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Abstract: The Arctic-Boreal regions experience strong changes of air temperature and precipitation
regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw
disturbances, some unfolding slowly and over long periods, others occurring rapidly and
abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor
landscape changes, a persistent cloud cover decreases the amount of usable images considerably.
However, combining data from multiple platforms promises to increase the number of images
drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the
possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving
a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day
acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia.
We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding
bands and derived the ordinary least squares regression for every band combination. The acquired
coefficients were used for spectral bandpass adjustment between the two sensors. The spectral
band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already.
The ordinary least squares regression analyses underline the generally good spectral fit with intercept
values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison
after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment
between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral
values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment,
Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to
assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors
can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow
masking, and mixed pixels.

Keywords: spectral adjustment; northern high latitudes; permafrost; time series; optical data;
surface reflectance; correlation; permafrost disturbances; land cover change

1. Introduction

The Arctic-Boreal domain is currently undergoing extensive environmental changes. Mean annual
air temperatures increased by up to 1.5–2 ◦C over the 1960–2009 period [1], and precipitation increased,
with climate models showing further precipitation increases with additional warming [2]. Both the
increase in air temperatures and precipitation also affect the thermal state of permafrost, which is
defined as ground that remains at or below a temperature of 0 ◦C for at least two consecutive years and
is very widespread in this region [3]. Considering that about a quarter of the Northern Hemisphere
is underlain by permafrost, which is 65% of the land north of 60 degrees [4], these changes are of
great importance to northern high latitude ecosystems [5]. Continued warming of permafrost across
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the pan-Arctic region [6] ultimately will result in widespread permafrost thaw and eventually cause
near-surface permafrost loss on local to regional scales [7]. Thawing permafrost has direct implications
for hydrological systems [8], ecosystems [5], soil carbon decomposition and accumulation [9],
greenhouse gas emissions [10], and infrastructure stability in permafrost areas [11]. A multitude
of landscape-scale changes, such as active layer deepening, thermokarst and talik formation, soil
erosion, and changes in vegetation composition and surface hydrology can be linked to permafrost
thaw [12–15].

While permafrost itself cannot be observed directly with remote sensing, detectable surface
disturbance can be linked to permafrost degradation. They can be distinguished between press and
pulse disturbances, which are gradual and abrupt disturbance regimes respectively and alter the
ecosystem and environment substantially [16]. Press disturbances are driven by impacts and change
factors unfolding over decades to centuries and occur gradually and continuously. Press disturbances
include processes such as permafrost top-down thaw, as well as vegetation structure and composition
changes. They usually occur on extensive regional scales. In contrast to that, pulse disturbances unfold
within very short time periods from a few days to years. They are usually extreme in nature and
affect the system rapidly as one-time or episodic short-term events, but arise locally in distinct areas.
Pulse disturbances include soil erosion, thermokarst lake expansion, lake drainage, and wildfires.
Press and pulse disturbances interact with one another as well; for example, press disturbances can
trigger pulse disturbances. Exemplary is permafrost top-down thaw initiating rapid thermokarst
development or soil erosion [17,18]. To understand the complex feedbacks of permafrost degradation
processes and resulting landscape and ecosystem dynamics in space and time, it is critical to track and
quantify these not only at the field site scale, but at high spatial resolution across decadal time scales
and extensive regions.

Remote sensing provides excellent tools to understand and quantify many of these dynamics
linked to surface expressions and land cover changes associated with permafrost degradation across
large regions [18–20]. For example, Nitze et al. [21] mapped widespread permafrost disturbances based
on trend analysis using linear regression on Landsat multispectral index time series, highlighting the
abundance and distribution of disturbances such as thermokarst lake changes, wildfires, and thaw
slumps. Similarly, Pastick et al. [22] analyzed the diversity of landscape and ecosystem dynamics for
Alaska using Landsat-based time series analysis in combination with spectral metrics, climatic data,
and topographical and soil information. Using statistical models, they predicted and understood
the drivers of change and differentiated between gradual and abrupt disturbances. Apart from
understanding the spatial coverage, magnitude, patterns, and dimension of disturbances, the temporal
dynamics of disturbances such as initiation timing, duration and persistence, recovery time, and
recurrence frequency are highly important parameters for monitoring and projecting Arctic-Boreal
ecosystem and landscape trajectories in a changing climate. Space-borne remote sensing with a high
temporal and spatial resolution allows detailed monitoring of both gradual and abrupt changes, such
as press and pulse disturbances, but requires more detailed insights into the timing and magnitudes of
spectral changes of observation targets.

Algorithms developed for monitoring forest disturbances, such as LandTrendr, manage
to identify both abrupt and gradual changes with temporally-dense Landsat time series [23].
Likewise, Sulla-Menashe et al. [24] used Normalized Difference Vegetation Index (NDVI) Landsat time
series for characterizing vegetation greening and browning patterns in Canadian boreal forests and
identified the major driver of the signal to be vegetation recovery following disturbance. Implementing
such algorithms developed for boreal ecosystems for extensive monitoring and assessing of disturbance
types and dynamics, such as differentiating between press and pulse disturbances, across Arctic-Boreal
permafrost regions will improve understanding of climate change and anthropogenic impacts in high
latitudes on multiple temporal scales. Most of the schemes so far rely on the extensive Landsat record,
which features the longest continuous data archive of optical Earth surface imagery, covering more
than 45 years. However, the low temporal resolution of Landsat images and some environmental
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factors, such as a short growing season length, a challenging solar geometry, frequent snow and ice
cover, and especially persistent cloud cover, negatively affect the availability of images for detailed
studies [25,26]. Therefore, often, only a rather low number of adequate Landsat images are available for
time series analyses in high latitudes. In many regions, these are not sufficient for creating temporally
dense time series, which are needed for extracting detailed trends of disturbances and especially their
short-term dynamics.

An approach to increase the data base in high latitudes is to combine Landsat time series,
which relies on a single platform only, with images from additional optical sensors. A combined
data base allows creating temporally much denser time series for the Arctic-Boreal domain,
thereby increasing opportunities for monitoring permafrost region disturbances and ecosystem
changes. The European Space Agency (ESA) Copernicus Sentinel-2 mission started in 2015 and consists
of two satellites (S-2A, S-2B), which have a combined revisit time of five days [27]. Landsat-8 and
Sentinel-2’s sensors are both multispectral optical systems, have Sun-synchronous polar orbits, and
obtain data with a comparable resolution. Both sensors record multispectral data with bands that
cover similar wavelength ranges (Table 1). Sentinel-2 sensors’ similar characteristics to Landsat and
shortened revisit time are now leveraging the combined multispectral observation power of three
platforms observing the Earth’s surface at 10–30 m resolution, significantly increasing the chance
for capturing cloud-free observations at high latitudes. Li and Roy [28] quantified the combined
revisit time of Landsat 8, Sentinel-2A, and Sentinel-2B, showing that the global average revisit interval
was 2.9 days. With the increased poleward orbit overlap and the enhanced spatial overlap between
acquisition swaths, the high latitudes (>70◦ N) feature the highest number of acquired images within
a year (>400 images) and the shortest revisit interval (<1 day) [28]. This dramatic increase in image
numbers and shortened revisit time for a combined Landsat-8 and Sentinel-2 time series could facilitate
tracking permafrost region disturbances in much higher detail.

Table 1. Corresponding Landsat-8 and Sentinel-2 bands and characteristics.

