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Abstract
Particle filters contain the promise of fully nonlinear data assimilation. They have

been applied in numerous science areas, including the geosciences, but their appli-

cation to high-dimensional geoscience systems has been limited due to their inef-

ficiency in high-dimensional systems in standard settings. However, huge progress

has been made, and this limitation is disappearing fast due to recent develop-

ments in proposal densities, the use of ideas from (optimal) transportation, the use

of localization and intelligent adaptive resampling strategies. Furthermore, pow-

erful hybrids between particle filters and ensemble Kalman filters and variational

methods have been developed. We present a state-of-the-art discussion of present

efforts of developing particle filters for high-dimensional nonlinear geoscience

state-estimation problems, with an emphasis on atmospheric and oceanic applica-

tions, including many new ideas, derivations and unifications, highlighting hidden

connections, including pseudo-code, and generating a valuable tool and guide for

the community. Initial experiments show that particle filters can be competitive with

present-day methods for numerical weather prediction, suggesting that they will

become mainstream soon.

K E Y W O R D S
hybrids, localization, nonlinear data assimilation, particle filters; proposal densities

1 INTRODUCTION

Data assimilation for geoscience applications, such as weather

or ocean prediction, is a slowly maturing field. Even the lin-

ear data assimilation problem cannot be solved adequately

because of the size of the problem. Typically, global-scale

numerical weather prediction needs estimation of over 109

state variables, assimilating over 107 observations every

6–12 hr. Existing methods like 4DVar do not provide accu-

rate uncertainty estimates and need efficient pre-conditioners,

while Ensemble Kalman Filters (EnKFs) heavily rely on

somewhat 𝑎𝑑 ℎ𝑜𝑐 fixes like localization and inflation to

find accurate estimates. Hybrids of variational and ensemble

Kalman filter methods are a step forward, although localiza-

tion and inflation are still needed in realistic applications.

An extra complication is localization over time needed in

ensemble smoothers like the Ensemble Kalman Smoother

and four-dimensional ensemble-variational data assimilation

system (4DEnsVar) when the fluid flow is strong: what is

local at observation time is not necessary local at the start
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of the assimilation window because the observation influence

is advected with the flow. Furthermore, the recent surge of

papers on accurate treatment of observation errors shows that

a long way is still ahead of us to solve even the (close to) linear

data assimilation problem.

Although these problems are formidable, another diffi-

culty arises from the fact that the problem is typically nonlin-

ear, and, with increasing model resolution and more complex

observation operators, increasingly so. Both variational and

Kalman-filter-like methods have difficulty handling nonlinear

problems. Variational methods can easily fail when the cost

function is multimodal, and are hampered by the assumption

that the prior probability density function (pdf) of the state is

assumed to be Gaussian. EnKFs make the explicit assumption

that the prior pdf and the likelihood of the observations as

function of the state are Gaussian, or, somewhat equivalently,

assume that the analysis is a linear combination of prior state

and observations. Both methods have been shown to fail for

nonlinear data assimilation problems in low-dimensional sys-

tems, and both have been reported to have serious difficulties

in numerical weather prediction at the convective scale where

the model resolution is only a few km. Particle filters hold

the promise of fully nonlinear data assimilation without any

assumption on prior or likelihood, and recent textbooks like

Reich and Cotter (2015), Nakamura and Potthast (2015), and

van Leeuwen et al. (2015) provide useful introductions to data

assimilation in general, and particle filters in particular.

Other fully nonlinear data assimilation methods are

Markov chain Monte-Carlo (MCMC) methods that draw

directly from the posterior in a sequential way, so one

sample after the other, after a burn-in period; e.g. Robert

and Cassela (2004) or van Leeuwen et al. (2015) give a

geophysics-friendly introduction. The samples are correlated,

often 100% when the new sample is not accepted, making

them very inefficient in high-dimensional systems. This is

why we concentrate on particle filtering here.

The standard or bootstrap particle filter can be described

as follows. The starting point is an ensemble of size 𝑁 of

model states x𝑛
𝑖
∈ ℜ𝑁𝑥 , called particles, that represent the

prior probability density function (pdf) 𝑝(x𝑛), as

𝑝(x𝑛) ≈
𝑁∑
𝑖=1

1

𝑁
𝛿(x𝑛 − x𝑛𝑖 ). (1)

Between observations, each of these particles is propa-

gated forward from time 𝑛 − 1 to time 𝑛 with the typically

nonlinear model equations

x𝑛 = 𝑓 (x𝑛−1) + 𝜷𝑛 (2)

in which 𝑓 (..) denotes the deterministic model, and 𝜷𝑛 is a

random forcing representing missing physics, discretization

errors, etc. In this paper we assume this model noise to be

additive, but one could also consider multiplicative noise in

which 𝜷𝑛 is a function of the state of the system. We assume

that the pdf from which the 𝜷𝑛 are drawn is known; typically

a Gaussian 𝑁(0,Q).
At observation times the true system is observed via:

y𝑛 = H(x𝑛true) + 𝝐𝑛, (3)

in which the observation errors 𝝐𝑛 are random vectors rep-

resenting measurement errors and possibly representation

errors. Again we assume that these errors have known charac-

teristics, often Gaussian, so for example, 𝝐𝑛 ∼ 𝑁(0,R). These

observations y𝑛 ∈ ℜ𝑁𝑦 are assimilated by multiplying the

prior pdf above with the likelihood of each possible state, that

is, the probability density 𝑝(y𝑛|x𝑛) of the observation vector

given each possible model state, following Bayes’ theorem:

𝑝(x𝑛|y𝑛) = 𝑝(y𝑛|x𝑛)
𝑝(y𝑛)

𝑝(x𝑛), (4)

in which 𝑝(x𝑛|y𝑛) is the posterior pdf, the holy grail of data

assimilation. To avoid confusion, it is good to realise that the

true state is not a random variable when we apply Bayes’

theorem. It is a realization of a process, which could be

random or deterministic, from which we then take noisy

observations. Instead, Bayes’ theorem is a statement of what

we think the true state might be. Since the pdf of the 𝝐𝑛 is

known and Bayes’ theorem is a statement for each possible

state x𝑛 to be the true state, 𝑝(y𝑛|x𝑛) is the pdf of y𝑛 given that

the true state vector would be x𝑛. In general, since for a given

state x𝑛 the observation y𝑛 is equal to the observation error 𝝐

shifted by H(x𝑛), we find (e.g. van Leeuwen 2015):

𝑝(y𝑛|x𝑛) = 𝑝𝝐{y𝑛 − H(x𝑛)}. (5)

If we insert our particle representation of the prior into this

theorem we find:

𝑝(x𝑛|y𝑛) ≈ 𝑁∑
𝑖=1

𝑤𝑖𝛿(x𝑛 − x𝑛𝑖 ), (6)

in which the particle weights 𝑤𝑖 are given by:

𝑤𝑛
𝑖 =

𝑝(y𝑛|x𝑛
𝑖
)

𝑁𝑝(y𝑛)
=

𝑝(y𝑛|x𝑛
𝑖
)

𝑁 ∫ 𝑝(y𝑛|x𝑛)𝑝(x𝑛) dx𝑛
≈

𝑝(y𝑛|x𝑛
𝑖
)∑

𝑗 𝑝(y𝑛|x𝑛𝑗 ) .
(7)

Since all terms are known explicitly, we can just calculate

this as a number. The self-normalization in the last part of

Equation 7 is consistent with the notion that, for a proper rep-

resentation ofr a pdf, the sum of the weights should be equal to

one, so that the integral over the whole state space of the par-

ticle representation of the pdf is equal to one. Figure 1 depicts

the working of this filter.
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F I G U R E 1 The standard particle filter. Left: the prior particles

(dots), with one observation, denoted by the red cross. Right: the

posterior particles, the larger the dot the larger its weight. Note that the

particles do not move in state space, they are just reweighted

Propagating the particles x𝑛
𝑖

to the next observation time

𝑛+1 gives a weighted representation of the prior at time 𝑛+1.

Assimilating the observation at time 𝑛+ 1 by Bayes’ theorem

leads to a modification of the weights (e.g. Doucet et al. 2001

or van Leeuwen 2009):

𝑤𝑛+1
𝑖 = 𝑤𝑛

𝑖

𝑝(y𝑛+1|x𝑛+1
𝑖

)∑
𝑗 𝑝(y𝑛+1|x𝑛+1

𝑗 )
. (8)

Even in low-dimensional applications, the variation of

the weights increases with the number of assimilation steps.

Eventually one particle has a much higher weight than all

the others. To prevent this, resampling can be used before

propagation to obtain equally weighted particles. This dupli-

cates high-weight particles and abandons low-weight parti-

cles. After resampling, some of the particles have identical

values, but if the model contains a stochastic component and

independent random forcings are used for different particles,

diversity is restored; e.g. Doucet et al. (2001) or van Leeuwen

(2009) give details. Algorithm 1 illustrates the steps.

Algorithm 1 Standard Particle Filter

for 𝑖 = 1, .., 𝑁 do
𝑤𝑖 ← 𝑝(y|x𝑛

𝑖
)

end for
w ← w∕w𝑇 1
Resample

A simple resampling scheme using only one draw from a

uniform distribution U is presented in Algorithm 2.

In high-dimensional problems, the weights vary enor-

mously even at one observation time, and typically one

particle obtains a much higher weight than all the others.

Snyder et al. (2008, 2015) have shown that the number of

particles needed to avoid a weight collapse, in which one

particle gets weight 1 and the rest of the weights very close

to zero, has to grow exponentially with the dimension of

the observations y for a large class of particle filters. If the

weights collapse, all particles are identical after resampling,

and all diversity is lost. From this discussion it becomes clear

that, for particle filters to work, we need to ensure that their

weights remain similar.

In this review we will discuss four basic ways to make

progress on this fundamental problem of weight degeneracy.

Algorithm 2 Simple Resampling Scheme

𝑤̂1 ← 𝑤1

for 𝑗 = 2, .., 𝑁 do
𝑤̂𝑗 =

∑𝑗

𝑖=1
𝑤𝑗

end for
𝑢 ∼ 𝑈 [0, 1∕𝑁]
𝑚← 1

for 𝑗 = 2, .., 𝑁 do
while 𝑢 > 𝑤̂𝑚 do

𝑚← 𝑚 + 1

xnew
𝑚 = x𝑗

end while
𝑢 ← 𝑢 + 1∕𝑁

end for

In the first one, we explore the so-called proposal-density

freedom to steer particles through state space such that

they obtain very similar weights, e.g. Doucet et al. (2001).

As pointed out by e.g. Snyder et al. (2008), there are fun-

damental problems when applying these techniques to the

high-dimensional geoscience applications. We will examine

the issue in detail and discuss so-called equal-weight particle

filters, which point towards new ways to formulate and attack

the degeneracy problem.

The second approach transforms the prior particles into

particles from the posterior, either in one go, or via a more

smooth transformation process (Reich, 2013). While the

one-step approaches can be shown to fail in high-dimensional

settings, they do lend themselves very naturally to localiza-

tion. The more smooth multi-step transition variants seem to

be able to avoid the degeneracy problem without localization,

and are an interesting new development.

The third, more straightforward from the geoscience expe-

rience, approach is to introduce localization in particle filters.

While initial implementations were discouraging (e.g. van

Leeuwen 2009), new formulations have shown remarkable

successes, such that localized particle filters are now tested in

global operational numerical weather prediction systems (e.g.

Potthast et al. 2019).

The fourth approach is to abandon the idea of using pure

particle filters and combine them with EnKFs. This should

not be confused with using EnKFs in proposal densities. Sev-

eral variants exist, such as second-order exact filters, in which

only the first two moments are estimated, sequential versions

in which first an EnKF is used and the posterior EnKF ensem-

ble is used as input for the particle filter, or vice versa, and

combinations in which localized weights are calculated and,

dependent on the effective ensemble size, a full particle filter,

an EnKF, or a combination of both is used.

These four variants form the basis of the following four

sections. Each section contains a critical discussion of the

approximations and remaining major issues. It should be
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noted that the pseudo-code provided does not give the most

efficient implementation of the different particle filters, but is

rather an illustration of the computational steps involved. Effi-

cient pseudo-code for some of the more complex schemes can

be found in Vetra-Carvalho et al. (2018). The paper is closed

with a concluding section and an outlook of what possible

next steps could be.

2 PROPOSAL DENSITY
PARTICLE FILTERS

Ideally we draw independent samples directly from the pos-

terior pdf because the samples would all have equal weight

automatically. This can only be done, however, when the

shape of the posterior pdf is known and when it is easy to

draw from the posterior. An example of this is a Gaussian

prior combined with a linear Gaussian likelihood. Under these

assumptions the posterior is also Gaussian and the mean and

covariance can be calculated directly from the prior using

the Kalman update equations. EnKFs make use of this result

and draw directly from that pdf, which is why all posterior

particles have equal weights in an EnKF.

The standard particle filter draws particles from the prior.

These then have to be modified to become particles of the

posterior via the weighting with the likelihood. This is a gen-

eral procedure in statistics called importance sampling: one

draws from an approximation of the pdf one is interested in,

and corrects for this via so-called importance weights.

In the introduction we argued that drawing from the

prior leads to weights that vary too much: typically, in

high-dimensional problems with numerous independent

observations one particle gets weight 1, and all other par-

ticles have a weight very close to zero. However, we could

explore the idea of importance sampling on the transition

from one time to the next. When the numerical model is not

deterministic but stochastic we have the freedom to change

the model equations to move the particles to those parts of

state space where we want them to be, for instance closer to

the observations.

Mathematically this works as follows. Assume we have

observations at time 𝑛, so Bayes’ theorem at time 𝑛 is given by

Equation 4. If the model is stochastic, we can write the prior as

𝑝(x𝑛) = ∫ 𝑝(x𝑛|x𝑛−1)𝑝(x𝑛−1) dx𝑛−1, (9)

where 𝑝(x𝑛|x𝑛−1) is the transition density, the pdf of the state

at time 𝑛 when the state at time 𝑛 − 1 is known. For instance,

if the model error is additive and the model equation is given

by Equation 2, it holds that

𝑝(x𝑛|x𝑛−1) = 𝑝𝜷
{

x𝑛 − 𝑓 (x𝑛−1)
}
. (10)

Often the model errors are assumed to be Gaussian 𝜷 ∼
𝑁(0,Q), and we find

𝑝(x𝑛|x𝑛−1) = 𝑁{𝑓 (x𝑛−1),Q}, (11)

but the method is more general than that.

Assume now that at time 𝑛 − 1 we have a set of weighted

particles as in Equation 1, but with weights 𝑤𝑛−1
𝑖

instead of

1∕𝑁 . We can evaluate the expression Equation 9 for the prior

as a weighted mixture of transition densities

𝑝(x𝑛) ≈
𝑁∑
𝑖=1

𝑤𝑛−1
𝑖 𝑝(x𝑛|x𝑛−1

𝑖 ). (12)

In the following we neglect the approximation error at time

𝑛− 1 and assume that Equation 12 is exact. This is not neces-

sarily a good approximation, especially when the number of

particles is small. On the other hand, it is consistent with the

particle filter approximation in the first place, and one of the

few things one can do. By Bayes’ formula 4, the posterior can

then be written as:

𝑝(x𝑛|y𝑛) ≈ 𝑁∑
𝑖=1

𝑤𝑛−1
𝑖

𝑝(y𝑛|x𝑛)
𝑝(y𝑛)

𝑝(x𝑛|x𝑛−1
𝑖 ). (13)

In the standard particle filter, one makes one draw from

𝑝(x𝑛|x𝑛−1
𝑖

) for each 𝑖, and we know that this leads to ensem-

ble collapse for high-dimensional systems. However, now the

prior particles at time 𝑛 are allowed to arise from following a

different model equation. This works as follows. We can mul-

tiply and divide Equations 12 and 13 by a so-called proposal

density 𝑞(x𝑛|x𝑛−1, y𝑛), leading to:

𝑝(x𝑛) ≈
𝑁∑
𝑖=1

𝑤𝑛−1
𝑖

𝑝(x𝑛|x𝑛−1
𝑖

)
𝑞(x𝑛|x𝑛−1

𝑖
, y𝑛)

𝑞(x𝑛|x𝑛−1
𝑖 , y𝑛) (14)

and

𝑝(x𝑛|y𝑛) ≈ 𝑁∑
𝑖=1

𝑤𝑛−1
𝑖

𝑝(y𝑛|x𝑛)
𝑝(y𝑛)

𝑝(x𝑛|x𝑛−1
𝑖

)
𝑞(x𝑛|x𝑛−1

𝑖
, y𝑛)

𝑞(x𝑛|x𝑛−1
𝑖 , y𝑛),

(15)

where 𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛) should be non-zero whenever 𝑝(x𝑛|x𝑛−1

𝑖
)

is. This step is completely general.

