1 Analysis of 𝐂𝟏𝟑  NMR spectra 

  In this study, the NMR signal peaks were not only qualified but also quantified: (1) 

qualitative analysis: signals and related shifts were first identified on the C13  spectra, 

then, based on literatures and relevant databases, the signals were assigned to 

specific substrates/ compounds/ metabolites; (2) quantitative analysis: Integrals were 

done for each signal via Bruker TopSpin Software for comparisons. Absolute integrals 

were obtained, and for better comparisons, relative integrals were calculated. For the 

lipid measurement, as for each sample, same amount (70μL) of chloroform-d (CDCl3) 

was used as solvent, therefore the absolute integral of chloroform signals 

(approx.4X108) was used as standard. As for the metabolite spectra, there was no 

standard signal, therefore all absolute integrals were divided by 4X107 as relative 

integral. This is because the metabolites’ signals were much smaller than lipid signals 

and if divided by 4X108, it would be too low for comparison. 

2.5.2 Statistics 

  A Chi-squared test was performed for checking the size class of experiment animal 
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Pecten maximus. Kruskal-Wallis test was used to determine the temperature control 

for the 20°C group as well as the sample weight. The filtration rate was checked by 

ANOVA, before ANOVA, Bartlett’s test was first performed, with p-value>0.05. All 

statistics were done by R software and with α=0.05. 
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3. Results 

3.1 Incubation parameters 

  All experimental animals, Pecten maximus were from the similar sizes (Table 3). 

No mortality occurred in all groups during the experiment. 

 

Table 3 Size information of the Pecten maximus used 

 Scallop ID Length (cm) Width (cm) Height (cm) 

15°C 1501 10.8 9.4 3.2 

1502 10.2 9.1 2.8 

1503 9.9 8.9 2.6 

20°C 2001 10.6 9.3 3.0 

2002 11.5 9.7 3.1 

2003 9.9 9.0 2.6 

 

Chi-squared test was performed on checking if the shell length, width and height 

of Pecten maximus in each group were from the same size group. With p-values of 

0.99, 1 and 0.99, we could reach the conclusion that size is not an influential 

parameter for this experiment. 

As the scallops of 15°C group were incubated in 15°C TK rooms and water were 

also pre-cooled inside, we didn’t check the temperature during the experiment. 

However, 20°C group temperature control was managed by the cooling thermostats, 

however, easily influenced by the room temperature. The water inside was measured 

everytime water sample was taken to ensure the experimental conditions. All 

temperatures are shown below in Table 4. 

 

Table 4 Temperature changes in three buckets for 20°C group. Surrounding temperature 

represents the water inside the white box surrounding the 3 buckets. The last column represents 

the average temperature ± standard deviation.  

Day 1 Bucket 1 (°C) Bucket 2 (°C) Bucket 3 (°C) Surrounding 

temperature 

(°C) 

0h 19.6 19.6 19.4 19.8 

1h 19.7 19.7 19.6 19.7 

2h 19.6 19.5 19.5 19.4 

4h 19.6 19.6 19.4 19.8 

mean±stdev 19.63±0.05 19.60±0.08 19.48±0.10 19.68±0.19 
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Day 2 Bucket 1 (°C) Bucket 2 (°C) Bucket 3 (°C) Surrounding 

temperature 

(°C) 

0h 19.2 19.2 19.3 19.5 

1h 19.6 19.6 19.6 19.7 

2h 19.8 19.8 19.8 19.9 

4h 20.0 20.0 20.0 20.1 

mean±stdev 19.65±0.34 19.65±0.34 19.68±0.30 19.80±0.26 

 

Day 3 Bucket 1 (°C) Bucket 2 (°C) Bucket 3 (°C) Surrounding 

temperature 

(°C) 

0h 19.2 19.1 19.2 20.0 

1h 19.5 19.5 19.5 19.9 

2h 19.9 19.9 19.8 19.9 

4h 20.0 20.0 19.9 20.1 

mean±stdev 19.65±0.37 19.63±0.41 19.60±0.32 19.98±0.10 

   

  A Kruskal-Wallis test was performed to test if the water temperature from the 

three days were within the same range and no significant differences were observed 

(p-value=0.5375), we could say the three days’ water temperature were quite stable. 

3.2 Filtration rates 

  The filtration rates’ experiment for each temperature group was performed in 3 

days as triplicates. The cell concentration curves were plotted for each individual in 

Fig.9. 
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Figure 9 Line graph of cell concentration changes according to time during feeding of each scallop. 

In each graph, the blue line represents day1, purple line for day 2 and day 3 was plotted with pink 

line.  

 

From the figures above, a decrease of cell concentration overtime was observed in 

every individual. The filtration rates were calculated and the mean filtration rates 

within each group are summarized in Table 5 with standard deviation. 

 

Table 5 Filtration rates (FR) of Pecten maximus from the 2 temperature groups under different 

time intervals. Mean filtration rates were calculated from the 3 scallops in each group (also 

shown as ‘sample size’) and their filtration rates in 3 days’ experiment 

Temperature 

(°C) 

Time (h) Sample size Filtration rates 

(L·h−1·ind−1) 

mean Standard 

deviation 

15 1 3 2.63 0.56 

2 3 1.09 0.93 

4 3 3.36 1.72 

All day 3 2.61 1.32 

20 1 3 1.32 0.27 
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2 3 2.08 0.27 

4 3 4.72 0.91 

All day 3 3.21 0.86 

 

Statistics were performed (check appendix) to check the differences of filtration 

rates within same temperature groups and between two different temperature 

treatments. And from the statistics we could find out that: (1) No significant 

difference was observed in the three days for each individual with in the two groups; 

(2) No significant difference was observed between individuals within the same 

temperature group; (3) Scallops under different temperature treatments varied in 

feeding rates: filtration rates in 20°C was higher than 15°C. 

