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1

Chemical exchange saturation transfer (CEST) from taurine to water (TauCEST) can be
used for in vivo mapping of taurine concentrations as well as for measurements of
relative changes in intracellular pH (pH;) at temperatures below 37°C. Therefore,
TauCEST offers the opportunity to investigate acid-base regulation and neurological
disturbances of ectothermic animals living at low temperatures, and in particular to
study the impact of ocean acidification (OA) on neurophysiological changes of fish.
Here, we report the first in vivo application of TauCEST imaging. Thus, the study
aimed to investigate the TauCEST effect in a broad range of temperatures (1-37°C)
and pH (5.5-8.0), motivated by the high taurine concentration measured in the brains
of polar fish. The in vitro data show that the TauCEST effect is especially detectable in
the low temperature range and strictly monotonic for the relevant pH range (6.8-7.5).
To investigate the specificity of TauCEST imaging for the brain of polar cod
(Boreogadus saida) at 1.5°C simulations were carried out, indicating a taurine contribu-
tion of about 65% to the in vivo expected CEST effect, if experimental parameters are
optimized. B. saida was acutely exposed to three different CO, concentrations in the
sea water (control normocapnia; comparatively moderate hypercapnia OA,, = 3300
patm; high hypercapnia OA;, = 4900 patm). TauCEST imaging of the brain showed a
significant increase in the TauCEST effect under the different CO, concentrations
of about 1.5-3% in comparison with control measurements, indicative of changes in
pH; or metabolite concentration. Consecutive recordings of *H MR spectra gave no
support for a concentration induced change of the in vivo observed TauCEST effect.
Thus, the in vivo application of TauCEST offers the possibility of mapping relative
changes in pH; in the brain of polar cod during exposure to CO,.
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1 | INTRODUCTION

Chemical exchange saturation transfer (CEST) was introduced by Ward et al.>? as a signal enhancement technique for MRI, enabling the indirect
detection of endogenous or exogenous molecules with exchangeable protons of amide, amine or hydroxyl groups using changes in the NMR signal
of the water pool. The intensity of the CEST effect mainly depends on the exchange rates between water and the solute pool, which in turn are
influenced by the physical and physiological parameters of the environment such as temperature and pH. Additionally, the concentration of the
solute pool impacts the intensity of the effect. These properties allow for CEST to be used for the in vivo observation of changes in metabolite
concentration in a low millimolar range and in intracellular pH (pH;).?

CEST effects have already been observed and studied in vitro for several amino acids such as alanine (Ala), y-aminobutyric acid (GABA), aspar-
tate (Asp), glutamine (GIn), glutamate (Glu) and taurine (Tau).>® Recent analyses demonstrated the pH (at room temperature)® and temperature
dependence (at pH 7.0)° of the CEST effect between the amine protons of taurine and protons of surrounding bulk water, named TauCEST.

Taurine is an abundant amino acid in the brain of vertebrates, serving as a modulator for neurotransmitter action and an osmoregulator.”?
First, the concentration of taurine in the brain depends strongly on the age of the individual. Thus, for rat brain the concentration will decrease
from 12mM at birth to 6-8mM in adults.’® Furthermore, the taurine concentration is species dependent.!* Because of its osmoregulatory func-
tion, taurine is one of the most highly concentrated amino acids in the brains of salt water fish® and its concentration depends on the salinity of the
seawater.'? For example, taurine concentrations of up to 65.7mM were found in the brain of stingray (Dasyatis sabina),*® which is one order of
magnitude higher than the concentration of around 2mM to 6-8mM in adult rats or humans.'*” This makes taurine an ideal candidate for
in vivo CEST applications to marine organisms.

The current anthropogenic impact on the global climate is also affecting the oceans. Besides ocean warming, anthropogenic CO, accumulating
in the atmosphere has become enriched in ocean waters and induces so-called ocean acidification (OA), i.e., the changes in sea water carbonate
chemistry decreasing water pH due to increasing pCO,. Ocean surface pH has already decreased by 0.1 units in comparison with pre-industrial
times. The additional lowering expected by the end of the 21st century depends on future CO, emissions pathways (Representative Concentra-

tion Pathways) as projected by the Intergovernmental Panel on Climate Change (IPCC).18

Thus, ocean surface pH might decrease by 0.4 pH units
at the end of 2100 compared with pre-industrial times under unabated emissions.*®

The most dramatic changes are expected for the polar oceans, inhabited by organisms highly adapted to an energy conserving life at constant
low temperatures.?® Fish have the capability of effective acid-base regulation in their tissues under elevated CO, concentrations,?* which might
reduce the threat of OA to this animal group. High ambient CO, diffuses across epithelia into the animal, gradually acidifying the extracellular and
subsequently the intracellular spaces according to the following formula: CO, + H,0 <&H,CO3; ©H* + HCO3;™ <2H* + CO32". The formation of
carbonic acid under elevated CO, concentrations is catalysed through carbonic anhydrase in tissues, facilitating an equilibrium of acid and base
equivalents (i.e. H" and HCOj3"). Acid-base regulation can then compensate for these ion concentration changes through ion exchange mecha-
nisms. Despite efficient acid-base regulatory capacities, under prolonged exposure to these conditions?* compensation may be incomplete in
some tissues.

