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Abstract

Global sea level has been rising over the last century, and one of the contributors
and the main source of projection uncertainties is ice sheet mass loss by solid ice dis-
charge. Projections currently lack sufficient confidence, partly due to the difficulty
in simulating ice flow behaviour, which is highly influenced by deformation modes
and the physical properties of ice, such as grain microstructure and c-axis orienta-
tion anisotropy.
This thesis aims to deliver an overview about the deformation regimes and mi-
crostructural properties, as well as crystal-preferred orientation (CPO) anisotropy,
of the Northeast Greenland Ice Stream (NEGIS) by examining an ice core from the
East Greenland Ice Core Project (EGRIP). Ice streams are major features to conduct
the discharge from inland ice towards the coasts and NEGIS is the largest and most
dominant one in Greenland. Therefore, microstructure and fabric data from almost
800 thin sections were analysed by an automated Fabric Analyser and a Large Area
Scanning Macroscope. The result is an almost continuous record of the physical
properties of the upper 1714 m of the ice core.
The major findings regarding crystal-preferred orientations are (1) a much more
rapid evolution of c-axes anisotropy in shallow depths compared to lower dynam-
ics sites and (2) partly novel characteristics in the CPO patterns. These findings are
accompanied by highly irregular grain shapes, the regular occurrence of protruding
grains and further indicators for an early onset of dynamic recrystallisation. Grain
size values are similar to results from other ice cores and show an increase in grain
size, followed by a strong decrease in the Glacial.
Until a depth of 196 m, a broad single maximum CPO was observed, indicating
vertical compression from overlaying layers. A crossed girdle of Type I and Type
II, observed in natural ice for the very first time, dominates until 294 m, probably
caused by a fluctuation between non-coaxial and coaxial deformation, accompanied
by simple shear and the activation of multiple slip-systems. Between 294 and 500 m
a transition into a vertical girdle CPO occurs. Extensional deformation along flow
leads to a distinct vertical girdle between 500 and 1150 m. This CPO pattern devel-
ops into a horizontal maxima CPO, also observed as a novel feature in polar ice,
which is probably caused by additional simple shear.
This new microstructure and fabric information improves our understanding of ice
dynamics, and should be considered in future ice flow law parameterisations to im-
prove ice-sheet models.
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1 Introduction

1.1 Ice and its deformation

Ice is a special mineral and a broad overview about its relevant properties is given
in this chapter. Nontrivial but important terms, such as basal plane, c-axis and slip-
system, are explained.

1.1.1 The structure of ice

One oxygen and two hydrogen atoms are the essence of a water molecule, resulting
in several important features of water, such as its polar nature and its characteristic
hydrogen bonds. There are twelve solid phases of water, but the natural conditions
on the surface of the Earth allow only one stable form, ice Ih with an ordinary hexag-
onal form (Petrenko and Whitworth, 1999). Its rather open lattice, with an atomic
packing factor of less than 34%, accounts for the pressure-induced reduction of its
melting point at high temperatures and its unusual low density (compared to water
in its liquid state) (Schulson and Duval, 2009). Each oxygen atom of the ice lattice
(from now on "ice" always refers to hexagonal ice Ih) is surrounded by four hydro-
gen atoms, forming a regular tetrahedron (Figure 1.1). On the one side, hydrogen
atoms are covalently bonded to an oxygen atom, while they are also linked to an-
other hydrogen atom via hydrogen bonding on the other side. These bonds create a
hexagonal crystal structure, similar to zinc blende (ZnS). At −20◦C, the dimensions
of the unit cell are: a= 4.5169 Å and c= 7.3570 Å (Hobbs, 1974).

The relatively open lattice of ice is constructed of two principal axes: the vertical
c-axis (or optical axis) and three a-axes. a-axes are separated by 120◦ and normal to
the c-axis, which is the major axis of symmetry of the mechanical and elastic proper-
ties of a crystal (Petrenko and Whitworth, 1999). The water molecules are arranged
in layers of hexagonal rings parallel to the (0001) plane. These are the basal planes of
the crystal and perpendicular to the c-axis (Duval et al., 1983) as displayed in Figure
1.1.

This thesis will mainly investigate different orientations of the c-axis found in
ice crystals from Northeast Greenland, aiming to derive information about the local
deformation history.
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1.1.2 Polycrystalline ice and its formation

Each part of the terrestrial cryosphere, from small glaciers to vast ice sheets, is a
product of snow accumulation followed by firn compaction. Fresh snow accumu-
lates and increases the pressure on older layers of snow, consisting of an uncount-
able amount of single snow grains. Depending on the surrounding climatic condi-
tions, the density (δ) of fresh snow varies from δ=50–100 kg m−3. After settling, snow
grains get newly arranged by grain-boundary sliding, which is driven by densifi-
cation due to increasing pressure from overlaying snow layers (δ=200–300 kg m−3).
Further rounding of the grains, removing of their spires and enhanced intergranular
bonding is caused by transport mechanisms and surface diffusion (Gow, 1974). This
process of densification is divided into three stages, leading eventually to the transi-
tion from loose snow into compact, porous and air permeable firn. In the first stage,
density increases by settling and physical compaction of grains until δ=550 kg m−3.
From this point on, grains cannot be packed tighter and the critical density is reached.
This normally occurs in the uppermost 20 m of a firn column. The corresponding
depth is called critical depth. Sintering is the major densification process in the fol-
lowing stage, which lowers the pressure stress by crystallisation and deformation of
ice crystals (δ=550–820 kg m−3). Snow has finally turned into ice and air channels,
connected to the surface, start to close off at δ=830 kg m−3. Air bubbles are formed
in this firn-ice transition zone and their internal chemistry stays preserved because
interaction with the atmosphere is no longer possible. This trapped air contains a
sample of the atmosphere, and therefore information about past temperature and
other aspects of the environment. For pure glacier ice δ=917 kg m−3, but values can
reach up to δ=923 kg m−3 at mid-depths ranges in ice sheets (Cuffey and Paterson,
2010).

Material creep, the plastic deformation of a solid body under the influence of
stress, further compresses existing air bubbles until the air pressure exceeds the dis-
sociation limit. At this stage, normally occurring at a depth of 800 to 1000 metres, air
bubbles disappear and the leftover air molecules are stored within a clathrate hydrate
crystal structure (Paterson, 1994).

Due to the mentioned processes, glacial ice consists of a large number of ice crys-
tals, also termed grains. There is a strong spatial and temporal variation of grain size,
shape (texture) and lattice orientation (fabric), e.g grain size typically varies from di-
ameters of less than a millimetre to up to several centimetres. Between grains, planar
lattice defects create grain boundaries, which consist of molecules not following crys-
tal alignment rules (Cuffey and Paterson, 2010).

1.1.3 The creep of ice

The plastic deformation of ice under the influence of stress leads to material charac-
teristics similar to a viscous fluid. The viscosity of ice is very high and amounts to
104 Pas at −10◦C (Cuffey and Paterson, 2010).
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Ice sheets and glaciers are large bodies of ice, deforming under their own weight
and therefore, exhibiting plastic flow. Flow normally occurs from high regions down
to valleys or coast lines, affected by viscosity alterations, which are caused by vari-
able impurity contents (e.g. dust). This redistribution of mass depends on several
aspects, the most important ones are the ice crystal structure (small scale) and the
bedrock topography (large scale). Here, only the first one will be explained in detail
and it is referred to Cuffey and Paterson (2010) for more information on the influence
of bedrock topography.

On geological time scales, single crystals in an ice body deform, even under very
low stresses. The orientation of the c-axis of an ice crystal is crucial for its defor-
mation. Each individual grain has a high mechanical anisotropy and crystals with
favourable orientations will deform first. Deformation along the basal plane (easy
glide) is activated much easier than along a different plane (hard glide), resulting in
higher deformation/movement if stress is applied perpendicular to the c-axis (basal
slip) (Figure 1.1). This is caused by the strong bonds between molecules in the same
basal plane, and the strong anisotropy of the plasticity of monocrystalline ice, facil-
itating or hampering the process of deformation (Duval et al., 1983). Once stress is
applied, deformation along the basal plane is 60-100 times easier than along a differ-
ent plane, resulting in basal glide and grain deformation (Ashby and Duval, 1985).
This pattern is nicely displayed by thinking about the easiest way to deform a deck
of cards. Vertically compressing it, requires a large amount of strength while sliding
the cards sideways, deforms the deck without overcoming much resistance.

FIGURE 1.1: Planes in a hexagonal crystal

Different planes in a hexagonal crystal, such as ice. After Hondoh (2000), displayed by
Faria et al. (2014b).

1.1.4 The fundamentals of dislocation theory and slip-systems

Dislocations can cause basal slip by moving through the crystal lattice and introduc-
ing additional half-planes to it, which results in linear lattice discontinuities. The
Burgers vector is the vector between the start and the end location of a dislocation
circuit, describing the character of a dislocation. The two most common dislocation
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types are screw and edge dislocations (Figure A.1). The first one is characterised by
a Burgers vector parallel to the dislocation line. The Burgers vector of an edge dis-
location is perpendicular to the dislocation line. Screw and edge, and several more
complex, dislocations move easily through the crystal lattice, enabling the slip of
two parts of the lattice against each other, resulting in crystal deformation (disloca-
tion creep). Slip-systems are combinations of slip planes, densely packed planes of the
crystal, and slip directions, crystallographic directions with the shortest distance be-
tween ions or atoms (Jackson, 1991). In ice, dislocation creep occurs normally along
the basal slip system and much higher stresses are required to activate non-basal
slip-systems, such as on prismatic or pyramidal planes (Weertman and Weertman,
1992).

1.1.5 Recrystallisation

Crystal defects, such as dislocations and grain boundaries, are the result of bodies
(e.g. ice sheets and rocks) storing free energy (e.g. intragranular lattice defect energy,
grain boundary energy and chemical free energy). To reduce these vast amounts of
energy, recrystallisation mechanisms occur and are therefore present in ice sheets or
glaciers. Ice is constantly flowing, which results in deformation and recrystallisation
during this process. Therefore it is termed syntectonic or dynamic recrystallisation. It
is defined as the formation and/or migration of grain boundaries, often leading to
the formation of new grains at the cost of older grains. The two basic regimes of
dynamic recrystallisation are grain boundary migration and rotation recrystallisation.
Processes, where deformation is absent, are static recrystallisation and normal grain
growth (Urai et al., 1986).

• Static Recrystallisation occurs before of after deformation and is driven by grain
boundary surface reduction.

• Normal Grain Growth occurs in the upper hundred metres below the surface
of an ice sheet. Here, grain area increases linearly with time, driven by the
reduction of internal free energy of grain boundaries. To achieve this, the total
grain boundary area and its curvature must decrease. Normal grain growth is
replaced by rotation recrystallisation under the following circumstances.

• Rotation Recrystallisation occurs when heterogenous local stresses start to bend
grains. Dislocation glide sets in, if the orientation is favourable, and dislo-
cations align. This results in the formation of a discontinuity in the crystal
orientation and a new boundary originates. Further rotation of the two sub-
grains leads to an increasing misorientation angle until a regular high-angle
boundary is fully developed between the grains.

• Grain Boundary Migration describes the mobility of grain boundaries, mainly
controlled by temperature, pressure, crystal structure and impurity content in
and around the grains. In ice, the main driver is the reduction of lattice energy
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stored in point defects, dislocations and subgrain boundaries. It is common
for grain boundaries to move towards regions with a high dislocation density
(Drury and Urai, 1990).

1.1.6 Crystal Preferred Orientation

Information about the c-axis distribution is normally plotted using Schmidt nets,
displaying the crystal preferred orientation (CPO) of a sample. It is a two-dimensional
equal-area hemispherical projection of a sphere, in which every c-axis of the anal-
ysed sample is displayed as a point on the sphere. For all used samples, the vertical
axis of the sphere is parallel to the axis of the ice core. CPOs are used to derive
information about deformation modes in rocks and ice. During the last decades, it
has been established that certain CPO patterns are caused by defined deformation
mechanisms (Borradaile, 2003).

Ice core drilling is an expensive and challenging undertaking, which results in
a small total number of ice cores which can be analysed regarding CPO patterns.
All completed deep ice core drillings were conducted in similar conditions regard-
ing deformation and ice dynamics, and therefore comparably few CPO patters have
been observed. For other minerals (e.g. quartz), a large amount of CPO pattern has
been observed and several interpretations of their origins can be found in the litera-
ture, e.g. by Lister and Williams (1979). A relatively common CPO for quartz is the
crossed girdle of Type I and Type II (Figure 1.2). Two main hypotheses for its origin
are:

1. Lister and Dornsiepen (1982) stated that the thermodynamic activation of mul-
tiple slip systems should be one of the most important factors affecting the
nature of c-axis fabrics.

2. Kamb (1972) and Alley (1992) proposed the importance of dynamic migration
recrystallisation under horizontal uniaxial extension.

In 2017, this crossed girdle CPO was observed for the very first time in an ice
core. This thesis aims to find hints in the fabric and the microstructure, explaining
this novel occurrence.

1.2 Ice dynamics

1.2.1 The Cryosphere

The most abundant mineral on the surface of our planet is ice, the main component
of the cryosphere. The cryosphere is the frozen, or glacial, part of the global climate
system and is therefore of major importance, interacting with and depending on
the other sub-systems. The components of the cryosphere are highly sensitive to
temperature change, resulting in a high vulnerability to climate change (IPCC, 2013).
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FIGURE 1.2: Crossed girdle Type I and II

Observed and calculated crossed girdles for quartz, the first row displays Type I and the
second row Type II. The example of Type II is slightly asymmetric, and one part of the cross

is stronger developed than the neighbouring one. Modified from Law et al. (1986).

