

Southern Ocean Si:N drawdown ratio in the glacial ocean and its biogeochemical consequences in low latitudes

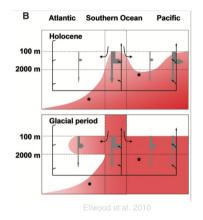
Ying Ye, Christoph Völker, Martin Butzin, Peter Köhler

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

28 February 2019, Kiel

Project Management Agency

Silicic acid leakage hypothesis (SALH)

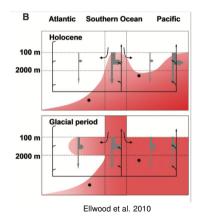

- higher Si:N uptake ratio by diatoms under Fe-limitation
- higher dust deposition during glacial periods
 relaxation of Fe-limitation in Southern Ocean
 Si excess transported parthward in low latitud
 - \rightarrow Si excess transported northward in low latitudes
- explain the glacial atmospheric CO₂ drawdown: diatom production in low latitudes ↑ + carbonate pump ↓ (Matsumoto et al. 2002, 2008)

Requirements for models to test SALH:

- flexible stoichiometry (Si:N)
- dependence of Si uptake on Fe-limitation
- LGM conditions (climate, aeolian input of iron)

Project Management Agenv

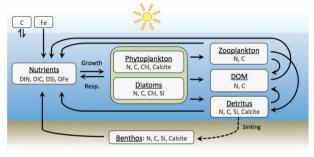
Federal Ministry of Education and Benearch


Silicic acid leakage hypothesis (SALH)

- higher Si:N uptake ratio by diatoms under Fe-limitation
- higher dust deposition during glacial periods
 relaxation of Fe-limitation in Southern Ocean
 Si excess transported parthward in law latitud
 - \rightarrow Si excess transported northward in low latitudes
- explain the glacial atmospheric CO₂ drawdown: diatom production in low latitudes ↑ + carbonate pump ↓ (Matsumoto et al. 2002, 2008)

Requirements for models to test SALH:

- flexible stoichiometry (Si:N)
- dependence of Si uptake on Fe-limitation
- LGM conditions (climate, aeolian input of iron)



Federal Ministry of Education

Regulated Ecosystem Model (REcoM)

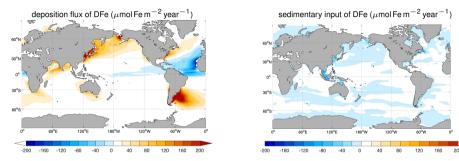
Schourup-Kristensen et al. 2014

- coupled to MITgcm and FESOM
- indirect effect of Fe limitation on Si uptake:

just depending on the Si availability and intracellular Si:C ratio

> physiological basis: down-regulation of N uptake by nutrient limitation (Claquin et al. 2002)

Model set up and experiments


forcing and initial field	PI	LGM
atmospheric pCO ₂	CORE 284.3 or variable (initialised with 284.3)	output from coupled COSMOS 190 or variable (initialised with 284.3)
dust sea level DIC and alkalinity DIN and DSi DFe	Albani 2014 0 GLODAPv2 WOA output from PICES	Albani 2014 -116m same amount as PI distributed over LGM volume same method as for DIC same method as for DIC

- physical spin-up 3000 years;
- biogeochemistry 1000 years and last 10 years for analysis;
- ▶ with constant atmospheric CO₂ and atmospheric CO₂ box

Change in iron supply by dust deposition and sediments

- Deposition flux: strongly enhanced in North Pacific and South Atlantic (doubled) reduced in the trop./subtrop. North Atlantic and eastern equat. Pacific
- sedimentary flux: one order of magnitude smaller than dust decreased to 1/4 in LGM, but not compensating dust increase

PAL GERMAN CLIMATE MODELING INITIATIVE

1. if diatom Si:N decreased in Southern Ocean

- 2. if totally less Si compared to N utilised in Southern Ocean
- 3. if more DSi or higher Si:N remained in surface Southern Ocean
- 4. if Si-enriched waters transported northward to low latitudes
- 5. if diatom production in low latitudes increased and
- 6. if non-diatom production in low latitudes decreased

PAL GERMAN CLIMATE MODELING INITIATIVE

1. if diatom Si:N decreased in Southern Ocean

2. if totally less Si compared to N utilised in Southern Ocean

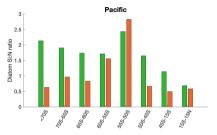
- 3. if more DSi or higher Si:N remained in surface Southern Ocean
- 4. if Si-enriched waters transported northward to low latitudes
- 5. if diatom production in low latitudes increased and
- 6. if non-diatom production in low latitudes decreased

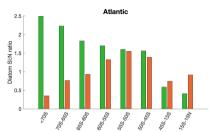
Pri R Project Management Agery

Federal Ministry of Education

- 1. if diatom Si:N decreased in Southern Ocean
- 2. if totally less Si compared to N utilised in Southern Ocean
- 3. if more DSi or higher Si:N remained in surface Southern Ocean
- 4. if Si-enriched waters transported northward to low latitudes
- 5. if diatom production in low latitudes increased and
- 6. if non-diatom production in low latitudes decreased