Landsat-8 Sentinel-2

Band Wavelength (µm) Resolution (m) Band Wavelength (µm) Resolution (m)

Coastal Aerosol 1 0.45–0.451 30 1 0.430–0.450 60
Blue 2 0.452–0.51 30 2 0.448–0.546 10

Green 3 0.533–0.590 30 3 0.538–0.583 10
Red 4 0.636–0.673 30 4 0.646–0.684 10
NIR 5 0.851–0.879 30 8A 0.848–0.881 20
NIR2 8 0.763–0.908 10

SWIR1 6 1.566–1.651 30 11 1.542–1.685 20
SWIR2 7 2.107–2.294 30 12 2.081–2.323 20
Cirrus 9 1.363–1.384 30 10 1.336–1.441 60

In terms of time series analyses, we do not just require cloud-free images, but rather depend
on clear pixels for every location in one study area. A high number of clear pixels available in one
observation period (summer months) indicates a good overall data coverage. Figure 1 shows the
average number of clear pixels in the Lena Delta (see Section 2.1) for the summer months of every
year. It becomes obvious that the average number of clear pixels for every location in the Lena Delta
increases dramatically, when adding Sentinel-2 to the analysis. This underlines that relying not only
on one sensor platform, but on multiple ones enhances the database drastically.
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Figure 1. Average number of clear pixels for the study site Lena Delta for the summer periods covering
1999–2018 (blue bars: Landsat; red bars: Sentinel-2).

For a combined time series, it is necessary to align the image products of the different sensors
geometrically and radiometrically, ensuring that the same point on the ground is captured with
similar spectral reflectance properties in both products. This issue was already addressed for the
Landsat sensor series, defining adjustment schemes for slight differences in reflectance measurements,
ensuring data continuity and that the Landsat image products from the different sensors (Landsat-5 TM,
Landsat-7 ETM+, and Landsat-8 OLI) can be used in a combined time series analysis [29–32]. To extend
the data continuity incentive beyond the Landsat sensors and also to be able to include Sentinel-2,
previous studies compared Landsat-8 with Sentinel-2 data and defined bandpass adjustments between
corresponding Landsat-8 and Sentinel-2 bands for a better fit. Despite similar wavelength ranges
covered by the corresponding bands, the spectral response functions per sensor differ, and this impact
has to be assessed before a combined time series is applied [33]. Previous comparison studies varied
in application region, scale, input datasets, ranging from simulated to acquired image products,
and covered temporally close to same-day acquisitions [33–37]. Regardless of these differences,
the comparison approaches are always alike, examining corresponding Landsat-8 and Sentinel-2 bands,
comparing pixel-pairs, and deriving regression equations for bandpass alignments. Claverie et al. [38]
conducted a comparison between Landsat-8 and Sentinel-2 data for 91 test sites worldwide and
created a globally-applicable Harmonized Landsat and Sentinel-2 surface reflectance dataset (HLS).
While a few sample sites are situated in Alaska, Canada, and Northern Scandinavia, sites from
the Siberian high latitudes are not included. Flood [39] was first to compare same-day Landsat-8
with Sentinel-2 acquisition pixel-pairs of corresponding bands for Australia and defined band-wise
adjustment equations. Furthermore, Flood [39] applied the global HLS bandpass correction to the
same dataset, but concluded that the HLS adjustment did not sufficiently adjust the Sentinel-2 data
to Landsat-8 data. As a consequence, their region-specific derived bandpass adjustments showed
a better fit than the HLS adjustment. An overall result of the previous studies was that Landsat-8
and Sentinel-2 data were comparable, but for a combined analysis, the datasets have to be adjusted to
avoid detecting change because of a bias between sensors and not because of changes on the ground,
which is particularly important for studying trends. Despite the effort of creating a globally-applicable
harmonized product [38], local to regional studies showed that locally-derived bandpass adjustments
are superior to the HLS product [34,39]. Therefore, it is recommendable to create region-specific
adjustments between Landsat-8 and Sentinel-2 for regional assessments and applications.



Remote Sens. 2019, 11, 1730 5 of 29

So far, to the best of our knowledge, no comparison of Landsat-8 and Sentinel-2 data or
an assessment of a potential combined use in time series analyses for the Siberian Arctic-Boreal
region has been done. The overall objective of this paper is to compare the spectral characteristics of
Landsat-8 and Sentinel-2 data across different types of landscapes and ecosystems in the study domain
and assess their compatibility in Arctic-Boreal permafrost regions for the potential use in combined
time series. To address this objective, we focus on three sub-objectives: (1) comparison of the spectral
characteristics of corresponding bands from Landsat-8 and Sentinel-2 data of same-day acquisitions
for three individual study sites in Eastern Siberia that broadly differ in ecosystem and land cover
characteristics; (2) defining spectral band adjustments between Landsat-8 and Sentinel-2 data for each
of the three study sites; and (3) determining a set of spectral band adjustments that is applicable to
Eastern Siberia generally and comparing them to the application of the global Harmonized Landsat
Sentinel-2 product.

2. Materials and Methods

2.1. Study Sites

For this assessment, we included three study sites that are representative for the range of land
cover conditions in Eastern Siberia: the arctic central Lena Delta (73◦ N, 126◦ E), the mountainous
Batagay region in the Yana Highlands (67◦ N, 134◦ E), and the boreal Maya-Yakutsk region in central
Yakutia (62◦ N, 129◦ E). The three sites are located along an approximate north-south transect and
exemplify the different climatic, geologic, geomorphologic, and vegetational conditions of the quite
heterogeneous Eastern Siberian permafrost landscapes, bridging from arctic to boreal regions and
covering both tundra and taiga biomes (Figure 2).

The Lena Delta has a maritime-influenced polar tundra climate and is located in Northern Siberia
at the Laptev Sea coast, within the continuous permafrost zone. It is the biggest Arctic delta with
about 29,000 km2. The land cover in the delta is dominated by Arctic tundra that varies in vegetation
composition between three major geomorphological terraces [40]. We here focused on the central part
of the delta where the Arctic research station Samoylov is located [41]. Samoylov Island is one of the
1500 delta islands and part of the first river terrace. The first terrace formed during the Holocene and
is characterized by low-center ice-wedge polygonal tundra, polygonal ponds, large thermokarst lakes,
and active flood plains [41]. Wet and moist tundra dominates this area with a vegetation cover of
sedge, grass, moss, and dwarf shrub wetlands [40]. The study area extends further to the adjacent
Kurungnakh Island, which is part of the third terrace, an old late Pleistocene accumulation plain
dissected by delta channel formation and thermokarst processes and characterized by polygonal
microrelief and thermokarst ponds and lakes [42,43]. The second terrace of the Lena Delta consisting
of late Pleistocene fluvial deposits is restricted to the northwestern part of the Lena Delta and is
therefore not represented in the study area. From 1999–2011, the mean annual air temperature of the
central Lena Delta was −12.5 ◦C with a mean temperature range from 10.1 ◦C–−33.1 ◦C in July and
February, respectively. In the same period summer, precipitation ranged from 52 mm (2001) to 199 mm
(2003) [41].