Now realise that drawing from 𝑝(x𝑛|x𝑛−1
𝑖

) corresponds

to running the original stochastic model. We could instead

draw from 𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛), which would correspond to a model

equation from our choosing. Figure 2 illustrates the basic idea.

For instance when the original model is given by

Equation 2, we can use

x𝑛 = 𝑔(x𝑛−1, y𝑛) + 𝜷
𝑛
, (16)
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Time n–1 Time n

F I G U R E 2 The proposal density. At time 𝑛 − 1 we have a set of

particles denoted by the filled circles. When we use the original model,

they are propagated along the blue lines to time 𝑛. Because their

distance to the observation (the box) varies significantly, so will their

weights. When a proposed model is used, the particles at time 𝑛 − 1

propagate along the green dashed lines and end up much closer to the

observations. This leads to much more similar likelihood weights.

However, because we have changed the model equations, the particles

now also have proposal weights

in which 𝑔(., .) is now the deterministic part and 𝜷
𝑛

is the

stochastic part. These can be freely chosen, and examples of

these will be given below. Note that we allowed 𝑔(..) to depend

on the observations at the future time. This means that we gen-

erate the prior particles at time 𝑛 by making one draw from

𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛) for each 𝑖 where

𝑞(x𝑛|x𝑛−1, y𝑛) = 𝑝
𝜷

{
x𝑛 − 𝑔(x𝑛−1, y𝑛)

}
. (17)

In general, we draw the particles at time 𝑛 from the alterna-

tive model 𝑞(x𝑛|x𝑛−1, y𝑛) and account for this by changing the

weights of the particles. Equations 14 and 15 can be written

as

𝑝(x𝑛) =
𝑁∑
𝑖=1

𝑤̂𝑛−1
𝑖 𝑞(x𝑛|x𝑛−1

𝑖 , y𝑛) (18)

and

𝑝(x𝑛|y𝑛) = 𝑁∑
𝑖=1

𝑤̂𝑛
𝑖 𝑞(x

𝑛|x𝑛−1
𝑖 , y𝑛), (19)

where the weights are given by:

𝑤̂𝑛−1
𝑖 ∝ 𝑤𝑛−1

𝑖

𝑝(x𝑛
𝑖
|x𝑛−1
𝑖

)
𝑞(x𝑛

𝑖
|x𝑛−1
𝑖
, y𝑛)

(20)

and

𝑤̂𝑛
𝑖 ∝ 𝑤̂𝑛−1

𝑖

𝑝(y𝑛|x𝑛
𝑖
)

𝑝(y𝑛)
∝ 𝑤𝑛−1

𝑖 𝑝(y𝑛|x𝑛𝑖 ) 𝑝(x𝑛
𝑖
|x𝑛−1
𝑖

)
𝑞(x𝑛

𝑖
|x𝑛−1
𝑖
, y𝑛)

. (21)

F I G U R E 3 The typical proposal-density particle filter. Left: the

prior particles at time 𝑛− 1 (dots), with one observation, denoted by the

red cross. Right: the posterior particles at time 𝑛, the larger the dot the

larger its weight. Note that the particles do move in state space compared

to a pure model propagation over one time step, and their weight

contains contributions from the likelihood and from that movement

Here the coefficients of proportionality ensure that the

weights sum to 1. In a reinterpretation of these equations, if

x𝑛
𝑖

is drawn from the alternative model 𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛) we can

also write

𝑝(x𝑛) ≈
𝑁∑
𝑖=1

𝑤̂𝑛−1
𝑖 𝛿(x𝑛 − x𝑛𝑖 ) (22)

and

𝑝(x𝑛|y𝑛) ≈ 𝑁∑
𝑖=1

𝑤̂𝑛
𝑖 𝛿(x

𝑛 − x𝑛𝑖 ). (23)

We see that the weights now contain two factors, the likeli-

hood weight, which also appears in the standard particle filter,

and a proposal weight. These two weights have opposing

effects. If we use a proposal density that strongly pushes the

model towards the observations, the likelihood weight will be

large because the difference between observations and model

states becomes smaller, but the proposal weight becomes

smaller because the model is pushed away from where it wants

to go, so 𝑝(x𝑛|x𝑛−1
𝑖

) will be small. On the other hand, a weak

pushing towards the observations keeps the proposal weight

high, but leads to a small likelihood weight. This suggests that

there is an optimum weight related to an optimal position x𝑛
𝑖

for each particle as function of its position at time 𝑛− 1. This

will be explored in equal-weight formulations of the particle

filter. Figure 3 shows how typical proposal-density particle

filters work. Equal-weight particle filters are discussed later.

2.1 A simple relaxation scheme
To illustrate the idea of a proposal density, we consider the

following simple example. We could add a relaxation or nudg-

ing term to the original equation to steer the particles towards

the observations and make their weights more similar, as pio-

neered by van Leeuwen (2010) for geoscience applications.

The model equation is written as:

x𝑚 = 𝑓 (x𝑚−1) + T{y𝑛 − H(x𝑚−1)} + 𝜷
𝑚
, (24)

where we used time index 𝑚 for the state vector to emphasise

that there are several model time steps between observation

times. T is a relaxation matrix of our choice. In this example,
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the deterministic part consists of the first two terms on the

right-hand side of the equation, while the third term denotes

the random part. Let us assume the pdf of the random forcing

is Gaussian with mean zero and covariance Q̂. Then we can

immediately write for the proposal density

𝑞(x𝑚|x𝑚−1, y𝑛) = 𝑁
(
𝑓 (x𝑚−1) + T{y𝑛 − H(x𝑚−1)}, Q̂

)
(25)

since the pdf of x𝑚 is just a shift in the mean of the pdf of

𝜷
𝑚

. For the original model, we assume that the random part

is Gaussian with zero mean and covariance Q, so that

𝑝(x𝑚|x𝑚−1) = 𝑁
(
𝑓 (x𝑚−1),Q

)
. (26)

The change in the model equations is compensated for in

particle filters by a change in the relative weight of each par-

ticle, and the expression for this change in weight for this

case is:

𝑤𝑚
𝑖 = 𝑤𝑚−1

𝑖

𝑝(x𝑚
𝑖
|x𝑚−1
𝑖

)
𝑞(x𝑚

𝑖
|x𝑚−1
𝑖

, y𝑛)

∝ 𝑤𝑚−1
𝑖

exp
[
−𝐽𝑝

]
exp

[
−𝐽𝑞

] (27)

in which, for Gaussian model errors,

𝐽𝑝 =
1

2

{
x𝑚𝑖 − 𝑓 (x𝑚−1

𝑖 )
}T Q−1

{
x𝑚𝑖 − 𝑓 (x𝑚−1

𝑖 )
}

(28)

and

𝐽𝑞 = 1

2

[
x𝑚𝑖 −𝑓 (x

𝑚−1
𝑖 )−T{y𝑛−𝐻(x𝑚−1)}

]T
⋅

Q̂−1
[
x𝑚𝑖 −𝑓 (x

𝑚−1
𝑖 )−T{y𝑛−H(x𝑚−1)}

]
= 1

2
(𝜷

𝑚

𝑖 )TQ̂−1𝜷
𝑚

𝑖 . (29)

Note that the normalization factors of the Gaussians do not

have to be calculated explicitly if we stipulate that the sum of

the weights has to be equal to one. The scheme is depicted by

Algorithm 3.

Algorithm 3 Relaxation Proposal Density

for 𝑗 = 1, ..., 𝑁 do
d𝑗 ← y −𝐻

(
xf
𝑗

)
f𝑗 ← Td𝑗
𝝃𝑗 ∼ 𝑁(0,Q)
x𝑚
𝑗
← 𝑓

(
x𝑚−1
𝑗

)
+ f𝑗 + 𝝃𝑗

log𝑤𝑚
𝑗
← log𝑤𝑚−1

𝑗
+ 1

2
𝝃𝑗Q̂−1𝝃𝑗

log𝑤𝑚
𝑗
← log𝑤𝑚

𝑗
− 1

2
(f𝑗 + 𝝃𝑗)TQ−1(f𝑗 + 𝝃𝑗)

end for

Simple as the scheme is, it does not solve the degener-

acy problem. However, it can be used as a simple scheme

when several model time steps are used between observation

times, because the proposal is independent of the proposal at

other time steps. This scheme can easily be used in combina-

tion with other schemes that work at observation time, to be

discussed next.

2.2 Weighted Ensemble Kalman Filter
One could also use other existing data assimilation methods

in proposal densities, like EnKFs or variational methods. In

the Weighted Ensemble Kalman Filter (WEKF; Papadakis et
al. 2010) the stochastic EnKF of Burgers et al. (1998) is used

as follows. The EnKF update can be written as:

x𝑛𝑖 = xf
𝑖 + K(y𝑛 − Hx𝑓

𝑖
− 𝝐𝑖) (30)

in which xf
𝑖
= 𝑓 (x𝑛−1

𝑖
) + 𝜷𝑛𝑖 , the matrix 𝐾 is the ensemble

Kalman gain and 𝝐𝑖 ∼ 𝑁(0,R), with R the observational

error covariance. Using the expression for the forecast xf
𝑖

in

the Kalman filter update equation, we find:

x𝑛𝑖 = 𝑓 (x𝑛−1
𝑖 ) +K

{
y𝑛−H𝑓 (x𝑛−1

𝑖 )
}
+(I−KH)𝜷𝑛𝑖−K𝝐𝑖, (31)

which we can rewrite as the sum of a deterministic and a

stochastic part as:

x𝑛 = 𝑔(x𝑛−1, y𝑛) + 𝜷
𝑛

𝑖 (32)

identifying 𝑔(x𝑛−1) = 𝑓 (x𝑛−1
𝑖

) + K
{

y𝑛 − H𝑓 (x𝑛−1
𝑖

)
}

and

𝜷
𝑛

𝑖 = (I − KH)𝜷𝑛𝑖 − K𝝐𝑖. Therefore, we find for the proposal

density:

𝑞(x𝑛|x𝑛−1
𝑖 , y𝑛) = 𝑁

[
𝑓 (x𝑛−1) + K{y𝑛−H𝑓 (x𝑛−1)}, Q̂

]
(33)

with

Q̂ = (I − KH)Q(I − KH)T + KRKT. (34)

Strictly speaking, this is correct only if the Kalman gain

is calculated using the ensemble covariance of 𝑓 (x𝑛−1), so

without the model errors 𝜷𝑛, otherwise the proposal is not

Gaussian. We can calculate the weights of the particles in a

similar way to the previous example. Algorithm 4 shows the

algorithmic steps.

The behaviour of this filter has been studied extensively by

Morzfeld et al. (2017). In high-dimensional systems, this filter

will be degenerate, consistent with the theory of Snyder et al.
(2015), and as proven in the next section. The only way to

make this work is to include localization, not only at the EnKF

level, but also at the level of the particle filter (e.g. Morzfeld

et al. 2017).
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Algorithm 4 WEKF

Q̂ ← (I − KH)Q(I − KH)T + KRKT

for 𝑖 = 1, ..., 𝑁 do
𝜷 𝑖 ∼ 𝑁(0, Q̂)
x𝑛
𝑖
← 𝑓 (x𝑛−1

𝑖
) + K

{
y𝑛−H𝑓 (x𝑛−1

𝑖
)
}
+ 𝜷

𝑛

𝑖

𝑤𝑖 ←
1

2

{
x𝑛
𝑖
− 𝑓 (x𝑛−1

𝑖
)
}

Q−1
{

x𝑛
𝑖
− 𝑓 (x𝑛−1

𝑖
)
}

𝑤𝑖 ← 𝑤𝑖 + 1

2
𝜷 𝑖Q̂−1𝜷 𝑖

𝑤𝑖 ← 𝑤𝑖 + 1

2

{
y −𝐻(x𝑛

𝑖
)
}T R−1

{
y −𝐻(x𝑛

𝑖
)
}

𝑤𝑖 ← exp[−𝑤𝑖]
end for
w ← w∕wT1
Resample

2.3 Optimal proposal density
In the class of particle filters in which the proposal density

of each particle is dependent only on that particle, an opti-

mal proposal density can be derived, as in e.g. Doucet et
al. (2001). They defined optimality as the proposal density

that gives a minimal variance of the weights, and Snyder

et al. (2015) provide an elegant proof of this optimality. In

this section we generalize this result and show that the opti-

mal proposal density is optimal even when each particle has

its own proposal density which is allowed to depend on all

previous particles, so a proposal of the form 𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y

𝑛).
Snyder et al. (2015) concentrate on the case that one is

interested in – an optimal representation of 𝑝(𝑥𝑛, 𝑥𝑛−1|𝑦𝑛) in

a sequential algorithm – so in a sequential smoother. To this

end they introduce the random variable

𝑤∗(x𝑛, x𝑛−1) =
𝑝(x𝑛, x𝑛−1|y𝑛)
𝑞(x𝑛, x𝑛−1|y𝑛) (35)

and determine that proposal density 𝑞 that minimizes the vari-

ance in the weights 𝑤∗, with the expectation taken over the

density from which we draw the particles, so the proposal 𝑞.

Here we show that the optimal proposal density is also

optimal for the strict filtering case, so when we are interested

in minimal variance of the weights at time 𝑛 only. Specifi-

cally, the question is: given the set of particles at 𝑡 = 𝑛 − 1

drawn from 𝑝(x𝑛−1|y1∶𝑛−1), which proposal density of the

form 𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y

𝑛) gives minimal variance of the weights

at time 𝑛?

Using Bayes’ formula, we can write the expression for the

weight of particle 𝑖 as function of the state at time 𝑛 as:

𝑤𝑛
𝑖 = 𝑤𝑖(x𝑛𝑖 ) =

𝑝(y𝑛|x𝑛
𝑖
)

𝑁𝑝(y𝑛)
𝑝(x𝑛

𝑖
|x𝑛−1
𝑖

)
𝑞(x𝑛

𝑖
|𝑖, x𝑛−1

1∶𝑁, y𝑛)

=
𝑝(y𝑛|x𝑛−1

𝑖
)

𝑁𝑝(y𝑛)
𝑝(x𝑛

𝑖
|x𝑛−1
𝑖
, y𝑛)

𝑞(x𝑛
𝑖
|𝑖, x𝑛−1

1∶𝑁, y𝑛)
, (36)

where we assume, without loss of generality, an equally

weighted ensemble at time 𝑛−1. Note that the second equality

follows from Bayes’ theorem, as follows:

𝑝(x𝑛𝑖 |x𝑛−1
𝑖 , y𝑛) =

𝑝(y𝑛|x𝑛
𝑖
, x𝑛−1

𝑖
)

𝑝(y𝑛|x𝑛−1
𝑖

)
𝑝(x𝑛𝑖 |x𝑛−1

𝑖 )

=
𝑝(y𝑛|x𝑛

𝑖
)

𝑝(y𝑛|x𝑛−1
𝑖

)
𝑝(x𝑛𝑖 |x𝑛−1

𝑖 ). (37)

Consider the pair of random variables (𝐼,X𝑛) where

Prob(𝐼 = 𝑖) = 1∕𝑁 and, conditionally on 𝐼 = 𝑖, X𝑛 ∼
𝑞(x𝑛|𝑖, x𝑛−1

1∶𝑁, y
𝑛). Furthermore, define the associated random

variable

𝑊 = 𝑤𝐼 (X𝑛) =
𝑝(y𝑛|x𝑛−1

𝐼
)

𝑁𝑝(y𝑛)
𝑝(X𝑛|x𝑛−1

𝐼
, y𝑛)

𝑞(X𝑛|𝐼, x𝑛−1
1∶𝑁, y𝑛)

, (38)

where

𝑝(y𝑛) = 1

𝑁

𝑁∑
𝑗=1

𝑝(y𝑛|x𝑛−1
𝑗 ). (39)

In order to find the proposal 𝑞 that minimizes the variance

of 𝑊 , we use the well-known law of total variance (derived

in the Appendix for completeness):

var𝑊 (𝑊 ) = var𝐼{𝐸X𝑛|𝐼 (𝑊 )} + 𝐸𝐼{varX𝑛|𝐼 (𝑊 )}. (40)

First, we see that, under the proposal 𝑞,

𝐸X𝑛|𝐼 (𝑊 ) =
𝑝(y𝑛|x𝑛−1

𝐼
)

𝑁𝑝(y𝑛) ∫ 𝑝
(
x𝑛|x𝑛−1

𝐼
, y𝑛

)
dx𝑛 =

𝑝(y𝑛|x𝑛−1
𝐼

)
𝑁𝑝(y𝑛)

(41)

is independent of 𝑞. Moreover, 𝐸𝑊 (𝑊 ) = 𝐸𝐼{𝐸X𝑛|𝐼 (𝑊 )} =
1∕𝑁 and thus the first term in var𝑊 (𝑊 ) is

1

𝑁

∑
𝑖

𝑝(y𝑛|x𝑛−1
𝑖

)2

𝑁2𝑝(y𝑛)2
− 1

𝑁2
= 1

𝑁

∑
𝑖

(
𝑝(y𝑛|x𝑛−1

𝑖
)

𝑁𝑝(y𝑛)
− 1

𝑁

)2

≥0.