Currently, the impact of OA on fish is in the focus of intensive research (for reviews see References 22-25). Thus, various studies have iden-
tified CO, induced impacts on fish such as olfactory discrimination?® and the innate ability of fish to detect predator olfactory cues?” (for a review
see Reference 25). These impacts have mostly been studied in tropical and temperate fish species, such as clownfish (Amphiprion percula) and dam-
selfish (Pomacentrus wardi), providing little information on the effects on polar species, due to their fundamentally different patterns of physiolog-
ical adaptation.?®?? Indeed, combined ocean warming and acidification were shown to affect the behavioural laterality of the polar gadid species
Boreogadus saida.>°

In previous studies, a connection between a decrease in pH; and a resulting decrease in the rate of synaptic vesicle release and hence a limited
excitability could be shown.2*? In this context, changes in the pH; in the brain in general seem to be indicative of neurological disorders in relation
to disturbances in acid-base balance. Therefore, the non-invasive and local determination of the pH; in the brain of polar fish is desirable to inves-
tigate the mechanism underlying neurological and behavioural disorders of fish under OA scenarios.

The determination of pH; in the tissue of marine organisms can be analysed with high accuracy using the homogenate method established by

.33 However, the method is invasive, making the time resolved observations of pH; difficult. In vivo **P NMR spectroscopy is an

Portner et a
established non-invasive method for the characterization of high energy phosphates and acid-base regulation in organisms.>* The pH; can be
determined by the pH dependent chemical shift of intracellular inorganic phosphate, relative to an endogenous reference signal, using an adequate
calibration.®® In vivo 3*P NMR spectroscopy has already been applied to aquatic animals (for a review see the work of Van der Linden et al.*%),
including polar and marine fish species.?”*® Nevertheless, the determination of pH; using 3P NMR spectroscopy has some shortcomings: e.g.,
the inherently low sensitivity of the 3P nucleus for NMR spectroscopy limits the temporal and spatial resolution. Surface coils are frequently used
in 3P NMR spectroscopy, applied close to the tissue, with the shortcoming of an inhomogeneous B; field excitation and a limited spatial resolu-
tion. The determination of pH; is therefore restricted to a small range of tissues with a high intrinsic concentration of energy-rich phosphates.
CEST imaging seems to be an interesting alternative, offering the possibility to detect pH or metabolites in a low millimolar range, with both high
temporal and high spatial resolution.

Owing to its pH and temperature dependence as well as the high concentration of about 20mM in the brain of polar fish, the CEST effect of

taurine is a promising tool for detecting pH; changes in the brain of polar fish to improve the understanding of mechanisms underlying the
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observed neurological changes. For the application of TauCEST on polar fish, the aim of this study is to investigate the TauCEST effect under dif-

ferent CO, concentrations and at low temperatures. Additionally, the specificity of the TauCEST effect and the contributions of other amino acids
to the total CEST effect observed in vivo, as well as the optimal experimental parameters, are examined. Finally, the feasibility of applying TauCEST
to the brain of polar cod under comparatively moderate and high CO, levels is demonstrated for the first time.

2 | MATERIAL AND METHODS

2.1 | In vitro phantom studies

The in vitro NMR measurements were made on a 7 T animal scanner (BioSpec 70/20 USR, Bruker BioSpin, Ettlingen, Germany) equipped with a
BGA-12S2 By gradient system and using ParaVision 5.1. RF excitations and signal detection were achieved with a quadrature birdcage coil with an
inner diameter of 72 mm. FASTMAP (Fast Automatic Shimming Technique by Mapping Along Projections) was used to optimize By homogeneity,
ensuring line widths of 8 Hz or less.®?

CEST imaging was conducted with a pre-saturated single-slice FISP (fast imaging with steady-state precession) sequence using centred phase
encoding and the following sequence parameters: field of view (FOV) 35 x 35 mm?, matrix size 64 x 64, slice thickness 2 mm, flip angle 9°, delay
between signal excitation within the FISP imaging sequence Tgy = 3.2 ms and echo time Tg = 1.6 ms.® Pre-saturation was accomplished by a train
of 12 rectangular pulses with an RF irradiation amplitude B; = 5.87 uT, pulse width 1 s and an interpulse delay of 50 ps. Z-spectra were obtained at
31 frequency offsets Av = Aw/27rt between -1500 and 1500 Hz in steps of 100 Hz. After acquiring each FISP image, the residual z-magnetization
was destroyed by a 90° sech pulse. The repetition time of the complete CEST imaging sequence was Tg, = 15 s.

The signal minimum in the z-spectrum at the water signal was fitted to a Lorentzian lineshape to correct for B, inhomogeneities.*® Z-spectra

were obtained by plotting the normalized signal intensity as a function of frequency offset (Aw [ppm]). The CEST asymmetry was calculated as

Msat(_Aw)_Msat(Aw)
Msat(_Aw)

CESTasym =

where M., refers to the magnetization with saturation at a positive (Aw) or a negative (-Aw) offset from the water resonance.”

The impact of pH and temperature on TauCEST z-spectra and asymmetry curves were studied on a phantom, consisting of six NMR tubes
filled with 10mM taurine, dissolved in phosphate buffered saline (12mM HPO,2", 0.1 M NaCl). Solutions of different pH values of 5.5, 6.0, 6.5,
7.0, 7.5 and 8.0 were used in an agarose phantom wrapped with temperature controlled heating tubes for measurements at defined temperatures
(1-37°C, accuracy: +0.1°C).” The chemical shift between the amine protons of Tau and the water resonance was assumed to be 2.8 ppm.®* All

phantom experiments were repeated five times. The results are expressed as a mean * standard deviation.