The cryosphere consists of several parts, its terrestrial subsystems are flowing ice
masses resting on solid ground: glaciers, ice caps and ice sheets (Greve, 2005). Ice
bodies larger than 50 000 km2 are termed ice sheets, or continental glaciers, which
cover surrounding terrain. Greenland and Antarctica are the only currently existing
ice sheets, both with parts of a thickness of ice of more than 3000 m. Ice caps are land-
based ice masses covering less than 50 000 km2, unconstrained by the underlying
topography and often located in highland areas (e.g. Vatnajökull, Iceland) (Benn and
Evans, 2010). Glaciers are smaller than ice caps and are located in mountain ranges
on every single continent. There are roughly 160 000 glaciers on Earth, varying in
size and volume, but usually constrained by topographical features (Monroe, 2009;
Benn and Evans, 2010). 75% of the total fresh water on Earth is stored in glacial ice,
covering 10% of the planet’s surface. The produced melt water from melting glacial
ice is estimated to account for nearly two-thirds of the observed global sea-level rise
(Benn and Evans, 2010).

All of the mentioned ice bodies are dynamic systems, which flow and behave
like viscoplastic fluids. This flow is caused partly by gravity-induced ice deforma-
tion and partly by sliding over lubricated bedrock. Vast parts of ice sheets and ice
caps only flow with a velocity of several metres per year, while the most dynamic
areas move much faster with up to 3000 metres per year (Figure 1.3). The latter state-
ment holds true for ice streams, highly dynamic ice bodies which are introduced in
Chapter 1.2.2 (Joughin et al., 1999; Margold et al., 2015).
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A

A B

FIGURE 1.3: Modelled and measured ice velocities of Greenland

(A) Modelled ice flow velocities as presented by Aschwanden et al. (2016). Filled circles,
diamonds and stars represent different glacier-types and correlation coefficients, which are
further explained in Aschwanden et al. (2016) (B) Shown is a compilation of measured ice

velocities derived from satellite data over 20 years (Joughin et al., 2017). Colours and
absolute velocity ranges are different in each legend.

1.2.2 Ice streams

The two main processes contributing to ice sheet mass loss are melting and dynamic
discharge of solid ice into the ocean, often via rapidly flowing ice streams (Margold
et al., 2015). By studying ice sheet velocities, Joughin et al. (1999) and Rignot et al.
(2011) were able to reveal ice stream patterns in Antarctica, as well as for Greenland
(Joughin et al., 2010). The major pattern is similar for both ice sheets: smaller trib-
utaries extend into the interior of the ice sheet and feed the main ice stream trunks
(Figure 1.3). Recent studies reveal that ice streams account for approximately 90%
and 50% of total mass loss of Antarctica and Greenland, respectively (Bamber et al.,
2000; Broeke et al., 2009). Joughin et al. (2010) and Rignot et al. (2011) report typical
ice stream flow velocities of a few metres per year in the ice sheet interior, increasing
towards their termini to up to three thousand metres per year. These high velocities
are caused by two major reasons, a weak bed of fine-grained, saturated sediment
(pure type) or the existence of large topographic troughs filled with sediments and
basal meltwater (topographic type) (Alley et al., 1986; Bentley, 1987; Payne, 1999).



8 Chapter 1. Introduction

In reality, these two types are only ideal end members and several transitional types
can be observed. Furthermore, spatial and temporal properties (e.g. changes in flow
velocity and trajectory, periods of flow and non-flow) of ice streams are highly vari-
able (Conway et al., 2002; Joughin et al., 2003). This variability is caused by internal
forcing (e.g. the availability and amount of till and lubricant water) or external forc-
ing (e.g. changes in oceanic or atmospheric conditions) (Bennett, 2003). Climatically
forced melting is a rather linear process, while the dynamics of ice streams add a
significant non-linearity to the behaviour of ice sheets experiencing external forcing
(Stokes et al., 2016). Therefore, understanding the physics and mechanisms behind
increased ice stream discharge is of major importance due to their contribution to
sea level rise (IPCC, 2013; Nick et al., 2013; Stokes et al., 2016).

1.2.3 The Northeast Greenland Ice Stream

The Northeast Greenland Ice Stream (NEGIS) (Figure 1.4) is the only ice stream in
Greenland extending far into the interior, making it the largest ice stream of the
Greenland Ice Sheet (GrIS) (Joughin et al., 2010). Its onset is located at the central ice
divide and it flows 1000 km downstream until its terminus: the three outlet glaciers
Nioghalvfjerds isstrommen, Zachariae isbrae and Storstrommen (Vallelonga et al., 2014).
Studies by Fahnestock et al. (1993) and Fahnestock et al. (2001) identified the ice
stream and allowed evaluations of the mass balance, basal characteristics and the
velocity of NEGIS. Fahnestock et al. (2001) reports a regionally high geothermal heat
flux at the ice divide causing strong basal melt, enhanced lubrication and fast flow
and therefore the onset of NEGIS. Approximately 200 km downstream from its on-
set, the ice stream accelerates to 65 m/yr and to more than 1000 m/yr close to its
termini (Joughin et al., 2017). The relatively recent discovery of NEGIS by Fahne-
stock et al. (1993) and the, hence, limited availability of field data about it, leads to
a lot of questions regarding its role in the mass balance of GrIS (Vallelonga et al.,
2014).

Deep ice cores are one possibility, to tackle the challenge of understanding NEGIS
better, by extracting samples throughout the entire ice column, enabling detailed
analysis of the physical properties. This is only possible due to the progress of ice
core science and deep drilling over the last decades.

1.3 The evolution of polar microstructure analysis

This section gives a brief overview of the history of ice core science by only pointing
out a few milestones and is far from being complete. Without a doubt, this is an
unjust treatment to all unnamed men and women, who contributed many years of
pioneering work.

The first scientific expedition interested in the microstructure of snow and ice
was to the Jungfraujoch glacier in 1937, which led to many fundamental laws and
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principles concerning the structure, mechanics and thermodynamics of snow, firn
and ice (Perutz and Seligman, 1939; Seligman, 1941). These studies resulted in a
broader scientific interest in the microstructure of ice and were followed by several
expeditions to glaciers all around the globe. The discovery of the correlation be-
tween the amount of heavy oxygen isotopes in precipitation and the temperature
at the location of precipitation by Dansgaard (1952), established the beginning of
a novel research field of glaciology: ice core science. Several scientists developed
the idea to retrieve ice cores, from glaciers and ice sheets, to study the climate of
the past. Since this is a technically and logistically demanding task, in early years,
only shallow ice cores were recovered. Dansgaard’s discovery enhanced the need
for science to drill deep ice cores, allowing to go further back in time (Faria et al.,
2014a). Followed by the success of the International Geophysical Year (1957-1958)
and a rapid development in drilling technology and analytic methods, the retriev-
ing of deep ice cores became high-priority long-term research projects for the United
States of America (Henri, 1962; Gow and Williamson, 1976).

Crystallographic and microstructural analyses were performed on the first deep
ice cores reaching bedrock, the Camp Century core from Greenland (1963–1966) and
the Byrd station core from Antarctica (1966–1968) (Herron et al., 1979; Herron and
Langway, 1982). These operations proved that drilling through kilometres of creep-
ing ice was possible, resulting in the Greenland Ice Sheet Program by the United States,
Switzerland and Denmark. The retrieved Dye 3 core was the first step to also es-
tablish European research programs, aiming to drill deep ice cores and to perform
climate research (Langway et al., 1985; Faria et al., 2014a).

The last decades have been fairly successful and several deep ice cores were re-
trieved from both ice sheets by international teams of researchers. Figure 1.4 dis-
plays successful drilling operations in Greenland. The following recent studies on
deep ice cores analysed microstructure and fabric:

• Greenland Ice Core Project (GRIP) by Thorsteinsson (1996) and Thorsteinsson et
al. (1997),

• North Greenland Ice Core Project (NGRIP) by Wang et al. (2002),

• EPICA Dronning Maud Land (EDML) by Weikusat et al. (2009b) and Weikusat
et al. (2017),

• North Greenland Ice Core Project (NEEM) by Eichler (2013) and Montagnat et al.
(2014).

This thesis is based on the fundamentals established by decades of ice core sci-
ence and microstructural analysis, but somehow approaches terra incognita by ex-
amining the first ice core from a fast flowing ice stream. The East Greenland Ice Core
Project (EGRIP) makes it possible to study ice from such a dynamic site and lays the
foundation for this thesis.
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FIGURE 1.4: Locations of deep ice core drilling sites in Greenland

Locations of deep ice core drilling sites in Greenland are marked, modified from Vallelonga
et al. (2014). The large white rectangle denotes the area of the Northeast Greenland Ice
Stream. The location of the East Greenland Ice-Core Project (EGRIP) is indicated with a

thick-lined rectangle. Colours represent ice speed velocities and were derived by
interferomtric synthetic aperture radar.

1.4 Aim of this thesis

After several decades of glaciology and deep ice core drilling, the EGRIP ice core is
the first ice core derived from a fast flowing ice stream. Obtaining an ice core from
such a dynamic location is a difficult, but promising project in many ways. After two
successful seasons and the exhumation of 1750 m of good quality core, it is finally
possible to take a detailed look into the interior of an ice stream. Combining the
slightly different approaches and views of structural geology and ice core science,
this thesis aims to be a first step towards a better understanding of the dynamics,
flow and material behaviour (rheology) of ice. Therefore, traditional methods from
structural geology are applied to the "hot" topic of ice, allowing to examine fabric
and microstructure of ice with a dynamic deformation history. These physical prop-
erties appear tremendously small-scaled, compared to the dimensions of ice sheets
or ice streams. The material behaviour of ice, depending on these properties, is es-
sential for ice flow and therefore a crucial boundary condition, e.g. for postulated
flow laws and numerical models incorporating ice. This topic has been heavily dis-
cussed since Glen (1952) and Nye (1953) proposed a flow law for ice, which is still
the base for many ice sheet models.
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Major progress was made in terms of ice-flow modelling, but the basic mech-
anisms are still far from being sufficiently understood. According to IPCC (2013),
models are still not able to simulate ice flow behaviour, and hence solid ice dis-
charge into the ocean, with satisfying confidence, as displayed in Figure 1.3. It is
crucial, in times of global climate change, to understand these processes in order to
project future sea-level rise.

This thesis tries to lay the foundation for further work, regarding ice flow, by
addressing the following research questions:

• What are the physical properties of the upper 1714 m of the EGRIP ice core?

• What are the crystal-preferred orientations throughout the core and what de-
formation history can be derived from this information?

• Crossed girdle CPOs have been observed in quartz before and were explained
by an early onset of dynamic recrystallisation, and/or the activation of mul-
tiple slips-systems. Is there evidence in the upper part of the EGRIP ice core,
indicating similar processes explaining this novel CPO pattern?

To answer these questions, thick and thin sections of ice were fabricated at the
EGRIP camp during the 2017 and 2018 season. High-resolution images were taken
by a Large Area Scanning Macroscope (LASM) and c-axis distributions were measured
by an automated Fabric Analyser (FA). The derived data was processed at the Al-
fred Wegener Institute Helmholtz Centre for Marine and Polar Research (AWI) in Bre-
merhaven, Germany. The processed data was used to derive information about the
physical properties of ice at the EGRIP site, at a depth range between 111 m and
1714 m.

The focus of my thesis lies on the analysis of crystal-preferred orientations ob-
tained by polarised-light microscopy, allowing unique insights into the deformation
modes occurring in ice streams. The evolution of the 2nd-order orientation tensor
eigenvalues will be analysed and compared to older ice cores from lower dynamic
sites, such as EDML, GRIP and NEEM. Furthermore, CPO patterns will be analysed
aiming to establish a first record of the deformation history of NEGIS. This is com-
bined with high-resolution images, enabling detailed investigations of grain shape
and grain boundaries and therefore the possibility to find distinct deformation and
dynamic recrystallisation features in the microstructure.

This will help to further examine the hypothesis about the origin of the occur-
rence of a novel CPO pattern, which has not been observed in ice before. Further
data about eigenvectors, grain parameters and the visual analysis of microstructure
will be used in this thesis to address the research questions mentioned above.





13

2 Working Area, Methods and
Data

2.1 Working Area and the East Greenland Ice Core Project

The East Greenland Ice-Core Project is an international undertaking with the aim
to retrieve a deep ice core from the fast flowing ice stream NEGIS. It is an, logisti-
cally and scientifically, international cooperation in the field and an ongoing close
cooperation during sample analysis and data processing. EGRIP is coordinated by
the Centre for Ice and Climate at the Niels Bohr Institute, University of Copenhagen
and major partners are Germany, Japan, Norway, Switzerland, the United States of
America and France. At the start of drilling, the drill site was located at 75◦37.820 N
and 35◦59.556 W, 440 kilometres to the South-East of the old NEEM camp (Figure
1.4). It has been moving to the northeast due to its location on an ice stream. It is far
enough away from the heavily crevassed margin at the coast to offer a safe working
location, being the base for several research projects in the area (Petersen, 2016).

The project started in 2015 and during the first season, equipment, vehicles and
buildings were transported from the old NEEM camp to the new site. In 2016, the
camp, its runway and all needed logistics were constructed, electricity installed,
the drill trench prepared and first drillings were conducted. A year later, full-time
drilling started and 650 metres of good-quality ice were retrieved and partly pro-
cessed (Petersen, 2016). Physical properties data from 2017 was processed after this
season at AWI. This thesis continues, and builds upon, previous works.

In 2018, drilling continued successfully and 1750 metres of core were drilled,
logged and partly processed by mid-August 2018. Microstructure and fabric have
been analysed until a final depth of 1714 m. My investigated samples include all
physical properties measurements from 2017 (275 measurements) and 2018 (522 mea-
surements), consisting of 744 vertical and 53 horizontal thin sections. I was prepar-
ing samples and conducting measurements at the EGRIP camp between 29 June and
9 August 2018. In May 2019, the next season of drilling is planned to start. To reach
bedrock at a depth of approximately 2550 m, further 800 metres of ice have to be
drilled through.