(42)

For the second term we use that varX𝑛|𝐼 (𝑊 ) ≥ 0 with

equality if and only if 𝑊 is almost surely constant in X𝑛, that

is if and only if

𝑝(x𝑛|x𝑛−1
𝑖
, y𝑛)

𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y𝑛)

= cst(𝑖, x𝑛−1
1∶𝑁, y

𝑛). (43)

in which cst(..) is this constant which can depend on variables

other than x𝑛. Because both 𝑝 and 𝑞 are densities (in x𝑛), 𝑐𝑠𝑡 =
1. Combining these results, we have a lower bound for var(𝑊 )
that is determined by the variance of 𝑝(y𝑛|x𝑛−1

𝑖
) over 𝑖, with

equality if and only if

𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y

𝑛) = 𝑝(x𝑛|x𝑛−1
𝑖 , y𝑛). (44)
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Note that this is a new result, as previous proofs only con-

sidered proposal densities of the form 𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛), and we

extended it to more general proposal densities of the form

𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y

𝑛).
This remarkable result shows that firstly the optimal pro-

posal density, so 𝑝(x𝑛|x𝑛−1
𝑖
, y𝑛), does indeed lead to the lowest

variance in the weights for the class of particle filters in which

the transition density is of the form 𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y

𝑛). Sec-

ondly, it shows that we can predict the variance in the weights

without doing the actual experiment, for any number of par-

ticles, provided we can compute 𝑝(y𝑛|x𝑛−1
𝑖

), and thirdly the

weights are independent of the position of the particles x𝑛.
Unfortunately, this variance is zero only when the observa-

tions are not dependent on the state at time 𝑛 − 1, which is

never the case in the geosciences.

A simple case where we can compute both the optimal pro-

posal density and the weights 𝑝(y𝑛|x𝑛−1
𝑖

) is when 𝑝(x𝑛|x𝑛−1
𝑖

) is

given by Equation 11 and the observation operator 𝐻 = H is

linear. By the same argument that is used to derive the Kalman

filter update, we find

𝑝(x𝑛|x𝑛−1
𝑖 , y𝑛) = 𝑁

[
𝑓 (x𝑛−1

𝑖 ) + T{y𝑛−H𝑓 (x𝑛−1
𝑖 )},

× (I − THT)Q
]
, (45)

where T = QHT(HQHT +R)−1 is the Kalman-like gain with

the background covariance Q, and the weights are propor-

tional to

𝑝(y𝑛|x𝑛−1
𝑖 ) = 𝑁

{
H𝑓 (x𝑛−1

𝑖 ),HQHT + R
}
. (46)

This shows two things. First, in this special case, the sim-

ple relaxation scheme of Section 2.1 is equal to the optimal

proposal when the relaxation matrix T is chosen as above.

Second, comparing the weights of the optimal proposal with

the weights of the standard filter, they both depend on the

squared distance ||y𝑛−H𝑓 (x𝑛−1
𝑖

)||2, and ||y𝑛−Hx𝑛
𝑖
||2, respec-

tively, but in the standard particle filter the distance is defined

w.r.t. R and in the optimal proposal the distance it is defined is

w.r.t. HQHT+R. Hence the weights with the optimal proposal

are more similar, but the improvement is substantial only if Q
is large, and the analysis of weight collapse by Snyder et al.
(2008) still applies.

One can extend the optimal proposal density idea to more

than one time step. Snyder et al. (2015) show that the optimal

proposal is the proposal of this form with minimal variance

in the weights in this case too, which can also easily be seen

by applying the above to

𝑊 = 𝑤𝑖(x𝑛) =
𝑝(y𝑛|x𝑚−1

𝑖
)

𝑁𝑝(y𝑛)
𝑝(x𝑛|x𝑚−1

𝑖
, y𝑛)

𝑞(x𝑛|x𝑚−1
𝑖

, y𝑛)

for 𝑚 < 𝑛.

F I G U R E 4 The Implicit Particle Filter. Samples (red bars in the

left pdf) are drawn from the standard multivariate Gaussian and

transformed via Equation 49 to weighted samples from the posterior

(red bars in the right pdf)

Looking back at the filters described in the previous

sections, we find the following. The relaxation scheme uses

a simple proposal density that is of the form 𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛),

so the theory holds, and that proposal will lead to degener-

ate results. This is indeed the finding of van Leeuwen (2010).

The WEKF has a proposal that depends on all particles at

time 𝑛 − 1 through the Kalman gain K, so the proposal is of

the form 𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y

𝑛). Hence also this filter will perform

worse than the optimal proposal and hence will be degener-

ate for high-dimensional systems. This was first explored in

detail by Morzfeld et al. (2017).

2.4 Implicit Particle Filter
The Implicit Particle Filter is an indirect way to draw from

the optimal proposal, even over several time steps. Often the

assumption is made that the model errors of both original

model and proposal density are Gaussian, and the observation

operator H is linear. In this case, a draw from the optimal pro-

posal is a draw from a multivariate Gaussian, and we know

how to do that.

However, when H is nonlinear, or when the proposal is

used over several model time steps, the density to draw from is

not now Gaussian. Chorin et al. (2010) realised that one could

still draw from a Gaussian and then apply a transformation

to that draw to find samples from the optimal proposal den-

sity. The method is explained here for one time step, but the

extension to multiple time steps is straightforward. Figure 4

illustrates the basic idea.

As mentioned in Section 2 on the proposal density, the

posterior pdf can be written as

𝑝(x𝑛|y𝑛) = 𝑁∑
𝑖=1

𝑤𝑛−1
𝑖

𝑝(y𝑛|x𝑛)
𝑝(y𝑛)

𝑝(x𝑛|x𝑛−1
𝑖

)
𝑞(x𝑛|x𝑛−1

𝑖
, y𝑛)

𝑞(x𝑛|x𝑛−1
𝑖 , y𝑛).

(47)

The scheme draws from a Gaussian proposal

𝑞(𝝃) = 𝑁(0, I), and we can write the transformation as

𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛) = 𝑞(𝝃)J−1

𝑖
in which J𝑖 is the Jacobian of the

transformation from x𝑛 to 𝝃. That transformation is found
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implicitly, hence the name of the filter, by defining

𝐹𝑖(x𝑛) = − log
[
𝑝(y𝑛|x𝑛)𝑝(x𝑛|x𝑛−1

𝑖 )
]

(48)

and, after drawing 𝝃𝑖 for each particle, solving for x𝑛 in

𝐹𝑖(x𝑛) =
1

2
𝝃T
𝑖 𝝃𝑖 + 𝜙𝑖 (49)

for each particle, in which 𝜙𝑖 = minx𝑛 𝐹𝑖(x𝑛) ∝ 𝑝(y𝑛|x𝑛−1
𝑖

).
The weights of the particles become

𝑤𝑛
𝑖 = 𝑤𝑛−1

𝑖

𝑝(y𝑛|x𝑛
𝑖
)

𝑝(y𝑛)
𝑝(x𝑛

𝑖
|x𝑛−1
𝑖

)
𝑞(x𝑛

𝑖
|x𝑛−1
𝑖

y𝑛)

= 𝑤𝑛−1
𝑖

exp
[
−𝐹𝑖(x𝑛𝑖 )

]
exp

[
− 1

2
𝝃T
𝑖 𝝃𝑖

]J𝑖

= 𝑤𝑛−1
𝑖

exp
[
−𝐹𝑖(x𝑛𝑖 )

]
exp [−𝐹𝑖(x𝑛) + 𝜙𝑖]

J𝑖

= 𝑤𝑛−1
𝑖 exp [−𝜙𝑖] J𝑖. (50)

Interestingly, while the optimal proposal density shows

that the weights are only dependent on the position of the

particles at the previous time, so on x𝑛−1
𝑖

via 𝜙𝑖, the implicit

map makes the weights also dependent on the positions at

the current time 𝑛, so on x𝑛
𝑖

via the Jacobian of the trans-

formation between 𝝃 and x. Only when the Jacobian is a

constant, so when 𝐹𝑖 is quadratic in x𝑖, this dependence

disappears.

Solving Equation 49 is not straightforward in general.

Morzfeld et al. (2012) suggest a random map of the form

x𝑛𝑖 = xa
𝑖 + 𝜆𝑖(𝝃𝑖)P1∕2𝝃𝑖, (51)

in which P is a chosen covariance matrix, ideally the covari-

ance of the posterior pdf, xa
𝑖

= arg min𝐹𝑖(x𝑛) and 𝜆𝑖 is

a scalar. This transforms the problem into solving a highly

nonlinear scalar equation for 𝜆𝑖, which is a much simpler

problem than finding x𝑛
𝑖

directly. This map can be shown to

be a bijection when 𝐹𝑖(x𝑛𝑖 ) has only closed contours in the

high-probability regions; otherwise one would first have to

choose a closed contour area and then perform the map. In

general, when the optimal proposal (over several time steps

if needed) is multimodal, the transformation from the state

variable to a Gaussian is not monotonic, and the Implicit

Particle Filter needs to be adapted, for example, by using a

separate Gaussian for each mode. The algorithm is given in

Algorithm 5.

Of further interest is that xa
𝑖

is the same as the solution to

a 4D-Var problem well known in meteorology. But it is a spe-

cial 4D-Var as the initial position of each particle is fixed and

it has to be a weak-constraint 4D-Var. The latter condition is

Algorithm 5 Implicit Particle Filter

for 𝑖 = 1, ..., 𝑁 do
𝝃𝑖 ∼ 𝑁(0, I)
𝜙𝑖 ← minx𝑛

{
− log

[
𝑝(y𝑛|x𝑛)𝑝(x𝑛|x𝑛−1

𝑖
)
]}

Solve − log
[
𝑝(y𝑛|x𝑛)𝑝(x𝑛|x𝑛−1

𝑖
)
]
= 1

2
𝝃T
𝑖 𝝃𝑖 + 𝜙𝑖 for x𝑛

J𝑖 = ||| 𝜕x𝑛

𝜕𝝃𝑖

|||
𝑤𝑖 ← exp [−𝜙𝑖] J𝑖

end for
w ← w∕wT1
Resample

needed as a strong-constraint 4D-Var would have no possibil-

ity to move a particle in state space as its initial condition is

fixed.

However, this filter will also suffer from weight collapse in

high-dimensional applications as it is still a sampling scheme

for the optimal proposal density. The following sections will

discuss ways to improve on the optimal proposal.

2.5 Equal weights by resampling at time
𝒏− 1
As noted already in Equation 36, we can write Equation 13 as

𝑝(x𝑛|y𝑛) = 𝑁∑
𝑖=1

𝑤𝑛−1
𝑖
𝑝(y𝑛|x𝑛−1

𝑖
)

𝑝(y𝑛)
𝑝(x𝑛|x𝑛−1

𝑖 , y𝑛)

=
𝑁∑
𝑖=1

𝛼𝑖𝑝(x𝑛|x𝑛−1
𝑖 , y𝑛), (52)

where

𝛼𝑖 =
𝑤𝑛−1
𝑖
𝑝(y𝑛|x𝑛−1

𝑖
)

𝑝(y𝑛)
. (53)

This says that, assuming the pdf at the previous time can be

approximated by a set of𝑁 particles, the analysis distribution

is a mixture of the optimal proposal pdfs 𝑝(x𝑛|x𝑛−1
𝑖
, y𝑛) with

mixture weights 𝛼𝑖.

If we can compute the optimal proposal density and

the weights 𝛼𝑖 in closed form, we can also draw sam-

ples directly from this mixture density. For this, we first

draw an index 𝐼 from the discrete distribution with weights

𝛼𝑖, Prob(𝐼 = 𝑗) = 𝛼𝑗 , followed by a draw from the corre-

sponding pdf 𝑝(x𝑛|x𝑛−1
𝐼
, y𝑛). Doing this 𝑁 times will lead

to 𝑁 different particles with equal weights because each of

them is an independent draw directly from the posterior. If

the index 𝐼 is equal to a value 𝑗 more than once, the par-

ticle x𝑛−1
𝑗

is propagated from time 𝑛 − 1 to time 𝑛 with

independent random forcing for each of these draws. This

simple scheme provides better samples than the optimal pro-

posal density because all particles are different at time 𝑛 by

construction.
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However, this does not solve the problem of weight col-

lapse because drawing the index 𝐼 is nothing other than

resampling the particles at time 𝑛 − 1 with weights propor-

tional to 𝑤𝑛−1
𝑖
𝑝(y𝑛|x𝑛−1

𝑖
). If 𝑤𝑛−1

𝑖
= 1∕𝑁 , the variance of

these weights is exactly equal to the lower bound that we

found in Section 2.3. The main difference is that the collapse

now happens at time 𝑛 − 1. The only advantage is that all

particles will be different at time 𝑛.

If we cannot compute the optimal proposal density and

the weights 𝛼𝑖 in closed form, we can still use the importance

sampling idea to draw from the mixture 𝑝(x𝑛|y𝑛) by drawing

pairs (𝐼,X𝑛) consisting of an index 𝐼 and a state X𝑛 at time

𝑛. We choose a proposal distribution 𝛽𝑖 = 𝛽𝑖(y𝑛) for the index

and proposal distributions 𝑞(x𝑛|x𝑛−1
𝑖
, y𝑛) for the state. Then

we draw the index 𝐼𝑖 with Prob(𝐼𝑖 = 𝑗) = 𝛽𝑗(y𝑛) and condi-

tionally on 𝐼𝑖 = 𝑗 we draw x𝑛
𝑖

from 𝑞(x𝑛|x𝑛−1
𝑗
, y𝑛). Finally, we

compute weights 𝑤𝑛
𝑖

by

𝑤𝑛
𝑖 ∝

𝑤𝑛−1
𝑗
𝑝(x𝑛

𝑖
|x𝑛−1
𝑗

)𝑝(y|x𝑛
𝑖
)

𝛽𝑗(y𝑛)𝑞(x𝑛|x𝑛−1
𝑗
, y𝑛)

if 𝐼𝑖 = 𝑗.

The particles x𝑛
𝑖

with weights 𝑤𝑛
𝑖

provide the desired approx-

imation of 𝑝(x𝑛|y𝑛) whereas the indices 𝐼𝑖 can be discarded

after the weights have been computed. We could produce an

evenly weighted approximation by a further resampling step,

or take the weights 𝑤𝑛
𝑖

into account during the next iteration.

In this approach we can obtain equal weights 𝑤𝑛
𝑖

by

choosing

𝑞(x𝑛|x𝑛−1
𝑗 , y𝑛) = 𝑝(x𝑛|x𝑛−1

𝑗 , y𝑛)

and

𝛽𝑖(y𝑛) ∝ 𝑤𝑛−1
𝑖 𝑝(y𝑛|x𝑛−1

𝑖 ).

With this choice, we draw directly from the mixture

Equation 52. As mentioned before, although the weights

𝑤𝑛
𝑖

are then equal to 1∕𝑁 , the algorithm contains a hidden

weighting and resampling step of particles at time 𝑛−1. It thus

remains susceptible to weight collapse in high dimensions.