The Batagay study area represents a highly continental region with strong seasonal air temperature
ranges and an overall low mean annual precipitation [44,45]. Batagay is located at the Yana River
and in between the Verhoyansk and Chersky Ranges in the Yansk Uplands, a region that features
the cold pole of the Northern Hemisphere and is underlain by continuous permafrost with shallow
active layer depths from 0.2–1.2 m [46]. The mean air temperature in July is 15.5 ◦C and in January
−44.7 ◦C, while the mean annual precipitation is only 181 mm [45,46]. The land cover in this study
area is dominated by light coniferous forests with larch (Larix gmelinii), Siberian dwarf pine (Pinus
pumila), and a dense shrub layer. A thick layer of lichens and mosses covers the mostly wet ground [44].
Other portions of the study area consist of barren bedrock surfaces. Ashastina et al. [44] described
the bedrock geology as a mix of dark grey siltstone and mudstone that contain layers of sand and
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clay deposits based on maps and Kunitsky et al. [47]. The Batagay megaslump, the largest known
retrogressive thaw slump with a total area of >70 ha and headwall retreat rates of up to 30 m per year
in 2016 [48], is located within this study area at about 67◦ N, 134◦ E [49]. This large thaw landform
indicates the presence of vulnerable ice-rich permafrost as a thick cover deposit in some parts of
this region.
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Figure 2. The three Arctic-to-Boreal study sites, Lena Delta, Batagay region, and Yakutsk region,
are located along an approximate north-south transect in Eastern Siberia. The blue frames show the
Landsat-8 image footprint, and the red frames show the Sentinel-2 image footprint of the same-day
acquisitions used in this study. Sentinel-2 RGB composites of the overlapping area for the Lena Delta
(a), Batagay region (b), and Yakutsk region (c).

The Yakutsk study area in central Yakutia has an extremely continental climate with a mean
annual air temperature of −10.2 ◦C, mean January temperatures of −42.6 ◦C, July temperatures of
18.7 ◦C, and an annual precipitation of about 234 mm [50]. The region is dominated by boreal summer
green needle forests, mainly by Larix [51]. Ice-rich late Pleistocene permafrost, as well as vegetated
dune fields are widespread on the Lena river terraces. Silty clays, sandy silts, and silty sands dominate
the Quaternary sediments. Thermokarst lakes and basins dominated by meadow vegetation (alases)
are abundant [50,52]. Intensive thermokarst development in the area can reach surface subsidence
rates of 5–10 cm per year, and thermokarst lakes more than doubled their area during the 1992–2012
period [50]. The region is also regularly affected by forest fires [53], resulting in a heterogeneous land
cover with different disturbance and succession stages of the vegetation.
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2.2. Data

In our study, we focused on imagery from Landsat-8 and Sentinel-2. The USGS Landsat-8 satellite
was launched in 2013 and is equipped with the Operational Land Imager (OLI) sensor, which is
a multi-spectral imager. The satellite has a 16-day repeat cycle, orbiting Sun-synchronously at 705 km
altitude. The sensor field of view is 15 degrees, which results in a 185-km swath width. The satellite is
also equipped with a co-registered Thermal Infrared Sensor (TIRS) that contains two thermal spectral
bands with a ground spatial resolution of 100 m. The nine spectral bands of the OLI sensor have
a spatial resolution of 30 m. The Landsat-8 OLI continues the Landsat mission that originally started
in 1972 [25]. The ESA Copernicus Sentinel-2A and 2B satellites were launched in 2015 and 2017,
respectively, and have the Multi-Spectral Instrument (MSI) aboard, which is also a multi-spectral
imager, orbiting at a 786-km altitude Sun-synchronously. The increased orbit altitude together with
a field of view of 20.6 degrees results in a swath width of about 290 km. Both Sentinel-2 satellites
have a repeat cycle of 10 days, but as they operate out of phase, they have a joint revisit time of
five days. The 13 spectral bands of the MSI have different spatial resolutions, 10 m, 20 m, and 60 m
(Table 1) [27,54].

We accessed and processed both Landsat-8 and Sentinel-2 imagery predominantly on the Google
Earth Engine (GEE) platform. GEE is a cloud-based platform that incorporates analysis-ready data
catalogs allowing the user to access and analyze data easily. GEE hosts the entire multi-petabyte
Landsat archive, as well as data from Sentinel-2 [55]. The images are ingested and cut into tiles
for efficient collection handling in GEE, but remain stored with their original projection, resolution,
and bit depth. For this study, we used the “USGS Landsat 8 Surface Reflectance Tier 1” image
collection. The images in this collection are atmospherically corrected to surface reflectance based
on the Landsat 8 Surface Reflectance Code (LaSRC) and already contain a mask for clouds, shadows,
waters, and snow, derived from the CFMASK algorithm [56,57]. For Sentinel-2, we accessed the image
products in two ways. First, we selected the “Sentinel-2 MSI: Multi-Spectral Instrument, Level-1C”
image collection in GEE, containing Top-Of-Atmosphere (TOA) reflectance images, the only full
Sentinel-2 collection provided in GEE at the time. The datasets contain the QA60 band that includes
cloud mask information as pre-processed by ESA [54]. We used the GEE Sentinel-2 collection for
preparing the filtering and masking step (Step A) as described in Section 2.3.1 and Figure 3. Based on the
GEE filtering results, we downloaded the Sentinel-2 Level-1C images from the ESA Copernicus Open
Access Hub to process them to surface reflectance data with ESAs’ Sen2Cor atmospheric correction
processor that corrects Sentinel-2 Level-1C orthophoto products to Level-2A surface reflectance
products (see Section 2.3.3) [58,59]. After processing, we ingested the atmospherically-corrected
Sentinel-2 Level-2A images into GEE to continue with Step C of the workflow (Figure 3).

2.3. Data Processing

The data processing workflow consisted of three steps (Figure 3). In Step A, we filtered and
cloud-masked the imagery. In Step B, we processed Sentinel-2 surface reflectance images with the
Sentinel Application Platform. In Step C, we masked the Landsat-8 and Sentinel-2 images to prepare
the pixel-by-pixel data input for the spectral comparison and adjustment.

2.3.1. Filtering Image Collections

For each study area (Lena Delta, Batagay, and Yakutsk), we filtered the Landsat-8 and Sentinel-2
GEE image collections based on location, date range, and maximum cloud coverage. We filtered the
collections for the Arctic summer months (1 July–31 August 2016) and a maximum cloud cover of
80% per image. We then identified same-day acquisitions of overlapping Landsat-8 and Sentinel-2
images for each study site (Figure 2, Table 2, and Table A1 with the GEE image names). For each
study site, we identified one Landsat-8 and one Sentinel-2 image that overlapped substantially and
had as little cloud cover as possible. We assumed that there was no change on the ground target
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between the Landsat-8 and Sentinel-2 identified same-day observations since both satellites are
Sun-synchronous with mid-morning overpass times, the same-day acquisitions being taken only
minutes apart. Likewise, atmospheric conditions were also expected to not have changed significantly
between the acquisitions. Additionally, the solar zenith and solar azimuth angles were very similar
and only diverged slightly (Table 2). Therefore, any differences found between the Landsat-8 and
Sentinel-2 same-day acquisitions were considered differences in sensor responses exclusively.

Figure 3. Data processing workflow used for the spectral band comparison and adjustment. Landsat-8
is abbreviated to L8 and Sentinel-2 to S2.

Table 2. Data filtering and selection result for same-day Landsat-8 and Sentinel-2 image pairs for the
three study sites.