2.2 | Simulations

Simulations were performed by numerically solving the Bloch-McConnell equations using a two-pool model or a multi-pool model®>*? for 9.4 T.
The metabolites used were GABA (2.8mM), GIn (2.8mM), Glu (5mM) and Tau (20mM), which are the most prominent amino acids with exchange-
able protons in the polar cod brain.*® The total Cr (tCr) concentration, i.e. sum of creatine (Cr) and phosphocreatine (PCr), was assumed to be 7mM,
which is a reliable concentration for a polar cod brain. This concentration was used to derive absolute values of the other metabolites, because
Schmidt et al. published only relative concentrations using tCr as reference.*®

The simulations used exchange rates experimentally determined by fitting the Bloch-McConnell equations, modified for a two-pool chemical
exchange, to the experimental data. The calculated exchange rates for the different metabolites are shown in Table S1 of the supplementary mate-
rial. The relaxation times for water were obtained from in vivo measurements on polar cod brain, T;, = 1.15 s and T,, = 45 ms (data not shown).
The relaxation times of the exchangeable protons of the amino acids, which are, however, inconsequential for the simulations, were fixed to
Tip = 1sand Ty, = 10 ms.*44

2.3 | In vivo fish studies

2.3.1 | Experimental setup and protocol

Polar cod B. saida were provided by the University of Tromsg, Norway. In January 2013, polar cod were caught from the R/V Helmer Hanssen
with a bottom trawl in a depth of 120 m in Kongsfjorden (78° 97’ N 12° 51’ E) at the western coast of Svalbard. From late April 2013, the indi-
viduals were kept in sea water aquaria at 1.5°C at the Alfred Wegener Institute in Bremerhaven. Fish were fed once a week with frozen cockles.
In vivo MR measurements were made in a 9.4 T animal scanner with a 30 cm bore (BioSpec 94/30 USR, AVANCE llI, Bruker BioSpin, Ettlingen,
Germany) equipped with a BGA-12S HP By gradient system and running under ParaVision 6.0.1. A quadrature birdcage coil (86 mm inner diam-
eter) was used for RF excitation and signal detection.
Prior to the MRI measurements, the fish was placed in a Perspex flow-through chamber (V = 350 ml; Figure 1). The chamber was lined with

dental wax to align to the shape of the individual fish. In this way, the unanaesthetized fish stayed positioned in front of the water inflow but was
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FIGURE 1 A 9.4 T animal scanner (BioSpec 94/30 USR, Bruker BioSpin) equipped with the positioning aid and the flow-through chamber. B,
Scheme of experimental setup with a sea water circulating system consisting of two header tanks (ht1 and ht2) and the flow-through chamber
(c) and a bin (b). C, Recirculated flow-through chamber including an unanaesthetized polar cod sitting in front of the water inflow

still able to use its fins. The chamber was connected to an in-house developed positioning aid and placed with the head of the fish in the centre of
the magnet (see Figure 1A). A constant water flow through the chamber (about 500 ml/min) was maintained by hydrostatic pressure and supplied
by temperature controlled sea water reservoirs (50 | each) similar to the setup in Reference 37. The water temperature in the chamber was main-
tained at 1.5°C by circulation thermostats in the reservoir, confirmed by temperature measurements with a fibre-optical thermometer (OPTOCON
AG, Optical Sensors and Systems, Dresden, Germany) in the reservoirs and behind the outflow of the chamber inside the magnet.

Two sea water reservoirs were used: (i) at control conditions bubbled with air; and (ii) at elevated CO, bubbled with an air/CO, mixture from a
gas-mixing pump (PR 4000, MKS Instruments, Munich, Germany), simulating comparatively moderate (OA,,) and high (OA;) CO, conditions. A
summary of water chemistry is given in Table 1.

The stability of the condition was verified by measuring the pCO, before and after the experiments. The pH and salinity were monitored sub-
sequent to the experiments. Water pCO, was determined from the gas phase of the sea water by a combined carbon dioxide probe (CARBOCAP
GMP343, Vaisala, Helsinki, Finland) and carbon dioxide meter (CARBOCAP GM70, Vaisala). For pH measurements, a pH meter (pH 3310, WTW,
Weilheim, Germany), which was calibrated with thermally equilibrated NBS buffer (two-point calibration), was used. The pH values were cross-
calibrated to total pH scale using Tris-buffered pH reference material (Batch 4, Marine Physical Laboratory, University of California, San Diego,
CA, USA). Temperature and salinity were measured using a WTW LF 197 multimeter (WTW).

The experimental protocol was as follows:

Day 1. Acclimation of the fish to the new environment inside the scanner under control conditions using header tank 1 (ht1) for at least 18 h.

Day 2. CEST and localized *H NMR measurements at control conditions (2 h at least), followed by a switch to the first OA scenario (OA, (n = 3)
or OA, (n = 2)) using header tank 2 (ht2). Again, CEST measurements were recorded consecutively for 4 h and an ensuing reconnection to the

control conditions was established for at least 18 h. After 1.5 h of exposure to elevated CO,, localized *H NMR measurements were repeated.