This approach of using importance sampling for the joint

distribution of (𝐼,X𝑛) is due to Pitt and Shephard (1999) who

called it Auxiliary Particle Filter (the index 𝐼 is an auxiliary

variable that is discarded at the end). They discuss, in addi-

tion, approximations of the optimal proposal density and the

optimal weights 𝛼𝑖. One of their suggestions is to use for the

index 𝐼 the proposal with weights

𝛽𝑖 ∝ 𝑤𝑛−1
𝑖 𝑝(y𝑛|𝝁𝑛𝑖 ),

where 𝝁𝑛
𝑖

is a likely value of the distribution 𝑝(x𝑛|x𝑛−1
𝑖

);
for example, the mean or median or simply a draw from it.

Typically, 𝝁𝑛
𝑖

is found by a probing step where particles at

time 𝑛 are propagated by a simplified model, for example,

by omitting stochastic terms or with simplified subgrid-scale

parametrizations or thermodynamics. If 𝐼𝑖 = 𝑗 and the state

x𝑛
𝑖

at time 𝑛 is proposed from 𝑝(x𝑛|x𝑛−1
𝑗

), the weights become

𝑤𝑛
𝑖 ∝

𝑝(y|x𝑛
𝑖
)

𝑝(y𝑛|𝝁𝑛
𝑗
)
.

They will vary less provided x𝑛
𝑖

is close to𝝁𝑛
𝑗
, i.e. provided the

simplified model is a good approximation to the full model

and the stochastic part of the full model is small.

2.6 Equivalent-Weights Particle Filter
The EWPF (van Leeuwen, 2010; Ades and van Leeuwen,

2013) uses the idea to obtain a more evenly weighted set of

particles by not sampling from the exact posterior, but allow-

ing for a small error. It starts with determining the weight of

each particle at the mode of 𝑝(x𝑛|x𝑛−1
𝑖
, y𝑛) for each particle 𝑖,

𝑤max
𝑖 ∝ 𝑝(y𝑛|x𝑛−1

𝑖
). Note that these weights are equal to the

weights obtained in the optimal proposal density. In the opti-

mal proposal density case, the weights do not depend on the

position x𝑛 of the particle, but note that the proposal used here

will be different.

The particles are not moved to these modes, but the

weights are used to define a target weight. This target weight

𝑤target is chosen such that a certain fraction 𝜌 of particles can

reach that weight. To this end we sort the weights in mag-

nitude from high to low in an array 𝑤∗
𝑖
, 𝑖 = {1, 2, ..., 𝑁]}

and set 𝑤target = 𝑤∗
𝑁∗𝜌. For instance, with 100 particles and a

fraction of 𝜌 = 0.8, we would find 𝑤target = 𝑤∗
80

.

The next step is to find a position in state space for each

particle that can reach this weight such that its weight is

exactly equal to the target weight. This means we solve for x𝑛
in

𝑤𝑖(x𝑛) = 𝑤target (54)

for each particle 𝑖 that can reach this weight. There are many

solutions of this equation, but we choose the one which is

on the line through xa
𝑖

and 𝑓 (x𝑛−1
𝑖

) and is closest to 𝑓 (x𝑛−1
𝑖

).
Denote this position as x∗

𝑖
. Note that this is a purely determin-

istic move, so a stochastic part still has to be added. The final

position of these particles is then determined by adding a very

small random perturbation 𝝃 from a chosen density, so

x𝑛𝑖 = x∗
𝑖 + 𝝃𝑛𝑖 . (55)

This stochastic move ensures that the proposal has full sup-

port and is not a delta function centred at x∗
𝑖
. The density of

𝝃𝑖 should on the one hand have most of its mass concentrated

around 0 in order not to change the weights of the particles

too much, and on the other hand it should be relatively con-

stant since we divide by the value of the proposal density.

Both requirements cannot be fulfilled exactly, but we can take

some error in the sampling into account and choose a narrow
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uniform distribution. The scheme is depicted in Algorithm 6

for the special case of Gaussian model errors and a linear

observation operator. If these conditions do not hold, one will

typically need iterations to solve for 𝑎𝑖 and 𝑏𝑖.

Algorithm 6 EWPF

𝜖 ← 0.0001∕𝑁
𝛾𝑈 ← 10−6

𝛾𝑁 ← 2𝑁𝑥∕2𝜖𝛾
𝑁𝑥

𝑈

/
𝜋𝑁𝑥∕2(1 − 𝜖)

𝑁𝑘 ← 𝑁𝜌

for 𝑗 = 1, ..., 𝑁 do
d𝑗 ← y − H

(
𝑓 (x𝑚−1

𝑗
)
)

𝑐𝑗 ← − log w𝑚−1 + 0.5dT
𝑗

(
HQHT + R

)−1 d𝑗
end for(
ĉ, idx

)
← sort(c)

𝐶𝑚𝑎𝑥 ← ĉ(𝑁𝑘)
for 𝑗 = 1, ..., 𝑁𝑘 do

𝑖← idx(𝑗)
𝑎𝑖 ←

1

2
dT
𝑖
R−1HQHT

(
HQHT + R

)−1 d𝑗
𝑏𝑖 ←

1

2
dT
𝑖
R−1d𝑖 − 𝐶max − log w𝑚−1

𝛼𝑖 ← 1 +
√

1 − 𝑏𝑖∕𝑎𝑖
𝜷 𝑖 ∼ (1 − 𝜖)Q1∕2U (−𝛾𝑈 I,+𝛾𝑈 I) + 𝜖𝑁

(
𝛾2
𝑁

Q
)

x𝑎
𝑗
← 𝑓

(
x𝑚−1
𝑖

)
+ 𝛼𝑖QHT

(
HQHT + R

)−1d𝑗 + 𝜷 𝑖
if 𝜷 𝑖 was from uniform distribution then

𝑐𝑗 ← − log w𝑚−1
𝑖

+ (𝛼2
𝑖
− 2𝛼𝑖)𝑎𝑖 + 1

2
dT
𝑖
R−1d𝑖

else
𝑣1 ← − log w𝑚−1

𝑖
+ (𝛼2

𝑖
− 2𝛼𝑖)𝑎𝑖

𝑣2 ← 𝑣1 + 1

2
dT
𝑖
R−1d𝑖

(
2−𝑁𝑥∕2

) (
𝜋𝑁𝑥∕2

)
𝑣3 ← 𝑣2𝛾𝑁𝛾

−𝑁𝑥

𝑈

(
1−𝜖
𝜖

)
𝑐𝑗 ← 𝑣3 exp

(
0.5𝜷2

𝑖

)
end if

end for
w = exp(−c̃)
w ← w∕wT1
Resample to have full ensemble, Xa, of 𝑁 particles from

𝑁𝑘 particles xa.

It is common knowledge (e.g. Doucet et al. 2001), that the

proposal should be wider or at least as wide as the target, while

the width of the stochastic part of the proposal is chosen very

small here. The reason that we can do this is that the position

of the centres of these proposal densities are typically further

away from the observations than, for example, in the optimal

proposal because the target weight forces particles away from

their optimal positions, so away from the observations. This

means that the deterministic moves of the particles ensure a

large spread in the full proposal.

A formal way to avoid such an error has been described by

Ades and van Leeuwen (2015b). They choose the proposal to

be a mixture of a uniform density and a Gaussian which is also

used in Algorithm 6. Both have small variance, and the mix-

ture coefficient of the uniform density is chosen to be much

larger than that of the Gaussian. This means that drawing from

the Gaussian and also drawing from its tails becomes highly

unlikely. In practice, since we always work with small ensem-

ble sizes, the chance of filter degeneracy by drawing from the

Gaussian, and then drawing from the tail of the Gaussian, is

indeed highly unlikely.

Finally, the full weights for the new particles are calcu-

lated and the whole ensemble is resampled, including those

particles that were unable to reach the target weight. Because

of the target-weight construction, the weights of the particles

are very similar, and filter degeneracy is avoided. This fil-

ter has been used in a reduced-gravity ocean model by Ades

and van Leeuwen (2015b), and in the same system studied for

the gravity-wave production by the scheme in Ades and van

Leeuwen (2015a). It has also been applied in a climate model

by Browne and van Leeuwen (2015).

To analyse the scheme further, we can look again at the

variance of the weights. For this it is important to note that

this scheme does not see the weight of a particle as a function

of the state X and particle index 𝐼 , but rather the state as func-

tion of the weight 𝑊 and index 𝐼 , so X(𝑊 , 𝐼). Specifically,

𝑊 |𝐼 has values in two ranges. For the particles with 𝐼 = 𝑖

that can reach the target weight, we find 𝑤|𝐼 = 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜖𝑖
in which 𝜖𝑖 is a small perturbation from the target weight due

to the small stochastic move discussed above. For those parti-

cles that cannot reach the target weight, their weights are very

close to zero. So we find

𝐸𝐼 [𝑊 ] ≈ 𝜌(𝑤target + 𝜖) + (1 − 𝜌)0 = 𝜌(𝑤target + 𝜖), (56)

in which 𝜖 = 𝐸𝐼 [𝜖]. If 𝐻 is linear and the errors in the obser-

vations and the model equations are Gaussian, we find 𝜖 = 0,

but if any of these three conditions does not hold this is not

necessarily so. However, we do know that by construction|𝜖| << 1. Since the sum of the weights should be equal to 1,

we find that 𝑤target ≈ 1∕(𝑁𝜌), and hence 𝐸𝐼 [𝑊 ] = 1∕𝑁 , as

expected. Furthermore

var𝐼 (𝑊 ) = 𝜌

𝜌𝑁∑
𝑖=1

(𝑤target + 𝜖𝑖)2 − (𝜌𝑤target)2

≈ 1

𝑁2

1 − 𝜌

𝜌
. (57)

This expression shows that the variance in the weights

ranges between 0 for 𝜌 = 1, so when all particles are kept, to

(𝑁 − 1)∕𝑁2 ≈ 1∕𝑁 for 𝜌 = 1∕𝑁 , so when one particle is

kept. We can compare this with the optimal proposal when the

number of independent observations is large. In that case one

particle will have a weight very close to one, and the rest will

have weights very close to zero. The variance in the weights is

then (𝑁 − 1)∕𝑁2 ≈ 1∕𝑁 , indeed equal to the 𝜌 = 1∕𝑁 case



2346 VAN LEEUWEN ET AL.

in the EWPF scheme, as expected. However, the EWPF can

reduce that variance, even to zero, depending on the choice of

the tuning parameter 𝜌.

When this tuning parameter is chosen close to one, the

target weight will be low, and hence particles will be moved

further away from the mode of the optimal proposal density. In

practice this means that the particles are pushed further away

from each other, leading to a wider posterior pdf. A small

value for the fraction will have the opposite effect. Since we

do not know 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 what the width of the posterior should

be, this is a clear drawback of this method. We will come back

to this later.

2.7 Implicit Equal-Weights Particle Filter
In the IEWPF we set the target weight equal to the mini-

mum of the optimal proposal weights for all particles. Then,

the position of each particle is set to the mode of the opti-

mal proposal density plus a scaled random perturbation. The

scale factor is chosen such that the weight of each particle is

equal to the target weight. Note that in the standard setting,

no resampling is needed, but Zhu et al. (2016) gives other

possibilities.

The implicit part of the scheme follows from drawing sam-

ples implicitly from a standard Gaussian distributed proposal

density 𝑞(𝝃) instead of the original 𝑞(x𝑛|x𝑛−1, y𝑛), following

the same procedure as in the Implicit Particle Filter. We define

a relation

x𝑛𝑖 = x𝑎𝑖 + 𝛼
1∕2

𝑖
P1∕2𝝃𝑛𝑖 , (58)

where x𝑎
𝑖

is the mode of 𝑝(x𝑛|x𝑛−1
𝑖
, y𝑛), P is a measure

of the width of that pdf, 𝝃𝑛𝑖 ∈ ℜ𝑁𝑥 is a standard

Gaussian-distributed random vector, and 𝛼𝑖 is a scalar.

The IEWPF scheme is different from the Implicit Particle

Filter in that it chooses the 𝛼𝑖 such that all particles get the

same weight 𝑤target, so the scalar 𝛼𝑖 is determined for each

particle from:

𝑤𝑖(𝛼𝑖) =
𝑝(x𝑛

𝑖
|x𝑛−1
𝑖
, y𝑛)𝑝(y𝑛|x𝑛−1

𝑖
)

𝑁𝑝(y𝑛)𝑞(x𝑛|𝑖, x𝑛−1
1∶𝑁, y𝑛)

= 𝑤target. (59)

This target weight is equal to the lowest weight over all

particles in an optimal proposal. This ensures that the filter is

not degenerate in systems with arbitrary dimensions and an

arbitrary number of independent observations. The resulting

equation for each 𝛼𝑖 is nonlinear and complex because it will

contain the Jacobian of the transformation from 𝝃𝑛 to x𝑛, sim-

ilar to the Implicit Particle Filter. The Jacobian will contain

the derivative of 𝛼𝑖 to 𝝃𝑖, which is the main source of the com-

plexity in this scheme. Algorithm 7 depicts the scheme for

the case of a linear observation operator. A nonlinear obser-

vation operator will lead to more complicated equations for

the 𝛼s.

Algorithm 7 IEWPF

for 𝑗 = 1, ..., 𝑁 do
d𝑗 ← y − H

(
𝑓 (x𝑚−1

𝑗
)
)

𝑐𝑗 ← − log w𝑚−1 + 0.5dT
𝑗

(
HQHT + R

)−1 d𝑗
end for
𝑐target ← min (c)
P ← (Q−1 + HTR−1H)−1

𝝃𝑖 ∼ 𝑁(0,P)
for 𝑗 = 1, ..., 𝑁 do

xa
𝑗 ← 𝑓

(
x𝑚−1
𝑗

)
+ QHT

(
HQHT + R

)−1 d𝑗
𝛾𝑗 ← 𝝃T

𝑗 𝝃𝑗

𝑎𝑗 ← dT
𝑗

(
HQHT + R

)−1 d𝑗 + log w𝑚−1 + 𝑐target

Solve (𝛼𝑗 − 1)𝛾𝑗 −𝑁𝑥 log 𝛼𝑗 + 𝑎𝑗 = 0 for 𝛼𝑗
x𝑛
𝑗
← xa

𝑗
+ 𝛼𝑗𝝃𝑗

end for

F I G U R E 5 The implicit equal-weights particle filter. Left: the

prior particles at time 𝑛 − 1(dots), with one observation, denoted by the

red cross. Right: the posterior particles. Note that the weights are equal,

but some particles have moved away from the observations to ensure

equal weights

The scheme is similar to the optimal proposal density

using the Implicit Particle Filter by first determining the mode

of the proposal and then adding a random vector. The differ-

ence is that in the IEWPF the size of the vector is determined

such that the each particle reaches the target weight. It turns

out that this construction excludes part of state space for all

but one particle. For each particle the excluded part is dif-

ferent, so the ensemble samples the whole space, but the

individual particles do not. Details of the method can be found

in Zhu et al. (2016).

Analysing the scheme in more detail, the proposal den-

sity used in this scheme is of one dimension lower than that

of the state itself. The direction of the random vector in state

space is determined by the proposal density, but the size of

the random vector is then found deterministically, dependent

on that direction. So the proposal density misses one degree

of freedom for all but one particle – the particle with the low-

est weight that has 𝛼𝑖 = 1. Although missing one degree

of freedom in a very high-dimensional system might seem

acceptable, it does lead to a bias. Figure 5 shows how the

implicit equal-weights particle filter works.

2.8 Discussion
We first note that the optimal proposal is only optimal in a

very limited sense, as has been known a long time with the
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invention of the auxiliary particle filter. We have seen that

it is not difficult to generate particle filters that even have

zero variance in the weights. In the optimal proposal setting,

one forces Prob(𝐼 = 𝑖) = 1∕𝑁 , while the simple choice

Prob(𝐼 = 𝑖) ∝ 𝑝(𝑦𝑛|𝑥𝑛−1
𝑖

) leads to an equal-weight particle

filter. Furthermore, schemes have been introduced that con-

sider the state as a function of the state at the previous time

and the weight the state at the current time should obtain, so

instead of working with 𝑊 (X, 𝐼) we choose X(𝑊 , 𝐼), which

opens up a whole new range of efficient particle filters in

high-dimensional systems.