Location Date 2016 Sensor
Cloud
Cover

%

Acquisition
Time
(UTC)

Solar
Azimuth

Angle

Solar
Zenith
Angle

No. of
Clear
Pixels

Lena
Delta

72.37 N 23 August L8 24 03:40:06 178.97 60.89 156,315
126.50 E S2 18.5 03:47:34 184.34 61.18

Batagay 67.77 N 1 August L8 38.6 02:39:23 170.97 50:57 346,053
134.58 E S2 49.8 03:05:46 179.39 50.10

Yakutsk 61.77 N 9 July L8 1.3 02:35:06 161.32 40.17 1,944,414
130.50 E S2 0.1 03:00:11 171.07 39.65

2.3.2. Creating L8, S2, and Site Masks

Our method was solely based on a clear pixel comparison. In this case, we defined clear pixels
not to contain clouds, cloud shadows, water, or snow, and hence, their surface reflectance values
were uncontaminated by these environmental properties. The masking of clouds, cloud shadows,
and snow was done in GEE. For Landsat-8, we used the provided “pixel_qa” band that contains
cloud, shadow, snow, and water masks derived with the CFMask algorithm [57]. Based on the CFMask
information in the “pixel_qa” band, we selected clear pixels only and created a “clear pixel” mask
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for each Landsat-8 image of the three study sites (L8 mask). For Sentinel-2, we applied a simple
cloud score algorithm that uses band thresholds as cloud filtering steps [54]. We also included a cloud
shadow shift algorithm taking into account the average cloud height and projecting the estimated cloud
shadow based on the cloud position, a GEE code fragment introduced by Donchyts [60]. With this
method, we also created a mask for each Sentinel-2 image that selects only clear pixels of that image,
creating a “clear pixel” mask (S2 mask).

To identify clear pixels in both datasets, we joined the two masks. First, we reprojected both
L8 and S2 clear pixel masks (L8 masks and S2 masks) to the same projection, taking the Landsat-8
image projection as the default projection (WGS 84/ UTM zone 51 N, 52 N, or 53 N for the different
study sites). Additionally, we resampled the S2 masks to 30-m spatial resolution to fit to the Landsat-8
resolution. GEE offers a resampling algorithm for images called “reproject”. This algorithm requires
two input parameters and then performs nearest neighbor resampling. Firstly, one needs to specify the
projection to be used and secondly the desired scale or better spatial resolution in meters of the output
image. Then, the L8 mask and S2 mask (30 m) for each image pair per study site were combined.
The result was a single mask that contained only overlapping clear pixels from the Landsat-8 and
Sentinel-2 same-day acquisitions for every study site (“site mask”).

2.3.3. Preparing Sentinel-2 Surface Reflectance Images in SNAP

We downloaded the same-day Sentinel-2 Level-1C images from ESA’s distribution platform
Copernicus Open Access Hub. The images were processed in SNAP to Sentinel-2 Level-2A surface
reflectance images with the Sen2Cor tool. Sen2Cor can be run from the Sentinel Application Platform
(SNAP) desktop toolbox. We used SNAP Version 6.0.5 including the Sentinel-2 Toolbox (S2TBX)
Version 6.0.2 with Sen2Cor Version 255. The input for the Sen2Cor tool is the Sentinel-2 Level-1C
image and processing parameters. We defined the processing resolution to 10 m, the aerosol input for
the Lena Delta as “Maritime” and for Batagay and Yakutsk as “Rural”, and the type of atmosphere
as “mid-latitude summer”, and the remaining parameters were kept as default. The results were
Sentinel-2 Level-2A image products, corrected to surface reflectance. After exporting the images as
Geotiffs from SNAP, we ingested them into GEE.

2.3.4. Applying Site Masks

The final processing step included the surface reflectance image products. For the L8, we again
relied on the image collection “USGS Landsat 8 Surface Reflectance Tier 1” available in GEE. For
S2, we used the SNAP-processed Sentinel-2 Level 2A images newly ingested into GEE. To avoid
errors due to georeferencing differences, we reprojected the same-day surface reflectance images
to the same projection, as described in Section 2.3.2, and resampled the images uniformly to 60-m
spatial resolution with an averaging algorithm. The resampling ensured that the Landsat-8 and
Sentinel-2 pixel-pairs covered the same ground target [61], in addition to their already good relative
co-registration of <6.6 m [62]. Even residual geolocation errors of Landsat-8, which can lead to
geographic misalignments between Landsat-8 and Sentinel-2 of up to 38 m, were then reduced [63].
The overall mask per study site (“site mask”) was also resampled to 60 m and then applied to the
Landsat-8 and Sentinel-2 surface reflectance (60 m) images. The resulting masked images were now
clipped to the site masks’ extent and only contained the corresponding Landsat-8 and Sentinel-2
cloud-free pixels of the same-day acquisitions per study site. The obtained Landsat-8 and Sentinel-2
surface reflectance pixel-pair dataset from the same-day acquisitions was then used as the input for
the spectral band comparison and adjustment.

Both the cloud and especially cloud shadow masking were not very reliable, neither for the
Landsat-8, nor for the Sentinel-2 images [57,64]. This particularly affected the Batagay and Yakutsk
sites. Therefore, we additionally had to identify manually cloud- and cloud shadow-free overlapping
image regions of the same-day image pairs and select only these areas for the data output to ensure
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an appropriately clear dataset. We exported these pixel-pair datasets from GEE as csv-files to continue
with the analyses in Jupyter Notebook (Python).

2.4. Spectral Band Comparison and Adjustment

We compared the Sentinel-2 pixel surface reflectance values of the individual bands to the
corresponding pixel surface reflectance values of the matching Landsat-8 bands (Table 1) and used
scatter plots to display the relationship of the pixel-pairs of corresponding bands. A 1-to-1 line
in every plot represents the potential perfect agreement between the two bands and allows a first
visual assessment of misalignment between the two sensors. The divergence of the variables from
the 1-to-1 line displays the error between the two corresponding bands. We further calculated the
Pearson correlation coefficient (r) as a measure of linear correlation between the corresponding band
pairs per study site. A correlation coefficient of 1.0 shows perfect correlation between two variables
and a coefficient of 0.0 that there is no linear relationship [65]. Additionally, we derived the Root
Mean Squared Error (RMSE), which is a measure of the absolute difference between the value pairs.
The lower the RMSE, the smaller the difference of the x and y value, hence a closer relationship [65].
Most importantly, we derived the ordinary least squares regression for every band comparison.
The resulting prediction fit model can be generally described as in Equation (1).

L8 = slope ∗ S2 + intercept (1)

where S2 stands for the surface reflectance values of the Sentinel-2 MSI bands, L8 for the surface
reflectance values of the Landsat-8 OLI bands, and slope and intercept the coefficients derived in
the ordinary least squares regression. A slope of 1 and an intercept of 0 would indicate a perfect fit
between L8 and S2.

We applied the explicit slope and intercept values per band of the derived ordinary least squares
regression model to the Sentinel-2 MSI reflectance values. Hence, we calculated adjusted Sentinel-2
reflectance values that resembled the Landsat-8 values and reduced potential errors between Landsat-8
and Sentinel-2 reflectance values per band. This analysis and adjustment was conducted for every
corresponding Sentinel-2 and Landsat-8 band pair and every study site individually.

In addition to the local assessment of the individual study sites, we aimed for a more regional
approach. We combined all pixel pairs of the three study sites, Lena Delta, Batagay, and Yakutsk,
as they represent the heterogeneity of Eastern Siberia (ES), and conducted the spectral band comparison
for ES as a whole as well. We applied the resulting ES ordinary least squares regression model to all
three study sites to assess the potential differences between locally- and regionally-derived adjustment
coefficients and discussed whether a spectral comparison and adjustment were possible on the regional
scale. Likewise, we also applied the globally-derived ordinary least squares regression coefficients
from the Harmonized Landsat Sentinel-2 product (HLS) [38] to all three study sites individually to
assess the potential use of the globally applicable product versus the locally-derived adjustment.
The HLS adjustment coefficients were taken from [38].