Day 3. The same procedure as for Day 2, but switched to the second OA scenario (OA,,, (n = 2) or OA,, (n = 3)). After a final period under control
conditions for at least 1.5 h, the experiments were finished. OA scenarios were chosen randomly to exclude acclimation or training effects. All

animals contributing to the data set survived the normal experimental procedure and were transported back to the aquarium (n = 5).

2.3.2 | NMR methods

Fast overview image scans of three perpendicular slices (tri-pilot) were used to position the head of the animal. Additionally, Bo homogeneity was
improved for the whole head volume of the fish using a MAPSHIM protocol, which exploits a 3D map of the By field and calculates the optimal
shim values.

TABLE 1 Water chemistry of all treatments

Treatment Control OA,, OA,
pH (free scale) 8.04 7.18 7.00
HCO3;™ [umol/kg SW] 2818 2355 2332
pCO; [patm] 540 3300 4900
Temperature [°C] 1.5 1.5 1.5

Salinity [psu] 32.8 32.8 32.8
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For anatomical studies as well as slice and voxel selection, multi-slice RARE imaging was performed in coronal, sagittal and axial directions,

with the following sequence parameters: FOV 50 x 50 mm?, matrix size 256 x 256, 10-20 slices, slice thickness 1 mm, slice gap O mm, in-plane
resolution 0.195 mm, T = 4000 ms, Tg = 51.88 ms, RARE factor 8, scan time 8 min 32 s for four averages.

Localized *H NMR spectra were acquired for studying potential changes in metabolite concentration throughout the experimental protocol. A
standard localized *H point resolved spectroscopy (PRESS) sequence®® was used. The sequence parameters were as follows: voxel size
35x5x3mm®, Tg = 16.3 ms, Tg = 2500 ms, spectral width SW = 4401 Hz, 2 k complex data points measured, scan time 10 min 40 s for
256 averages. Additionally, an eddy current compensation was performed using the unsuppressed water signal. The PRESS sequence was pre-
ceded by seven RF pulses with variable pulse power and optimized relaxation delays (VAPOR) used for water suppression.*” Outer volume sup-
pression was realized by the suppression of four slices around the voxel with a thickness of 5 mm.

CEST imaging was similar to the in vitro studies. The sequence parameters were as follows: FOV 48 x 48 mm?, matrix size 128 x 64, slice
thickness 4 mm, flip angle 9°, Trq = 3.0 ms, Try = 16 s, T = 1.65 ms. Pre-saturation was accomplished by a train of three rectangular pulses with
an RF irradiation amplitude B; = 4.4 uT, pulse width 1 s and interpulse delay 50 us (saturation time (t) ~ 3 s). Z-spectra were obtained using 50
frequency offsets Av = Aw/2rt between -20 000 and 20 000 Hz with respect to the water signal (-20 000, -10 000, -5000, -2250, -2125,
-2000, -1875, -1750, -1625, -1500, -1375, -1250, -1125, -1000, -875, =750, -625, -500, -375, -250, -188, -125, -62, 0, 62, 125, 188,
250, 375, 500, 625, 750, 875, 1000, 1125, 1250, 1375, 1500, 1625, 1750, 1875, 2000, 2125, 2250, 5000, 10 000 and 20 000, all in Hz). For
normalization, fully relaxed images were acquired with a large off-resonance frequency of the saturation pulse (-100 kHz).

2.3.3 | Data evaluation and statistics

The analysis of the CEST images was identical to that for the in vitro studies. The data points shown for controls (Control | and Control Il) were
recorded immediately before switching to the OA conditions and correspond to the mean value of four data points for each fish. The data obtained
under OA conditions were recorded after 1.5 h, again calculating the mean value of four data points for each fish. The effects for all conditions were
illustrated in relation to the mean of the first control measurements of each fish. Normal distribution of each group was investigated by the
Shapiro-Wilk test, yielding P = 0.896. Therefore, different treatments were tested for significance using a one-way ANOVA for repeated measure-

ments with a Student-Newman-Keuls multiple comparison test (p < 0.05). Statistical outliers were identified using a Nalimov test (a = 0.05).

3 | RESULTS

3.1 | In vitro MR phantom studies

Figure 2 shows z-spectra of 10mM taurine solutions (circles) and the corresponding asymmetry curves at different pH values (5.5-8.0) measured
for a temperature range from 1 to 37°C. A chemical shift difference of 2.8 ppm between water and the exchanging protons of taurine was
assumed, thus neglecting the shift of water resonance due to a change in temperature.® The direct saturation is comparable for the whole pH
and temperature range. Figure 2A depicts z-spectra and asymmetry curves for 37°C and different pH values. A considerable CEST effect is only
visible at a pH lower than 6.5. Above pH values of 6.5, aTauCEST effect cannot be detected at 37°C. However, with decreasing temperatures, the
asymmetry curves increase for pH values of physiological interest (see, e.g., pH 7.0 at 25°C and pH 7.5 at 15°C, Figure 2C-E).
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FIGURE 2 Dependence of TauCEST on pH and temperature at 7 T. Experimentally determined TauCEST z-spectra (circles) and corresponding
asymmetry curves were measured on 10mM taurine solutions at different pH values (5.5-8.0) and temperatures (1-37°C) (B4 = 5.87 uT)
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The asymmetry curves at 1°C show a clear dip for the pH range of 5.5-7.5, even if the TauCEST effect is not a strictly monotonic function of pH
(Figure 2H and Figure 3A). For the experimental saturation parameters used, TauCEST increased gradually from pH 5.5 to pH 6.5 and then sharply
decreased from pH 6.5 to pH 7.5. Thus, the TauCEST effect changes monotonically in the physiological range of interest (pH 6.8-7.5) at 1°C.