The EWPF and the IEWPF are by construction particle fil-

ters that are not degenerate in high-dimensional systems and

do not rely on localization. However, it is easy to see that both

filters are biased, or inconsistent. In the limit of an infinite

number of particles, the target-weight constructions will pre-

vent the schemes to converge to the full posterior pdf. The

schemes are only of interest when the ensemble size is lim-

ited. As long as the bias from the target-weight construction

is smaller than the Monte-Carlo error, this bias is of no direct

consequence. It will be clear that the number of possible meth-

ods that have this property is huge, and much more research

is needed to explore the best possibilities.

3 TRANSPORTATION PARTICLE
FILTERS

In resampling particle filters, the prior particles are first

weighted to represent the posterior and then transformed to

unweighted particles simply by duplicating high-weight par-

ticles and abandoning low-weight particles. In transformation

particle filters, one tries to find a transformation that moves

particles from the prior to particles of the posterior in a

deterministic manner. A related approach, which uses random

transformation steps, is based on tempering the likelihood,

which we also discuss in this section.

3.1 One-step transportation
In one-step transportation one tries to transform samples from

the prior into samples from the posterior in one transformation

step. An example is the Ensemble Transform Particle Filter

(ETPF; Reich 2013), in which the unweighted particles are

linear combinations of the weighted particles, so one writes

Xa = XfD, (60)

in which the matrix Xf = (xf
1
, · · · , xf

𝑁
) and similar for Xa, and

in which D is a transformation matrix. The only conditions

on D are that 𝑑𝑖𝑗 ≥ 0,
∑

𝑖 𝑑𝑖𝑗 = 1 and
∑

𝑗 𝑑𝑖𝑗 = 𝑤𝑖𝑁 . These

three conditions leave a lot of freedom for all 𝑁2 elements of

𝐷, and a useful way to determine them is to ensure minimal

overall movement in state space of the particles from prior

to posterior. This leads to an optimal transportation problem

and is typically solved by minimizing a cost function that

penalizes movement of particles.

We can see immediately that this method will not work

when the weights are degenerate as the solution will be degen-

erate and all particles have no other choice than move to

the prior particle with weight (close to) one. However, the

strength of this filter is that it allows for localization in a very

natural way by making the weights, and hence the matrix

D, space dependent. The method will be discussed in more

detail in Section 4 on localization. Here we provide the basic

algorithm in Algorithm 8.

Algorithm 8 ETPF

𝑤𝑖 = 𝑝(y|xf
𝑖
)

𝐽 (𝑇 ) ←
∑𝑁

𝑖,𝑗 𝑡𝑖𝑗||xf
𝑖
− xf

𝑗
||2

Solve min𝑇 𝐽 (𝑇 ) with 𝑡𝑖𝑗 ≥ 0 ,
∑𝑁

𝑖 𝑡𝑖𝑗 =
1

𝑁
and

∑𝑁
𝑗 = 𝑤𝑖

xa
𝑗
← 𝑁

∑
𝑖 xf

𝑖
𝑡∗
𝑖𝑗

The ETPF provides a direct map from prior to poste-

rior particles without explicitly constructing a transformation

map. An alternative approach has been suggested in Moselhy

and Marzouk (2012), where an approximate transportation

map T̃ is constructed such that T̃ belongs to certain fam-

ily of maps and T̃ is chosen such that the Kullbeck–Leibler

divergence between the pdf generated by T̃ and the poste-

rior pdf is minimized. Spantini et al. (2018) gives an efficient

implementation in the context of filtering and smoothing for

low-dimensional systems.

3.2 Tempering of the likelihood
Instead of trying to transform the particles from the prior to

particles from the posterior in one step, one can also make

this a smoother transition. In tempering (Neal 1996, also Del

Moral et al. 2006, Beskos et al. 2014) one factorizes the

likelihood as follows:

𝑝(y|x) = 𝑝(y|x)𝛾1 ...𝑝(y|x)𝛾𝑚 , (61)

with 0 < 𝛾𝑖 < 1 and ensuring that the sum of the 𝛾s is equal

to 1. Then the weighting of the particle filter is first done with

the first factor, so

𝑝1(x|y) = 𝑝(y|x)𝛾1

𝑝(y)𝛾1

𝑝(x). (62)

The reason for this is that the likelihood is much less

peaked, and hence the degeneracy can be avoided when 𝛾1 is

small enough. Figure 6 illustrates the basic idea.

The particles are resampled, and now the weighting is per-

formed using the second factor, followed by resampling, etc.
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F I G U R E 6 Tempering. The left-hand side shows the tempered

likelihood functions used in every iteration of the tempering scheme, so

every particle filter update. We have chosen 𝛾𝑖 = 1∕4 in this example.

The right-hand side illustrates how the full likelihood is built up during

the tempering process

In this way the scheme slowly moves all particles towards

the high-probability regions of the posterior. Of course, after

resampling several particles will be identical, so one needs

to jitter the particles, so perturbing them slightly, to regain

diversity.

This jittering should be a move of the particles that pre-

serves the posterior pdf. It could be implemented as a MCMC

method with the posterior as the target density (e.g. explor-

ing resample-move strategies; Doucet et al. 2001). However, a

problem is that in sequential filtering we only have a represen-

tation of the posterior density in terms of the present particles,

and this representation is very poor due to the small number

of particles. Possible avenues are to fit a pdf of a certain shape

to the present particles, e.g. a Gaussian mixture model, and

use that as target density.

A problem in the geosciences is that this posterior fit needs

to preserve the delicate balances between the model variables

that are present in each particle, and an extra complication

is that these balances can even be nonlinear. Also the tran-

sition kernel of the Markov chain should somehow preserve

these balances. An example of its use in the geosciences is

the Multiple Data Assimilations (MDA) method of Emer-

ick and Reynolds (2013), in which the intermediate pdfs are

assumed to be Gaussian. Evensen (2018) also gives a compar-

ison of this method to other iterative implementations of the

Ensemble Kalman Filter/Smoother.

However, if one allows for model error in the model

equations, the following scheme proposed by Beskos et al.
(2014) does not have this problem. In that case the prior at

observation time can be written as (Equation 9)

𝑝(x𝑛) ≈ 1

𝑁

𝑁∑
𝑖=1

𝑝(x𝑛|x𝑛−1
𝑖 ), (63)

in which we assume equal-weight particles at time 𝑛 − 1 for

ease of presentation. In this case the MCMC method that has

the posterior as invariant density is easy to find as the tran-

sition densities defined above, followed by an accept/reject

step.

When several model time steps are performed between

observation times, one can also perform tempering in the

time domain, as explored in van Leeuwen (2003) and van

Leeuwen (2009) in the Guided Particle Filter. The idea is to

assimilate the observations ahead of time, with using as like-

lihood 𝑝(y∗|x𝑚)𝛾 ), in which y∗ is taken equal to the value

y𝑛, and 𝛾 << 1. Here 𝑚 < 𝑛 is the present time of the

model. This is then followed by a resampling step. The pro-

cedure can be followed over several time instances during the

forward integration of the particles, increasing 𝛾𝑖 each time.

At the observation time, 𝛾 = 1 is used. This will force the

particles towards the observations and does not need extra jit-

tering because each particle will see a different model noise

realization 𝜷 in the model integration after the resampling

steps.

Of course one has to compensate for the fact that the tran-

sition density has been changed, and the way to do that is

to realise that we have used importance sampling. Instead of

sampling from 𝑝(x𝑚|x𝑚−1
𝑖

), we sample from a pdf 𝑞(x𝑚|x𝑚−1
𝑖

,

y𝑛) ∝ 𝑝(x𝑚|x𝑚−1
𝑖

)𝑝(y𝑛|x𝑚)𝛾 , in which y∗ is equal to y𝑛 taken

at time 𝑚, and with larger observation uncertainty related to

𝛾 . This means that we have to compensate for the weights

created by this sampling, so we need to introduce parti-

cle weights 𝑤𝑚
𝑖
= 𝑝(x𝑚

𝑖
|x𝑚−1
𝑖

)∕𝑞(x𝑚
𝑖
|x𝑚−1
𝑖

, y∗) ∝ 1∕𝑝(y∗|x𝑚
𝑖
)𝛾

at each model time step we use this scheme.

The scheme generates extra weights during the model

integration, but corrects for them at each new time when

we resample, ensuring much better positioned particles

at the actual observation time 𝑛. It has been used in a

reduced-gravity primitive equation model in van Leeuwen

(2003), but not in high-dimensional settings.

3.3 Particle flow filters
There is a recent surge in methods that dynamically move

the particles in state space from equal-weight particles repre-

senting the prior, 𝑝(x), to equal-weight particles representing

the posterior, 𝑝(x|y). In other words, one seeks a differential

equation

d

d𝑠
x = f𝑠(x) (64)

in artificial time 𝑠 ≥ 0 with the flow map defining the

desired transformation. If the initial conditions of the differen-

tial Equation 64 are chosen from a pdf 𝑝0(x), then the solutions

follow a distribution characterized by the Liouville equation

𝜕𝑠𝑝𝑠 = −𝛻x ⋅ (𝑝𝑠f𝑠) , (65)
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Particle flow Particle flow

F I G U R E 7 A typical particle flow filter. Left: the prior particles

(dots), with one observation denoted by the red cross. Middle: the

particles have moved over several artificial time steps towards the

posterior. Note that the weights do not change. Right: the posterior

particles after convergence of the filter, sampling the posterior directly

with initial condition 𝑝0(x) = 𝑝(x) and final condition

𝑝𝑠final
(x) = 𝑝(x|y).

Two classes of particle flow filters arise. In the first we

start from the tempering approach, such that 𝑠final = 1. We

now take the limit of more and more tempering steps by

choosing 𝛾𝑖 = 1∕𝑛 = Δ𝑠 with lim𝑛→∞, so lim𝛾𝑖→0, or limΔ𝑠→0

(Daum and Huang 2011, 2013, Reich 2011). This leads to

lim
Δ𝑠→0

𝑝𝑠+Δ𝑠(x) = 𝑝𝑠(x)
(
𝑝(y|x)
𝑝(y)

)Δ𝑠

= 𝑝𝑠(x) exp
[
Δ𝑠 (log 𝑝(y|x) − log 𝑝(y))

]
≈ 𝑝𝑠(x)

[
1 − Δ𝑠 log 𝑝(y|x) − Δ𝑠 log 𝑝(y)

]
. (66)

Hence we find

𝜕𝑠𝑝𝑠(x) = −𝛻x⋅ (𝑝𝑠f𝑠) = 𝑝𝑠(x)(log 𝑝(y|x) − 𝑐𝑠), (67)

with 𝑐𝑠 = ∫ 𝑝𝑠(x) log 𝑝(y|x)dx. Explicit expressions for 𝑓𝑠
are available for certain pdfs such as Gaussians and Gaus-

sian mixtures (Reich, 2012). These particle flow filters can

be viewed as a continuous limit of the tempering methods

described in the previous subsection, avoiding the need for

resampling and jittering. Note that the elliptic partial differ-

ential equation 67 does not determine 𝑓𝑠 uniquely. Optimal

choices in the sense of minimizing the𝐿2(𝑝𝑠)–norm of 𝑓𝑠 lead

to the theory of optimal transportation (Villani 2008; Reich

and Cotter 2015).

Figure 7 shows the basic idea behind particle flow filters.

Alternatively, one can explore ideas from MCMC. One

MCMC method that generates samples from the posterior is

the Langevin Monte-Carlo sampling, in which a sequence of

samples is generated by

𝑥𝑗+1 = 𝑥𝑗 − Δ𝑠𝛻x log 𝑝(x|y) +√
2Δ𝑠𝛽𝑗, (68)

in which 𝛽𝑗 a random forcing term drawn from 𝑁(0, I).
One can show that in the limit of 𝑗 → ∞ these sam-

ples will be samples from the posterior. The correspond-

ing Fokker–Planck equation for this stochastic PDE reads

(e.g. Reich and Cotter 2015)

𝜕𝑠𝑝𝑠 = 𝛻x ⋅
[
𝑝𝑠𝛻x{− log 𝑝(x|y)}] + 𝛻x ⋅𝛻x𝑝𝑠

= −𝛻x ⋅
[
𝑝𝑠 {𝛻x. log 𝑝(x|y) − 𝛻x log 𝑝𝑠}

]
.

This equation corresponds to the deterministic PDE (64)

in which f𝑠(x) is given by:

f𝑠(x)∶= 𝛻x log 𝑝(x|y)−𝛻x log 𝑝𝑠(x) = −𝛻x log
𝑝𝑠(x)
𝑝(x|y) . (69)

Many other choices are possible that use

lim
𝑠→∞

𝑝𝑠 = 𝑝(x|y) (70)

in Equation 65. An alternative approach, called Stein varia-

tional descent, has recently been proposed by Liu and Wang

(2016). Stein variational descent can be viewed as a numerical

approximation to a particle flow (64) with vector field

f𝑠(x)∶= 𝑝𝑠 {𝛻x log 𝑝(x|𝑏𝑦) − 𝛻x log 𝑝𝑠(x)} . (71)

(Lu et al., 2019). We come back to this method below.

In general, to use any of these methods we need to be

able to evaluate 𝑝𝑠(x𝑖), which is typically unknown as we only

know the particle representation of 𝑝𝑠(x). One way to solve

this issue is to explore kernel embedding. A numerical imple-

mentation of the two formulations (69) and (71) can be based

on a reproducing-kernel Hilbert space (RKHS)  with repro-

ducing kernel 𝐾(., .), typically taken as a Gaussian. In the

following, we will therefore assume that the kernel is symmet-

ric𝐾(x, z) = 𝐾(z, x). The inner product ⟨𝑔, 𝑓⟩ in  satisfies

the reproducing property

𝑔(x) = ⟨𝐾(x, ⋅), 𝑔⟩ . (72)

A computational approximation to Equation 69 can now

be obtained as follows (Degond and Mustieles, 1990; Russo,

1990). One approximates the pdf 𝑝𝑠 by

𝑝𝑠(x) =
1

𝑁

𝑁∑
𝑗=1

𝐾(x𝑗 , x) , (73)

the vector field f𝑠 by

f𝑠(x) =
∑𝑁

𝑗=1 𝐾(x𝑗 , x)u𝑗𝑠
𝑝𝑠(x)

, (74)

and the 𝑁 particles x𝑗 move under the differential equations

d

d𝑠
x𝑗 = u𝑗𝑠 . (75)
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Since the drift term Equation 69 gives rise to a gradient

flow in the space of pdfs with respect to the Kullback–Leibler

divergence KL = KL{𝑝𝑠||𝑝(⋅|y)} between 𝑝𝑠 and the poste-

rior pdf (Reich and Cotter, 2015), it is natural to introduce

the following particle approximation of the Kullback–Leibler

divergence:

({x𝑙}) ∶=
⟨
𝑝𝑠, log

𝑝𝑠

𝑝(⋅|y)
⟩


. (76)

in the RKHS  and to set

u𝑗𝑠 ∶= −𝑁𝛻x𝑗({x𝑙}) (77)

in Equation 75, which leads to a gradient flow in the particles

{x𝑙} minimizing  . Details on the numerical implementation

of this approach can be found in Pathiraja and Reich (2019).

The above formulation restricts the pdf 𝑝𝑠, and hence the

prior and the posterior, to be of the form Equation 73. Alter-

natively, one can embed the vector field of the flow in an

appropriate reproducing kernel Hilbert space and not the den-

sity itself. With that we can derive a practical implementation

of the Stein variational formulation (71) as follows. First, note

that the change in KL due to the flow field f𝑠 can easily be

found as:

d𝐾𝐿 = lim
𝜖→0

KL(𝑝𝑠+𝜖) − KL(𝑝𝑠)
𝜖

= −∫ 𝑝𝑠(x)
[
f𝑠(x)T𝛻x log 𝑝(x|y) + 𝛻x ⋅ f𝑠(x)

]
dx.

= ⟨𝛻KL, f𝑠⟩ . (78)

where 𝛻KL is the gradient of KL, the maximal functional

derivative of KL at every state vector x in the RKHS. Note

that  here is different from the Hilbert space used earlier.