As vegetation indices are extensively used for qualitative and quantitative vegetation cover
analyses from spectral measurements, we extended the adjustment assessment to the Normalized
Difference Vegetation Index (NDVI). We derived the NDVI, which is commonly used as an indicator
of green vegetation cover, for both the Landsat-8 and Sentinel-2 data products. The NDVI is calculated
by using two spectral bands, as shown in Equation (2)

NDVI =
NIR − Red
NIR + Red

(2)

where NIR stands for the Near-Infrared wavelength band values and Red for the red wavelength
band values of the individual sensor [66]. The NDVI can range between −1 and 1, where an NDVI
close to 1 indicates high green vegetation cover and a value close to 0 no vegetation, possibly urban
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areas, and negative NDVI values mainly result from water, clouds or snow. For the Landsat-8 NDVI
calculation, we used B5 for NIR and B4 for red, and for the Sentinel-2 NDVI calculation, we used
B8A for NIR and B4 for red (Table 1). We calculated the NDVI for the measured surface reflectance
Landsat-8 and Sentinel-2 values and also for the spectrally-adjusted Sentinel-2 reflectance values to
assess what effect the spectral differences of Landsat-8 and Sentinel-2 might have on vegetation indices.

3. Results

3.1. Spectral Band Comparison

The spectral band comparisons were conducted for all pixels of the overlapping areas from the
same-day Sentinel-2 and Landsat-8 acquisitions for every corresponding band combination and for all
study sites. Table 3 summarizes the analysis for each study area and provides the intercept and slope
of the resulting ordinary least squares regression, Pearson’s correlation coefficients, and associated
root mean squared errors. Exemplarily, Figure 4 shows the scatter plots of band combinations and
adjusted Sentinel-2 data for the Lena Delta. Figure 4 depicts the expected offset between corresponding
bands and scatter around the one-to-one line. In general, the scatter plots affirm that the Landsat-8
and Sentinel-2 bands have a strong overall correlation. This is also represented by high r coefficients
and promising ordinary least squares regression coefficients as low intercept and high slope values
(Table 3). The comparison scatter plots of Batagay, Yakutsk, and Eastern Siberia are provided in the
Appendix (Figures A1–A3).

The band comparisons of the visible wavelength bands, B2/B2, B3/B3, and B4/B4 for Batagay
(Figure A1), showed noticeably lower correlation coefficients, 0.624, 0.726, and 0.818, respectively.
The slope coefficients from the ordinary least squares regression were lower for these band
combinations in Batagay as well, compared to the other two study sites and the regional ES assessment
(Table 3).

We compared both possible NIR band combinations, B8A/B5 and B8/B5, to inspect if one
Sentinel-2 NIR band, B8A or B8, was more similar and fits spectrally better to the Landsat-8 NIR band
(B5) in combined studies in Eastern Siberia. The results showed no striking trend favoring one band
combination. The B8A/B5 comparison overall had slightly higher correlation coefficients than the
B8/B5 comparison. Likewise, the RMSE was also smaller for B8A/B5, indicating a closer fit between
Sentinel-2 B8A and Landsat-8 B5 reflectance values. The ordinary least squares regression analyses
showed contrasting trends, however. The B8A/B5 band comparisons resulted in intercepts that were
slightly lower and therefore indicated a marginally better fit. In contrast, the B8/B5 comparison
yielded higher slopes, which suggested a regression fit of the two variables.

Overall, the study sites did not differ from one another significantly. The r coefficients ranged
between 0.89 (ES B2/B2) and 0.974 (Yakutsk and ES B12/B7), which points at very strong correlations
between the Sentinel-2 and Landsat-8 surface reflectance values for all assessed corresponding bands
at all study sites. Furthermore, the ordinary least squares regression analyses mainly showed very low
intercept and reasonably high slope values.
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Table 3. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding
bands, for same-day acquisitions. Displaying the results of the ordinary least squares regression,
Pearson correlation, and root mean squared error for every study site.

Bands Study Ordinary Least Squares Regression Pearson’s Correlation Root Mean Square

S2 Band L8 Band Site Intercept Slope Coefficient (r) Error (RMSE)

2 2

Lena Delta 0.017 0.66 0.927 0.012
Batagay 0.0107 0.531 0.624 0.008
Yakutsk 0.0052 0.689 0.92 0.007

ES 0.0053 0.711 0.89 0.0073

3 3

Lena Delta 0.0186 0.767 0.962 0.0096
Batagay 0.0240 0.599 0.726 0.008
Yakutsk 0.0129 0.752 0.945 0.006

ES 0.0125 0.777 0.937 0.0065

4 4

Lena Delta 0.0182 0.784 0.97 0.0104
Batagay 0.018 0.721 0.818 0.011
Yakutsk 0.012 0.8 0.964 0.009

ES 0.0125 0.815 0.97 0.0095

8A 5

Lena Delta 0.0302 0.835 0.95 0.021
Batagay 0.056 0.749 0.902 0.019
Yakutsk 0.044 0.806 0.945 0.018

ES 0.044 0.804 0.941 0.019

8 5

Lena Delta 0.030 0.869 0.943 0.0187
Batagay 0.058 0.771 0.900 0.020
Yakutsk 0.049 0.82 0.942 0.0201

ES 0.049 0.82 0.94 0.020

11 6

Lena Delta 0.021 0.826 0.951 0.0241
Batagay 0.0194 0.836 0.933 0.015
Yakutsk 0.0095 0.894 0.967 0.014

ES 0.012 0.877 0.97 0.015

12 7

Lena Delta 0.007 0.852 0.962 0.019
Batagay 0.0077 0.834 0.938 0.0111
Yakutsk 0.0031 0.874 0.974 0.012

ES 0.004 0.87 0.974 0.013

Figure 4. Cont.
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Figure 4. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding
bands for the Lena Delta. Left plots: observed surface reflectance values. Right plots: Lena Delta
Adjusted (LDA) Sentinel-2 reflectance values. The solid black line is one-to-one, and the pink line is the
ordinary least squares regression trend line. In all plots, the Sentinel-2 values and bands are on the
x-axis, while Landsat-8 is depicted on the y-axis.

3.2. Spectral Band Adjustment

The ordinary least squares regression results (Table 3) were used as the input for the spectral
band adjustment, using Equation (1). With these coefficients, we adjusted the observed Sentinel-2
surface reflectance values to fit the Landsat-8 values with respect to the band combination and specific
study sites. The adjusted Sentinel-2 results are shown exemplarily for the Lena Delta site in Figure 4,
while the other two sites, as well as the overall adjustment for Eastern Siberia are shown in the
Appendix (Figures A1–A3).

The overall results showed that the Sentinel-2 surface reflectance values can be fitted to the
Landsat-8 pixel surface reflectance values (Table 4). After the spectral band adjustment by band
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pair, we recalculated the r coefficient, RMSE, and also the new ordinary least squares regression.
Visually, the adjusted Sentinel-2 and Landsat-8 surface reflectance values were well aligned with the
one-to-one line (Figure 4, Figure A1, Figure A2, and Figure A3). The new intercept and slope results
of the ordinary least squares regression now showed that the adjusted datasets had no offset (0)
and a slope that was either 0.99 or 1.0, indicating a very good agreement between the two variables.
The spread around the mean, demonstrated by the r coefficient, was unchanged, but the RMSE
decreased for all band combinations in all study sites. This indicates that the absolute difference
between the adjusted Sentinel-2 and Landsat-8 reflectance values for corresponding pixels declined
overall. Our results showed that the individual bands correlated better after the Sentinel-2 adjustment
for all three study sites and also the Eastern Siberian (ES) regional scale analysis.