The phenomena of the brittle ice zone Neff (2014) results in the lack of data be-
tween 900 and 1063 m. In Greenland, this zone is reported to appear averagely at
a depth of 545±162 - 1132±178 m. The increasing overburden pressure from above
results in pressurised air bubbles, which can fracture the core during its exposure to
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atmospheric pressure. These fractures have the potential to degrade analyses, cause
contamination and to reduce resolution (Neff, 2014). Therefore, ice from this depth
regime is usually stored in a core buffer for several months (e.g. until the next sea-
son)(Figure A.3), and not processed until relaxation has occurred and the potential
risk of damaging the samples is minimised. At EGRIP, large parts of the brittle zone
were therefore processed in 2018 and the remaining 163 m are on the agenda for
2019.

2.2 Laboratory work and sample preparation

For a combined analysis of fabric and microstructure, it is necessary to fabricate thick
and thin sections of ice (Figure A.2). These vary in size, depending on the ice core
cut, but typical sizes for vertical thin sections are 96 x 70 x 0.3 mm. Thick sections
are 96 x 70 mm, but the thickness varies from sample to sample and is in a range of
130 mm to 160 mm. Measurements were conducted every 10-15 m. Roughly every
100 m, a special volume sample was processed. In 2018, nine of these volume sam-
ples were cut into three vertical sections and two horizontal sections. The size of
these vertical sections is similar to the dimensions mentioned above, only the width
varied significantly from 30 to 83 mm due to the geometry of the sample. Horizontal
sections had dimensions of 100 x 60 x 0.3 mm. Vertical samples were cut parallel to
the main axis of the core. Horizontal samples were cut orthogonal to the core. At
the EGRIP drill site, retrieved ice cores were stored and sampled in a snow trench
approximately 8 metres below the surface. This resulted in temperatures seldom
exceeding −15◦C to preserve original textures and fabrics, and prevent recrystalli-
sation from occuring (Gow, 1994).

The preparation of ice thin sections is a time-consuming manual process, which
was done directly in the field at the EGRIP site. The exhumation of the ice from the
bore-hole leads to temperature changes and a strong decrease in hydrostatic pres-
sure, resulting in material relaxation effects. Therefore, in-situ measurements were
preferred to measurements in the ice laboratory at AWI.

The first step is the cutting of a 55 cm long piece of ice core, the so called "bag". A
band saw was used to cut this bag manually into six small pieces of similar size, de-
pending on the quality of the ice (e.g. cracks or breaks in the ice resulted in adjusted
sample dimensions). Each sample was glued to a clean glass plate by applying a
small amount of water on the edges of the sample, while putting a constant amount
of pressure on it. For a stronger contrast at the following measurement, a black cloth
was placed beneath the sample. A Leica microtome sledge (Figure 2.1), including a
thick glass stage to fix the sample on, was used to polish the surface of the sample
("thick section"). This device was originally developed for the preparation of med-
ical and biological thin sections. It consists of a mobile stage and an implemented
sharp blade, which is repeatedly pushed across the surface of the sample. This pro-
cedure delicately takes off thin layers of ice, without scratching or damaging the



2.3. C-axes measurements with an automated Fabric Analyser 15

sample, while raising the stage slowly (10–20 µm). A micrometer screw allows the
precise adjustment of the distance between the blade and the stage. After cutting
off 1 mm, the surface is even and smaller steps were used to give the surface a final
polishing (1–5 µm steps). The entire process takes about 15 minutes, depending on
the size and surface unevenness of the sample. The sample was stored in a cov-
ered cupboard to minimise the ice-air interaction during sublimation, which took
between one and four hours, depending on the properties and exhumation depth of
the sample. Sublimation is the direct transition of a material from the solid to the
gas phase, without passing through the liquid phase. This is done to enhance image
quality, because small-scale cuts and pores disappear during sublimation. The thick
section was now scanned by LASM (Figure 2.3b).

After a successful scan, further sample preparation was needed to obtain infor-
mation about fabric and c-axis orientations. The thick section was carefully taken
off the glass plate and glued onto a clean plate using a template. The sample was
carefully aligned with the already polished ice surface facing the glass. The band
saw was used to cut off the main part of the sample, which was packed away and
stored for further measurements. The remaining sample was again glued onto the
stage of the microtome and the second phase of polishing was started. Four drops of
water, applied on every corner, made it possible to measure the thickness of the thin
section without touching it. The section was carefully microtomed until the optimal
thickness of 300 µm was reached, the final 100 µm were polished in small steps of
1–5 µm. The thin section was set aside for sublimation and after one to four hours
measured by an automated FA (Figure 2.3a).

Working for months in the field, often for several hours at temperatures of −15–
−20◦, increases the possibility for mistakes to occur. The preparation of thin sections
might be affected by this, and common problems are e.g. scratching of ice while
microtoming or leaving lints from gloves on thin sections. Precautions have been
taken to avoid these things from happening, but of course, they cannot be ruled out
completely. In total, the quality of the produced thin sections was good to very good
and a large data set was be derived from the measurements.

2.3 C-axes measurements with an automated Fabric Analyser

Polarised light microscopy is used to measure the orientation of the c-axis, mak-
ing use of the birefringence of polarised light in optical anisotropic media. This
method only allows to measure one part of the full crystal orientation. The orienta-
tion of a-axes is only determinable with different methods like X-ray Laue Diffraction
or Electron Backscatter Diffraction (EBSD). This loss of information is compensated
by advantages like good applicability in the field. Another major advantage is the
possibility to have automated measurements, which enable the gathering of large
amounts of unbiased data and therefore, more reliable statistical analyses.



16 Chapter 2. Working Area, Methods and Data

FIGURE 2.1: Microtome for preparation of samples

Microtome for removing thin layers of ice to derive the desired sample thickness and a
polished surface.

2.3.1 Basics of birefringence

The majority of my results is based on data derived by polarised-light microscopy
and the principles are explained in this section. This technique is used because it
enables the possibility to take a unique look into the internal structure of crystals
and to determine the optical crystallographic properties of the crystals.

Birefringence is a fundamental optical crystallographic property and is defined
as the difference between the lowest and the highest refractive indices for anisotropic
crystals, which has an impact on the refraction of light through a crystal. Birefrin-
gence can be calculated, or estimated by using the Michel-Levy chart (Petrenko and
Whitworth, 1999).

For uniaxial anisotropy, the z-direction is the optical axis of the crystal. When
light travels through an uniaxial crystal, it gets polarised at a random angle to the
optical axis and disperses into the following two components:

• ordinary component, where the electric field E oscillates perpendicular to the
optical axis and the refraction index

no =
√

1 + Xzz

• extraordinary component, where the electric field E oscillates parallel to the
optical axis and the refraction index

ne =
√

1 + Xxx

If the extraordinary ray is faster than the ordinary ray (ne > no), a material is
called positive. Ice is uniaxial positive due to its hexagonal lattice structure and its



2.3. C-axes measurements with an automated Fabric Analyser 17

c-axis represents the optical axis.

FIGURE 2.2: Principle of the Fabric Analyser

Linearly polarised light decomposes in the crystal into the extraordinary and the ordinary
wave. These waves pass through an analyser, both components interfere and the resulting

intensity is measured. Figure from Eichler (2013).

2.3.2 Polarised-light microscopy

The typical set-up consists of two polarisation filters: the analyser and the polariser.
Both filters are situated parallel to each other in the x-y-plane and polarisation di-
rections are perpendicular to each other. A light source below the crossed polaroids,
expands monochromatic light in z-direction, which passes through the analyser and
the polariser. The monochromatic light is absorbed by a charge-coupled device (CCD)
camera and its intensity is measured. A thin section of ice, with a thickness of d, is
put between the polaroids. To represent the c-axis, a unit vector in spherical coordi-
nates is used:

c =

 sin θ cos ϕ

sin θ sin ϕ

cos θ


The orientation of the vector is given by the azimuth ϕ and the inclination θ.

Inside the crystal, linearly polarised light with an intensity of Ap splits into the ex-
traordinary and the ordinary component, each with a different amplitude. Refrac-
tion indices of both components differ, resulting in a phase difference between both
waves.

Only the components parallel to the direction of polarisation of the analyser are
able to pass at the second polarisation filter (i.e. 90◦ angle to the first polariser).
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(A) (B)

FIGURE 2.3: Fabric Analyser and Large Area Scanning Macroscope

(A) The device and a defined measuring grid are presented. (B) The main stage of LASM,
samples are placed here. Picture by J. Kerch.

The ordinary and the extraordinary beam interfere after passing trough the analyser,
and the resulting intensity can be calculated. Different view angles are needed to
determine the inclination θ. Therefore, the light source position, the camera and/or
the orientation of the sample can be changed. By rotating the coordinate system
around the z- and x-axis, as well as applying the same transformation on the c-
axis vector, four possible solutions for θ can be derived. If the coordinate system is
rotated differently for another time, four more candidates for θ are produced. This
amounts to eight possibilities of θ, two of them being of the same value. This value
is the true angle of inclination of the measured c-axis, while the true azimuth is the
corresponding extinction angle.

2.3.3 Measuring C-axis with the automated Fabric Analyser G50

Measurements of 797 thin sections were all done with the AWI fabric analyser G50,
developed by Russel-Head Instruments and described by Wilson et al. (2003). It is
the fifth series of automated devices for c-axis measurements with a light source
consisting of nine LEDs. Eight are inclined and one is vertical, all are arranged in a
circle around the vertical axis. As shown in Figure 2.3a, a motor rotates the crossed
polarisers from 0◦ to 90◦ in eight steps, and the transmitted light is recorded by a
CCD camera. This camera is located above an objective lens and its field of view is a
10 x 10 mm square, resulting in a maximal resolution of 5 µm/pixel. The thin section
is placed on an x-y-motorised stage, which moves according to a previously defined
grid. This results in several fabric records of 10 x 10 mm, allowing the recomposi-
tion of the entire sample from its individual records. Maximum sample dimensions
are 100 x 100 mm and the ideal thickness is 300 µm. Measurement times depends
on the size of the selected grid and the chosen resolution (5–50 µm). Typical mea-
surements of thin sections with a size of 70 x 10 mm, and a resolution of 20 µm take
approximately 45 minutes.
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Several precautionary measures were taken to avoid damaging, or changing the
properties of the fabricated thin sections. Touching the sample was kept to a min-
imum, and only with latex gloves worn above normal gloves. Furthermore, scarfs
were used to avoid breathing on the sample while working. Microtome blades were
exchanged as soon as scratches appeared on the thin section, or scratching noises
were registered. Polished samples were stored away for sublimation and thus, the
interaction with the surrounding air was limited. While taking images with LASM
and measuring fabric with FA, extensive movement was avoided to not disturb the
measurements.

2.4 Output and Data

2.4.1 Primary Processing

The FA output is a binary file, which contains a raster of given resolution, where
each data point displays the following data:

• Retardation quality
0 ≤ rq ≤ 100;

• Geometrical quality
0 ≤ gq ≤ 100;

• Azimuth angle of the c-axis vector

0◦ ≤ ϕ < 360◦;

• Inclination from the vertical axis

0◦ ≤ θ < 90◦.

gq and rq estimate the confidence of the measured orientations; ϕ and θ are the
spherical coordinates of the c-axis vector. Besides this raw data, several image files
are created, which are used to get a qualitative overview about the fabric and grain
properties. For further processing, the data is manually checked and corrected for
errors on the sample, e.g. cracks or drops of artificial ice on the surface of the sample.
Before automated processing was started, manual image editing is done with GIMP
for each sample. Negatively affected areas are cut off by producing background-
images, indicating the area which is supposed to be analysed.

This pre-processing is followed by automated processing with cAxes (Figure 2.4),
a programme developed at AWI and described by Eichler (2013).

It automatically detects grains, their c-axis orientations and grain boundaries.
Data derived by cAxes delivers information about c-axis distribution, grain size, mis-
orientation between adjacent grains and several more parameters. The analysis of
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parameters other than grain size and c-axis distribution lies beyond the scope of this
thesis. cAxes enables a much faster and more precise data acquisition and therefore a
better statistical analysis. More information on cAxes can be found in Eichler (2013).

A B

FIGURE 2.4: Measured fabric image and processed cAxes image

Sample from a depth of 1565,3 m. A) Original fabric image derived by the G50 Fabric
Analyser. B) Image after processing with cAxes. The surrounding artificial ice, from glueing

the sample to the plate, was digitally removed and the grain properties were measured.
Colour wheels differ, colours represent the orientation of the c-axis.

2.4.2 Fabric statistics

An established method to analyse the shape of fabrics, is to perform eigenvalue cal-
culations for each fabric diagram. Therefore, each measured c-axis orientation is
converted into cartesian coordinates and the orientation tensor is determined by
standard structural geology methods as stated by Wallbrecher (1986). The distri-
bution of the c-axes is displayed as an ellipsoid, in which the eigenvectors (V1, V2
and V3) of the orientation tensor are representations of the three orthogonal unit vec-
tors along the axes of this ellipsoid. The length of these axes is represented by the
eigenvalues. Each eigenvalue is normalised, resulting in the normalised eigenvalues
λ1, λ2andλ3, which obey the following conditions:

λ1 + λ2 + λ3 = 1 and λ1 ≤ λ2 ≤ λ3.

Eigenvalues are compared to obtain information about fabric shape, e.g.
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• random fabric: λ1 ≈ λ2 ≈ λ3, shape of a sphere;

• single maximum: 0 ≤ λ1 ≈ λ2 ≤ 1
6 and 2

3 ≤ λ3 ≤ 1, shape of a prolate
ellipsoid;

• girdle fabric: λ1 < λ2 = λ3, shape of oblate ellipsoid.