The TauCEST effect depends on the taurine concentration and increases at pH 7 and 1°C with increasing concentration (Figure 3B, C). Addi-
tionally, the effect also depends on B; amplitude, indicating that it is possible to obtain higher TauCEST effects at higher B, (Figure 3C).

Figure 4 displays the results from a simulation of asymmetry curves at 2.8 ppm as a function of B; and pH for the amino acids GABA, GIn, Glu
and Tau at 1.5°C (By = 9.4 T). The effect was simulated for the individual amino acids with a two-pool model, while the common effect of all amino
acids was simulated with a multi-pool model. The asymmetry curves indicate a maximum intensity for the total CEST effect of all amine protons at
7.1 uT, whereas the pure TauCEST effect shows its highest intensity between 8.3 and 9.9 uT (pH 7.3) (Figure 4A). The CEST effects of the other
metabolites, i.e. GABA, GIn and Glu, exhibit their maxima at lower B, (<4 uT). However, we used a B; = 4.4 uT as a compromise between intensity
and specificity of the CEST effect and the magnetization transfer effect expected in vivo. Additionally, we wanted to avoid any SAR problems by
using long continuous wave preirradiation with high B1. The CEST asymmetry curves were also simulated as a function of pH and for a B, of 4.4 uT
(Figure 4B). Additionally, the percentage contributions of each amino acid to the added two-pool simulations were determined (Figure 4C).
Whereas both the total CEST effect of all amine protons and the pure TauCEST effect are strongest at pH 6.5 and decrease with increasing
pH, the effects of GABA and Glu increase with increasing pH. For this reason, even the specificity of the CEST effect of the amino acids changes
as a function of pH (Figure 4C). Taurine dominates the total CEST effect for a pH between 6.5 and 7.5, but the percentage contribution decreases
from 75% to 40% with increasing pH. However, the TauCEST effect shows the same course as the total CEST effect of the multi-pool model,
despite of the dominating effect of Glu between pH 7.6 and 8.0.

3.2 | In vivo MR studies on fish brain

The interpretation of the anatomical images for B. saida (Figure 5) and the assignment to the different brain regions is based on the work of
Eastman and Lannoo.*® The anatomical images allow for a clear distinction between the brain and the surrounding tissue as well as for the
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FIGURE 3 TauCEST: pH and concentration dependence at 7 T. A, Dependence of TauCEST on pH from 5.5 to 7.5 for 1°C, showing a monotonic
decline of the CEST effect between pH values of 6.8 and 7.5 (10mM, B; = 5.87 uT) (the dotted line represents a fit with a fourth degree
polynomial as visual aid). B, C, TauCEST asymmetry images measured on a phantom with different taurine concentrations (pH 7.0, B; = 5.87 uT,
t =125, T = 5.5°C) and dependence of the TauCEST effect on taurine concentration [mM] for different By [uT] (7.0 pH, t = 12 s, T = 5.5°C),
indicating a higher TauCEST effect with increasing Tau concentrations and B, (dotted lines represent the fit of a one-phase association)
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FIGURE4 A, B, Two- and multi-pool simulations of asymmetry curves at 2.8 ppm as a function of B4 (pH 7.3) and as a function of pH (B; = 9.4 T;
B4 = 4.4 uT) for polar cod brain at 1.5°C. C, The percentage contributions from the added two-pool simulations to the total CEST effect. Taurine
shows the highest contribution to the total CEST effect at pH 6.5-7.5
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FIGURE 5 In vivo morphological brain MR images of B. saida acquired at 9.4 T. The slices show sagittal A, axial B, C and coronal D images of the
head: CCb, corpus division of the cerebellum; EG, eminentia granularis division of the cerebellum; I, olfactory nerve; IL, inferior lobe of the
diencephalon; SV, saccus vasculosus; VSS, spinal sensory nucleus of the trigeminal nerve

identification of major brain regions, i.e. the crista cerebellaris of the rhombencephalon (CC), the tectum of the mesencephalon (Tec) and the
telencephalon (Tel). Additionally, refined details such as the olfactory nerve (Figure 5D) can be identified.

Figure 6 shows results of the in vivo TauCEST studies performed on polar cod under different CO, conditions. The CEST asymmetry curves
were obtained from region of interest positions in the CC of the brain (see Figure 6A). The asymmetry curves are rather broad and show sharp
maxima at around 1 ppm. However, a clear difference between the two treatments in comparison with control could be identified at about
2.8 ppm, which can be attributed to TauCEST. Thus, the TauCEST effect increases from around 9% for the control measurements to about
11% in this example for the OA,, scenario. Similar results were observed in all five individuals.