Pecten maximus from both groups showed the same highest filtration rates during 

the time interval from 2h to 4h, with 3.36±1.72 for 15°C and 4.72±0.91 for 20°C 

(L·h−1·ind−1). There is also an increase of filtration rates according to time in the 

20°C group. Due to the high standard deviation, no significant trend could be 

concluded from the 15°C group. 

3.4 𝐂𝟏𝟑  labelling of Pecten maximus 

  The test group was used to check the labeling technique. The tissue samples of (1) 

digestive gland and (2) striated adductor muscle were measured to check for C13  

NMR signals in scallops fed with unlabeled and C13  labeled algae.  

3.4.1 Metabolites’ labeling 

  Figure 10 shows the C13 -NMR spectrum from digestive gland extract (of cytosol/ 

methanol fraction) of a scallop fed with unlabeled algae in comparison of a labeled 

tissue sample. The chemical shifts represent the environment of C13  atoms. For 

metabolites’ signals, generally speaking, most of the amino acids’ signals appears at 

range 30 ppm (parts per million) to 70 ppm; carbohydrates’ signals are expected be 

observed in 70 ppm to 80 ppm regions, formate (CHOO−) and relative signals 

normally could be found at around 170 ppm. Also, in a NMR spectrum, the 

insignificant and disordered signals are noise and cannot be assigned to specific 

metabolites. Clear, significant signals are the signals used in analysis of chemical 

substrates. 

In this pre-experiment, the unlabeled scallop was used to represent the natural 

abundance of C13  while the signal difference between labeled and unlabeled 

scallop represents the labeling results. 

The digestive gland from the test group was first checked for C13  signals. By 

comparing the unlabeled (red) and labeled (blue) C13  signals (Fig.10), we could see 

(1) the peaks in unlabeled (14 peaks) was more than the labeled (3 peaks); (2) height 

of the peaks of unlabeled was higher than the labeled. And if we compare the C13  
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spectra from the digestive gland with the spectrum from the labeled algae (Fig.11), 

we could see the chemical shifts of the signals were quite similar. 

 

 

Figure 10 C13  signals of unlabeled (red) and labeled digestive gland (blue) of Pecten maximus 

metabolites from test group.  

 

 
Figure 11 C13  spectrum of the labeled algae P. tricornutum. 

 

However, significant difference in spectra of the striated adductor muscle samples 

(Fig. 12) could be observed. From the spectra of labeled (blue) and unlabeled (red) 

muscle, significant differences could be observed: (1) 33 C13  signals (peaks) were 

found in the labeled spectra, while only 14 C13  signals (peaks) were observed in the 

unlabeled spectra; (2) the height of labeled signals were much higher than the 

unlabeled. 
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 Figure 12 C13  signals of unlabeled (red) and labeled adductor muscle (blue) of Pecten maximus 

metabolites from test group. 

   

  From the difference between unlabeled and labeled muscle spectra, we could 

found that the C13  atoms were well incorporated and this labeling method is 

working well.  

3.4.2 Lipid’s labeling 

Like the metabolites samples, lipid extractions from (1) digestive gland and (2) 

striated adductor muscle were also checked. Unlabeled samples represent the 

natural abundance of C13 . 

The C13  from lipids of the digestive gland was first checked (Fig.13). By comparing 

the two spectra we could observe that peaks around 130 ppm and 175 ppm only 

appeared in the labeled digestive gland sample, this could also prove that some fatty 

acids were already incorporated with C13  atoms. 
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Figure 13 C13  signals of unlabeled (red) and labeled adductor digestive gland (blue) of Pecten 

maximus lipids from test group. 

 

  However, when the muscle lipid samples were checked, the spectra of 

unlabeled and labeled samples look quite similar: both two spectra have 6 peaks; the 

integral of relevant peaks were in the same level (Fig.14). 
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Figure 14 C13  signals of unlabeled (red) and labeled adductor muscle (blue) of Pecten maximus 

lipids from test group. 

3.5 Metabolic profiling in digestive gland 

3.5.1 Metabolites in digestive gland 

  Unlike the test group, quite a lot of C13  labeled metabolites inside the digestive 

gland under both temperature treatments were observed in the spectra (Fig.15). 

Substrates were identified and lists of important metabolites were shown (Table. 6).  
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Figure 15 Digestive gland metabolites’ spectra of 15°C (upper) and 20°C (lower). Important 

metabolite peaks were labeled and listed in the table. 
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Table 6 The metabolite list for the peaks in 𝐶13  spectra of digestive glands, scallop ID with 1503 

from 15°C group and ID 2003 from 20°C group were shown. Relative integrals (absolute integral 

divided by 4X10^7, see M&M) were calculated. Mean values and standard deviations were 

calculated from relative integrals of the three scallops from the same group. Source from UT 

Southwestern Medical Center. 

 Object Metabolite Shifts 

(ppm) 

15°C 20°C 

mean stdev mean stdev 

Integral 1 Citrate C1,C5 174.46 2.885 1.271 2.284 0.446 

Integral 2 Formate 172.54  3.398 0.476 3.631 2.293 

Integral 3 Undefined 169.28  2.570 0.282 3.358 1.398 

Integral 4 Threonine C3 67.41  1.780 0.237 2.619 1.506 

Integral 5 Betaine C2 66.12  3.121 0.402 4.236 2.419 

Integral 6 Undefined 64.77  1.138 0.282 2.036 1.570 

Integral 7 Glutamine C2 or 

Glutamate C2 

55.35  2.323 0.198 

3.305 2.099 

Integral 8 Betaine C3 53.95  7.810 0.672 9.160 4.103 

Integral 9 Aspartate C2 52.65  7.365 0.631 9.376 4.429 

Integral 10 L-Alanine C2 51.31  2.405 0.109 3.441 2.304 

Integral 11 Taurine (N) 48.70  1.744 0.177 2.367 1.639 

Integral 12 Proline C5 47.36  3.689 0.370 5.013 3.066 

Integral 13 Undefined 46.10  1.644 0.078 2.614 2.022 

Integral 14 Glycine C2 42.75 0.671 0.330 0.715 1.198 

Integral 15 Leucine C3 41.40  2.199 0.345 2.056 1.776 

Integral 16 Undefined 40.16 1.070 0.264 0.931 1.231 

Integral 17 Taurine (S) 36.65  1.587 0.249 2.334 1.226 

Integral 18 Succinate (C2) 35.37  3.409 0.559 4.443 2.003 

Integral 19 Glutamate C4 34.03  1.835 0.399 2.094 1.085 

 

While checking the metabolite list, some related metabolisms were quite obvious. 