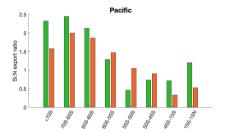
- 1. if diatom Si:N decreased in Southern Ocean
- 2. if totally less Si compared to N utilised in Southern Ocean
- 3. if more DSi or higher Si:N remained in surface Southern Ocean
- 4. if Si-enriched waters transported northward to low latitudes
- 5. if diatom production in low latitudes increased and
- 6. if non-diatom production in low latitudes decreased

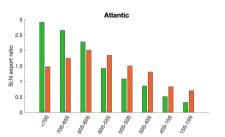



- 1. if diatom Si:N decreased in Southern Ocean
- 2. if totally less Si compared to N utilised in Southern Ocean
- 3. if more DSi or higher Si:N remained in surface Southern Ocean
- 4. if Si-enriched waters transported northward to low latitudes
- 5. if diatom production in low latitudes increased and
- 6. if non-diatom production in low latitudes decreased

Federal Ministry

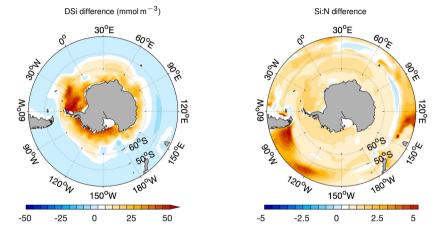
Diatom Si:N ratio




- south of 60°S: diatom Si:N is lowered during LGM
- northward shifted belt: growth limited by Fe \rightarrow high Si:N
- higher Si:N in Pacific 50–55°S: strong increase of non-diatom
- ► Question 1: if diatom Si:N decreased in SO → Yes!

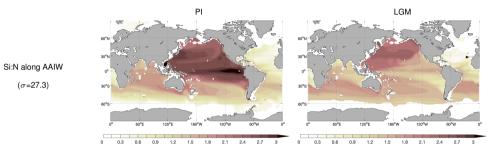
6

Total Si:N utilisation: Si:N in export



- decreased > 60°S and increased in the northward shifted belt
- decreased strongly in equatorial Pacific and increased in equatorial Atlantic
- ► Question 2: if less Si compared to N utilised in SO → Yes!

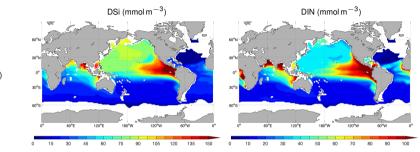
DSi and Si:N in SO seawater



• Question 3: if more DSi or higher Si:N remains in surface SO \rightarrow Yes!

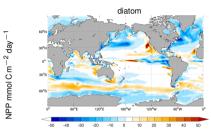
Federal Ministry of Education and Research

Northward transport of Si-enriched water

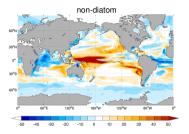


- Si-enriched water transported along AAIW northward to subtropics/tropics
- ▶ Si:N in eastern South Pacific: LGM < PI; and in Atlantic: LGM ≥ PI
- Question 4: if Si-enriched waters transported northward to low latitudes
 AAIW loses Si excess on the way to tropics

Northward transport of Si-enriched water


along AAIW (σ =27.3)

- DSi along AAIW slightly higher in eastern South Pacific
- DIN clearly increased:
 - higher dust input \rightarrow strong increase of non-diatom growth
 - more DIN released by remineralisation


Federal Ministry of Education and Research

Biological production in low latitudes

- ▶ \downarrow in east. and \uparrow in central equat. Pac.
- ▶ \downarrow in equat. Atl. but clearly \uparrow in tropics
- ► Question 5: if dia. prod. in low latitudes ↑ → Yes for Atl. and No for Pac.!

- strongly \downarrow in Atl.
- ↓ in east. equat. Pac. but clearly ↑ in west and subtropics
- Question 6: if non-diatom prod. in low latitudes ↓ → Yes for Atl. and No for Pac.!

Carbon uptake and storage

		PI			LGM	
	total	diatom	non-diatom	total	diatom	non-diatom
NPP (PgCyear $^{-1}$)	36.8	13.5	23.3	41.6 (↑)	12.4 (↓)	29.2 (↑)
POC export (PgC year $^{-1}$)	8.9	-	-	8.0 (↓)	-	-
opal export (Tmol SiO ₂ year ^{-1})	-	107.2	-	-	72.8 (↓)	-
$CaCO_3$ export (Pg C year ⁻¹)	0.6	-	-	0.7 (↑)	-	-
CaCO ₃ : POC	0.067	-	-	0.089 (↑)	-	-

- NPP increased caused by increase of non-diatom
- non-diatom better recycled and not contributed much to export
- production of inorganic C increased compared to organic C: carbonate pump not reduced
- atmospheric pCO₂ decreased by 50 ppm
- more Si stored in the ocean interior during glacial time: Silicic Acid Ventilation Hypothesis?

Thanks for your attention!