Maximizing this change in KL as function of the flow field f𝑠
is not trivial in general. However, with the reproducing kernel

property of f𝑠, we have

f𝑠(x) = ⟨(⋅, x), f𝑠(⋅)⟩ , (79)

in which  is a vector-valued kernel, typically taken as

 = I𝐾 . Using this in Equation 78, the gradient of the KL

divergence is found as

𝛻KL(x) = −∫ 𝑝𝑠(z)
[
𝐾(z, x)𝛻z log 𝑝(z|y) + 𝛻z𝐾(z, x)

]
dz .
(80)

The important point is that this gradient is independent

from f𝑠. One now chooses f𝑠 along this direction, which gives

the steepest descent, as

f𝑠(x) = −𝜖𝛻KL(x). (81)

Finally, one replaces the integral in Equation 80 by its

empirical approximation, to obtain

f𝑠(x𝑗) = 𝜖
1

𝑁

𝑁∑
𝑙=1

[
𝐾(x𝑙, x𝑗)𝛻x log 𝑝(x𝑙|y)+𝛻x𝐾(x𝑙, x𝑗)

]
(82)

for the dynamics (64) of the 𝑁 particles x𝑗 .
The intuition behind Stein variational descent is that the

first term in Equation 82 pulls the particles towards the mode

of the posterior, while the second term acts as a repulsive force

that allows for particle diversity. Liu and Wang (2016) derived

this formulation for a steady-state problem, and Pulido and

van Leeuwen (2018) have extended the method to sequential

particle filters. The scheme is given in Algorithm 9.

Algorithm 9 Mapping Particle Filter

for 𝑗 = 1, 𝑁 do
x𝑘,0
𝑗

← 𝑓 (x𝑘−1
𝑗

, 𝛽𝑘)
end for
𝑖 = 1

repeat
for 𝑗 = 1, 𝑁 do

𝛻𝐾𝐿(x) ← − 1

𝑁

∑𝑁
𝑙=1

[
𝐾(x𝑘,𝑖−1

𝑙
, x)𝛻 log 𝑝(x𝑘,𝑖−1

𝑙
|y)

+𝛻𝑥𝐾(x𝑘,𝑖−1

𝑙
, x)

]
x𝑘,𝑖
𝑗

← x𝑘,𝑖−1
𝑗

− 𝜖𝛻𝐾𝐿(x𝑘,𝑖−1
𝑗

)
end for
𝑖← 𝑖 + 1

until Stopping criterion met

The free parameter of these methods is the reproducing

kernel 𝐾(., .), which needs to be chosen such that the parti-

cles sample the posterior and that physical (and potentially

other) balances are retained. One also needs to select a proper

time-stepping scheme, typically chosen as a forward Euler

scheme with variable time step 𝜖, which can now be viewed as

the step length in a gradient descent optimization algorithm.

3.4 Discussion
Viewing particle filters as a transportation problem from

equal-weight particles of the prior to equal-weight particles

of the posterior has led to an interesting set of filters. None

of them have been implemented yet in high-dimensional set-

tings, but some of them are ready to do so. The strong

involvement of the machine learning community in problems

of this kind also suggests rapid progress here. Finally we men-

tion that the equal-weight particle filters from Section 2 can

be viewed as one-step transportation filters that explore the

proposal density freedom, and in fact transform equal-weight

prior particles at time 𝑛−1 to equal-weight posterior particles

at observation time 𝑛.
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4 LOCALIZATION IN PARTICLE
FILTERS

Localization is a standard technique in Ensemble Kalman

filtering to increase the rank of the ensemble perturbation

matrix, allowing for more observations to be assimilated,

and to suppress spurious correlations where real correlations

are very small, but ensemble correlations are larger because

of sampling noise. Localization limits the influence of each

observation to a localization area that is much smaller than

the full model domain. This idea can easily be incorporated

when calculating the particle weights locally, as pioneered by

Bengtsson et al. (2003) and van Leeuwen (2003), and used in

a high-dimensional parameter estimation problem in Vosse-

poel and van Leeuwen (2006). The difficulty, as we shall see,

lies in the resampling step: how does one generate ’smooth’

global particles from locally resampled particles? Smooth is

not well-defined here, but it is related to the particles hav-

ing realistic physical relations (balances) between the model

variables. For example, if geostrophic balance is dominant,

the resampling procedure should not generate particles that

are completely out of geostrophic balance as that would lead

to spurious adjustment processes via spurious gravity waves.

Up to now localization is mainly used in connection with the

standard particle filter, while more advanced proposals, apart

from the optimal proposal, have not been explored. Farchi and

Bocquet (2018) provide an excellent review of localization in

particle filtering, treating a subset of the methods presented

here, but including interesting extensions of the methods they

describe.

The formal way localization can be introduced in particle

filtering is as follows. Let us denote the state at grid point 𝑘

as x𝑘. Hence, in contrast to other sections, a superscript here

denotes not the time index, but the grid point. Note that in

geoscience applications each grid point typically has several

model variables, so x𝑘 is a vector in general. Physically it

makes sense to assume that the posterior of the state at this

grid point depends only on a subset of the observations. Let

us denote that subset as y[𝑘]. We can then write

𝑝(x𝑘|y) ≈ 𝑝(x𝑘|y[𝑘]). (83)

In turn, these observations do not depend on the whole

state vector but only on part of it, denoted by x(𝑘):

𝑝(y[𝑘]|x) = 𝑝(y[𝑘]|x(𝑘)). (84)

Introduce the notation x(𝑘)⧵𝑘 to denote all those grid points in

that part of the state vector excluding grid point 𝑘. Then we

can rewrite the above as an integral over the joint pdf:

𝑝(x𝑘|y[𝑘]) = ∫ 𝑝(x(𝑘)|y[𝑘]) dx(𝑘)⧵𝑘. (85)

0.1
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0.01

0.1
0.5

0.01

F I G U R E 8 Illustration of a possible local weight distribution in

a two-dimensional domain, for two different particles. The particle on

the left is close to observations in the central upper part of the domain,

leading to high weights there, while the particle on the right is closer to

observations in the central lower part of the domain, and hence higher

weights there

Exploring Bayes’ theorem we find

𝑝(x(𝑘)|y[𝑘]) =
𝑝(y[𝑘]|x(𝑘))
𝑝(y[𝑘])

𝑝(x(𝑘))

≈ 1

𝑁

𝑁∑
𝑖

𝑝(y[𝑘]|x(𝑘)
𝑖
)

𝑝(y[𝑘])
𝛿(x(𝑘) − x(𝑘)

𝑖
)

=
𝑁∑
𝑖

𝑤
(𝑘)
𝑖 𝛿(x(𝑘) − x(𝑘)

𝑖 ). (86)

Taken together, this shows that

𝑝(x𝑘|y[𝑘]) ≈
𝑁∑
𝑖

𝑤
(𝑘)
𝑖 𝛿(x𝑘 − x𝑘𝑖 ). (87)

The weights𝑤𝑘
𝑖

thus depend only on the local observations

y[𝑘] and the local prior particles x(𝑘)
𝑖

, so that the variance of

the weights will be much smaller. Figure 8 illustrates how this

local weighting could look for two different particles.

The approximation Equation 83 is not unrealistic: a tem-

perature observation in New York is not expected to change

our pdf of the temperature in London at the moment of the

observation. Of course, there will be an effect at later times,

but that is not relevant here. The same assumption underlies

the use of localization in EnKFs, and in variational methods

when the background-error covariance is constructed.

However, mathematically it does not follow from the

assumption that under the prior the values of the state at grid

points separated by more than a certain distance are inde-

pendent. There can be an indirect flow of information from

observations far apart over observations between neigbouring

grid points. In EnKFs, the Kalman gain is generally a dense

matrix HPfH+R, in which Pf is the forecast error covariance,
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is sparse, because its inverse (HPfH + R)−1 can be dense.

On the other hand, if HPfH + R is diagonally dominant, then

often its inverse is too.

Repeating the localization procedure for all grid points,

we obtain all marginals of the posterior pdf. However,

because the weights 𝑤
(𝑘)
𝑖 change from one grid point to the

next, it is non-trivial to obtain a consistent posterior for pairs

of state values (x𝑘, x𝓁) (and similarly for triplets, etc.). This

can easily be seen using Figure 5: we would like to retain

the left particle in the central upper half of the domain, and

abandon elsewhere. That would mean that wherever it is

abandoned, we need to replace it with another particle, per-

haps partly with the particle in the right part of the figure.

At the boundary between particles, a discontinuity will exist,

which will lead to unphysical behaviour when this new

particle is propagated forward in time.

This means that, to obtain global particles that can be

forwarded with the model equations, one would need to

somehow smoothly glue different particles together. This

is a major problem and has hampered localization in parti-

cle filtering since the early 2000s. However, recently clever

smoothing schemes have been constructed that seem to work

well in high-dimensional geophysical applications. We will

report on those below.

Another issue is that the localization area cannot be too

large to avoid filter collapse. As a rule of thumb, when there

are more than (say) ten independent observations inside a

local area, the particle filter will still tend to be degenerate

for the number of (10–1,000) particles one can typically

afford. This means that, when the observation density is high,

the localization areas have to become unphysically small, or

observations have to be discarded. This issue might be solved

using tempering techniques as discussed earlier, but is often

avoided by artificially enforcing a minimal weight of the parti-

cles, or by changing the observations, for instance by project-

ing them on a lower-dimensional space favoured by the prior.

Setting a minimal weight or projecting observations to

a lower-dimensional space favoured by the prior has a con-

sequence that not all information will be extracted from the

observations, as observations that are very different from the

existing particles will be largely ignored. This is not directly

equivalent to the standard quality-control measures used by

operational weather forecasting centres, in which observa-

tions that are a few standard deviations away from the forecast

are ignored. The issue here is that a distance of less then one

standard deviation for a few observations can already lead to

weight collapse, and artificially setting minimum values for

the weights avoids that.

4.1 Localization based on resampling
Several localization schemes have been proposed and

discussed in the review by van Leeuwen (2009) and those will

not be repeated here. The most obvious thing to do is to weight

and resample locally, and somehow glue the resampled par-

ticles together via averaging at the edges between resampled

local particles (van Leeuwen, 2003). In the following, several

schemes in this category are discussed.

4.1.1 Localized Particle Filter
Recently, Penny and Miyoshi (2016) used this idea with more

extensive averaging, and their scheme runs as follows. First,

for each grid point 𝑗, the observations close to that grid point

are found and the weight of each particle 𝑖 is calculated based

on the likelihood of only those observations:

𝑤𝑖,𝑗 =
𝑝(y𝑗|x𝑖,𝑗)∑𝑁
𝑘=1 𝑝(y𝑗|x𝑘,𝑗) , (88)

in which y𝑗 denotes the set of observations within the local-

ization area. Note the change of notation from the previous

section, related to the explicit use of the particle index in all

the following. This is followed by resampling via Stochastic

Universal Resampling to provide ensemble members xa
𝑖,𝑗

with

𝑖 = 1, ..., 𝑁 for each grid point 𝑗.

Farchi and Bocquet (2018) extended this methodology

by updating blocks of grid points locally, and introduce a

smoothing operator in the weights (similar to Poterjoy 2016)

as

𝑤𝑖,𝑗 =
∑𝑁𝑗

𝑘=1
𝐺(𝑑𝑗,𝑘∕ℎ)(𝑝(y𝑘|x𝑖,𝑘)∑𝑁

𝑚=1

∑𝑁𝑗

𝑘=1
𝐺(𝑑𝑗,𝑘∕ℎ)𝑝(y𝑘|x𝑚,𝑘) , (89)

in which 𝐺(..) is a distance weighting function, e.g. a Gaus-

sian or an approximation of that, 𝑑𝑗,𝑘 is the distance between

grid points 𝑗 and 𝑘, for each observation y𝑘 at grid point 𝑘

in the neighbourhood of grid point 𝑗. The parameter ℎ is a

distance radius, another tuning parameter. This formulation

can be used for each grid point 𝑗, but also for each block of

grid points 𝑗. They note that 𝐺 can also be a Gaussian of a

Gaussian, such that it works directly on − log 𝑝(y𝑘|x𝑖,𝑘).
As mentioned before, the issue is that two neighbouring

grid points can have different sets of particles, and smooth-

ing is needed to ensure that the posterior ensemble consists

of smooth particles. This smoothing is performed by Penny

and Miyoshi (2016) for each grid point 𝑗 for each particle

𝑖 by averaging over the 𝑁𝑝 neighbouring points within the

localization area around grid point 𝑗:

𝑥a
𝑖,𝑗 =

1

2
𝑥a
𝑖,𝑗 +

1

2𝑁𝑝

𝑁𝑝∑
𝑘=1

𝑥a
𝑖,𝑗𝑘
, (90)

in which 𝑗𝑘 for 𝑘 = 1, ..., 𝑁𝑝 denotes the grid point index

for those points in the localization area around grid point 𝑗.

The resampling via Stochastic Universal Resampling is done

such that the weights are sorted before the resampling, so
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that high-weight particles are joined up to reduce spurious

gradients.

Farchi and Bocquet (2018) also suggest to smooth this

operation as follows:

𝑥a
𝑖,𝑗 = 𝛼𝑥a

𝑖,𝑗 + (1 − 𝛼)
𝑁𝑝∑
𝑘=1

𝐺(𝑑𝑗,𝑗𝑘∕ℎ)𝑥
a
𝑖,𝑗𝑘
, (91)

with 𝛼 a tuning parameter. Note that by choosing 𝛼 = 1∕2

and𝐺(𝑑𝑗,𝑗𝑘∕ℎ) = 1∕𝑁𝑝, we recover the scheme by Penny and

Miyoshi (2016).

While these schemes have been shown to solve the degen-

eracy problem in intermediate dimensional systems with

fixed balances, like the barotropic vorticity model, it is

unclear how they will perform in complex systems such as the

atmosphere in which fronts can easily be smoothed out, and

nonlinear balances broken, e.g. discussion in van Leeuwen

(2009).

4.1.2 Local Particle Filter
A different scheme that involves a very careful process

of ensuring smooth posterior particles and retaining non-

linear relations has recently been proposed by Poterjoy

(2016). An important difference with the state-space local-

ization methods discussed above is that observations are

assimilated sequentially to avoid the discontinuity issues

of the state-space localization. This makes the algorithm

non-parallel, so slower than the state-space localization meth-

ods, but Farchi and Bocquet (2018) demonstrate that a lower

root-mean square error (RMSE) can be achieved.

The scheme proceeds as follows. First, adapted weights are

calculated for the first element 𝑦1 of the observation vector, as

𝑤̃𝑖 = 𝛼𝑝(𝑦1|x𝑖) + 1 − 𝛼. (92)

These weights are then normalized by their sum 𝑊 . Then

the ensemble is resampled according to these normalized

weights to form particles x𝑘𝑖 .
The scalar 𝛼 is an important parameter is this scheme, with

𝛼 = 1 leading to standard weighting, and 𝛼 = 0 leading to

all weights being equal to 1 (before normalization). Its impor-

tance lies in the fact that the weights are always larger than

1−𝛼, so even a value close to 1, say 𝛼 = 0.99, leads to a min-

imum weight of 0.01 that might seem small, but it means that

particles that are more then 1.7 observational standard devi-

ations away from the observations have their weights cut off

to a value close to 1 − 𝛼. This limits the influence the obser-

vation can have on the ensemble. Furthermore, the influence

of 𝛼 does depend on the size of the observational error, which

is perhaps not what one would like. It is included to avoid

loosing any particle.

Now the following is done for each grid point 𝑗. For each

member 𝑖, a weight is calculated as

𝜔̃𝑖 = 𝛼𝜌(1, 𝑗, 𝑟)𝑝(𝑦1|x𝑖) + 1 − 𝛼𝜌(1, 𝑗, 𝑟), (93)

in which 𝜌(..) is the localization function with localization

radius 𝑟. These weights are normalized with their sum over

the particles, so a normalized weight 𝜔𝑖 for this grid point is

obtained. Note, again, the role played by 𝛼. Then the posterior

mean for this observation at this grid point is calculated as

x̄𝑗 =
𝑁∑
𝑖=1

𝜔𝑖x𝑖,𝑗 , (94)

in which x𝑖,𝑗 is the state at grid point 𝑗 of particle 𝑖. Next a

number of scalars are calculated that ensure smooth posterior

fields (Poterjoy, 2016) as detailed in Algorithm 10.