In digestive gland, Krebs cycle related metabolites including citrate, succinate and 

glutamine were identified; Small serine signals could be observed at 61.5 ppm, while 

the glycine peaks are also not very high (less than 1) comparing to other metabolites 

and serine signals were not observed, suggesting the glycine-serine metabolism was 

not found in the digestive gland. Osmolytes such as taurine (1.587±0.249), betaine 

(7.810±0.672 C3, 3.121±0.402 C2), L-alanine (2.405±0.109) were found to be the 

most abundant ones. 

The identified C13  signals in the spectra from the two temperature treatments 

were identical except for 2 peaks at 70-80 ppm (75.44 ppm and 73.97 ppm) that 

were only observed in the 20°C group. These peaks were identified as carbon from 

carbonhydrates and could be related to the glycolysis. 
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Figure 16 Substrates’ content under different temperature treatments: blue box represents 15°C 

while red box represents 20°C. 

 

If we compare the integrals of metabolites of the two temperature groups, it is 

quite obvious that except for citrate signals at 174.46 ppm, other metabolites were 

all higher in the 20°C than the 15°C group (Table 6). In figure 16, four metabolites 

were plotted for more clear comparison. 

3.5.2 Lipids in digestive gland 

As has been discussed above, the scallops from the test group had an “empty 

stomach” with no metabolites being found in the digestive glands. We also compared 

the lipid phase from the digestive gland extraction of the labeled and unlabeled 

scallops (Fig.17) and the results were shown: 
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Figure 17 Lipid spectra of the digestive gland from the test group: unlabeled (above) and labeled 

(under). 
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  The spectrum of the unlabeled muscle represents the natural abundance of C13  

inside the digestive gland. By comparing the two spectra, only small peaks were 

found to be different. Special structures were used for identification of chemical 

substrates. In this case, the double bound of the unsaturated fatty acid was 

examined. The double bound (Aursand, 1992) inside DHA (20:5(n-3)) is at C4 (127.58 

ppm) and C5 (129.64 ppm), while the one inside EPA (22:6(n-3)) is at C5 (128.92 ppm) 

and C6 (128.71ppm). 

The digestive gland from the 15°C was extracted and C13  spectra were obtained 

(Fig.18). The substrates were identified and specific shifts listed (Table 7). 

 

 
Figure 18 The digestive glands’ C13  spectra of three experimental animals from 15°C group: 

1501 (upper), 1502 (middle), 1503 (under). The chemical shifts were labeled in the first graph 

and the labeling represent: (1) C14:0 (2) C16:0 (3) C16:1n-7 (4) C18:0 (5) C18:1n-9 (6) C18:1n-7 

(7) C18:4n-3 (8) EPA (9) DHA 

 

Table 7 Chemical shifts of major fatty acids, carbon related to the double bounds inside substrates 

were in bold. Source from Aursand (1992). 

 C14:0 C16:0 C16:1n-7 C18:0 C18:1n-9 

C1 180.62 180.58 180.65 180.62 180.58 
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C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 

C14 

C15 

C16 

C17 

C18 

34.20 

24.74 

29.72 

29.72 

29.72 

29.72 

29.49 

29.42 

29.31 

29.13 

31.99 

22.74 

14.12 

34.23 

24.80 

29.21 

29.37 

29.57 

29.81 

29.81 

29.81 

29.81 

29.81 

29.81 

29.49 

32.05 

22.79 

14.14 

34.19 

24.73 

29.06 

29.11 

29.21 

29.74 

27.21 

129.79 

130.05 

27.29 

29.81 

29.13 

31.83 

22.59 

14.13 

34.22 

24.77 

29.18 

29.34 

29.54 

29.78 

29.78 

29.78 

29.78 

29.78 

29.78 

29.78 

29.78 

29.48 

32.04 

22.77 

14.12 

34.16 

24.17 

29.09 

29.12 

29.38 

29.38 

27.20 

129.75 

130.04 

27.27 

29.83 

29.73 

29.51 

29.20 

31.97 

22.74 

14.13 

 

 C18:1n-7 C18:4n-3 C20:5n-3 

(EPA) 

C22:6n-3 

(DHA) 

C1 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

C9 

C10 

C11 

C12 

C13 

C14 

C15 

C16 

C17 

C18 

C19 

C20 

C21 

C22 

173.32 

34.01 

24.86 

- 

- 

- 

- 

- 

- 

27.21 

129.78 

129.88 

27.23 

- 

- 

31.81 

22.67 

14.07 

180.07 

34.01 

24.35 

29.07 

26.91 

129.58 

128.60 

25.60 

128.32 

128.18 

25.71 

127.98 

128.35 

25.69 

127.12 

132.05 

20.61 

14.29 

179.87 

33.42 

24.54 

26.51 

129.10 

128.81 

25.68 

128.22 

128.23 

25.68 

128.14 

128.32 

25.68 

127.94 

128.63 

25.59 

127.08 

132.10 

20.61 

14.31 

179.38 

34.02 

22.54 

127.58 

129.64 

25.63 

128.01 

128.35 

25.68 

128.28 

128.31 

25.68 

128.13 

128.13 

25.57 

127.92 

128.60 

25.57 

127.08 

132.03 

20.59 

14.27 
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As for the test group, under same temperature and time conditions, very few 

signals were observed and lipids were supposed to be unincorporated (except for 

DHA and EPA). Combining the chemical shifts of 15°C with the test group spectra, it is 

understandable to suppose that the signals we observe were mostly from the 

Phaeodactylum tricornutum remained inside the digestive gland. Therefore, we 

checked the labeled P. tricornutum C13  spectra for comparison (Fig.19). 