In Figure 6C the TauCEST effects for all conditions are displayed in relation to the mean of the first control measurements of each fish to
account for potential inter-individual variations in taurine concentration. The Control Il measurement for Fish 2 was identified as an outlier
(Figure 6C, green framed dot). Therefore, the control measurements before and after the first CO, treatment show no significant differences
(-0.02 + 0.42% (without outlier)). The OA,, treatment shows a significant increase in the TauCEST effect after 1.5 h of exposure
(1.34 + 0.40%) in comparison with Control | (p = 0.007). At the OA, scenario the TauCEST effect increased significantly by 3.17 + 1.04% after
1.5 h of exposure (Control | versus OA, p = 0.005; OA,, versus OA, p = 0.029). Figure 6D shows an example of localized *H MR spectra (located
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FIGURE 6 MRI and H MRS data from the brain of a polar cod B. saida acquired at 9.4 T. A, Anatomical image of a coronal slice with the region
of interest (red line), which was used for the CEST analysis of the head region of polar cod and the corresponding voxel (blue line) used for
localized TH MRS. B, Example of in vivo asymmetry curves and the expected TauCEST effect at 2.8 ppm (dotted line) during the first control phase
(green) as well as under OA,, (3300 patm, orange) and OA,, conditions (4900 patm, red). C, Changes in the TauCEST effect after 1.5 h under
hypercapnia with respect to the mean of the first control measurements of each animal (light blue dots, Fish 1; green dots, Fish 2; pink dots, Fish 3;
light blue dots, Fish 4; orange dots, Fish 5). D, *H MRS spectra obtained from the brain of the polar cod under control conditions (green) and at the
end of OA,, (red)



8 of 12 "NMR WERMTER T AL.
WILEY-|\BIOMEDICINE

in the same region as for the CEST measurements), which were obtained directly after the experimental protocol of the OA,, treatment, in com-

parison with a *H MR spectrum acquired during the first control phase to demonstrate that the in vivo TauCEST effect is predominantly related to
changes in pH and not in taurine concentration (Figure 6D). The main resonance line is the methyl signal (at 3.28 ppm) of trimethylamine oxide
(TMAOQ), a prominent amine oxide osmolyte usually found in marine fish. In addition, signals of typical brain metabolites such as N-acetylaspartate
(NAA), Ala, tCr, myo-inositol (m-Ins) and Tau can be clearly identified in the *H NMR spectra (cf. Figure 6D).

4 | DISCUSSION

The dependence of the CEST effect between the amine protons of taurine and protons of bulk water on pH and temperature has already been
shown in vitro,>® while a proof of concept for TauCEST in vivo has been missing. In particular, the application of TauCEST for pH; measurements
has not been shown before. Against this background, the aim of this study was to systematically examine the in vitro TauCEST effect over a wide
range of pH, taurine concentration and temperature. Additionally, the specificity of TauCEST was investigated in order to adapt this technique for
in vivo applications on ectothermic animals at temperatures below 37°C. As a first application, the impact of high CO, concentrations on the acid-
base regulation of the brain of the polar cod B. saida was shown.

4.1 | |In vitro observations and simulations

The in vitro studies showed the expected dependence of the TauCEST effect on pH and temperature, which is determined by the exchange rates
between the amine protons of taurine and the protons of bulk water. The observed proton exchange is dominated by a base catalysed exchange,
so it depends on the concentration of the OH™ ions in the solution. An increase in pH results in an exponential increase of the exchange rate.?->°
Additionally, the exchange slows down with decreasing temperature, as defined by the Arrhenius equation.>* For TauCEST imaging performed

k
with the applied experimental parameters, these properties ensure that the intermediate-exchange regime, defined as ﬁ~1, will be reached at

low temperatures and the physiological pH range (Figure 2E-H).

However, the intensity of the TauCEST effect as a function of pH is not strictly monotonic for most of the temperatures (Figure 2), due to
varying exchange rates. Thus, the optimal labelling efficiency (a), which yields a measure of the maximal CEST effect, depends on both the
(vB1)®
(YB1)? + Kew (ksw + Rab)
between the intensity of the TauCEST effect and the pH value can be obtained for the pH range of interest (pH 6.8-7.5) with the experimental

exchange rate (ks,,) and the applied B1: a = 52 However, as shown for a temperature of 1.5°C, an unambiguous relation

parameters used (Figure 3A).

Besides taurine, a number of other amino acids and brain metabolites show CEST effects in the specific spectral region of 2.8 ppm, which can
change with concentration and temperature. Therefore, simulations were carried out to obtain optimal experimental parameters for the detection
of TauCEST and to determine the specificity as a function of pH. Thus, a mixture of metabolites was analysed for 1.5°C, mimicking the intracellular
composition of a polar cod brain. Intracellular concentrations of main metabolites were determined from a previous study on OA effects on neu-
rophysiological changes in polar cod.*® In particular, the metabolites GABA, GIn, Glu and Tau, which were found with significant concentrations
and exhibit exchangeable protons around 3.0 ppm from water, were used for the in vitro studies. Other prominent brain metabolites such as Cr
and m-Ins were neglected, since the CEST effects of these compounds did not significantly overlap with the TauCEST region (-OH of m-Ins

0.6 ppm and (NH,)*, of Cr 1.9 ppm from water®>>%)

. In addition, the exchangeable protons of NAA were not taken into account, because the very
slow exchange rate®® prevents the detection of a CEST effect of NAA at low temperatures.®