The strain shape of the finite strain ellipsoid can be calculated as follows:

k =
ln (λ1/λ2)

ln(λ2/λ3)
.

To distinguish between unimodal and girdle fabrics, Woodcock (1977) estab-
lished the use of normalised eigenvalues to calculate the woodcock parameter q:

q =
ln (λ3/λ2)

ln(λ2/λ1)
.

The calculated value of the Woodcock parameter enables a classification between
unimodal and girdle fabrics:

• unimodal fabric: q ≤ 1→ ∞;

• girdle fabric: 0 ≤ q ≤ 1.

2.4.3 Secondary processing and data analysis

Data derived by cAxes was statistically analysed with R (R Core Team, 2014). Several
statistical parameters were calculated on different scales, ranging from single grains
of one measurement to all measurements from one bag (55 cm). For reasons of clarity
and comprehensibility, only results for entire thin sections (9 cm) are displayed and
discussed.

Equal area stereo plots have been created on the basis of c-axis distribution data
derived by cAxes. This data was further used to calculate contours with statistical
significance of point concentrations on equal area stereograms, using the fundamen-
tals explained by Kamb (1959).

For 47 samples, the three eigenvectors were calculated and analysed. The chosen
samples were taken from representative depths at intervals of 50-100 metres, results
were plotted with the programme Orient.

Further grain parameter analysis was done by digital-image analysis using Image-
Pro by Media Cybernetics. A High-pass filter was applied on previously produced
grain boundary data from 720 vertical samples to further analyse grain shape pa-
rameters. Analyses of perimeter ratio, roundness and several more parameters were
conducted, but only perimeter ratio and roundness are presented in this thesis.

The perimeter ratio Pt reports the ratio of the convex perimeter (pc), to the perime-
ter of the outline (p) of each object:

Pt =
pc

p
.
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Following Weikusat et al. (2009b), Pt was used as a measure for grain morphol-
ogy and grain irregularity; Pt=1 indicates perfectly regular grains and Pt<1 indi-
cates more irregular grains (Figure 2.5). The roundness R reports the roundness of
each object, perfectly circular objects have a roundness of R=1, oblong objects have
a roundness of R>1. It is determined in the following way:

R =
p2

4 ∗ π ∗ a
with p = perimeter and a = area.

2.5 Microstructure images derived by LASM

After successful sublimation, the thick section is placed beneath a Large Area Scan-
ning Macroscope (LASM) by Schäfter+Kirchhoff. This device replaces the time-consuming
ice core analysis technique of using an optical microscope and a CCD area scan cam-
era. LASM consists of a line scan camera with 8192 pixels and a Gigabit Ethernet
interface, an illumination unit and a high resolution lens as displayed in Figure 2.3b.
The sample is imaged with a resolution of 5 µm. The scan speed is up to 36 mm/s,
the maximum measuring width is 41 mm and the maximum measuring length is un-
limited. The measured samples exceed widths of 41 mm and therefore require two
scans, resulting in total measurement times of two to five minutes.

Bright-field illumination is used to capture the microstructure, the basic principle
is displayed in Figure 2.6. Surfaces parallel to the sensor reflect directed light from
the illumination unit. Light reflected from edges and structured areas is reflected
away from the sensor and hence, appears dark. Therefore, gas inclusions appear as
dark spots or bubbles and grain boundaries as dark lines (Figure A.11). To obtain
high resolution 2D images of the microstructure, the right focus is applied and the
object is moved with a defined velocity against the sensor. The complete image is
formed by combining all individual line signals (Krischke et al., 2015). For further
information on the use and technique of LASM, it is referred to Krischke et al. (2015).

FIGURE 2.5: Perimeter Ratio

Perimeter ratio as a measure of grain irregularity, displaying the ratio between the convex
and true perimeters (Weikusat et al., 2009b).
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FIGURE 2.6: Schematic principle of LASM

(a) Light from the illumination unit is directed towards the sample and reflected signals are
captured. (b) The roughness of the surface of the sample controls the amount and direction
of reflected light. Surfaces parallel to the sensor reflect the light; structured areas and edges

reflect the light away from the sensor, these areas therefore appear dark (Krischke et al.,
2015).

2.6 Analysis of high-resolution images derived by LASM

High-resolution images derived by LASM were manually analysed regarding un-
usual features and hints for dynamic recrystallisation, such as grain bulging or is-
land grains. A classification introduced by Weikusat et al. (2009b), was used to dis-
tinguish between subgrain-boundary types. For 100 samples, chosen from regular
intervals throughout the core, subgrain-boundaries were investigated and classified
as one of the three following types:

1. N type: Normal to the basal plane. This type displays the classic perception of
a grain undergoing polyganisation.

2. P type: Parallel to the basal plane and only crosses parts of the grain. Swarms
of subgrain-boundaries of this type were regularly observed, being parallel to
each other.

3. Z type: Irregular, step-like or zig-zag shape. This type is normally rather short
and appears in networks, hardly ever crossing the entire grain and becoming
weaker towards the centre of the grain.

If it was not possible to classify subgrain-boundaries with confidence (e.g. due
to bad sample quality or insufficient sublimation time), they were not classified at
all.

A quantitative processing of LASM data is possible, but very time-consuming
and would have gone beyond the constraints of this thesis.
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3 Results

3.1 Crystal preferred orientation

3.1.1 Eigenvalues

Hereafter, results of calculated eigenvalues are presented, based on measured c-axis
distributions of 797 EGRIP samples and displayed in Figure 3.1. Mean eigenval-
ues calculated over the entire core amount to λ1=0.060±0.069, λ2=0.354±0.043 and
λ3=0.585±0.079. The overall development of the three eigenvalues shows the fol-
lowing patterns. λ1 decreases constantly until 500 m of depth and stays at very low
values henceforth. λ2 starts around 0.25, λ3 at 0.5 and both eigenvalues intersect
around 0.4 at a depth of 250 m. λ2 oscillates around 0.35 until a depth of 900m, and
stays around 0.4 until 1360 m, followed by a slight decrease. λ3 behaves antiparallel
to λ2 and oscillates around 0.65 until 900 m, is rather constant at 0.6 until 1200 m,
and increases slightly towards 1714 m.

The first measurements, starting at a depth of 111 m, reveal similar values for
the smallest eigenvalue (λ1=0.21) and the intermediate eigenvalue (λ2=0.25). With
depth, λ1 decreases steadily and from 510 m on, λ1 hardly changes and plateaus at
values of below 0.03 until the final measurement at 1714 m.

λ2 increases until a depth of 210 m, where λ2 is similar to λ3 (λ2=0.4, λ3= 0.45).
Down to a depth of 650 m, λ2 remains between 0.28 and 0.42, accompanied by a
change in variability. λ2 locally peaks at 650 m, then remains rather high and peaks
again between 720-730 m. This is followed by a steep decrease of λ2 down to a total
minimum at 775 m (λ2=0.21). Below this depth, λ2 develops towards higher values
at 850 m and 890 m. After the brittle ice zone gap, λ2 increases slightly to roughly 0.4,
and varies between values of 0.31 and 0.48 until a depth of 1360 m. The total max-
imum of 0.48 for λ2 is measured in this depth. Below, a decrease of λ2 towards 0.3
was observed for the following 140 m, followed by an increase (λ2=0.38 at 1500 m).
The final 214 m exhibit an oscillating pattern with peaks every 100-115 m (at 1500 m,
1615 m and 1714 m).

The largest eigenvalue λ3 is about 0.55 at 111 m of depth, and decreases towards
a depth of 200 m. In this depth, λ3=0.45, a slightly larger value than observed for
λ2. Below, λ3 increases parallel to the decrease of λ1 and λ2. At 450 m, λ3 begins to
plateau in a range of 0.55 and 0.68, showing an antiparallel evolution to λ2. Local
minima are measured in depths of 550 m, 650 m, 723 m and 900 m. The total maxi-
mum of λ3 was observed at the depth of 760 m, the depth of the total minimum of
λ2. λ3 is slightly lower, below the brittle ice zone gap, oscillating around 0.55 and
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0.6 down to 1250 m. A slight increase was measured for the next 150 m, where λ3

reaches values of about 0.66-0.72. A local minimum was measured in 1360 m, the to-
tal maximum of the intermediate eigenvalue (λ2=0.48). Similar to λ2, the last 214 m
are characterised by a zig-zagging development, with λ3 peaks parallel to λ2 troughs
and λ3 troughs parallel to λ2 peaks.
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FIGURE 3.1: Eigenvalues of EGRIP ice core

Filled red triangles represent λ1, filled green squares λ2 and solid blue circles λ3.
Horizontal samples are indicated in black.

3.1.2 Detailed view of wavy pattern

A wavy pattern in the eigenvalue development was observed and is displayed in
Figure 3.2a and 3.2b. Below 510 m, λ1 does not exceed 0.03 and changes only slightly
with depth (Figure 3.2a). This is the onset of the development of a wavy pattern, in
the form of an antiparallel co-evolution of λ2 and λ3 with depth. Between 550 and
850 m, the wavelength varies slightly between 80 and 120 m. Between 1060–1360 m,
a steadier wavelength of 120 m was observed, interrupted by one measurement at
1180 m as displayed in Figure 3.2b. Between 1360 and 1500 m the wavelength in-
creases to 140 m, and drops to 110–120 m for the last 314 m.
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(A) Eigenvalues between 550-850 m
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(B) Eigenvalues between 1050-1714 m

FIGURE 3.2: Wavy pattern at 550-850 m and 1050-1714 m

(A) Eigenvalues show a wavy pattern with a wavelength between 75 and 100 m. (B) Below
1050 m, the wavelength varies stronger and switches from 115 to 140 m. The same

annotation as in Figure 3.1 is used.

3.1.3 Stereographic projections

Fabric diagrams from all 797 measured thin sections were analysed and an overview
is presented in Figure 3.3. All derived stereoplots can be found in Appendix B and
a summary is presented in Table 3.1. In total, a development from a broad single
maximum CPO towards a crossed girdle CPO was observed in the upper 300 m.
This CPO develops into a vertical girdle until 500 m, which develops in strength
until a horizontal maxima CPO was observed around 1230 m. This pattern varies in
strength until 1714 m.

The c-axis distribution is presented as viewed from above, along the axis of the
core. Thus, a vertical c-axis is represented by a point in the centre of the diagram and
a horizontal c-axis by a point close to the edge. Data about the azimuth orientation
is not available yet, and the true horizontal orientation of the diagram is therefore
not reconstructable at the time of this study.

TABLE 3.1: Observed CPO patterns at EGRIP

Depth [m] Crystal Preferred Orientation
110-196 Single Maximum
196-294 Crossed Girdle
295-500 Crossed Girdle-Girdle Transition
500-1230 Vertical Girdle
1230-1394 Vertical Girdle-Horizontal Maxima Transition
1394-1714 Horizontal Maxima

Between 110 m and 196 m the samples display a broad single maximum CPO
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with a large variety in grain numbers (403-1500) and c-axes orientations. The major-
ity of the c-axes is loosely orientated around the centre of the diagram and only a few
axes are located close to the horizontal axis. The amount of horizontally orientated
crystals decreases slowly with depth and a crossed-girdle CPO begins to develop at
196 m (Figure 3.3).

Two types of crossed-girdle are observed, which can be named Type I and Type II
in analogy to quartz, plus several intermediate transition-types. Overall, type I dom-
inates and is characterised by a girdle connecting both crosses, which is observed
regularly. Furthermore, the majority of samples shows one stronger developed leg,
varying in extent and distinctness. The strength of this CPO-pattern varies from
sample to sample, almost disappearing completely for a few times (e.g. 250 m) and
is especially distinct in samples with a small amount of grains (e.g. 240 m). The gen-
eral trend is a strengthening of the pattern with depth and a peak strength around
289 m. The last distinctive crossed-girdle is observed at a depth of 294 m, setting the
onset for a CPO transition into a developing girdle CPO.

With depth, a broad girdle CPO gets more distinct and becomes more manifest.
The transition zone between the crossed-girdle CPO and the broad girdle CPO takes
place at a depth between 294 and 376 m. A clear broad girdle CPO is observed be-
tween 376 and 492 m. From this depth on, the occurring CPOs are classified as fully
developed girdle CPOs. The transition to a strong girdle CPO is completed at a
depth of 1113 m and this CPO pattern can be seen until 1230 m. In this depth, a
CPO with (sub-) horizontal maxima is observed for the first time, varying largely in
strength from sample to sample. This transition zone towards a distinct horizontal
maxima CPO occurs until 1394 m. This CPO is observed until the final sample at
1714 m.

Classifications of CPO might vary, depending on the used plotting method. Clas-
sic schmidt plots enable a good overview, but contour plots are more detailed, hence
more usable, for the clear distinction between CPO patterns. My partitioning of the
core, regarding CPO, was done on the basis of contour plots. This classification is
rather subjective, but is not an issue for this thesis because classification and inter-
pretation were only done by myself.

3.1.4 Eigenvector evolution

In the shallowest part of the core, V1 and V2 are horizontally orientated (~5◦) and
V3=~90◦ (Figure 3.4). With increasing depth, V3 rotates towards the horizontal and
ranges from 0 to 14◦, while V2 is vertically orientated.