 

 
Figure 19 C13  chemical shifts of lipid extractions in Phaeodactylum tricornutum. Whereas (1) 

C14:0 (2) C16:0 (3) C16:n-7 (4) C18:0 (5) C18:1n-9 (6) C18:2n-6 (7) 18:n-3 (8) C20:4n-6 (9) 

C20:5n-3 (10) C22:6n-3 (11) C24:0. 

 

The C13  peaks inside the P.tricornutum spectrum was quite identical to the 

spectra from the 15°C group except for small peak at chemical shift of 62.06 ppm, 

which could be identified as TAG (triglyceride) (Hatzakis, 2011). 
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Figure 20 Digestive gland C13  spectrum of Pecten maximus at 20°C treatment. Scallop ID 2003 

was taken as example. 

 

  Then we take a look at the C13  spectra from the 20°C group (Fig.20). No 

obvious signals could be found around 130 ppm in the 20°C spectrum in contrast to 

15°C, where distinct and pronounced signals could be identified. Great differences 

were observed at chemical shifts around 130 ppm: 0.251±0.053 at 128.89 ppm; 

0.212±0.185 at 128.34 ppm; 0.321±0.280 at 128.16 ppm while signals were hardly 

found for the 20°C group (less than 0.1). Signals around 130 ppm can be contributed 

to unsaturated fatty acids, as the double bounds were at around 130ppm (Table 7). 

And if we check the C13  shifts list and compare it with the integral (Table 8), we 

could also see the chemical shifts related to unsaturated fatty acids between 20 ppm 

to 50 ppm were also smaller comparing to the 15°C group. Therefore, for the 20°C 

group, unsaturated fatty acids were consumed and disappeared from the digestive 

gland. 

 

Table 8 The list of integrals for the peaks in C13  spectra of lipid inside digestive gland. Chloroform 

was taken as the standard (77.05 ppm) and relative integrals were calculated accordingly. Mean 

integral was calculated from relative integral of the three scallops from the same group, “stdev” 

represents the standard deviation. Unfound shifts were left in blank. 

Shift 

(ppm) 

15°C 20°C 

mean stdev mean Stdev 
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173.38 0.137 0.114 0.065 0.071 

173.10 0.061 0.020 0.082 0.081 

129.89 0.251 0.053 0.088 0.084 

129.01 0.171 0.095 0.034 0.032 

128.80 0.106 0.095 0.052 0.045 

128.57 0.094 0.082 0.059 0.057 

128.34 0.212 0.185 0.056 0.097 

128.16 0.321 0.280 0.050 0.087 

128.02 0.155 0.136 0.068 0.118 

127.82 0.132 0.021 0.043 0.075 

127.02 0.042 0.037 0.017 0.029 

77.05 1.000  1.000  

62.10   0.090 0.075 

54.48 0.047 0.016 0.013 0.012 

32.14 0.108 0.134 0.131 0.066 

31.97 0.111 0.020 0.165 0.065 

31.80 0.103 0.028 0.117 0.057 

29.73 1.119 0.300 1.131 0.362 

29.45 0.063 0.109 0.378 0.182 

29.27 0.280 0.289 0.185 0.162 

29.13 0.374 0.264 0.286 0.107 

28.96   0.124 0.014 

27.20 0.117 0.049 0.127 0.045 

25.83 0.116 0.040 0.066 0.048 

25.62 0.287 0.048   

25.39 0.136 0.035   

24.90 0.113 0.098 0.232 0.074 

22.81 0.299 0.064 0.264 0.086 

20.55 0.046 0.006   

14.34 0.111 0.031   

14.17 0.186 0.062 0.247 0.105 

3.6 Metabolic profiling in striated adductor muscle 

3.6.1 Metabolites in adductor muscle 

From the spectra (Fig.21) and list (Table.9) below, we could find that: (1) Muscle 

tissues have quite different metabolite types comparing to digestive gland; (2) The 

concentration of substrates inside the muscle tissue is much less than in the digestive 

gland. 
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Figure 21 Adductor muscle metabolites’ spectra of 15°C (upper) and 20°C (lower). Important 

metabolite peaks were labeled and listed in the table. 
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Table 9 The metabolite list for the peaks in C13  spectra of digestive glands, scallop ID with 1503 

from 15°C group and ID 2003 from 20°C group were shown. Relative integrals (absolute integral 

divided by 4X10^7, see M&M) were calculated. Mean values and standard deviations were 

calculated from relative integrals of the three scallops from the same group. Source from UT 

Southwestern Medical Center. 

Object Metabolites Shifts 

(ppm) 