The simulations indicate that a compromise between the signal-to-noise ratio and the specificity of TauCEST is required (Figure 4A). To
achieve a maximal sensitivity of the TauCEST effect and a taurine contribution of more than 50% to the CEST effect, a By amplitude of 4.4 puT
was chosen for the subsequent simulations and the in vivo measurements. According to this, the contribution of taurine will be 65% of the
expected effect in the physiological pH range in vivo with contributions of about 35% from other brain metabolites with exchangeable protons
(Figure 4C). This is in the same range as the expected contribution of Glu to the in vivo GIUCEST (CEST from Glu to water) effect measured in
the human brain at 37°C of 70-75%,% thus justifying the term TauCEST. Additionally, the TauCEST effect shows a similar pH dependence to
the total CEST effect in the multi-pool simulation, i.e. decreasing intensity with higher pH. This is of central importance, since the characteristics
of the multi-pool are crucial for the usefulness of CEST imaging.>® Therefore, the in vitro measurements and the simulations predict the applica-

bility of TauCEST for in vivo studies on polar cod at low temperatures and its use for detecting relative changes in pH;.

4.2 | In vivo studies

In contrast to the in vitro measurements the in vivo studies were carried out on a 9.4 T animal scanner specially dedicated for marine organisms.
Since the simulations are based on the determination of field independent exchange rates, the CEST method can be easily adapted for higher field

strengths.
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The high resolution of the anatomical images allows us to distinguish different brain regions of an unanaesthetized and ventilating fish at

9.4 T. In spite of the small volume of the polar cod brain in comparison with conventional animal models such as rat (rat brain
~13 mm x 13 mm x 8 mm,>® polar cod brain ~15 mm x 6 mm x 5 mm (this study)) (see Figure 5), different brain areas such as cerebellum, dien-
cephalon and olfactory nerve can be identified in the MRIs, which could not be achieved in unanaesthetized and versatile fish previously; see, e.g.,
Reference 37. In a previous study, anatomical images of an anaesthetized and restrained freshwater zebrafish (Danio rerio) in a vertical bore system
were acquired (FOV 1 cm, matrix 256 x 256, slice thickness 0.2 mm).>” However, this is the first time that anatomical images with such a high
resolution of an unanaesthetized fish in vivo have been shown. The images indicate no movement artefacts, despite the nearby movement of
the gills for ventilation (located below the brain; see Figure 5B, C), which is a prerequisite factor for further data evaluation. In addition, the high
quality and repeatability ensure that the same region of interest could be used for analysing the CEST effect in the same brain area during the
entire experiment and for all individuals studied (see Figure S2 of the supplementary material).

The course of the in vivo asymmetry curves was comparable for all treatments and individuals, showing a clear TauCEST dip at about 2.8 ppm,
which increases with increasing CO, concentration (Figure 6B), although the maximum of the asymmetry curve that occurs around 1 ppm was
somewhat surprising. It is intriguing that the maximum at 1 ppm showed also an increase with elevated CO, concentrations. The background
of this incidental finding and the clear identification of the source of the CEST effect at 1 ppm needs further studies.

The analysed TauCEST effects for all conditions were calculated in relation to the mean of the first control measurements (Figure 6C). There-
fore, relative changes in the TauCEST effect are still comparable, even if, for instance, the taurine concentrations varied between the individuals.
The standard deviations between the individuals are small for both controls and the OA,, group. The OA;, group showed higher variations, most
likely caused by increased movement, possibly due to enhanced gill ventilation of fish under hypercapnia.>® Furthermore, it can be concluded that
the in vivo observed TauCEST effects result from the physical and physiological parameters of the intracellular space, because of the two magni-
tudes higher intracellular taurine concentration in comparison with the extracellular concentration.>®

A significant increase in TauCEST effects for the moderate and high CO, treatment of about 1.5% and 3%, respectively, was observed in all
animals, indicating either an increase in intracellular Tau concentration or a decrease in pH; (Figure 6C). Simulations predict that the observed
changes in the TauCEST effect of about 1.5% and 3% would require an increase of about 7 and 14mM in Tau concentration or a decrease by about
0.2 and 0.4 pH units, respectively. Modifications in the T, of water and B, can be ruled out. Simulations show that a change in the water T, by
100 ms will result in a change of about 0.75% of the total CEST effect. Therefore, it is unlikely that T, changes are the major cause of the observed
increase in the total CEST effect by 3%. This is particularly true as temperature induced changes in T, can be excluded due to a continuously
measured and controlled temperature of the water reservoirs via a feedback controlled thermostat. In addition, the B; amplitude was readjusted
prior to every new experimental condition to avoid such unwanted changes. A change in the B; of 4.4 uT by 0.1 uT would result in a change
of about 0.18% of the total CEST effect. However, a larger decrease in By would reduce the expected total CEST effect, while a larger
increase would not lead to a considerable increase in the CEST effect because the CEST asymmetry curve is already close to the broad maximum
(cf. Figure 4A).