The final estimate becomes:

xa
𝑖,𝑗 = x̄𝑗+𝑟1𝑗(x𝑘𝑖,𝑗−x̄𝑗) + 𝑟2𝑗(x𝑖,𝑗−x̄𝑗), (95)

where 𝑘𝑖 is the index of the 𝑖’s sampled particle. This pro-

cedure is followed for each grid point so that at the end an

updated set of particles is obtained that have incorporated

the first observation. As a next step the whole process is

repeated for the next observation, with the small change that

𝜔̃𝑖 is multiplied by 𝜔̃𝑖 from the previous observation, until

all observations have been assimilated. In this way, the full

weight of all observations is accumulated in the algorithm.

Now the importance of 𝛼 comes to full light: without 𝛼 the

ensemble would collapse because the 𝜔̃s would be degenerate

when observations are accumulated.

The final estimate shows that each particle at grid point 𝑗

is the posterior mean at that point plus a contribution from the

deviation of the posterior resampled particle from that mean

and a contribution from the deviation of the prior particle

from that mean. So each particle is a mixture of posterior and

prior particles, and departures from the prior are suppressed.

When 𝛼 = 1, so for a full particle filter, we find for grid

points at the observation location, for which 𝜌(1, 𝑗, 𝑟) = 1,

that 𝑐𝑗 = 0, so 𝑟2𝑗 = 0, and 𝑟1𝑗 ≈ 1, so indeed the scheme

gives back the full particle filter. The basic elements of the

scheme are depicted in Algorithm 10.

At grid points between observations, it can be shown

that the particles have the correct first- and second-order

moments, but higher-order moments are not conserved.

Farchi and Bocquet (2018) generate a scheme that is quite

similar, but they ensure correct first and second moments

by exploring the localized covariances between observed and

unobserved grid points directly in a regression step.) To rem-

edy this, a probabilistic correction is applied at each grid

point, as follows. The prior particles are dressed by Gaus-

sians with width 1 and weighted by the likelihood weights to
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Algorithm 10 Local Particle Filter

for Each observation 𝑙 do
for Each particle 𝑖 do

𝑤𝑖 ← 𝛼𝑝(𝑦𝑙|𝑥𝑖) + 1 − 𝛼

end for
𝑊 ←

∑
𝑤𝑖

Resample x𝑘𝑖
for Each grid point 𝑗 do

for Each particle 𝑖 do
𝜔𝑖 ← 𝛼𝜌(𝑙, 𝑗, 𝑟)𝑝(𝑦𝑙|𝑥𝑖) + 1 − 𝛼𝜌(𝑙, 𝑗, 𝑟)

end for
𝑥←

∑
𝜔𝑖𝑥𝑖,𝑗

𝜎2 ←
∑
𝜔𝑖(𝑥𝑖,𝑗 − 𝑥)2

𝑐 ← 𝑁{1 − 𝛼𝜌(𝑥𝑗, y𝑙, 𝑟)}
/
𝛼𝜌(𝑥𝑗, y𝑙, 𝑟)𝑊

𝑟1 ←

√
𝜎2
𝑗

/
1

𝑁−1

∑𝑁
𝑖=1{𝑥𝑘𝑖,𝑗− 𝑥̄ + 𝑐(𝑥𝑖,𝑗− 𝑥̄)}2

𝑟2 ← 𝑐𝑟1

for Each particle 𝑖 do
𝑥a
𝑖,𝑗

← 𝑥̄ + 𝑟1(𝑥𝑘𝑖,𝑗− 𝑥̄) + 𝑟2(𝑥𝑖,𝑗− 𝑥̄)
end for

end for
end for

generate the correct posterior pdf. The posterior particles are

dressed in the same way, each with weight 1∕𝑁 . Then, the

cumulative density functions (cdfs) for the two densities are

calculated using a trapezoidal rule integration. A cubic spline

is used to find the prior cdf values at each prior particle 𝑖,

denoted by 𝑐𝑑𝑓𝑖. Then a cubic spline is fitted to the other cdf,

and the posterior particle 𝑖 is found as the inverse of its cdf

at value 𝑐𝑑𝑓𝑖. Poterjoy (2016) gives details. The result of this

procedure is that higher-order moments are brought back into

the ensemble between observation points.

This scheme, although rather complicated, is one of the

two local particle filter schemes that has been applied to

a high-dimensional geophysical system based on primitive

equations in Poterjoy and Anderson (2016). The other is

the Localized Adaptive Particle Filter (LAPF) discussed

below. (van Leeuwen 2003 applied a local particle filter to a

high-dimensional quasi-geostrophic system, but that system is

quite robust to sharp gradients as it does not allow for gravity

waves.)

4.1.3 Localized Adaptive Particle Filter
The LAPF is based on the localized version of the ensem-

ble transform Equation 60 following the LETKF described

in Hunt et al. (2007) and Reich (2013), with localization in

observation space, and resampling in the spirit of Gaussian

Mixture filters (Stordal et al., 2011). Localization is carried

out around each grid point, and a transform matrix D is cal-

culated for each localization box. We note that, as for the

LETKF, the weights given by Equation 7 depend continuously

on the box location and the observations.

In a first step, the observations are projected into the space

spanned by the prior particles. As mentioned above, this will

reduce the information extracted from the observations, but

is perhaps less 𝑎𝑑 ℎ𝑜𝑐 than setting a lower bound on the

weights, as for instance used in the LPF. The LAPF car-

ries out local resampling using universal resampling (e.g. van

Leeuwen 2009).

In a second step, a careful adaptive sampling is carried out

in ensemble space around each of the 𝑁 temporary particles.

This scheme runs as follows:

(a) Resampling is carried out based on a (radial) basis

function centred at each particle. A simple case would be a

Gaussian mixture, where the covariance of each of the cen-

tred Gaussians is taken as a scaled version 𝑐P of the local

dynamical ensemble covariance P.

(b) The scaling factor 𝑐 is individually calculated for each

box based on the local observation- minus background-error

statistics. For details we refer to Potthast et al. (2019). By this,

the LAPF guarantees to obtain a spread of the analysis ensem-

ble which is consistent with the local dynamical observation

minus background (o–b) statistics and the observation-error

covariance R. Further standard tools from the LETKF lit-

erature to control ensemble spread can be employed if

needed.

(c) To obtain sufficient smoothness of the fields in physi-

cal space, the LAPF uses 𝑁 global random draws to generate

the resampling vectors around each particle in the space of

ensemble coefficients. In combination with the fact that the

LAPF draws in each box around each particle only – in a glob-

ally uniform way modulated by the ensemble covariance P
and the factor 𝑐 only – consistency and balance of the fields

is achieved with sufficient precision. The scheme is depicted

in Algorithm 11.

Algorithm 11 Local Adaptive Particle Filter

for Each grid point 𝑗, and local grid points 𝑘 do
Project local y𝑘 onto space {𝐻(x𝑛

1,𝑘
), ...,𝐻(x𝑛

𝑁,𝑘
)}

for 𝑖 = 1, .., 𝑁 do
𝑤𝑖 ← 𝑝(y𝑘|x𝑖,𝑘)

end for
w ← w∕wT1
Resample

end for
P ← 𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑(XXT)
𝑐 < 1 (depends on o–b statistics, see text)

for 𝑖 = 1, .., 𝑁 do
𝜷 ∼ 𝑁(0, 𝑐P)
x𝑖 ← x𝑖 + 𝜷

end for
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The LAPF is the first particle filter that has been

implemented and tested in an operational numerical weather

prediction context, and we provide a short description of

the procedure. The method has been implemented in the

DACE (Data Assimilation Coding Environment) system of

Deutscher Wetterdienst (DWD; Potthast et al. 2019). The

DACE environment includes a Local Ensemble Transform

Kalman Filter (LETKF) based on Hunt et al. (2007), both for

the global ICON model system and the convection-permitting

COSMO model system of DWD (Schraff et al. 2016), both

of which are run operationally at DWD1 and build a basis,

framework and reference for the LAPF particle filter imple-

mentation.

The ensemble data assimilation system is equipped with

a variety of tools to control the spread of the ensemble, such

as multiplicative inflation and additive inflation, relaxation
to prior spread (RTPS), relaxation to prior perturbations
(RTPP) and stochastic schemes to add spread to soil moisture

and sea surface temperature (SST) when needed (details in

Schraff et al. 2016).

Tests with the LAPF for the global ICON model with

40 particles of 40 km global resolution have been success-

fully and stably run over a duration of one month. Extensive

tests on how many particles form the basis for resampling

in each localization box have been carried out; the numbers

vary strongly over the globe and all heights of the atmo-

sphere, ranging from 1 to 𝑁 , with relatively flat distribution.

Diagnostics and tuning of the system is under development

and is discussed in Potthast et al. (2019). Results show that

the quality of the LAPF does not yet reach the scores of the

operational global LETKF-EnVAR system, but the system

runs stably and forecast scores are about 10–15% behind the

current operational system.

4.2 Local Ensemble Transform Particle
Filter
This filter uses a classic sequential importance resampling

particle filter from a set of forecast particles xf
𝑖
, which can be

obtained employing either the standard or the optimal propos-

als (or any other) and their associated importance weights𝑤f
𝑖
.

The particles are then resampled in a statistically consistent

manner, which can be characterized by an 𝑁 ×𝑁 stochastic

transition matrix D with the following properties: all entries

𝑑𝑖𝑗 of D are non-negative and

𝑁∑
𝑖=1

𝑑𝑖𝑗 = 1 ,
1

𝑁

𝑁∑
𝑗=1

𝑑𝑖𝑗 = 𝑤f
𝑖 . (96)

1Since 20 January 2016 for the global ICON model with 40 km global

ensemble resolution including a 20 km resolved two-way nest over Europe;

and since 21 March 2017 for the COSMO model with 2.8 km resolution

over central Europe.

Let us denote the set of all such matrices by . Then any

D ∈  leads to a resampling scheme by randomly draw-

ing an element 𝑗∗ ∈ {1,… , 𝑁} according to the probability

vector p𝑗 = (𝑝1𝑗 ,… , 𝑝𝑁𝑗) ∈ R𝑁 for each 𝑗 = 1,… , 𝑁 .

The 𝑗th forecast particle xf
𝑗

is then replaced by xf
𝑗∗ and the

new particles x𝑛
𝑗
= 𝑥f

𝑗∗ , 𝑗 = 1,… , 𝑁 , provide an equally

weighted set of particles from the posterior distribution. Note

that multinomial resampling corresponds to the simple choice

𝑑𝑖𝑗 = 𝑤f
𝑖 . (97)

The ensemble transform particle filter (ETPF; Reich 2013,

Reich and Cotter 2015) is based on the particular choice D̂ ∈
 that minimizes the expected squared Euclidian distance

between forecast particles, i.e.

D̂ = arg min
D∈

𝑁∑
𝑖,𝑗=1

𝑑𝑖𝑗‖xf
𝑖 − xf

𝑗‖2 . (98)

It has been shown under appropriate conditions that the

variance of a resampling step based on D̂ vanishes as 𝑁 →
∞ (McCann, 1995; Reich, 2013). This fact is utilized by the

ETPF and one defines

x𝑛𝑗 =
𝑁∑
𝑖=1

xf
𝑖𝑑𝑖𝑗 (99)

even for finite particles numbers. Of course, by its very

construction, the ETPF underestimates the posterior covari-

ance. However, there are corrections available that lead to

second-order accurate implementations (de Wiljes et al.,
2017). Section 5.3 gives more details.

Following previously introduced notations, localization

can now be implemented into the ETPF as follows. For each

grid point 𝑘, we extract the values of the forecast particle xf
𝑖

at

that grid point and denote them by x𝑘
𝑖
. Using the observations

local to this grid point, we calculate localized importance

weights 𝑤𝑘
𝑖

for x𝑘
𝑖
. Then Equation 98 gives rise to a localized

transformation matrix

D̂
𝑘
= arg min

D∈𝑘

𝑁∑
𝑖,𝑗=1

𝑑𝑖𝑗‖x𝑘𝑖 − x𝑘𝑗‖2 (100)

at grid point 𝑘 with the set 𝑘 defined by

𝑘 =

{
D ∈ R

𝑁×𝑁
+ ∶

𝑁∑
𝑖=1

𝑑𝑖𝑗 = 1,

𝑁∑
𝑗=1

𝑑𝑖𝑗 = 𝑤𝑘
𝑖 𝑁

}
. (101)

Note that the transport cost (distance) 𝑡𝑖𝑗 = ‖x𝑘
𝑖
− x𝑘

𝑗
‖2

can be replaced by any other localized cost function. Chen

and Reich (2015) give more details. The transport problem
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(Equation 100) at each grid point can be computation-

ally expensive. Less expensive approximations, such as the

Sinkhorn approximation, and their implementation into the

localized ETPF (LETPF) are discussed in de Wiljes et
al. (2017). Farchi and Bocquet (2018) have extended this

algorithm to block weighting, similar to their extension of the

Local Particle Filter.

The latter authors also defined a local transform particle

filter in state space. This involves a transformation, at each

grid point, from prior to posterior particles by a transforma-

tion, which essentially becomes an anamorphosis step. The

prior and posterior probability densities need to be known

as continuous densities, and Farchi and Bocquet (2018) use

kernel density estimation with the particles as basis. The inter-

esting suggestion is that, since the transformation is determin-

istic and expected to be smooth over the space coordinates,

no specific smoothing is needed after the transformation. We

refer to their paper for details on this methodology.

4.3 Space–time particle filters
The idea to run a particle filter over the spatial domain was

introduced by van Leeuwen (2009), and the first algorithm,

the Location Bootstrap Filter, was published by Briggs et
al. (2013). The Space–Time Particle Filter by Beskos et al.
(2017) improves on this algorithm by removing the jitter step,

as explained below. In the following we assume observations

at every grid point, but the algorithms can easily be adapted

to other observation networks.

The Location Particle Filter of Briggs et al. (2013) runs as

follows. The grid points are ordered 1, ..., 𝐿, such that points

𝑙 and 𝑙 + 1 are neighbouring grid points for each 𝑙 ∈ 1, ..., 𝐿.

In each grid point 𝑙 we have a sample x𝑖,𝑙 for 𝑖 ∈ 1, ..., 𝑁 , and

𝑙 denotes the grid point number. We start the spatial particle

filter at location 𝑙 = 1 by calculating the weight 𝑝(y1|x𝑖,1)
(where the time index is suppressed) for each prior particle 𝑖,

and perform resampling using these weights over the whole

spatial domain. This means that the resampled particles are

now samples of 𝑝(x1∶𝐿|y1). A small amount of jitter is added

to avoid identical particles. The choice of this jitter density is

again not clear for geophysical applications; more research is

needed on this issue.

Then, the algorithm moves to the next grid point,

calculates the weights 𝑝(y2|x𝑖,2), and resamples the full

state particles using this weight, generating samples from

𝑝(x1∶𝐿|y1, y2). Again some jitter is needed to avoid ensemble

collapse, and the algorithm moves to the next grid point, until

all grid points are treated this way. Algorithm 12 describes the

computational steps.

Note that the algorithm does not suffer from artificial

sharp gradients because all resampled particles are global par-

ticles, but the algorithm will be very sensitive to the choice

of the jitter density used after updating the ensemble in each

Algorithm 12 Location Particle Filter

for Each grid point 𝑗, and local grid points 𝑘 do
for 𝑖 = 1, .., 𝑁 do

𝑤𝑖 ← 𝑝(y𝑘|x𝑖,𝑘)
end for
w ← w∕wT1
Resample

Define jitter covariance S
for 𝑖 = 1, .., 𝑁 do

𝜷 ∼ 𝑁(0,S)
x𝑖,𝑗 ← x𝑖,𝑗 + 𝜷

end for
end for

grid point. Furthermore, when prior and posterior are very

different, the algorithm will perform poorly, and Briggs et al.
(2013) propose a smoother variant that employs copulas for

numerical efficiency. We will not discuss that variant here.

Beskos et al. (2017) introduce the Space–Time Parti-

cle Filter. Instead of using a jitter density to avoid iden-

tical particles, they exploit the spatial transition density

𝑝(x𝑛
𝑙
|x𝑛,1
𝑙−1
, x𝑛−1

1∶𝐿), in which 𝑛 is the time index and 𝑙 the spa-

tial index. (In fact, Beskos et al. (2017) allow for a proposal

density, but we will explain the algorithm using the prior spa-

tial pdf as proposal.) So they exploit the pdf of the state at

time 𝑛 and grid point 𝑙, x𝑛
𝑙
, conditioned on all previous grid

points x𝑛
1∶𝑙−1

at the same time 𝑛, and conditioned on all grid

points at time 𝑛 − 1, denoted x𝑛−1
1∶𝐿. They do this by introduc-

ing a set of𝑀 local particles 𝑗, for each global particle 𝑖, with

𝑖 ∈ 1, ..., 𝑁 .