At the top of the core, the largest eigenvector V3 is vertically aligned (80–90◦)
and hence equals the vertical axis of the ice core (Figure 3.5). The smallest and the
intermediate eigenvector are located in the horizontal axes of the plane. At various
depths, V3 rotates a couple degrees away from the vertical axis but always returns to
its prior position (e.g. 195.43 m, 205.79 m). At a depth of 212 m, all three eigenvectors
experience a major change in position and V3 is orientated towards the horizontal
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FIGURE 3.3: CPO patterns throughout the EGRIP ice-core

Displayed are c-axis distributions as Kamb contours following Kamb (1972) with contour
intervals=2.0x σ. The main CPOs of the ice core are visible, a detailed description is done in

Chapter 3.1.3. The depth of the analysed sample and the number of grains in it are
indicated for each sample. All samples are presented in an equal area lower hemisphere

projection.
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for the first time, while V2 is vertically orientated. All eigenvectors rotate in var-
ious ways from sample to sample until a hard shift in plunge occurs between 220
and 290 m. At this depth region, V3 varies between 1.4 and 87.9◦. At 300 m, V3 ro-
tated completely away from the vertical towards the horizontal and only shows a
plunge of 0.1-12◦ until 900 m. One outlier was observed at 723 m where V3 shifted
towards the sub-vertical with a plunge of 73.4◦. The final 650 m are characterised by
a horizontal V3 with a plunge in a range of 0.7-6.7◦.

Intermediate	eigenvector	V2	Minimum	eigenvector	V1	 Maximum	eigenvector	V3	

FIGURE 3.4: Eigenvectors at a depth of 118, 228 and 361 m

Tilting of eigenvectors with depth. The eigenvector configuration present at 361 m has been
observed throughout the rest of the core.

3.1.5 Woodcock parameter

The mean Woodcock parameter for all samples is 0.384±1.48. The total range is
between 0.013 and 37.415 with a clear trend towards lower values with increasing
depth as displayed in Figure 3.6. The upper 100 metres show the largest variabil-
ity and range from 1.018 (133.3 m) to 37.415 (135.3 m), representing a large spatial
variability and major changes of this parameter over only a few metres. A gen-
eral decrease is observed from the first measurement onwards and below a depth
of 179.6 m, measured Woodcock parameters do not exceed 1.0. The values decrease
even further and the Woodcock parameter is not observed to be higher than 0.5 be-
low 306.9 m. The large variability, in a range of 0.02-0.49, decreases with depth. At
500 m, most samples show Woodcock parameters between 0.15 and 0.28. Values
keep decreasing towards 700 m, followed by a general increase in absolute values
and Woodcock parameter-variability. Furthermore, a few unusual high values are
observed at 760 m (0.49) and 900 m (0.39). Samples at 1050 m exhibit smaller Wood-
cock parameters, clustering around 0.1. From this depth on, the Woodcock parame-
ter increases constantly and final values are between 0.18 and 0.33. Samples from a
depth of 1360 m show the lowest values of the entire core (0.013).
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FIGURE 3.5: Development of the largest eigenvector V3 with depth

3.2 Grain properties and texture

3.2.1 Grain size

The mean grain area of the entire core is 4.79±2.33 mm2. Mean grain size values are
in the range of 0.85-12.19 mm2 with the largest scatter in the upper part of the core
between 300 and 700 m and very low values between 1400 and 1714 m (Figure 3.7).

The first measurements at 111 m show a grain size close to 3 mm2, followed by a
steep increase towards maximum values at a depth of 450-550 m. The upper 150 m
are also characterised by a small variability in grain size (~1-2 mm2), which increases
parallel to the gain in absolute grain size of up to 7-8 mm2. This broad peak is fol-
lowed by a decline in grain size, accompanied by a slight decrease in the general
grain size variability excluding some outliers at 760 and 895 m. After the brittle-
zone gap, our results show a strong change in grain size evolution with depth. Be-
tween 1050-1140 m, grain size ranges from 4.0 to 6.8 mm2. The following 160 m show
a rapid decline in grain size and grain size variability, excluding samples from a
depth of 1186 m, and measured values hardly differ from each other. Two local max-
ima are observed in depths of 1312 and 1360 m, representing a 130 m long part of the
core with larger grain sizes compared to neighbouring measurements. Between 1400
and 1540 m, grain size is relatively stable and fluctuates around 1.7 mm2. The final
174 m show a small-scale zig-zag pattern in grain size evolution with absolute values
between 0.8 and 2.7 mm2. Especially for the last 350 m of the core, it is observed that
samples from the same bag are highly similar in grain size with variations hardly
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FIGURE 3.6: Woodcock parameter with depth

Displayed are mean values for each measured thin section. The largest Woodcock
parameter of 37.415 at 135.3 m is not displayed.

exceeding 0.1 mm2 between neighbouring samples.

3.2.2 Perimeter ratio

The perimeter ratio was calculated for each grain of each sample, but for reasons of
comparability and visibility, mean values for thin sections have been used and are
displayed in Figure 3.8.

The measured perimeter ratios have a high variability and range from 0.46 to 0.90
with a mean standard deviation of 0.15. The total mean perimeter ratio is 0.82. The
general perimeter ratio evolution with depth exhibits a C-shape, with high values in
the upper and lower part of the core, and small values in the middle part of the core.

Perimeter ratio of the upper 700 m is between 0.72 and 0.91 with a large vari-
ability from sample to sample. Only a dozen measurements around 275 m have
unusual similar values between 0.83-0.86. The variability in perimeter ratio stays
rather constant with increasing depth, but absolute values decrease and bottom out
at 0.72 around 750 m of depth. There is one outlier with a perimeter ratio of 0.66 at
740 m, and another one at 723 m, representing the smallest measured value of 0.46
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FIGURE 3.7: Grain size development with depth

Each dot represents the mean grain size of one analysed thin section.

(Figure A.4). A slight increase in perimeter ratio is observed in the final 180 m be-
fore the brittle ice zone gap, with values ranging from 0.73 to 0.83. This trend is also
measured from 1060 m downwards to the final measurement at 1714 m. A similar
pattern of perimeter ratio variability, compared to the upper part of the core is ob-
served. Variability between samples from similar depths is rather large (~0.1) and
exceeds even values of 0.18 a few times (e.g. 1378 and 1482 m). In general, perime-
ter ratio increases and measurements around 1650 m match values measured in the
shallow part of the core at 111 m. The final 60-70 metres show even higher values
and are among the highest of the entire core.

3.2.3 Roundness

The total mean roundness is 2.98 with an average standard deviation of 0.8. Absolute
values (for thin section means) are ranging from 1.93 to 17.64 (Figure 3.8). Between
111 and 300 m, roundness was measured to be mainly between 2.5–3 with some
outliers reaching values up to 4.5. The variability at 300 m is comparably small and
this depth is the onset of an increase in roundness until a depth of 750 m with a
zone of decreasing roundness between 500–630 m. With increasing depth, roundness
variability increases and the second highest value of the entire core is measured at
740 m (5.9), dwarfed only by a measurement from 723 m of depth (17.63). A general
decrease takes place until 900 m, accompanied by less scattering (roundness between
2.7 and 4.7). This pattern continues with increasing depth and roundness is at the
lowest (~2.0) in the deepest part of the core. Parallel to this, variability decreases
and measurements from similar depths vary only slightly (~0.5-1) compared to the
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FIGURE 3.8: Roundness and perimeter ratio

Values for every sample are presented. Perimeter ratio outliers are not displayed and can
be found in Figure A.4.

upper part. Outliers are found at a depth of 1378 m (4.9 and 5.5), 1482 m (4.4) and
1714 m (3.6).

3.2.4 Microstructural features in LASM images

For every 100 m of the core, at least five images were manually examined. Areas
of high interest were surveyed in a higher resolution and each sample was visually
analysed. In total, more than 200 images were manually searched for interesting
features regarding hints of deformation history. Emphasis was put on distinct fea-
tures, such as strong grain size variations, unusual grain shapes and grain- as well
as subgrain-boundaries. These observations are objective and are used to support
the quantitative results mentioned above, rather than to stand on their own. The
following paragraph summarises briefly reoccurring features.

• Grain clustering: Several samples contained grains of small grain size, which
were clustered around larger grains. Often, these small grains had similar c-
axis orientations, while the c-axis of the large grain was orientated differently.



3.3. Detailed case study at 1360.8–1367.3 m 35

• Grain shape: Unusual grain shapes were prominent throughout the entire core
and irregular shaped grains were the rule rather the exception (Figure 3.9).
Amoeboid grain shapes and extensive protrusions were common as well as
sutured grain boundaries.

• Grain-boundary morphology: Grain-boundaries are the most visible feature
of microstructure in ice. For all analysed samples, they were irregular. Grain
protrusion were observed in several samples, accompanied by island grains
(Figure 3.9 and 3.10). Dynamic and complex shapes were observed regularly
and are quantified, using the perimeter ratio, in Chapter 3.2.2.

• Subgrain-boundary morphology: Subgrain-boundaries were regularly observed
in all samples and several types can be distinguished. Following the method
of Weikusat et al. (2009b), subgrain-boundary shape and arrangement, with
respect to the basal plane, was used to classify between the types N, P and Z.
Some samples showed connected N- and Z-type subgrain-boundaries, which
made a clear distinction difficult. The occurrence of one subgrain-boundary
type was frequently accompanied by one or even both other types (3.9).

100 distinguishable subgrain-boundaries from various depths along the entire
core were classified. 51 were N-, 25 Z- and 24 P-type subgrain boundaries. The
number of analysed subgrain-boundaries is too low to have statistical impor-
tance on its own and should be seen as qualitative support for the other results
presented in this thesis. Further examples can be found in the Appendix (Fig-
ure A.6-A.23).

3.3 Detailed case study at 1360.8–1367.3 m

This depth regime is characterised by a major change regarding λ2 and λ3. Further-
more, some other parameters display unusual features compared to neighbouring
samples below and above. This depth regime was therefore analysed in more detail.

λ1 is constantly close to 0, λ2 reaches its overall highest value of 0.48 and λ3

shows a local minimum of 0.51 at 1360.8 m. λ2 decreases slowly over the next
decimetres, still remaining comparably high. At a depth of 1366.8 m λ2 decreases
towards values between 0.32 and 0.37. During this stage, λ3 develops antiparallel
to λ2 and shows unusual low values, which start to increase again until they level
out at values about 0.62-0.68 3.2b. In addition, a flip of the maximum eigenvector V3
was observed between 1360.84 and 1361.02 m (Figure 3.11).

Comparable high mean grain sizes were observed in the entire regime, ranging
from 2.4 to 4.9 mm2 (Figure 3.7). Measurements only contain between 950 and 1900
grains, less than found above and below. Horizontal layers of small grains are fre-
quently observed to disrupt the relatively large grains, with layer thicknesses rang-
ing from a few millimetres to several centimetres. These developments are accom-
panied by a change in mean perimeter ratio (Figure A.4). Comparably low values
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FIGURE 3.9: High-resolution image from a depth of 426 m.

Grain protrusions into neighbouring grains are marked by white arrows. White squares
indicate island grains, small grains inside larger grains. Subgrain-boundaries are classified
following Weikusat et al. (2009b): P = parallel to basal plane, N = normal to basal plane and

Z = zig-zag.

FIGURE 3.10: High-resolution image from a depth of 723 m.

Protruding grain boundaries are visible, an island grain was observed in the upper left
corner. The same annotation as in Figure 3.9 is used.
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dominate between 1360-1361 m (0.78-0.83), followed by an increase of up to 0.88 for
measurements between 1366-1367 m.

The general CPO pattern is a vertical girdle, but its strength varies strongly on the
cm-scale (Figure 3.12). There is a clear horizontal maximum at 1360.75 m which tran-
sitions over the next 55 cm into a rather evenly distributed vertical girdle without a
significant horizontal maximum. The next bag starts at 1366.8 m and displays an
even stronger girdle. For the following 27 cm, the evenly distributed girdle weakens
and the horizontal maximum becomes more distinct. The pattern switches again into
an evenly distributed girdle from 1367.07 m towards the end of the bag at 1367.25 m.

Maximum	eigenvector	V3	Intermediate	eigenvector	V2	Minimum	eigenvector	V1	

FIGURE 3.11: Eigenvector development around 1360 m

From left to right: 1360.84, 1360.93 and 1361.02 m. The change in plunge of V3 at 1360.93 m
is clearly visible.
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FIGURE 3.12: Small-scale changes between 1360.75-1367.25m

Displayed are crystal-preferred orientations and the related fabric, both from thin sections
with dimensions of roughly 96 x 70 x 0.3 mm. Colours represent c-axes orientations and are

displayed by the colour wheel.
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4 Discussion

Analysing the physical properties of a deep ice core is a time-consuming process
and it takes years to combine results from different approaches. The analysis of
microstructure and fabric is already conducted during the drilling process and first
results can be derived relatively quickly, allowing a first glimpse into the ice core
from a physical perspective. To achieve this was the overall goal of this thesis.

Fabricating thin sections to analyse c-axis distribution and microstructure has
been completed for the upper 1714 m of the EGRIP ice core. When interpreting these
information, potential errors and uncertainties have to be considered.

4.1 Fabric of the EGRIP ice core

The evolution of eigenvalues with depth of the EGRIP ice core is characterised by
a fast decrease of λ1, reaching values smaller than 0.03 at around 500 m. λ2 and
λ3 show comparable values in the upper hundred meters and encounter almost the
same value at around 250 m. From this depth on, anisotropy steadily increases and
λ2 and λ3 separate from each other until a strong anisotropy is reached at 1714 m.
Noticeable features are the occurrence of a wavy pattern between 550-850 m and
from 1100 m on downwards. At 1360 m, a highly interesting outlier was observed,
deviating strongly from neighbouring measurements.

Systematic offsets of the eigenvalues between vertical and horizontal sections
can be explained by the ambiguity of measurement of c-axes lying close to the ob-
servation plane.