15°C 20°C 

average stdev average Stdev 

Integral 1 Citrate C1,C5 174.46 0.743 0.164 0.877 0.287 

Integral 2 Formate 172.54 0.761 0.353 0.902 0.319 

Integral 3 Arginine C6 156.65 0.308 0.026 0.389 0.172 

Integral 4 Threonine C3 67.41 0.215 0.205 0.136 0.049 

Integral 5 Betaine C2 66.12 0.608 0.226 0.505 0.049 

Integral 6 Undefined 64.77 0.414 0.011 0.413 0.151 

Integral 7 Isoleucine C2 60.07 0.691 0.572 0.768 0.791 

Integral 8 Serine C2 58.78 0.795 0.440 0.752 0.407 

Integral 9 Cysteine C2 54.82 1.209 0.615 1.231 0.519 

Integral 10 Betaine C3 53.95 1.107 0.477 1.231 0.405 

Integral 11 Aspartate C2 53.47 1.892 1.413 1.218 0.791 

Integral 12 Aspartate C2 52.65 1.566 0.625 1.161 0.250 

Integral 13 Alanine C2 51.31 0.591 0.386 0.469 0.087 

Integral 14 Taurine (N) 48.7 0.576 0.055 0.565 0.183 

Integral 15 Proline C5 47.36 1.237 0.114 1.290 0.554 

Integral 16 Citrate C2,C4 46.1 0.578 0.073 0.696 0.430 

Integral 17 Glycine C2 42.75 0.797 0.579 0.841 0.280 

Integral 18 Leucine C3 41.4 1.550 0.348 1.823 0.268 

Integral 19 Cysteine C3 40.16 0.965 0.505 1.415 0.312 

Integral 20 Taurine (S) 36.65 0.560 0.132 0.560 0.124 

Integral 21 Succinate C2 35.37 1.169 0.128 1.366 0.298 

Integral 22 Glutamate C4 34.03 0.693 0.131 0.683 0.105 

Integral 23 Lysine C5 27.44 0.345 0.140 0.403 0.119 

 

Apart from the metabolic pathways and metabolites that have already been 

described in the digestive gland, we also observed in the muscle tissues from both 

temperature treatments, the glycine and serine were found, which relates to the 

glycine-serine biosynthesis. 

The substrates’ types, as well as the ratios between each other in both 

temperature groups are quite alike. Metabolites with the highest concentration in 

both temperature groups were: Cysteine, Betaine, Aspartate and Leucine. 

  When comparing the substrates concentration under the two different 

temperature treatments, no significant difference could be identified. 

  It is quite interesting that no signal was found at 70-80 ppm was found, which 
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means no carbohydrate was observed in the muscle tissue. 

3.6.2 Lipids in adductor muscle 

  Through this experiment, almost no significant signals from fatty acids were 

observed in adductor muscles in both temperature treatment groups (Fig.22). No 

C13  labeled lipids were found inside the muscle. 
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Figure 22 Muscle lipid C13  spectra of both temperature groups: 15°C (individual ID1503 was 

used as example) and 20°C (individual ID2003 was used as example), the only signal belongs to 

the solvent chloroform (CDCl3).  
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4. Discussion 

4.1 Filtration rates determination of Pecten maximus 

  All experimental animals fed on P. tricornutum has shown decline in cell 

concentration (Fig.9). However, no specific decline trend could be found. This could 

be because only 4 algal concentrations were obtained from each scallop. A clearer 

trend could be observed if more time intervals and measurements were set. 
  According to the present data, the filtration rate of 20°C is higher than 15°C (check 

table 5). This result is similar to the previous study by Laing (2014), they reported the 

temperature influence on juvenile king scallop P. maximus under different 

temperature treatments. A significant increase with temperature could be observed 

(Fig.23). 

 
Figure 23 Relationship between king scallop filtration rate and temperature by Laing (2014) 

 

Apart from the temperature influence, it is also observed in present study that the 

FR of scallops increased with time and the highest FR appeared at time period of 

2-4h. 

In Laing’s research, the experiment animal, P. maximus has shown a reduced 

filtration rate when cell concentration increased form 2X105 cells/mL to 3X105 

cells/mL, which is comparable with the present experiment: when the cell 

concentration decreased from 3X105 cells/mL (1h to 2h) to 2X105 cells/mL (2h to 

4h), the FR increased. 

The king scallop Pecten maximus and blue mussel Mytilus edulis are both marine 

filter feeding species and has similar feeding diet. A study by Riisgard (1981) has 

shown that beyond 3X104 P. tricornutum cells/mL, the filtration rate will decrease 

with increasing cell concentrations for M. edulis and vice versa. This result could be 

comparable for the filtration rate of P. maximus regarding to the cell concentration: 

with the P. maximus ingesting diatoms, the cell concentration is decreasing overtime, 

and with the declined algal concentration inside the water, the FR will in turn to 
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increase. 

The experimental animal, Pecten maximus is quite sensitive to environmental 

changes, including light, salinity as well as other surrounding water parameters 

(Chauvaud, 2005). Physical manipulation (Richardson, 1990) also contributes to the 

disturbance of this sensitive animal. When they sense the change of environment, 

the valves were closed and feeding immediately stopped. 

  In the present study, all scallops were well placed on iron “donuts” for stability. 

They were all incubated inside black buckets to avoid light influences. For the 15°C 

groups, the TK room is well dark controlled with limited light condition, whereas for 

the 20°C group, the incubation box was closed for light inhibition. 

  It is also observed in the present experiment that sound might also has an impact 

on the great scallop, P. maximus. No relevant research was found regarding to this 

species before. However, during the present experiment, especially for the 15°C 

group, the TK room was not completely isolated, the sound inside the room may 

have caused closure of the shells. Also, with the sound of slamming doors, the 

closing shells were also observed from personal observation. 

  As has been discussed above, P. maximus is very sensitive to surrounding 

environmental changes. Water samples were taken from the buckets for cell 

concentration determination. Although this was a fast procedure, the open of lids, 

stirring water and position check of Pecten maximus also caused the closure of cells. 

Therefore, the scallops were not in continuous feeding state but rather in small time 

periods as it took time for them to get to the filter feeding state. However, this 

systematical error occurs in every scallop inside each group and does not influence 

the comparison of temperature influence on filtration rates. 

  The cell concentration was determined by manually counting under the Axio 

Observer rather than automatically counting with coulter counter as the diatom used 

as fed, Phaeodactylum tricornutum forms cluster and could not be precisely 

determined by the devices. For more precise cell counting, Thalassiosira pseudonana 

could also be a nice choice of feeding material provided to the Pecten maximus.  