Table 4. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding
bands after spectral band adjustment, for same-day acquisitions. Displaying the results of the ordinary
least squares regression, Pearson correlation, and root mean squared error for every study site.

Bands Study Ordinary Least Square Regression Pearson’s Correlation Root Mean Square

S2 Band L8 Band Site Intercept Slope Coefficient (r) Error (RMSE)

2 2

Lena Delta 0 0.99 0.927 0.007
Batagay 0 1.00 0.624 0.006
Yakutsk 0 0.99 0.92 0.004

ES 0 1.00 0.89 0.005

3 3

Lena Delta 0 0.99 0.962 0.006
Batagay 0 1.00 0.726 0.006
Yakutsk 0 1.00 0.945 0.0042

ES 0 1.00 0.937 0.005

4 4

Lena Delta 0 0.99 0.97 0.007
Batagay 0 0.99 0.818 0.006
Yakutsk 0 0.99 0.964 0.0048

ES 0 1.00 0.97 0.0054

8A 5

Lena Delta 0 1.00 0.95 0.016
Batagay 0 0.99 0.902 0.0153
Yakutsk 0 0.99 0.945 0.0152

ES 0 1.00 0.941 0.0154

8 5

Lena Delta 0 1.00 0.943 0.017
Batagay 0 0.99 0.900 0.0154
Yakutsk 0 0.99 0.942 0.0155

ES 0 0.99 0.94 0.0158

11 6

Lena Delta 0 0.99 0.951 0.013
Batagay 0 1.00 0.933 0.0112
Yakutsk 0 1.00 0.967 0.0102

ES 0 1.00 0.97 0.0106

12 7

Lena Delta 0 0.99 0.962 0.011
Batagay 0 1.00 0.938 0.0075
Yakutsk 0 0.99 0.974 0.0074

ES 0 0.99 0.974 0.0077

The comparison of the NDVI calculations showed one distinct feature. Negative Landsat-8 NDVI
values were found only for few pixels, whereas for Sentinel-2 NDVI values before the adjustment,
there were considerably more negative values, especially in Yakutsk. However, after spectral band
adjustment, there were hardly any remaining negative Sentinel-2 NDVI values. This was valid for
all study sites (Figures 5 and A4). Negative NDVI values normally indicate non-vegetated land
cover types such as snow, clouds, or water with their higher reflectance properties in the visible
wavelengths and then a reflectance decline towards near infrared. Despite this, the NDVI comparisons
depicted overall a good fit between Landsat-8 NDVI and Sentinel-2 NDVI values for all study sites,
with r coefficients ranging from 0.85 (Batagay) to 0.98 (Lena Delta) (Table 5). The ordinary least
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squares regression coefficients, as well as the r and RMSE improved with the Sentinel-2 spectral band
adjustment when recalculating the Sentinel-2 NDVI with the adjusted NIR and red values (Figure 5
and Table 5).

Table 5. Comparison of NDVI calculations from Sentinel-2 and Landsat-8 before and after spectral
band adjustment (NDVI adj), for same-day acquisitions. Displaying the results of the ordinary least
squares regression, Pearson correlation, and root mean squared error for every study site.

Bands Study Ordinary Least Square Regression Pearson’s Correlation Root Mean Square

S2 Band L8 Band Site Intercept Slope Coefficient (r) Error (RMSE)

NDVI NDVI

Lena Delta 0.054 0.847 0.98 0.054
Batagay 0.2 0.65 0.85 0.078
Yakutsk 0.16 0.74 0.93 0.068

ES 0.12 0.79 0.95 0.068

NDVI adj NDVI

Lena Delta −0.017 1.03 0.98 0.033
Batagay −0.027 1.04 0.88 0.037
Yakutsk −0.017 1.02 0.96 0.03

ES −0.031 1.04 0.97 0.033

Figure 5. Comparison of NDVI values from the Lena Delta ((a), upper row) and Yakutsk ((b), lower
row). Left plots: NDVI calculated from observed Landsat-8 and Sentinel-2 surface reflectance values.
Right plots: NDVI calculated from adjusted Sentinel-2 and observed Landsat-8 reflectance values. The
solid black line is one-to-one, and the pink line is the ordinary least squares regression trend line.

3.3. ES and HLS Spectral Band Adjustment

We used the ES ordinary least squares regression coefficients (Table 3) as input for Equation (1)
and applied these for spectral band adjustment to the three study sites. The results showed that
using the ES coefficients for band adjustment also significantly improved the relationship between
ES-adjusted Sentinel-2 and Landsat-8 surface reflectance pixel values (Table 6). Visually, there was
an improvement and a better relationship between ES-adjusted Sentinel-2 and Landsat-8 reflectance
values (Figure A5). The already previously-observed lower correlation of the visible wavelength bands
(B2/B2, B3/B3, and B4/B4) in Batagay were noticeable in this assessment as well.

The slope coefficients of the ordinary least squares regression after ES adjustment ranged from
0.928 (Lena Delta B2/B2) to 1.059 (Lena Delta B8/B5). Applying the ES-adjustment coefficients led to
some slope coefficients exceeding 1.0 and intercepts that were slightly negative. This was the case for
individual band combinations in the Lena Delta and Yakutsk.
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Table 6. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding bands after spectral band adjustment, for same-day acquisitions,
using the Eastern Siberian (ES) and Harmonized Landsat and Sentinel-2 (HLS) adjustment coefficients. Displaying the results of the ordinary least squares regression,
Pearson correlation, and root mean squared error.

ES Adjustment HLS Adjustment

Bands Study Ordinary Least Squares Pearson’s Root Mean Ordinary Least Squares Pearson’s Root Mean

Site Regression Correlation Squared Regression Correlation Squared

S2 Band L8 Band Intercept Slope Coefficient (r) Error (RMSE) Intercept Slope Coefficient (r) Error (RMSE)

2 2

Lena Delta 0.0123 0.928 0.927 0.0121 0.020 0.675 0.927 0.014
Batagay 0.007 0.747 0.624 0.0058 0.013 0.54 0.624 0.0069
Yakutsk 0 0.970 0.92 0.004 0,008 0.705 0.92 0.0055

3 3

Lena Delta 0.006 0.987 0.962 0.0083 0.019 0.763 0.962 0.010
Batagay 0.014 0.771 0.726 0.0066 0.025 0.596 0.726 0.0082
Yakutsk 0.0008 0.968 0.945 0.0043 0.014 0.75 0.945 0.0061

4 4

Lena Delta 0.006 0.962 0.97 0.0077 0.017 0.799 0.97 0.010
Batagay 0.007 0.884 0.818 0.0067 0.0174 0.734 0.818 0.0109
Yakutsk 0.00012 0.977 0.964 0.0049 0.012 0.81 0.964 0.0086

8A 5

Lena Delta −0.0155 1.038 0.95 0.018 0.030 0.834 0.95 0.021
Batagay 0.0153 0.932 0.902 0.0155 0.057 0.748 0.902 0.0188
Yakutsk –0.0001 1.003 0.945 0.0152 0.044 0.805 0.945 0.0186