The presented eigenvalues show a rapid evolution of anisotropy with depth,
compared to results from other deep ice cores. Figure 4.1 displays the results from
this thesis and compares them to measurements from Dronning Maud Land, Antarc-
tica (EDML), and Central and North Greenland (GRIP and NEEM). Contrary to these
ice cores, a very prominent feature of EGRIP is the development of the smallest
eigenvalue λ1 (Figure 4.2). It decreases from the first measurement onwards, and
plateaus in roughly 500 m of depth (λ1< 0.03). λ1 of EDML and NEEM reach a
comparably low value at 1400 m, at a depth almost three times deeper compared
to EGRIP (Weikusat et al., 2017; Eichler, 2013; Montagnat et al., 2014). A study by
Thorsteinsson et al. (1997) reports a similar low value of λ1 in an even deeper depth
of 2200 m. Also, the encounter of λ2 and λ3 at 240 m is another unique feature of the
presented EGRIP data. The compared cores show relatively consistent eigenvalue
developments with depth and eigenvalues do not intersect. At EGRIP, values of λ2
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and λ3 stay relatively close to each other, throughout the entire analysed depth. Con-
trary to this pattern, λ2 and λ3 of GRIP and NEEM display large differences already
from the first measurements on. Interestingly, λ1 of EDML develops similar to λ3 of
NEEM, while λ2 and λ3 are more similar to EGRIP, especially in the regime between
1050 and 1714 m.

The significant differences between the EGRIP core and the compared older cores,
can be explained by the more dynamic location of EGRIP. EDML, GRIP and NEEM
were drilled on ice divides or domes, to guarantee successful drilling operations and
undisturbed climate records. Hence, it was expected to find major differences in the
EGRIP core, e.g. indicators for different deformation regimes or deformation-related
processes. This goes hand in hand with the observation that deformation and dy-
namic recrystallisation seem to start in a much shallower depth at EGRIP, resulting
in a different eigenvalue development. This interpretation is supported by further
microstructure features such as perimeter ratio, roundness and CPO.

The detailed case study around the depth of 1360 m shows a significant differ-
ence in eigenvalues compared to measured samples above and below. This is ac-
companied by a flip of the maximum eigenvector V3 (Figure 3.11), which might
indicate a sudden small-scale change in deformation mode. This depth regime is
highly interesting and a similar "jump" in eigenvalues was observed at a depth of
2360 m at EDML by Jansen et al. (2017). The authors of this study suggested this
depth to be a shadow zone impacted by strain partitioning. A layer hardly affected
by simple shear is supposed to be sandwiched between a layer with moderate shear
above, and a layer with moderate shear below (Jansen et al., 2017). This hypothesis
is supported by a layer of larger grains, probably due to less deformation. The same
conditions were also observed in EGRIP and strain partitioning is therefore assumed
to be present at the depth around 1360 m. This assumption is furthermore supported
by the occurrence of a wavy eigenvalue pattern.

The wavy pattern of λ2 and λ3, observed at 550-850 m and below 1100 m, might
be another indicator for strain partitioning. According to Richard and Tanner (1995)
and Carreras et al. (2013), this deformation process is characterised by a heteroge-
neous distribution of the total strain on a body, regarding strain type (e.g. simple
shear or pure shear) and strain intensity. The distribution of strain is influenced
by boundary conditions, stress orientation, rheology and anisotropy. These factors
operate individually or in combination with each other. The fluctuating strength of
anisotropy observed in my samples, can be interpreted as an indicator for strain par-
titioning. Furthermore, strain partitioning has been observed in plastic and brittle
regimes and on a wide range of scales: from the size of crystals to dimensions of
tectonic plates (Richard and Tanner, 1995; Carreras et al., 2013). Ramsay and Huber
(1984) showed, that strain partitioning enables the decomposition of the total strain
into individual deformation modes on the crystal-scale, allowing accommodation of
strain. The changing wavelength of the observed eigenvalue waves at EGRIP in-
dicates different spatial scales of strain partitioning, ranging from centimetres (e.g.
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1360 m) to 100 metres (550-850 m). Strain partitioning is common in regions, where
compressive and extensive pure shear occur, and are additionally combined with a
component of simple shear (Teyssier et al., 1995; Fossen et al., 1994; Fossen, 2010).
This results in strain partitioning across the deforming region by the formation of a
shear zone or a strike slip fault (Teyssier et al., 1995; Fossen et al., 1994). CPO anal-
ysis indicates a dominant extension deformation mode below 500 m, and will be
further discussed in Chapter 4.3. To support these preliminary statements, results
from different methods (e.g. Visual Stratigraphy and Radar measurements) have
to be analysed, and eventually combined with microstructure data. To rely on the
presented microstructure data only, is not sufficient.

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

0.00 0.25 0.50 0.75 1.00

Eigenvalue

D
e
p
th

 i
n
 m

FIGURE 4.1: Comparison of EGRIP with EDML, GRIP and NEEM

EGRIP is shown in black, EDML in red, GRIP in green and NEEM in blue. Filled triangles
represent λ1, filled squares λ2 and solid circles λ3. Data from Weikusat et al. (2017) for

EDML, Thorsteinsson et al. (1997) for GRIP, and Eichler (2013) and Montagnat et al. (2014)
for NEEM.

A preliminary age model of S. O. Rasmussen and S. Mojtabavi (personal com-
munication, 16 January 2019), based on the combination of data from Electrical con-
ductivity method (ECM) and Dielectric profiling (DEP), was linearly interpolated to
examine if distinct eigenvalue features might be linked to specific events in history,
such as the Roman Warm Period or the Glacial-Holocene transition (Figure 4.3). It must
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FIGURE 4.2: The upper 900 m of EGRIP, EDML, GRIP and NEEM

The same annotations as in Figure 4.1 are used.

be mentioned that the provided age model is preliminary and does not cover depths
below 900 m; all values below were interpolated linearly for this study and are based
on measurements from the upper 900 m. Another dating approach, valid for the en-
tire core, is based on Radio Echo Sounding (RES) data and is in good agreement with
the age model by Rasmussen and my interpolated values (D. Dahl-Jensen, personal
communication, 18 November 2018). This RES data set indicates that the age-depth
relationship is rather linear, and a non-linear relationship is expected to be present
with the occurrence of the Last Glacial at a depth of ~1350 m. This linearity in age-
depth relationship is probably caused by the compensation of upstream accumu-
lation by flow velocity and strain rate of NEGIS (S. O. Rasmussen, personal com-
munication, 18 November 2018). The strong increase in grain size around 1360 m,
followed by decreasing grain size, and preliminary results from Visual Stratigraphy
measurements also support the proposed depth of the Glacial-Holocene transition (J.
Westhoff, personal communication, 30 January 2019). Therefore, the presented data
in Figure 4.3 should be trustworthy, but should nevertheless be treated with caution
until a complete age model has been established and verified.

The Roman Warm Period is represented in the ice core by the regime where the



4.2. Microstructure and grain properties 43

crossed girdle CPO was observed and λ2 and λ3 have similar values. Beginning
and ending of this period define the depth regime where both eigenvalues are ~0.4.
The depth of 457-593 m represents one Holocene Climate Optimum and coincidences
with the final decrease of λ1 and the end of the increase of λ3. The wide spread
in eigenvalues between 700 and 900 m matches with the time of another Holocene
Climate Optimum. Another striking feature is the exact alignment of the end of the
Last Glacial and the prominent high and low values of λ2 and λ3, respectively. This
observed consistency is not climatically driven, but most likely by the change of
material and trace element content, combined with a feedback loop of deformation
and recrystallisation as proposed by Eichler (2013) and Eichler et al. (2017).
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FIGURE 4.3: Eigenvalue development linked to age

Eigenvalue results linked to a preliminary age model by S. O. Rasmussen (personal
communication, 16 January 2019). The same annotations as in Figure 3.1 is used.

4.2 Microstructure and grain properties

Figure 4.4 presents grain sizes of EDML, NEEM and EGRIP. In total all ice cores
show similar absolute grain sizes. The grain size development with depth is similar
for EGRIP and NEEM while EDML measurements display an increase in grain size
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between 950 and 1650 m, which goes hand in hand with the beginning of the Last
Glacial at 900 m for EDML. Grains from EGRIP have a higher variability and are
up to 5 mm2 larger between 111 and 600 m. This impression is probably influenced
by the large difference in the number of measured samples in this depth regime.
At NEEM, 557 samples were measured in total, contrarily to EGRIP, where almost
800 samples were measured in the upper 1714 m. Especially the upper 350 m were
measured with a very high spatial resolution (5-10 m) and with up to six samples per
depth. Below 600 m, grain sizes from NEEM increase to up to 12 mm2 (750 m) while
EGRIP results show lower grain sizes of 3-8 mm2. After the brittle ice zone, grains
from the EGRIP ice core show hardly any variability in size and decrease from 5 mm2

to 2 mm2. Results from NEEM display larger grain sizes until a depth of 1500 m,
where both cores show the same mean grain size of ~2 mm2. The data set for EDML
is comparably small and only 57 samples were analysed regarding grain size. Due
to this low amount, grain size seems to be less variable and the absolute values agree
well with the other two ice cores, until a depth of 1050 m. This depth is reported to be
the depth of the Last Glacial and below this depth, grain size increases steadily and
values of up to 10.1 mm2 (1550 m) were measured. This variation can be explained
by the spatial difference between these cores, and therefore the difference in age
and trace element content. EDML was drilled in the interior of Dronning Maud Land,
East Antarctica, with the purpose to obtain a high-resolution palaeoclimate record to
couple glacial climate variability in Greenland and Antarctica (Barbante et al., 2006).
This study shows that EDML dates back to 150 000 years and that the Last Glacial
starts around 900 m, while it starts at 1350 m at EGRIP and around 1400 m at NEEM
(Ruth et al., 2007). According to Ruth et al. (2007), NEEM only dates to 130 000
years, supporting the fact that similar depths represent different times, and therefore
different climatic conditions and trace element contents. Thus, it was expected that
grain size data from EDML differs from EGRIP and NEEM.

The quantitative results regarding microstructure and especially grain shape,
agree well with the manual analysis of high-resolution LASM images. In general,
my perimeter ratio results range from 0.46 to 0.90 and are consequently lower than
comparable measurements from EDML as presented by Weikusat et al. (2009b) and
displayed in Figure 2.5. Standard deviations of EGRIP samples (Figure A.5) are up
to twice as high as for EDML samples. High values for roundness were calculated
for samples throughout the entire ice core and range from 1.93 to 17.64. These re-
sults indicate highly irregular grain shapes throughout the entire core, qualitatively
supported by the analysis of more than 200 high-resolution LASM images, showing
bulging and protruding grain boundaries in all analysed depths (Figure 3.9, 3.10 and
A.6-A.23). This leads to the conclusion that grains of the EGRIP ice core are signif-
icantly more irregular shaped. Amoeboid grain shapes, sutured grain-boundaries
and protruding grains were regularly found in LASM-images and are common for
grains undergoing grain boundary migration (Passchier and Trouw, 2005). Further-
more, the observed clustering of small grains around larger grains is known as a core
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FIGURE 4.4: Grain size in EGRIP, EDML and NEEM

The same colours as in Figure 4.1 were used; filled triangles represent EGRIP, filled squares
EDML, and solid circles NEEM. Displayed values represent the mean grain size of one

entire sample. EDML data from Weikusat et al. (2009a), NEEM data from Eichler (2013) and
Montagnat et al. (2014).

and mantle structure in structural geology and is interpreted as an indicator for recrys-
tallisation (Passchier and Trouw, 2005). Urai et al. (1986) name all these features as
characteristics of dynamic recrystallisation driven by deformation. Furthermore, all
mentioned subgrain-boundary types by Weikusat et al. (2009b) occurred frequently
in the analysed samples, accompanied by island grains, triple junctions and sutured
grain-boundaries. These observations are indicators for a large amount of strain
working on the grains, most likely caused by continuous deformation, which can be
expected in a fast flowing ice stream.

FIGURE 4.5: Perimeter ratio in EDML

Perimeter ratios for EDML from Weikusat et al. (2009b). Values are significantly higher than
my presented values, indicating more irregular grains in the EGRIP ice core.
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To summarise, my results regarding the microstructure of EGRIP, strongly in-
dicate the occurrence of dynamic recrystallisation throughout the entire ice core
as displayed in Figure 4.6. Compared to ice cores from lower dynamic sites (e.g.
NEEM and EDML), this would mean that the onset of dynamic recrystallisation oc-
curs in much shallower depth at EGRIP. Thus, NEGIS and its flow behaviour, are
probably much more influenced by this mode and dynamic recrystallisation. There
are small-scale numerical simulations which implement dynamic recrystallisation
(Staroszczyk, 2011; Llorens et al., 2016; Steinbach et al., 2017), but this is not possi-
ble yet for models simulating ice dynamics on the scale of hundreds of kilometres
or even more. The flow of ice furthermore depends on properties of individual ice
crystals, such as crystal-preferred orientation and grain size. It is therefore essential
to better understand the processes controlling the micro-dynamics of ice, eventu-
ally leading to the development of a physically based macroscopic ice flow law. To
do this is very challenging, but it would be a big achievement to implement such a
flow law into large-scale ice sheet models, enabling a better prediction of solid ice
discharge by ice streams.

The presented data is derived by analysing thin sections, which are two-dimensional
spot measurements. In reality, ice grains are highly-complex, three-dimensional
bodies shaped by numerous processes during accumulation and densification (Cuf-
fey and Paterson, 2010). Therefore, grain properties like grain size and perimeter ra-
tio can be strongly biased by this two-dimensional point of view. Precautions were
taken (e.g. only grains above a certain size threshold, i.e. 500 pixel, were analysed)
but the restriction of this method should be kept in mind. It was tried to minimise
the bias by incorporating data from horizontal thin sections, which showed that the
derived values hardly differ from values derived from vertical sections. This posi-
tive outcome strengthens the trust in the confidence of the presented data.