4.2 Labeling method test 

  The 𝐶13  labeling procedure in this experiment was: (1) 𝐶13 -bicarbonate 

(NaH C13 O3) was provided to the marine diatom P. tricornutum; (2) After 10 days’ 

incubation, the diatom P.tricornutum was well incorporated with 𝐶13  atoms; (3) 

𝐶13  labeled algae was provided to the scallop P. maximus as feed; (4) By consuming 

the 𝐶13  labeled diatom, 𝐶13  atoms would be well-incorporated into the scallop 

and used for metabolic profiling. 

  As has been described in the M&M part (2.1) in this study, the labeling efficiency 

of diatoms was not checked, therefore all the diatoms were assumed to similar 

labelled as presented in the student research project (Fig.11&19) labeled and fed to 

the scallops. The scallop labeling was successful by the comparison of 𝐶13  signals of 

two scallops’ muscle tissues from the test group: the increased signals numbers and 

heights of 𝐶13  labelled metabolites in the muscle tissue could not be explained by 
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natural abundance only, the 𝐶13  labeling were from external sources. This proves 

that the 𝐶13  compounds from the algae were incorporated and metabolized in the 

scallops. 

  However, no significant signals could be identified as external C13  in the digestive 

gland. There could be two possibilities behind it: (1) the labeling method did not 

work out and almost no C13  atoms were incorporated; (2) The algae has already 

been completely digested by the scallop when the organs were dissected. As we 

could prove the success of labeling from the muscle spectra, the actual reason for no 

significant C13  peak is not a failure in labeling but rather “an empty stomach”. 

  The same labeling technique was repeated in the following test of two 

temperature groups (15°C and 20°C) with 3 scallops in each group. Muscle spectra 

obtained all show significant difference in comparison to the unlabeled one (natural 

abundance) and were similar to the labeled tissue sample from the test group. With 

successful labeling for three replications, we could say this is a repeatable, stable 

labeling method. 

  Also, in both temperature experiments, the initial cell concentration was increased 

compared to the test group (see M&M). This change is because only small signals 

were observed in the test group and an “empty stomach” was found in the digestive 

glands. With increasing algal cell number, significant C13  signals were observed 

from the digestive gland samples. However, an assignment of the origin C13  atoms 

could be given to confirm the signals were from the remaining P.tricornutum inside 

the digestive gland or the metabolites from the organ, or maybe both. 

4.2 Effects of increasing temperature on digestive gland  

By comparing the integrals of two different temperatures (Table 6), we could find 

that apart from citrate, other metabolites’ contents from 20°C group are higher than 

15°C. Two possible explanations for this phenomenon could be: (1) When the water 

temperature increased, the ventilation rate (respiration rate) of scallop also 

increased (Artigaud, 2014). While breathing, scallops open their shells and the use 

the gill to obtain oxygen from the water (Shumway and Parsons, 2016), the filter 

feeding, as discussed in the introduction part (1.2) was also done by the gills. 

Therefore, higher ventilation would also lead to a higher filtration rate as the filter 

feeding was also done by the gills. Due to the higher filtration rate at 20°C, more 

diatoms were remained in the digestive gland; (2) When temperature increased from 

15°C to 20°C, higher metabolic rate (Robson, 2016) (higher metabolic energy losses 

(Newell, 1980)) was observed. More energy consumption as well as faster 

metabolism could be inferred, which could be the possible explanation for the higher 

metabolites concentration inside at higher temperature. 

From the lipid samples of two temperature treatments, we could found that only 

in the 20°C group and not in the 15°C group: (1) Triglycerides (TAGs) were identified 

in the spectra; (2) unsaturated fatty acids were not found. 

The digestive gland served as an organ of lipid storage in bivalves (Shumway and 
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Parsons, 2016), inside which, fatty acids were mostly stored in the form of 

triglycerides (Berg, Tymoczko and Stryer, 2002). The existence of this signal indicates 

that the (1) synthesis of fatty acids had started; (2) after digestion, some C13   

labeled lipids were incorporated as storage in the digestive gland. 

As has been described at the introduction part (1.7), P. maximus is not able to 

produce PUFAs (such as EPA and DHA) themselves and the only way of obtaining 

these essential lipids is by consuming phytoplankton (Shumway and Parsons, 2016). 

Comparing the spectra of two temperature groups, unsaturated fatty acids were only 

disappeared from digestive gland in the 20°C group (check 3.5.2), suggesting a faster 

fatty acid incorporation under higher temperature. 

A faster metabolic rate was observed in the 20°C group: unsaturated fatty acids 

were consumed and incorporated faster than the 15°C group. Therefore, from the 

metabolite concentration as well as the lipid incorporation, it is not difficult to find 

that with increasing temperature, the metabolism inside the digestive gland is higher. 

Considering the unfound unsaturated fatty acids inside the digestive gland at 20°C, 

another question would be: Where were the unsaturated fatty acids transported to? 

A possible explanation would be the lipids were used for gonad development. 

Two major factors could influence the gonad development of P.maximus: 

temperature (Paulet, 1991) and nutrient (Pazos, 1997; Devauchelle, 1991;). 

According to Paulet (1991), increase of temperature can induce gonad 

development of P. maximus. Paulet (1991) also found out that the spawning season 

for P. maximus was July, when the seawater temperature was around 16-18°C, which 

was quite close to the experimental temperature of the present study.  

For scallops’ reproduction, carbohydrates and proteins from adductor muscle, as 

well as lipids from digestive gland would be involved in the gonads’ development 

(Shumway and Parsons, 2016). Study by Pazos (1997) showed that PUFAs were the 

predominant (36.19%–60.85%) of total fatty acids in triacylglycerol fraction of P. 

maximus gonads, among which, the EPA (22:6(n-3)) and DHA (20:5(n-3)) have the 

highest content. Pazos (1997) also discovered that the PUFAs content follows the 

change of scallop’s gonad (Fig.24), which is in accordance with Devauchelle (1991), in 

whose research, food availability and quality influence on the reproduction of P. 

maximus and a relationship between fatty acids and eggs was found. P. tricornutum 

is a phytoplankton quite rich in EPA (2.6–3.1% of the diatom’s dry biomass) (Atalah, 

2007).  