8 5

Lena Delta −0.022 1.059 0.943 0.019
Batagay 0.012 0.94 0.900 0.0157
Yakutsk 0.0003 0.99 0.942 0.0155

11 6

Lena Delta 0.0098 0.94 0.951 0.014 0.021 0.825 0.951 0.024
Batagay 0.008 0.953 0.933 0.0113 0.020 0.835 0.933 0.015
Yakutsk −0.0028 1.02 0.967 0.0102 0.0096 0.89 0.967 0.014

12 7

Lena Delta 0.003 0.98 0.962 0.011 0.008 0.856 0.962 0.018
Batagay 0.0039 0.959 0.938 0.0076 0.0039 0.959 0.938 0.0103
Yakutsk −0.0009 1.004 0.974 0.0075 0.004 0.88 0.974 0.011
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Yakutsk seemed to be adjusted the best compared to the Lena Delta and Batagay. This likely was
because the ES dataset was dominated by the Yakutsk site, which provided about 80% of the data to
the analysis with 1,944,414 pixels compared to 156,315 and 346,053 pixels from the Lena Delta and
Batagay sites, respectively (Table 2).

Applying the globally-available HLS coefficients for band adjustment to the three study sites
showed no significant improvement (Table 6). The HLS results actually very much resembled the
original spectral band comparisons (Table 3). Hence, the relationship between HLS-adjusted Sentinel-2
and Landsat-8 pixel values was not enhanced after HLS adjustment.

4. Discussion

Our overall comparison and adjustment results showed a good fit between Sentinel-2 and
Landsat-8 in the high latitudes. Despite this, the Batagay study site showed the biggest differences
between Landsat-8 and Sentinel-2 reflectance values in the visible wavelength bands. The Batagay
same-day image pair, compared to the Lena Delta and Yakutsk example, also contained the highest
cloud cover with 38.6% and 49.8% (Table 2). While the cloud and cloud shadow detection algorithms
still had high omission errors [57,64], the Batagay images particularly were visibly contaminated
with thin cirrus clouds that were difficult to mask. This decreased the quality of the images [67] and
likely was the main cause for a lower correlation coefficient between spectral bands, since the visible
wavelength ranges were particularly affected by clouds and cirrus [68]. Landsat-8 and Sentinel-2 were
differently sensitive to cirrus clouds, and the acquisition delay of 25 min between the two sensors was
sufficient for a change in cirrus conditions in terms of cirrus presence and intensity, which decreased the
comparison quality. Claverie et al. [38] observed this in images with a high cloud cover content as well.
The geographic location of the Batagay site between two mountain ranges with very frequent cloud
cover and highly variable cloud dynamics precludes better same-day image pair qualities. Arguably,
the Batagay image pair should therefore be considered with additional caution; however, in spite of the
slightly less favorable adjustment fit, the Batagay study site still had good overall adjustment results
and illustrated the applicability of this approach also for challenging areas.

All scatter plots had a reasonable amount of scatter around the one-to-one relationship.
Experiments with simulated Landsat-8 and Sentinel-2 data by Zhang et al. [33] demonstrated that
the scatter was emerging from the differing spectral response functions of the bands. Another source
for value scatter likely was the different spatial resolutions of the sensors. Mandanici and Bitelli [34]
performed tests that showed that spatially-heterogeneous target surfaces created a lower Pearson
correlation coefficient in band comparisons [34]. The Sentinel-2 sensors’ high-resolution bands most
likely capture the landscape heterogeneity to a greater extent compared to Landsat-8, which then is
not averaged out completely in the resampling process to 60-m pixels. Flood [39] and Roy et al. [69,70]
further looked at misregistration, different viewing geometries, and atmospheric path length as
potential sources for errors between the sensors. All these points contribute to the scatter between
Sentinel-2 and Landsat-8 reflectance values. Overall, we are confident with our adjustment results as
the Pearson’s correlation coefficients were high throughout the analyses.

When inspecting the scatter plots, a noticeable number of pixels displayed data discrepancies in
the NIR (B8A/B5, B8/B5) and SWIR (B11/B6, B12/B7) band comparisons of Yakutsk and the Lena
Delta. In the Lena Delta, Landsat-8 captured little reflectance variability in bands B5 and B6 (between
0.08 and 0.13), while Sentinel-2 recorded reflectance values from 0–0.35 in bands B8A, B8, and B11 for
the corresponding pixels. In Yakutsk, the relationship was reversed, where Sentinel-2 recorded nearly
no variation in values (0–0.05) in bands B8A, B8, and B11, while Landsat-8 indicated values ranging
from 0–0.2 in bands B5 and B6 for the same pixels. This data illustrated the different sensitivities of
the two sensors in signal reception and translation to reflectance values. We identified these pixels
by building masks to only select the pixels associated with these discrepancies. The majority of
these pixels were water or mixed water-land pixels. In the Lena Delta, those pixels were mainly
from sandbanks. Despite applying a water mask, these pixels were not masked as they did not fully
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comply with water characteristics only. The sandbanks have a high bottom reflectance through the
thin water column, resulting in mixed reflectance signals, and the extent of water coverage changes
strongly with water level changes. Therefore, the water mask failed to mask these pixels properly,
and evidently, the Landsat-8 and Sentinel-2 NIR and SWIR bands picked up and converted the mixed
signals differently. Likewise, the striking pixels in the Yakutsk NIR and SWIR bands were water
body pixels, as well. The Yakutsk area contains many thermokarst lakes and ponds that vary in
size and depth, which fosters the likelihood of pixels containing a mixed water and ground signal.
Vuolo et al. [35] made similar observations in pixel differences and accredited the bigger differences
to three error sources: heterogeneous and complex terrains, the quality of cloud and cloud shadow
masking algorithms, and the challenging and differing atmospheric correction results. Our analyses
and study site characteristics confirmed these points and challenges, which underlines that a spectral
band comparison can only be based on clear, high-quality images, as reflectance artifacts decrease the
quality of the comparison and the adjustment scheme results. Further attention has to be given to
the cloud, cloud shadow, and water masking. Under challenging conditions, a manual selection and
masking of clear areas for analysis may be inevitable. The NDVI comparison results showed that both
Landsat-8 and Sentinel-2 NDVI captured similar vegetation traits and that green vegetation estimations
derived from either system would be very similar. However, in this case, it was inevitable to adjust the
Sentinel-2 bands spectrally to Landsat-8 since a moderate amount of non-adjusted Sentinel-2 NDVI
values were negative in contrast to the Landsat-8 NDVI values.