In order to investigate the cause of the in vivo observed increase in TauCEST with increasing CO, concentrations, localized *H MR spectra
were acquired in the brain of polar cod in the same region as for the analysis of the CEST effect (Figure 4D). In previous studies, localized *H
MR spectra were recorded in the brain of an anaesthetized zebrafish (Danio rerio).>” Our spectra are comparable but recorded in unanaesthetized
fish. Anaesthesia may impact brain metabolism, e.g. through effects on inhibitory and excitatory postsynaptic receptors®® and acid-base balance.®?
The spectra enable a very good separation of various important brain metabolites, i.e. NAA, Cr, m-Ins and Tau. Since the spectra were acquired at
different time points, they differ in shim quality and line width. In order to ensure comparability, differences in sensitivity were corrected using the
unsuppressed water signal and the data sets were processed with an adapted apodization aiming at similar linewidths in the phase corrected
spectra. However, a visual inspection of the localized *H MR spectra acquired at the end of the first control phase and after OA,, treatment
supported by a difference spectrum showed no increase in Tau concentration. Therefore, an increase in Tau concentration can be excluded as
an explanation for the observed increase in the CEST effect at 2.8 ppm. An increasing concentration of other amino acids contributing to the in vivo
expected CEST effect by about 1mM would result in an increase of the CEST effect by 0.5%. However, the only difference that was observed
during CO, incubation was a decrease in Glx signal intensity for the OA,, treatment. This is in agreement with a previous in vitro study, which
found a decrease in Glu concentration in the brain of polar cod after 100 days of exposure to OA, albeit using lower pCO, and slightly lower tem-
peratures (0°C, pCO, ~1000 ppm).*> However, a decrease in metabolite concentration would result in a corresponding decrease in CEST effect.

According to these arguments, it can be concluded that the observed increase in the TauCEST effect under elevated pCO, is a result of
decreasing pH; in the brain of polar cod B. saida. This indicates a slowed pH compensation in polar cod despite the good capacity for acid-base
regulation in fish. A decrease in extra- and intracellular pH under mild hypercapnia is visible mostly in lower invertebrates under acute exposure to
mild elevations in pCO,,%% whereas fish usually display full compensation. In Atlantic cod (Gadus morhua), a transient decrease in pH; of about 0.07
and 0.25 pH units was observed in muscle and liver tissue, respectively, during exposure to an extremely high CO, concentration of 10 000 patm
at 12°C.%%

The buffering capacity of the intracellular space is determined by (passive) non-bicarbonate buffers, also including inorganic and organic phos-
phates, and varies between species and tissues.?! In addition to passive buffering capacities, active processes contribute to pH; regulation, such as
the Na/K-ATPase and the V-type H" ATPase (driving the exchange of Na" and H*). Active acid-base regulation may be visible in the comparable

control groups: The pH; therein is elevated to control values after both OA challenges, indicated by a decrease of the CEST effect for nearly all
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individuals (Figure 6C). However, the TauCEST effect for Fish 2 still increased after the first high CO, exposure, which might indicate an insuffi-

cient capacity of acid-base regulation in fish over 18 h.

In comparison to the OA scenarios as predicted by the IPCC, the CO, concentrations used in this study are too high to support a realistic
projection at ecosystem level. However, future studies will be able to detect even smaller changes in pH; with a high spatial and temporal reso-
lution using TauCEST. Therefore, our study provides the first evidence for in vivo TauCEST imaging to detect changes in pH; at a high spatial and
temporal resolution in polar and marine organisms (see also Figure S2 of the supplementary material). This is highly beneficial compared with 3P
NMR spectroscopy, which displays low resolution due to low sensitivity and a localization usually dependent on the diameter of the surface coil. In
previous studies localized *P MR spectra with an excellent spectral resolution and small voxels (27-45 mm?®) were obtained in mouse brain.*¢°
Nevertheless, the time resolution for the acquisition of such spectra is usually around 30 min or longer, and the applicability of localized 3P NMR
spectroscopy in a sea water environment still needs to be demonstrated.

Using polar cod as an experimental animal, and focusing on TauCEST instead of the more widely used GIuCEST,>>%478 it has been shown that
CEST effects are far from being limited to a previously established application. Absolute pH; measurements in vivo are not yet possible, even if the
dependence of kg, on pH and T is clearly determined, since the influence of varying molecular environments in living tissue with differing pH
buffer systems and solutes is not fully disclosed.> In the next phase of this project, the influence of magnetization transfer between water and
protons of varied macromolecules on the in vivo TauCEST effect should be investigated,®””° to establish absolute pH; mapping. However, relative
pH; changes can be monitored. In future studies, the TauCEST effect should be further improved by optimizing the list of used frequency offsets,
i.e. centred detection around the direct saturation (~0 ppm) and about 2.8 ppm with respect to the water frequency. This will shorten the mea-
surement time per data set, thus further reducing movement artefacts. Future studies also should investigate long-term responses to elevated

CO,, in combination with an accurate analysis of pH; over time to clarify the time course of pH; regulation.

5 | CONCLUSION

TauCEST detection is feasible in the brain of polar cod at low temperatures. The majority of the total CEST effect observed in vivo is attributed to
taurine (about 65%), with only small contributions from other amino acids (35%). TauCEST imaging provides non-invasive detection of relative
changes in pH; with high temporal and spatial resolution under acute exposure to high pCO,. Future studies using this methodology may provide
a new possibility to investigate the mechanisms underlying neurological and behavioural disorders of fish under OA scenarios and the associated

influences of acid-base disturbances.
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