Therefore, due to the influence of nice food and higher temperature, a faster 

gonad development might have appeared in the 20°C group and more lipids 

(especially PUFAs) were needed for the reproduction. However, unfortunately no 

gonad samples were taken in the present experiment, otherwise it would have been 

interesting to check the 𝐶13  signals of these organs. 
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Figure 24 Seasonal changes in the mean oocyte diameter (a), oocyte volume fraction (a), dry 

weight of the total body (b) and female gonad of Pecten maximus (b) and female gonad condition 

index (b). Seasonal variations of DHA (22:5n-3) (c) and EPA (22:6n-3) (d) (Results were 

represented in the percent of triacylglycerol or phospholipid fatty acids. Source from Pazos, 1997 

4.3 Effects of increasing temperature on adductor muscle 

The main substrates inside scallop organs differ from each other: for the digestive 

gland, carbohydrates such as glycogen and free glucose content were low, less than 

<4.5% of the dry weight (Pazos, 1997) but a high content of lipids could be observed. 

As for the adductor muscle, the case was quite different, protein was the major 

component inside the striated adductor muscle (Pazos, 1997), whereas a large 

amount of glycogen worked as energy storage in the muscle (Shumway and Parsons, 

2016). 

  In this study, under both temperatures, no carbohydrates were discovered in the 

adductor muscle. One reason might be the short incubation time (3 days). We 

compared the results with Tikunov (2014), who observed incorporated 𝐶13  glucose 

signals in eastern oysters in three days’ labeling period. In Tikunov’s research, labeled 

glucose was injected directly to the oyster while in the present study, the scallops 

were provided with P. tricornutum (carbohydrate only 31% of dry weight, (Bai, 2016)), 

which requires time for the scallops to ingest and digest. 

  No significant differences in metabolite’s contents could be identified in muscle 

under the two temperature treatments, which was the same case for the lipid 

extractions. Possible explanations could be: (1) as has been discussed above (4.2), 

after digestion, the lipid wasn’t transported to the adductor muscle but to the gonad 
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(which is the most likely explanation); (2) the digestion and incorporation of fatty 

acids requires time and was not started in the muscle during the incubation time 

(second likely). However, another possible explanation for no-significant signals in 

the muscle spectra could be because of (3) the low lipid content (less than 4% (Pazos, 

1997) inside the muscle tissue. 

4.4 Methodological improvements 

  As has been described in the material and methods part, five tissues from the 

scallops were obtained. However, due to time reasons, we only managed to measure 

two of them, which were the striated adductor muscle and digestive gland. It would 

be very interesting if other tissues (gill, mantle and smooth adductor muscle) could 

also be studied for substrate incorporation. With all these results, a schematic 

picture of metabolism inside the Pecten maximus could possibly be drawn, which 

would help to better understand the animal’s physiology (also under changing 

temperature). 

In this experiment, the weight of the tissues were not obtained, therefore a weight 

related analyzation was not performed. This was because the tissue sample needs to 

be frozen immediately to keep the metabolism as precise as possible, the dry weight, 

as well as the wet weight could not be measured. 

  The incubation for each group lasts for 3 days. As we did not find much lipid 

signals inside the muscle tissues as we expected, the reason behind this could be the 

short incubation time, lipids were not well incorporated. Further experiments could 

have longer feeding time to check the lipid metabolism. 

4.5 Perspectives 

In further studies, it would be interesting if the faeces of P. maximus could be 

collected and H1  and C13  spectroscopy applied to faeces study of the scallop: 

analyzing (1) amount of faeces production; (2) C13  labeling in the faeces. Faeces 

production and filtration rate together would help to understand the organic matter 

uptake as well as the energy flow of the P.maximus, and the C13  labeling in faeces 

could also work as an evidence of C13  incorporation inside the animal. 

For further study on how global warming impacts on the physiological processes 

on P. maximus, more temperature steps would be needed. It remains to be seen, 

how the scallop P. maximus reacts to temperatures out of the optimal temperature 

regime (e.g. 25°C) (Artigaud, 2014). Apart from temperature influence, the salinity 

shift was also observed under climate change conditions, it would be really 

interesting if the salinity impact could be investigated as well as the combined effects 

of temperature and salinity.  



43 
 

5. Conclusion 

  The incorporation of 𝐶13  labelled phytoplankton was observed in the scallop P. 

maximus, proving this technique is applicable for 𝐶13  labelled NMR metabolic 

profiling on marine filter feeders. In future, more relevant research could be 

conducted via this technique. 

  By increasing temperature from 15°C to 20°C, no mortality of P. maximus was 

observed and acclimation was performed in the way of increasing feeding and 

potentially faster lipid incorporation. However, further research will be needed to 

test the adaptation of king scallop P. maximus under the influence of strengthening 

global warming.  
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Appendix 

Table A1. Specific filtration rates of P.maximus at 15°C. 

Time day1 day2 day3 

1501 1502 1503 1501 1502 1503 1501 1502 1503 

0h-1h 5.599 2.703 4.811 0.872 1.344 1.348 1.850 1.984 3.127 

1h-2h -0.713 1.455 2.227 0.194 0.338 1.298 2.276 -0.254 2.976 

2h-4h 4.462 0.545 5.524 3.077 2.354 2.568 5.756 1.212 4.701 

All day 3.453 1.312 4.521 1.805 1.598 1.945 3.910 1.039 3.876 

 

Table A2. Specific filtration rates of P.maximus at 20°C. 