4.3 Observed CPO patterns of the EGRIP ice core

The orientations of the c-axes of crystals in one sample are called fabric, or crystal
preferred orientation. If strain acts on e.g. ice, the fabric normally changes and
its shape depends on the dominating deformation mode. The two main processes
changing the fabric pattern are:

• Rotation of c-axes due to applied stress;

• Recrystallisation leading to the formation of new grains with different orienta-
tions, compared to the host grain.

Information on deformational history, and rheological properties, can therefore be
derived from the fabric of a sample (Kamb, 1972; Alley, 1988; Law, 1986; Thorsteins-
son et al., 1997; Wang et al., 2002; Eichler, 2013; Montagnat et al., 2014; Weikusat
et al., 2017).
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Four different CPO patterns were observed in the upper 1714 m of the EGRIP ice
core and proposed deformation modes are displayed in Figure 4.6. In the uppermost
part, a broad single maximum was observed, followed by a Type I and II crossed
girdle, which develops into a girdle of varying strength. In the deepest part, a CPO
with horizontal maxima was observed for the very first time in polar ice.

In the upper part of the core, between 111 and 196 m, a broad single maximum
CPO was observed, in which most c-axes are loosely vertical orientated and only a
few are horizontally aligned (Figure 4.6). This pattern can be explained as the result
of vertical compression from overlying layers (Dahl-Jensen et al., 1997; Thorsteins-
son et al., 1997; Gusmeroli et al., 2012; Faria et al., 2014b) and is displayed in Figure
4.6. If crystals would not be constrained by their neighbours, their basal planes could
easily glide over each other without changing their orientation. This is not the case,
and basal planes have to rotate to enable compression, as shown by laboratory de-
formation experiments (Azuma and Higashi, 1985). Thus, the c-axes rotate towards
the axis of compression, which is presumed to coincide with the core axis.

At 196 m, this CPO begins to transform into a crossed girdle CPO, which varies
in type and shape (Figure 4.6). Crossed girdles of Type I and Type II were observed,
with symmetric and asymmetric shapes. This CPO increases in distinctness and is
clearly pronounced at 250 m. Crossed girdles have been observed in several studies,
most commonly in quartz-containing rocks such as quartzites or shists (Lister, 1974;
Lister et al., 1978; Lister and Williams, 1979; Lister and Hobbs, 1980; Behrmann and
Platt, 1982; Carreras and Garcia Celma, 1982; Law et al., 1986; Law, 1986; Schmid
and Casey, 1986). Similar CPO patterns in ice were only observed during labo-
ratory deformation tests conducted by Kamb (1972), and later discussed by Alley
(1992). These studies explain the occurrence of such a CPO pattern by the influence
of dynamic recrystallisation and stress character. Studies by Wilson (1981), Wilson
(1983), and Wilson et al. (2014) established the use of ice as an analogue for, especially
quartz-rich, rocks. This is based on similarities regarding their crystal structure, ice
is hexagonal and quartz often pseudo-hexagonal. It can therefore be assumed that
quartz and ice crystals behave similar during deformation, resulting in resembling
CPO patterns. This assumption is used to propose a hypothesis for the occurrence
of the crossed girdle in the shallower part of the EGRIP ice core, and is discussed in
detail in Chapter 4.4.

Below 294 m, the transition from a crossed girdle to a vertical girdle CPO com-
mences and is displayed in Figure 4.6. In the following 80 metres, the distinction
between both patterns is difficult and a distinct vertical girdle was observed for the
first time at a depth of 376 m. Below 500 m, a vertical girdle is the only observed
CPO and the alignment of c-axes along the vertical plane gets stronger throughout
the next 700 m, caused by an increased influence of extensional deformation along
flow direction. If the dominating stress regime is axial extension, crystals start to
rotate and basal planes shift towards the direction of extension (Thorsteinsson et al.,
1997; Wang et al., 2002). Hence, c-axes rotate away from the direction of extension



48 Chapter 4. Discussion

and girdle CPOs are produced (Thorsteinsson et al., 1997; Wang et al., 2002). De-
pending on the strength of extension, patterns are classified as developing, developed
or strong girdle. The stronger a girdle, the more c-axes are orientated and the thinner
appears the girdle (Paterson, 1994).

Below 1230 m, CPOs with (sub-) horizontal maxima were observed in varying
strength, and are completely dominant between 1394 m and 1714 m (Figure 4.6). This
pattern has not been observed in ice before, and formulating a well-elaborated hy-
pothesis is outside of the scope of this thesis. Lister and Dornsiepen (1982) simulated
similar CPO patterns for quartzite for constricted field conditions. It is likely that ex-
tensional deformation is accompanied by simple shear and basal slip (Passchier and
Trouw, 2005). This preliminary hypothesis should be treated with caution and more
research has to be conducted on this topic.

The calculated results of the Woodcock parameter agree with the impression de-
rived by the CPO-analysis. The upper 100 m are characterised by very large val-
ues, indicating random c-axis orientations and isotropic material behaviour. Below
a depth of 180 m, no measurements show Woodcock parameter values exceeding 1,
representing the development towards a girdle fabric, as stated by Woodcock (1977),
and displayed by the CPO development observed in the EGRIP ice core.

In rocks, the closing stage of the deformation history has an impact on the fabric,
because it develops continuously on the grain scale, depending on the surround-
ing kinematic framework as shown by Lister and Hobbs (1980), Wilson (1981), and
Wilson et al. (2014). This results in CPOs, which are influenced by modifications
occurring at the closing stage of deformation, and might therefore, not represent
the entire deformation history correctly. If dynamic recrystallisation is present, in-
formation about older deformation stages, stored in the CPO, might get erased by
the formation of new grains with new c-axis orientations (Lister and Hobbs, 1980).
This is important to mention, but is unlikely for samples analysed in this thesis. The
examined samples are from a highly dynamic site, and the scientific focus is on de-
formation regimes which are caused by this particular setting. Thus, information
about the deformation regimes at the onset of NEGIS are not the primary topic of
interest.

CPO and grain size observed in the EGRIP ice core vary with depth as displayed
in Figure 4.4 and 4.6. It can be expected that this microstructural difference leads also
to a difference in viscosity (Cuffey and Paterson, 2010). This holds especially true for
depth regimes with different ages, deformation historys and impurity contents, such
as e.g. between Holocene and Glacial ice (Jones and Glen, 1969; Hammer, 1977; De
Angelis et al., 1983; Barnes and Wolff, 2004). Ice dynamics are heavily influenced by
the viscosity of the material, especially in the region close to bedrock, where ice is at
temperatures just below the melting point (Paterson, 1994; Greve, 2005). As already
mentioned by Weikusat et al. (2017) for EDML, first results from EGRIP challenge
the "step-flow model" presented by Dansgaard and Johnsen (1969). They assume
for ice divides, that in the upper two-thirds of an ice column, a constant vertical
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strain rate occurs, decreasing linearly until there is no more vertical deformation at
the bedrock. The lower third is dominated by shear deformation. This might hold
true for areas of low flow velocity, but not for ice streams. The presented results are
therefore a first step towards a more realistic representation of physical properties in
ice. The implication of these factors into a flow law, which describes ice flow better
than at the present state, is a highly complicated but uttermost important challenge
in times of global warming and sea-level rise (IPCC, 2014).
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294m

500m

1150m

1260m
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?

FIGURE 4.6: Proposed deformation modes at EGRIP

The observed CPO patterns in the EGRIP ice core (on the left) and the proposed
deformation modes and transition zones. Deformation modes are simplified and the depth
scale is not continuous. CPO patterns have been manually rotated and do not represent the

direction of deformation.

4.4 The crossed girdle CPO in the EGRIP ice core

The combined results from analyses of microstructure and fabric, show a CPO evo-
lution from a broad single maximum (118 m) towards symmetric and asymmetric
crossed girdles of Type I and II (195-294 m). Below an intermediate transition depth,
a great-circle single girdle starts to develop and reaches full strength at a depth of
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500 m. Therefore, the occurrence of dynamically changing deformation modes in the
upper 500 m of NEGIS is proposed, accompanied by an early onset of syntectonic dy-
namic recrystallisation, as already stated for quartz (Schmid and Casey, 1986; Pass-
chier and Trouw, 2005).

The properties of a material undergoing deformation, depend on the previous
strain path as well as on the current total strain (Hsu, 1966). This study stated the
occurrence of two major types of strain path. If the principal axes of strain remain
fixed with respect to the material, it is called coaxial deformation. If the principal
axes of strain rotate, non-coaxial deformation takes place (Hsu, 1966). Figure 4.7
illustrates the effect of the type of strain on the geometry of the CPO patterns of
coaxially deformed quartz, valid for low to intermediate grade metamorphic con-
ditions. A theoretical model, based on the Taylor-Bishop-Hill analysis, was used to
predict the CPO patterns in this figure (Lister et al., 1978; Lister and Hobbs, 1980).
Experimental studies by Kamb (1972), Tullis et al. (1973), and Tullis and Yund (1977),
and the analysis of naturally deformed quartzites by Schmid and Casey (1986), sup-
port these theoretical CPOs. For uniaxial compression, small circle girdle distribu-
tions are expected. These are connected by a central girdle in plain strain, producing
crossed girdles of Type I. In the constrictive field, crossed girdles of Type II develop.

Schmid and Casey (1986) further proposed that a change in CPO, as displayed
in Figure 4.8, might occur in a transition zone between pure shear and simple shear
progressive deformation. The results presented in this thesis indicate that this tran-
sition zone is located roughly between 196 m and 500 m, and ends with a change in
dominant deformation mode towards extensional deformation and thus, the occur-
rence of a clear vertical girdle as explained in Chapter 4.3 (Figure 4.6).

Variations in the exact CPO pattern can be accomplished by changes in the dom-
inant slip system as explained by Passchier and Trouw (2005). They state that slip
on the basal plane contributes mainly to c-axes located in the periphery of the CPO
diagram, slip on rhomb planes to those in-between periphery and centre, and slip on
prism planes to those in the centre. If prism slip is dominated by rhomb slip, Type II
crossed girdles are more likely to develop (Bouchez, 1978; Schmid and Casey, 1986).
The asymmetry observed in Type I and Type II crossed girdles can be explained by a
fluctuation of deformation modes between non-coaxial and coaxial progressive de-
formation (Figure 4.6). This results in the stronger development of one of the parts
of the c-axis pattern (Passchier and Trouw, 2005).

Carreras and Garcia Celma (1982), Schmid and Casey (1986), and Herwegh et al.
(1997) observed symmetric and asymmetric c-axis girdles, formed in simple shear
and with an intermediate stage showing asymmetric crossed girdles. For the anal-
ysed rocks, mostly quartz-rich types like quartzites, it was proposed that dynamic
recrystallisation, by increasing strain, has an increasing effect on the CPO patterns.
Recrystallisation enables the selective removal of grains in unfavourable orientations
(for slip), resulting in the observed change of fabric, which was observed in naturally
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deformed quartzites (Schmid and Casey, 1986) and theoretically modelled for trig-
onal or hexagonal material, such as quartz or ice (Jessell, 1988a; Jessell, 1988b). In
these modelling studies, as well as in Jessell and Lister (1990), the Taylor-Bishop-Hill
model for dislocation glide was modified by incorporating grain boundary migra-
tion and the nucleation of new grains. Results from these studies indicate that fab-
rics evolve continuously with deformation, producing (among others) crossed girdle
CPOs for constant deformation conditions and a single deformation geometry. Con-
trary to results by Lister et al. (1978), modelling results by Jessell (1988b) indicate
that a coupling of dislocation slip with dynamic recrystallisation produces a larger
variation in CPOs than a model only considering glide as cause for lattice rotations.

FIGURE 4.7: Relation between CPO pattern of quartz and strain
symmetry at coaxial progressive deformation

Flinn diagram of the theoretical relationship between quartz CPO and strain under coaxial
deformation. After Schmid and Casey (1986) and Lister and Hobbs (1980), displayed by
Vernooji (2005). The strain shape k describes the slope between the abscissa axis and the

line joining the ellipsoid and the origin of the diagram.

This indicates for the EGRIP ice core, that at a depth regime of roughly 100 m
(between 196 and 294 m), the dominant deformation mode switches back and forth
between coaxial deformation (basal slip dominant) and progressive simple shear
(Figure 4.6). This shift might be caused by an increased rotational component of
strain path or increased strain in simple shear. These processes are proposed to be
accompanied by 1) the elimination of locked up grains by grain boundary migration
and 2) the occurrence of partially reoriented grains due to selective recrystallisation
(Behrmann and Platt, 1982; Law et al., 1986). This assumption is based on the obser-
vations explained in Chapter 4.1 and 4.2. The proposed modes presumably lead to
the observed crossed girdle CPOs, which were found for the first time in natural ice.
Below the strong occurrence of crossed girdle CPOs, a transition zone is proposed to
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exist between 294 m and 500 m (Figure 4.6). In this zone, the crossed girdle pattern
weakens and a classic girdle CPO develops as displayed in Figure 4.8.

FIGURE 4.8: Change of quartz CPO pattern in a ductile shear zone
under plane strain

From left to right: the observed CPO patterns change from a Type I crossed girdle to a
weak, asymmetric crossed girdle, which develops into a weak, and finally, fully developed

vertical girdle. After Schmid and Casey (1986), displayed by Vernooji (2005).

4.5 Classification of EGRIP depth regimes

Based on the presented results regarding eigenvalue, grain size and perimeter ratio,
the EGRIP ice core is divided into six depth regimes, as displayed in Table 4.1.

1. 111-250 m: High perimeter ratio and small grain size. Rapid decrease of λ1 and
intersecting of λ2 and λ3.

2. 250-550 m: Decrease in perimeter ratio and slight increase in grain size, accom-
panied by a large grain size variability. Further decrease of λ1 and separation
of λ2 and λ3.

3. 550-760 m: Further decrease in perimeter ratio towards absolute minimum and
decrease in grain size and grain size variability. Small λ1 and wavy pattern of
λ2 and λ3.