The overall results demonstrated that Sentinel-2- and Landsat-8-acquired reflectance values for
corresponding pixels correlated well in Arctic-Boreal permafrost regions in Eastern Siberia. This was
observed for all three study sites separately and also in the combined adjustment for the Eastern
Siberian region. This underlines the expected sensor compatibility and agrees with results from similar
studies [33,34,36,38,39]. However, our study went slightly beyond some of the previous ones, which
partly based their evaluation on simulated Landsat-8 and/or Sentinel-2 image products [33,34,36],
and not on acquired images. We showed that it is possible to reduce the persistent difference in spectral
responses between the measured reflectance values of the spectral bands by deriving and then applying
an ordinary least squares regression model, adjusting Sentinel-2 to resemble Landsat-8 reflectance
values in Arctic-Boreal permafrost regions. It is possible to create a seemingly perfect fit between
spectrally corresponding bands at the individual study site. The best adjustment results were obtained
in the local assessments (LDA, BatA, YukA), but closely followed by the regional approach (esA).
The ES analysis shows that combining regional data, and deriving overarching adjustment coefficients
will lead to a very good fit between Landsat-8 and ES adjusted Sentinel-2 reflectance values in Eastern
Siberia as well. We therefore considered our derived adjustment coefficients to be representative for
Eastern Siberia and that they were applicable for a Sentinel-2 to Landsat-8 adjustment throughout
Eastern Siberia. The implementation of the globally-applicable HLS coefficients did not improve the
spectral comparability of Landsat-8 and Sentinel-2 reflectance values at any of our three Arctic-Boreal
study sites or on the regional ES level. This might be because only a few Arctic study sites and merely
one Siberian site were included in the HLS product, and therefore, the Eastern Siberian landscape
and vegetation forms were not represented enough in the HLS study. This finding is similar to the
adjustment results from Flood [39] for Australian landscapes, and thus, we do not recommend using
globally-derived adjustment coefficients for local or regional scale studies, but instead determine
region-specific coefficients for a Sentinel-2 to Landsat-8 adjustment.

Being able to adjust Sentinel-2 to Landsat-8 gives the possibility of combining Landsat and
Sentinel-2 data in analysis applications. Here, we relied on the already existing data continuity
strategy for the Landsat sensors and would like to extend the range of sensors by adjusting Sentinel-2
to Landsat-8 [29–32]. Considering the substantial increase in available multispectral images for
the high latitudes with Sentinel-2 (Figure 1) [28], the creation of dense time series is possible.
A combined Landsat and Sentinel-2 time series will improve land cover and vegetation mapping
and monitoring approaches in detecting shifts in vegetation composition and structure, as well as
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permafrost region disturbances in a warming climate. A key advantage of dense time series analysis is
the capability to detect landscape dynamics and to differentiate between rapid and gradual changes,
therefore describing permafrost region disturbances better and being able to conduct detailed trend
analysis in Arctic-Boreal permafrost regions.

One of the main motivation to combine Landsat-8 and Sentinel-2 in high latitudes is the frequent
cloud cover and therefore the low data availability of cloud-free images. To avoid this disadvantage
of optical remote sensing altogether, one can consider using Synthetic Aperture Radar (SAR) sensors
that penetrate the cloud cover and acquire data during bad weather conditions, as well. SAR data
were applied to a variety of studies focusing on different aspects and applications in northern high
latitudes, such as land cover mapping, successfully already [20]. Nonetheless, one general conclusion
is that the best results can be obtained from polarimetric SAR data together with optical remote
sensing [71]. Despite the advantages of active sensors, in particular SAR, towards frequent cloud
cover, we trust assessing permafrost landscape changes with optical remote sensing. On the one
hand, the optical remote sensing data archive, mainly Landsat, is the longest archive spanning more
than 45 years, providing extensive records of the past. On the other hand, we see high potential in
change detection and time series segmentation algorithms, such as LandTrendr, which we would
like to apply to permafrost regions and assess disturbance regimes. However, the availability and
advantages of SAR data will be an asset when assessing permafrost disturbances, as SAR data can
potentially fill data gaps and help as supplementary material to identify and evaluate permafrost
landscape disturbances well.

5. Conclusions

The overall objective of our study was to compare the spectral characteristics of Landsat-8 and
Sentinel-2 across Arctic-Boreal permafrost regions and to assess their compatibility and potential use
in a combined time series. Our spectral comparison of Landsat-8 and Sentinel-2 corresponding bands
showed that these two sensors correlate well and depict similar trends with only minor differences in
Eastern Siberian permafrost regions. Depending on the application purpose, one has to assess whether
these differences are negligible or of relevance. With an ordinary least squares regression based on
band comparisons of corresponding Landsat-8 and Sentinel-2 bands, we can successfully adjust the
Sentinel-2 reflectance values to resemble Landsat-8 more and homogenize the two data sets. To avoid
geolocation errors and account for the sensors’ different spatial resolutions, we downscaled our images
to 60 m.

The comparison method was valid for adjustments on the local level for sites with different
ecological and landscape characteristics, but also when merging data across Eastern Siberia and
conducting the spectral comparison and adjustment regionally. This underlines the comparability
and compatibility of the two sensors. In contrast, we found that the application of the Harmonized
Landsat Sentinel-2 product generated no improvement in spectral adjustment. Relying on global
adjustment schemes between Landsat-8 and Sentinel-2 is therefore not advisable for Eastern Siberia or
for local to regional time series studies in general. Therefore, we recommend at least regionally-fitted
spectral adjustments when jointly using Landsat-8 and Sentinel-2 data products. This minimizes the
potentially introduced error from different spectral band responses when combining data from multiple
sensors. Our data enable the combined use of Landsat and Sentinel-2 in future time series analysis and
other landscape change approaches in Arctic-Boreal permafrost regions of Eastern Siberia. Despite
the overall good adjustment results, small differences between the sensors remained, which can be
attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking,
and mixed pixels.

Our assessment was solely based on the use of open source software (GEE, SNAP, Jupyter
Notebook) and freely-available data sets (Landsat-8, Sentinel-2). This makes the methodological
approach reproducible and allows wide usage also for other study areas. As our results were in line
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with previous local and regional studies, we acknowledge that these services and softwares are a
valuable and useful tool appropriate for such comparison studies.
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Appendix A

Table A1. The selected same-day images in Google Earth Engine (GEE) after data filtering for the three
study sites.

Study Site Sensor Image Name GEE

Lena
Delta

L8 LC08_132009_20160823
S2 20160823T034732_20160823T091448_T51XXA

Batagay L8 LC08_122012_20160801
S2 20160801T030546_20160801T064303_T53WMR

Yakutsk L8 LC08_121017_20160709
S2 20160709T030011_20160709T081153_T52VEP

Figure A1. Cont.
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Figure A1. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding
bands for Batagay. Left plots: observed surface reflectance values. Right plots: Batagay Adjusted (BatA)
Sentinel-2 reflectance values. The solid black line is one-to-one, and the pink line is the ordinary least
squares regression trend line.
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Figure A2. Cont.
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Figure A2. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding
bands for Yakutsk. Left plots: observed surface reflectance values. Right plots: Yakutsk Adjusted
(YukA) Sentinel-2 reflectance values. The solid black line is one-to-one, and the pink line is the ordinary
least squares regression trend line.

Figure A3. Cont.
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Figure A3. Comparison of surface reflectance values from the Sentinel-2 and Landsat-8 corresponding
bands for Eastern Siberia. Left plots: observed surface reflectance values. Right plots: Eastern Siberia
Adjusted (esA) Sentinel-2 reflectance values. The solid black line is one-to-one, and the pink line is the
ordinary least squares regression trend line.

Figure A4. Comparison of NDVI values from Batagay ((a), upper row) and Eastern Siberia ((b), lower
row). Left plots: NDVI calculated from observed surface reflectance values. Right plots: NDVI
calculated from adjusted Sentinel-2 reflectance values. The solid black line is one-to-one, and the pink
line is the ordinary least squares regression trend line.
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Figure A5. Comparison of Eastern Siberian Adjusted (esA) the Sentinel-2 reflectance values and
Landsat-8 corresponding bands for the individual study sites. In the order from left to right: Lena
Delta, Batagay, and Yakutsk. The solid black line is one-to-one, and the pink line is the ordinary least
squares regression trend line.
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