Time day1 day2 day3 

2001 2002 2003 2001 2002 2003 2001 2002 2003 

0h-1h 1.224 2.306 1.438 1.355 1.546 0.596 1.231 0.984 1.203 

1h-2h 1.524 0.449 3.020 4.063 1.044 1.033 1.514 4.001 2.047 

2h-4h 7.778 5.591 5.022 3.286 6.303 3.913 6.152 1.394 3.000 

All day 4.576 3.484 3.626 2.997 3.799 2.364 3.762 1.943 2.313 

 

Table A3 f/2 medium contents, adapted from Guillard, 1975 

Chemical Volume (L) amount(g) 

NaNO3 0.025 1.875 

NaH2PO4·2H2O 
0.025 0.163 

Na2EDTA·2H2O 
0.025 0.121 

FeCl3·4H2O 
0.025 0.068 

CuSO4·5H2O 
0.025 0.25 

ZnSO4·7H2O 
0.025 0.55 

CoCl2·6H2O 
0.025 0.25 

MnCl2·2H2O 
0.025 0.368 

NaMoO4·2H2O 
0.025 1.575 

Biotin 0.01 0.00001 (0.1mL of 0.1mg/L) 

Vitamin B12 0.01 0.00001(0.01mL of 1.0mg/L) 



G 
 

 

f/2 medium (5L) 

Filtered sea water (FSW) 4750mL 

NaNO3 Stock Solution 5mL 

NaH2PO4 Stock Solution 5mL 

Trace Metals Stock Solution 5mL 

Vitamin Stock Solution 2.5mL 

 

Table A4. Specific NMR parameters 

Parameters H1  

metabolites 

H1  

lipids 

TD 

(Time domain size) 

70656 70656 

SWH [Hz ppm] 

(Sweep width) 

8802.82 

21.9998 

8802.82 

21.9998 

AQ [sec] 

(acquisition time) 

4.0132608 4.0132608 

RG 

(Receiver gain) 

228 114 

DW [μsec] 

(Dwell time) 

56.800 56.800 

DE [μsec] 

(Pre-scan delay) 

6.50 6.50 

D1 [sec] 

(relaxation delay) 

4.000000000 4.000000000 

d12 [sec] 

delay for power switching 

0.00002000 0.00002000 

D20 [sec] 

Fixed echo time 

0.000222000 0.000222000 

DELTA1 [sec] 0.00021882 0.00021766 

DELTA2 [sec] 0.00021550 0.00021550 

DS 2 2 

L4 

(Loop For 12 filter) 

126 126 

NS 

(total number of scans) 

32 32 

TD0 

(Number of averages in 1D) 

1 1 

Channel 1 

SFO1 [MHz] 

(Frequency of channel 1) 

400.1318812 400.1318812 

Thiamine HCl 0.01 0.002 
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O1 [Hz ppm] 

(Frequency of channel 1) 

1881.19 

4.701 

1881.19 

4.701 

NUC1 

(Nucleus for channel 1) 

1H 1H 

P1 [μsec] 

(90 degree high power pulse) 

5.000 5.000 

p2 [μsec] 

(180 degree high power pulse) 

10.00 10.00 

PLW1 [W, dB] 

(Power level for pulse default) 

5 

-6.99 

5 

-6.99 

PLW9 [W, dB] 

(Power level for presaturation) 

1.667e-005 

47.78 

5e-6.99 

53.01 

 

Parameters C13  

metabolites 

C13  

lipids 

TD 

(Time domain size) 

65536 65536 

SWH [Hz ppm] 

(Sweep width) 

22058.82 

219.225 

22058.82 

219.225 

AQ [sec] 

(acquisition time) 

1.4854827 1.4854827 

RG 

(Receiver gain) 

2050 2050 

DW [μsec] 

(Dwell time) 

22.667 22.667 

DE [μsec] 

(Pre-scan delay) 

6.50 6.50 

D1 [sec] 

(relaxation delay) 

4.000000000 4.000000000 

d11 [sec] 

delay for disk 

0.03000000 0.03000000 

DS 2 2 

NS 

(total number of scans) 

8192 8192 

TD0 

(Number of averages in 1D) 

1 1 

Channel f1 

SFO1 [MHz] 

(Frequency of channel 1) 

100.6220690 100.6220690 

O1 [Hz ppm] 

(Frequency of channel 1) 

9300.00 

92.434 

9300.00 

92.434 
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NUC1 

(Nucleus for channel 1) 

13C 13C 

P1 [μsec] 

(90 degree high power pulse) 

10.000 10.000 

PLW1 [W, dB] 

(Power level for pulse default) 

22 

-13.42 

22 

-13.42 

Channel f2 

SFO2 [MHz] 

(Frequency of channel 2) 

400.1318810 400.1318810 

O2 [Hz ppm] 

(Frequency of channel 2) 

1880.96 

4.701 

1880.96 

4.701 

NUC2 

(Nucleus for channel 2) 

1H 1H 

PCPD2 [μsec] 

(90 degree pulse for decoupling sequence) 

5.00 5.00 

PLW2 [W, dB] 

(Power PLW2) 

5 

-6.99 

5 

-6.99 

PLW12 [W, dB] 

(Power level for CPD/BB decoupling) 

0.087111 

10.60 

0.015432 

18.12 

 

Table A5. Summarize of statistics on filtration rates with variables including: 3 days’ 

treatment, 3 individuals and temperature.”*” represents rejected null hypothesis. 

 Mean FR 

Variables and groups (ANOVA) df F P 

Within 15°C groups 
   

Time X individual (1h) 2 0.289 0.759 

Time X individual (2h) 2 2.065 0.208 

Time X individual (4h) 2 5.376 0.045* 

Within 20°C groups 
   

Time X individual (1h) 2 1.035 0.411 

Time X individual (2h) 2 0.097 0.909 

Time X individual (4h) 2 0.569 0.594 

Between groups (cor.test) df t p 

Time X group (1h) 7 0.376 0.718* 

Time X group (2h) 7 -0.619 0.555* 

Time X group (4h) 7 0.877 0.410* 
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