4. 760-900 m: Increase in perimeter ratio and constant grain size. Small λ1, in-
crease of λ2 and decrease of λ3.

5. 1062-1360 m: Increase in perimeter ratio and maximum variability at 1360 m,
rapid decrease in grain size and grain size variability. Constantly small λ1 and
slight diverging trend between λ2 and λ3.

6. 1360-1714 m: Maximum perimeter ratio and minimum grain size. λ1 very
small and further separation of λ2 and λ3.
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Each of these sections has specific characteristics and all three mentioned param-
eters display certain features and developments at similar depths. These features
include absolute values, the variability of these values and the occurrence of large
changes on small spatial scales.

Supported by fabric and CPO results, it can be suggested that various domi-
nant deformation modes occur throughout the core, accompanied by continuous dy-
namic recrystallisation. The influence of these modes seems to vary for each depth
regime, but a general classification is proposed in 4.3 and displayed in Figure 4.6.

To the best of current knowledge, this classification is proposed in addition to
the observed deformation regimes explained in Chapter 4.3 and 4.4. Additional data
from the field and laboratory will augment and better constrain these preliminary
results. Especially the lack of data in the brittle ice zone led to the separation of
regime 4 and 5. This data should be available after the next drilling season and these
two regimes might be merged. It is also possible that the entire ice core, once all
microstructure and fabric data is available, is divided only into three or four larger
regimes. Furthermore, the linking of the presented data to results from visual stratig-
raphy and large-scale radar measurements might change the applied classification.

TABLE 4.1: EGRIP depth regimes

Depth Grain Size Perimeter Ratio λ1 λ2 λ3
[m] [mm2]

111-250 4.3±1.6 0.83±0.15 0.18±0.039 0.35±0.043 0.47±0.035
250-550 6.6±1.9 0.82±0.16 0.07±0.035 0.37±0.030 0.57±0.052
550-760 6.0±1.7 0.78±0.17 0.02±0.005 0.37±0.039 0.61±0.039
760-900 5.5±1.5 0.79±0.17 0.01±0.005 0.35±0.049 0.64±0.047

1062-1360 3.8±1.2 0.84±0.15 0.01±0.002 0.39±0.034 0.60±0.034
1360-1714 1.6±0.4 0.86±0.14 0.01±0.002 0.31±0.027 0.68±0.027
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The aim of this thesis was to display and discuss the microstructural and fabric prop-
erties of the EGRIP ice core, obtained during the field seasons 2017 and 2018. This
information allows a detailed glimpse into the physical processes affecting the ice of
a fast flowing ice stream, a possibility that occurred for the very first time. Besides
the examination of established geological parameters regarding the microstructure
(such as grain size, grain shape and grain boundaries), the main focus of this thesis
was put on the c-axis distribution and the CPO development.

The unique location of the EGRIP ice core, derived from a fast flowing ice stream,
has the potential to be another big step towards a more detailed understanding of
the rheology of ice. Accomplishing this, is without doubt a challenging task, and the
presented thesis hopefully aids in the attempt to tackle it.

Almost 800 thin sections, from the upper 1714 m of the EGIP ice core, were
analysed regarding microstructural and fabric properties. 275 measurements were
conducted in the field season of 2017; the remaining 522 measurements were con-
ducted in 2018, partly by myself. C-axis distribution data was obtained by an auto-
mated Fabric Analyser and used to derive information about CPO-, eigenvalue- and
eigenvector-development. My results show a more rapid evolution of anisotropy
with depth, compared to lower dynamic sites such as EDML, GRIP or NEEM. Espe-
cially the smallest eigenvalue λ1 decreases quickly with depth. λ2 and λ3 intersect in
shallow depth and diverge from there on in a wavy-pattern form. The eigenvectors
of 47 samples have been calculated, and a tilting of the largest eigenvector from the
vertical axis to the horizontal axis has been observed. A preliminary age model was
interpolated until a depth of 1360 m, and it was examined if it was possible to link
climatic events to the rapid development of anisotropy observed in the EGRIP ice
core. The depth regime around 1360 m, probably the Glacial-Holocene transition,
was examined in detail due to the occurrence of several interesting features in fabric
and microstructure.

Grain shape-related parameters, such as grain size, perimeter ratio and round-
ness, were analysed and partly compared to data from EDML and NEEM. EGRIP
samples showed much more irregular grain shapes than grains from EDML. Mean
grain sizes and grain size developments with depth were similar to results from
NEEM and EDML, even though results from EDML differed significantly in the
lower part of the core due to the different age of the corresponding depth regimes.
These measurements were supported by a qualitative analysis of more than 200
high-resolution images, derived by a LASM. Indicators of dynamic recrystallisation
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were observed in every examined depth, e.g. island grains, amoeboid grain shapes,
protruding grains and the frequent occurrence of three different types of subgrain-
boundaries.

To formulate a preliminary deformation regime record, crystal-preferred orienta-
tions of the c-axis were analysed and discussed. My findings indicate vertical com-
pression down to a depth of 196 m, represented by a broad single maximum CPO.
Between 196-294 m, a novel CPO for natural ice was observed: the crossed girdle
of Type I and II. Its occurrence has been explained by an early onset of dynamic re-
crystallisation accompanied by the activation of multiple slip-systems. Most likely,
this is caused by a small scale change in the dominating deformation mode, switch-
ing between pure shear and simple shear progressive deformation. Changes in the
dominant slip-system result in variations of the pattern, and a fluctuation between
non-coaxial and coaxial progressive deformation explains the occurrence of sym-
metric and asymmetric crossed girdles. Below the crossed girdle pattern, a vertical
girdle develops due to extensional deformation, and can be found between 500 and
1150 m. From this depth on, a vertical girdle with horizontal maxima was observed
for the first time in natural ice. This CPO might be caused by extensional deforma-
tion accompanied by simple shear, but more work has to be conducted to support
this preliminary hypothesis. Based on the presented results, the EGRIP ice core was
divided into different depth regimes. One classification was based on grain proper-
ties, while a second one was based on the dominating deformation modes. Both clas-
sifications are important to understand the flow behaviour of an ice stream better,
because deformation and grain properties are essential for flow on the micro-scale,
and therefore also on larger scales.

The presented major findings of this thesis, the early onset and permanent oc-
currence of dynamic recrystallisation and several dynamically changing deforma-
tion regimes inside NEGIS, have to be taken into account when setting up realistic
boundary conditions for ice-sheet models. The anisotropy of the ice develops more
rapid than in ice from low dynamic sites and internal shear zones seem to be present,
resulting in a different material behaviour of ice, which is not implemented in these
models yet. Having this information is important to correctly calculate the flow be-
haviour of NEGIS and probably ice streams in general, improving our understand-
ing of future ice mass loss and therefore sea-level rise.

This thesis is one small step on the long way towards a better understanding of
NEGIS, and therefore ice stream dynamics. The next step is to successfully finish
drilling at the EGRIP drilling site in 2019, or 2020. Data from the last ~800 m is ea-
gerly anticipated, (1) to fill the brittle ice zone gap and (2) to give a first glimpse
into the oldest parts of the ice. The EGRIP drill team expects the deepest part of the
ice core to be the most challenging one (T. Popp, 16 November 2018). It is therefore
questionable if bedrock can be reached in 2019. If so, a completely processed fabric
and CPO data set might be available by the end of 2019. The already derived volume
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samples should be analysed in more detail and further volume cuts should be mea-
sured in the upcoming months. A reliable new method, to fully produce and analyse
a three-dimensional data set is still being developed and different approaches have
to be tested. Even though time consuming, this approach has the potential to deliver
a more realistic insight into three-dimensional ice crystals and their physical prop-
erties, than two-dimensional spot measurements. Especially parameters like grain
size or perimeter ratio can be strongly biased by this two-dimensional point of view,
but so far, no more accurate method has been established.

The crossed girdle and the briefly introduced findings of horizontal maxima
CPOs, starting at ~1150 m, should be analysed in more detail in future studies.
The occurrence of these CPO pattern is an indicator for modes and/or deformation
regimes, which have not been observed before in natural ice. Further high-resolution
case studies should be conducted and it would be interesting to derive information
about the possible involvement of different slip-systems by analysing some samples
with e.g. EBSD or X-ray Laue diffraction. These devices enable measurements of the
a-axes distribution and will support or contest my interpretations. Two depth re-
gions of the EGRIP ice core will be measured with EBSD at the University of Utrecht,
Netherlands, to become more certain about the general deformation history of the
core. If these measurements turn out to be successful, there might be the possibility
to start a broader EBSD measuring campaign, or at least to increase the available
data set by some more measurements in certain areas of interest.

Already decades ago, theoretical models predicted the possibility of the occur-
rence of crossed girdle CPOs in ice. The major progress in available computer power
might be used to extend established models or to set up new ones, further inves-
tigating the rheology of ice and the influence of recrystallisation during deforma-
tion. Similar experiments were already conducted in recent studies by e.g Llorens
et al. (2016), Steinbach et al. (2017), and Bons et al. (2018), but the new findings from
EGRIP would certainly improve these approaches.

It is a time-consuming work to fully process, and quantitatively analyse, high-
resolution images derived by LASM. Image processing of this data has extensively
high computing costs and the AWI supercomputer Ollie has to be used to do so.
Thus, only data from 2017 has been fully processed so far and more, qualified man-
power is needed to do derive more infromation about the microstructure of the
EGRIP ice core.

Besides the mentioned projects, related work is currently done at several research
institutes, involving different approaches with different spatial and temporal scales.
Airborne-radar-, visual stratigraphy- and dielectric profiling measurements will all
have to be put in context to understand the big picture. A very recent study by Eich-
ler et al. (2019, accepted) combines EDML microstructure data with impurity and
isotope data, examining in detail links between the rheology of ice and its compo-
sition. This approach might be adapted to Greenland, and dynamic ice streams by
using the applied method on measurements from EGRIP.
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Another interesting approach is the use of polarimetric measurements with a
phase-sensitive radio echo sounder (pRES), which allows to derive information about
ice anisotropy from the surface, in a nondestructive way and without the need to
drill a deep ice core. First polarimetric pRES results from the upper 1000 m agree
well with my results, also indicating a rapid evolution of anisotropy in the upper
hundred metres, followed by a stable anisotropic layer down to 1000m (O. Zeising,
personal communication 17 January 2019). Further measurements with this method
are planned for the upcoming EGRIP season to investigate the change in anisotropy
along NEGIS. This additional data might help to better understand the deformation
modes at EGRIP and the general flow pattern of NEGIS, allowing further insights
into the ice up- and/or downstream of EGRIP.

The Greenland Ice Sheet loses vast amounts of ice each year, and even though
it is less prominent, a similar trend has been observed in Antarctica over the last
years. Greenland and Antarctica differ in several ways, and it is therefore necessary
to conduct a drilling project similar to EGRIP on an Antarctic ice stream, e.g. on one
of the Siple Coast Ice Streams. This work would help to verify results from EGRIP,
and enables a broader applicability of the results presented here.
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FIGURE A.1: a) Edge and b) screw dislocation. From Eichler (2013).

FIGURE A.2: Partly processed thick and thin sections

The thin section on the left will be polished and then analysed by the Fabric
Analyser. On the right, thick sections with already polished surfaces were glued to

the glass plates.
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FIGURE A.3: Core buffer in the science trench

Freshly drilled ice cores are stored here. Photo by S. H. Faria.
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FIGURE A.4: Perimeter ratio with outlier

The smallest perimeter ratio was measured at a depth of 720 m.
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Mean Perimeter Ratio = 0.837 ± 0.152
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FIGURE A.5: Perimeter ratio with standard deviation at EGRIP, dis-
played are mean values for entire bags (=6 samples).

FIGURE A.6: LASM high-resolution image at a depth of 426.75 m, the
same annotation as in Figure 3.10 is used.
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FIGURE A.7: LASM high-resolution image at a depth of 426.75 m, the
same annotation as in Figure 3.10 is used.

FIGURE A.8: LASM high-resolution image at a depth of 722.75 m, the
same annotation as in Figure 3.10 is used.
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FIGURE A.9: LASM high-resolution image at a depth of 722.84 m, the
same annotation as in Figure 3.10 is used.

FIGURE A.10: LASM high-resolution image at a depth of 722.93 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.11: LASM high-resolution image at a depth of 740.07 m,
the same annotation as in Figure 3.10 is used.

FIGURE A.12: LASM high-resolution image at a depth of 1113.89 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.13: LASM high-resolution image at a depth of 1113.89 m,
the same annotation as in Figure 3.10 is used.

FIGURE A.14: LASM high-resolution image at a depth of 1114.07 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.15: LASM high-resolution image at a depth of 1114.25 m,
the same annotation as in Figure 3.10 is used.

FIGURE A.16: LASM high-resolution image at a depth of 1360.84 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.17: LASM high-resolution image at a depth of 1361.02 m,
the same annotation as in Figure 3.10 is used.

FIGURE A.18: LASM high-resolution image at a depth of 1361.02 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.19: LASM high-resolution image at a depth of 1377.80 m,
the same annotation as in Figure 3.10 is used.

FIGURE A.20: LASM high-resolution image at a depth of 1378.16 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.21: LASM high-resolution image at a depth of 1648.03 m,
the same annotation as in Figure 3.10 is used.

FIGURE A.22: LASM high-resolution image at a depth of 1648.30 m,
the same annotation as in Figure 3.10 is used.
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FIGURE A.23: LASM high-resolution image at a depth of 1696.89 m,
the same annotation as in Figure 3.10 is used.
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B Appendix

The following pages include stereographic equal-area hemispherical projection of
all analysed thin sections. The sample number and depth are displayed, as well as
the number of grains per sample. For the lower part of the core, dummy plots were
inserted to compensate for incomplete bags, not consisting of six samples.
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