For each of the global particles 𝑖 they run the following

algorithm over the whole grid:

1. Starting from location 𝑙 = 1, the 𝑀 local particle filters

grow in dimension when moving over the grid towards the

final position𝐿. At the first grid point, the prior particles at

that grid point are used, weighted with the local likelihood

𝑝(y1|x1) and resampled. Let us call these particles x̂𝑗,1, in

which 𝑗 is the index of the local particle, and 1 is the index

of the grid point.

2. The mean 𝑤̄1 of the unnormalized weights is calculated.

3. For the next grid point, each of these 𝑀 resampled par-

ticles is propagated to that grid point by drawing from

𝑝(x2|x̂𝑗,1, x𝑛−1
𝑗,1∶𝐿). Since each of the 𝑀 particles is drawn

independently, they will differ and no jittering is needed.

4 Then the unnormalized weights 𝑝(y2|x2) are calculated,

and their mean 𝑤̄2, followed by a resampling step.

5 This process is repeated until 𝑙 = 𝐿, so until the whole

space is covered.

6 Finally, the total weight 𝑤1 =
∏𝐿

𝑙=1 𝑤̄
𝑙 is calculated,

which is the unnormalized weight of the first global

particle.
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Algorithm 13 summarizes the scheme.

Algorithm 13 Space–Time Particle Filter

for 𝑖 = 1, .., 𝑁 do
for Each grid point 𝑗, and local grid points 𝑘 do

for 𝑚 = 1, ..,𝑀 do
x𝑛
𝑚,𝑗

∼ 𝑝(x𝑛
𝑗
|x𝑛

1∶𝑙−1
, x𝑛−1

1∶𝐿)
𝑤̃𝑚 ← 𝑝(y𝑘|x𝑖,𝑘)

end for
𝑤̄𝑖,𝑗 ←

1

𝑀

∑𝑀
𝑚=1 𝑤̃𝑚

end for
𝑤𝑖 ←

∏𝐿
𝑗=1 𝑤̄𝑖,𝑗

end for
w ← w∕wT1
Resample

This procedure is followed 𝑁 times for each global parti-

cle 𝑖 independently. These global particles are then resampled

according to the weight 𝐺𝑖. It is still possible that this filter

is degenerate; Beskos et al. (2017) gives details and potential

solutions.

The importance of this filter lies in the fact that there is

a formal proof that it converges to the correct posterior for

an increasing number of particles, unlike any of the other

algorithms discussed. Furthermore, the authors show that

degeneracy can be avoided if the number of particles grows

as the square of the dimension of the system – much faster

convergence than e.g. the optimal proposal density.

4.4 Discussion
Following in the footsteps of EnKFs, exploring localization

in particle filters is a rapidly growing field. But localiza-

tion in particle filters is not trivial as there is no automatic

smoothing via smoothed sample covariances as in EnKFs.

Most local particle filters impose explicit spatial smoothing,

which can affect delicate balances in the system. Worth men-

tioning in this context is the localization introduced by Robert

and Künsch (2017), who process observations sequentially in

their hybrid Ensemble Kalman Filter–Particle Filter approach

such that the second-order properties of the particle filter part

remain correct. This method is discussed in the next chapter.

The ETPF and the LAPF come closest to the EnKF by using

a linear transportation matrix to transforms the prior ensem-

ble into a posterior ensemble, and this matrix can be made

smoothly varying with space. All of these smoothing opera-

tions rely on forming linear combinations of particles, so can

potentially harm nonlinear balances in the model. Further-

more, it should be noted that the smoothing operation does

not necessarily follow Bayes’ theorem, so it might result in

an extra approximation of the true posterior pdf. However,

when the ensemble size is small, this approximation might be

negligible compared to the Monte-Carlo noise from the finite

ensemble size.

The Location Particle Filter and the Space–Time Particle

Filter avoid this smoothing and rely on statistical connections

between different grid points. The former does this via the

prior pdf, defined by the prior particles. When the number

of particles is low, this pdf is estimated rather poorly. Fur-

thermore, the method needs jittering of the global particles

to avoid ensemble collapse after every resampling step after

each new observation is assimilated. This jittering pdf can

be chosen arbitrarily, for instance a smooth Gaussian, but it

does violate Bayes’ theorem. As mentioned above, this error

might be negligible when the ensemble size is small. The

latter method explores the transition density over space and

time, leading to consistent estimates of the spatial relations

between grid points. Another potential issue of both methods

is that, if the spatial field is two- (or higher) dimensional, as

in geoscience applications, it is unclear how to order the grid

points, and potentially large jumps might be created between

neighbouring grid points that are treated as far apart by the

algorithm. This needs further investigation.

5 HYBRIDS BETWEEN
PARTICLE FILTERS AND
ENSEMBLE KALMAN FILTERS

As mentioned in the previous section, there are two issues

with localization. Firstly, particle filters that employ resam-

pling need to ensure smooth updates in space so that the newly

formed global particles do not encounter strong adjustments

to physical balances due to artificial gradients from glue-

ing particles together. Present-day localized particle schemes

concentrate on this issue.

Secondly, the localization area cannot contain too many

independent observations, and as a rule of thumb ten indepen-

dent observations is often too many, to avoid weight collapse.

As mentioned, this demand can be in strong contrast with

physical considerations of appropriate length-scales. This is

one of the main reasons to consider hybrids between parti-

cle filters and EnKFs within a localization scheme. In the

following, several recent hybrid methods are presented.

5.1 Adaptive Gaussian Mixture Filter
A bridging formulation allows to smoothly transition between

an ensemble Kalman filter and a particle filter analysis update.

One such formulation is the adaptive Gaussian mixture filter

(Stordal et al., 2011).

In a Gaussian mixture filter, the distribution is approxi-

mated by a combination of normal distributions centred at the

values of the particles. Thus we have

𝑝(x𝑛) =
𝑁∑
𝑖=1

𝑤𝑖𝑁
(

xf
𝑖 , P̂

f
)
, (102)



2358 VAN LEEUWEN ET AL.

where 𝑁(xf
𝑖
, P̂f) is a Gaussian Kernel with mean x𝑛

𝑖
and

covariance P̂f . This covariance is initialized from the sample

covariance matrix Pf of the ensemble by multiplying with a

so-called bandwidth parameter 0 < ℎ ≤ 1 such that

P̂f = ℎ2Pf . (103)

At the analysis time, the filter computes a two-step update:

in the first step we update the ensemble members and the

covariance matrix according to the Kalman filter equations

given by

X𝑛 = Xf + K̂𝑛
(
y𝑛1T − HXf

)
, (104)

K̂𝑛 = P̂fHT
(

HP̂fHT + R𝑛
)−1

(105)

and

P𝑛 =
(

I − K̂𝑛H
)

P̂f . (106)

Note that this is just a shorthand notation for updating each

centre for the prior Gaussians. For computational efficiency,

the analysis equations in the (adaptive) Gaussian mixture fil-

ter (Hoteit et al., 2008; Stordal et al., 2011) were proposed to

use a factorized covariance matrix in the form P̂f = LULT, as

can be obtained from a singular value decomposition of the

ensemble perturbation matrix and used, for example, in the

Singular Evolutive Interpolated Kalman (SEIK) filter (Pham,

2001) and Error-Subspace Transform Kalman Filter (ESTKF;

Nerger et al. 2012). However, the particular form of the

Kalman filter update equations is not crucial here.

In the second step we update the weights of the particles

according to

𝑤𝑛
𝑖 ≈ 𝑤𝑛−1

𝑖 𝑁y𝑛|x𝑓 (Hxf
𝑖 ,R

𝑛
)
, (107)

in which R𝑛 = R + HP̂fHT, and then normalize these so that

the sum of the weights is one.

The bridging is now done by interpolating the analysis

weight with a uniform weight 𝑁−1 as

𝑤
(𝛼)
𝑖

= 𝛼𝑤𝑖 + (1 − 𝛼)𝑁−1, (108)

where 𝛼 is the bridging parameter. We obtain a transition

between the EnKF and the particle filter by varying both 𝛼

and ℎ. For 𝛼 = 0 and ℎ = 1, we obtain the uniform weights

of the EnKF, while for 𝛼 = 1 and ℎ = 0 we obtain the parti-

cle filter weights. Stordal et al. (2011) proposed to adaptively

estimate an optimal value of 𝛼 by setting 𝛼 = 𝑁−1𝑁̂eff where

𝑁̂eff = (
∑

𝑖 𝑤
2
𝑖
)−1 is the effective sample size.

The update formulation of the adaptive Gaussian mixture

filter reduces the risk of ensemble degeneracy, but cannot

SEnKF PF

F I G U R E 9 The Ensemble Kalman Particle Filter. First a

Stochastic EnKF is performed, followed by a standard Particle Filter

fully avoid it. To this end, we can combine the filter with a

resampling step as in other particle filters.

5.2 Ensemble Kalman Particle Filter
The Ensemble Kalman Particle Filter of Frei and Künsch

(2013) is a hybrid EnKF-PF. It is based on tempering in just

two steps, splitting the likelihood into two factors

𝑝(x𝑛|y𝑛) = 𝑝(x𝑛|y𝑛)𝛼 𝑝(x𝑛|y𝑛)1−𝛼, (109)

with 𝛼 ∈ (0, 1). In the first step the Stochastic Ensemble

Kalman filter of Burgers et al. (1998) is applied, and in the

second step a particle filter. When the parameter 𝛼 is close to

0, the scheme is like a full particle filter, while for 𝛼 close to 1

it is essentially the ensemble Kalman filter. Figure 9 illustrates

the idea.

Two problems with a direct application of the above

scheme are identified by Frei and Künsch (2013): the par-

ticle filter weights are influenced by the random modelled

observations in the Stochastic EnKF (SEnKF), and the resam-

pling step in the particle filter will lead to identical particles.

To avoid both, the algorithm is modified as follows. Firstly,

assuming a Gaussian likelihood, the SEnKF particles can be

written as:

xSEnKF
𝑖 = x𝑖 + K𝛼(y − Hx𝑖 − 𝝐𝑖), (110)

with 𝝐𝑖 ∼ 𝑁(0,R∕𝛼) and K𝛼 is the normal gain, but with R
divided by 𝛼. Thus, the particles can be seen as draws from

xSEnKF
𝑖 ∼ 𝑁(𝝂𝑖,PEnKF) (111)

in which

𝝂𝑖 = x𝑖 + K𝛼(y − Hx𝑖) (112)

and

PSEnKF = 1

𝛼
K𝛼RKT

𝛼 . (113)

Hence the SEnKF posterior can be written as

𝑝(x|y)SEnKF = 1

𝑁

𝑁∑
𝑖=1

𝑁(𝝂𝑖,PSEnKF). (114)
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Instead of performing the standard SEnKF sampling from

this density, we delay that sampling and perform the multipli-

cation with the second likelihood 𝑝(y|x)1−𝛼 analytically. This

is easy because the EnKF posterior is a Gaussian mixture and

the likelihood is a Gaussian, so the full posterior is a Gaussian

mixture too. This leads to a full posterior

𝑁∑
𝑖=1

𝛾𝑖𝑁(𝝁𝑖,PPF) (115)

in which

𝝁𝑖 = 𝝂𝑖 + K̂(y − H𝝂𝑖), (116)

𝛾𝑖 = 𝑁
(
y − H𝝂𝑖,HPSEnKFHT + R∕(1 − 𝛼)

)
, (117)

PPF = (I − K̂𝐻)PSEnKF, (118)

where

K̂ = PSEnKFHT
(
HPSEnKFHT + R∕(1 − 𝛼)

)−1
. (119)

Note that the normalization constants in 𝛾𝑖 do not have to

be calculated as we know that they should fulfil
∑

𝑖 𝛾𝑖 = 1.

The way to sample the particles now becomes a two-step

procedure. First draw 𝑁 samples from the distribution of

the mixture coefficients 𝛾𝑖 and then draw from the selected

Gaussian mixture components:

xEKPF
𝑖 = 𝝁𝑘𝑖 + 𝝃𝑖, (120)

in which 𝑘𝑖 denotes the resampled particle index 𝑖 and 𝝃𝑖 ∼
𝑁(0,PPF). The variables 𝝃𝑖 can again be generated in two

steps by

𝝃𝑖 = (I − K̂𝐻T)K𝛼𝝐𝑖,1 + K̂𝝐𝑖,2, (121)

where 𝝐1.𝑖 and 𝝐𝑖,2 are independent draws from𝑁(0,R∕𝛼) and

𝑁(0,R∕(1 − 𝛼)), respectively.

The scheme is very closely related to a Gaussian mixture

model, as the EnKF step forces the prior for the particle fil-

ter to be a Gaussian mixture. The strong point of this scheme

is that the width of each Gaussian follows naturally from the

stochastic part of the EnKF, while it is 𝑎𝑑 ℎ𝑜𝑐 in standard

Gaussian mixture models. Furthermore, while the standard

Gaussian mixture model uses the observation covariance

matrix R, this filter uses an inflated HPSEnKFHT +R∕(1− 𝛼),
which will lead to a better weight distribution. Finally, the

starting points of the centres of the prior Gaussians will be

closer the observations, suggesting more uniform weights.

The pseudocode of the scheme is presented in Algorithm 14.

In an extension of the scheme, Frei and Künsch (2013)

suggest forming a tempering scheme, alternatively using the

EnKF and the particle filter. The resampling step of the

particle filter is not problematic in this case as the Kalman

Algorithm 14 Ensemble Kalman Particle Filter

R𝛼 ← R∕𝛼
K𝛼 ← PHT(HPHT + R𝛼)−1

PSEnKF ← (1∕𝛼)K𝛼RKT
𝛼

K̂ ← PSEnKFHT
{

HPSEnKFHT + R∕(1 − 𝛼)
}−1

for 𝑖 = 1, .., 𝑁 do
𝝐𝑖,1 ∼ 𝑁(0,R𝛼)
𝝐𝑖,2 ∼ 𝑁(0,R∕(1 − 𝛼))
𝝂𝑖 ← x𝑖 + K𝛼(y − Hx𝑖 − 𝝐𝑖)
𝝁𝑖 ← 𝝂𝑖 + K̂(y − H𝝂𝑖)
𝛾𝑖 ∼ 𝑁

(
y − H𝝂𝑖,HPSEnKFHT + R∕(1 − 𝛼)

)
end for
𝜸 ← 𝜸∕𝜸T1
for 𝑖 = 1, .., 𝑁 do

𝑘𝑖 ∼ MultiNomial(𝜸)
𝝃𝑖 ← (I − K̂𝐻T)K𝛼𝝐𝑖,1 + K̂𝝐𝑖,2

xEKPF
𝑖 ← 𝝁𝑘𝑖 + 𝝃𝑖

end for
Resample

filter will diversify identical particles in each next iter-

ation. The paper also discusses approximate schemes for

non-Gaussian observation errors and nonlinear observation

operators.

In Robert et al. (2018), a variant of this method has been

introduced which is based on the LETKF instead of the

stochastic variant and in which the update is in ensemble

space:

XEKPF = XfW, (122)

where the column sums of W equal 1. The matrix W can be

split into

W = W𝜇W𝛼 + W𝜉 (123)

where W𝜇 corresponds to computing the centres 𝝁𝑖, W𝛼 to

the resampling and W𝜉 to the added noise 𝝃𝑖. In the trans-

form variant, W𝜉 is deterministic and chosen such that the

sample covariance of XPI equals the covariance of the Gaus-

sian mixture Equation 115. It thus belongs also to the class of

second-order exact filters discussed in the next section.

Robert et al. (2018) apply a localized transform Ensem-

ble Kalman Particle Filter in the KENDA (Kilometer-Scale

Ensemble Data Assimilation) system with a set-up similar to

the one used operationally by MeteoSwiss. This system com-

putes the weight matrices W only on a coarse grid and then

interpolates these matrices to the original grid. Therefore the

discontinuities introduced by resampling are smoothed out,

but in a way that is possibly optimal for the EnKF and not for

the EnKPF. In Robert and Künsch (2017) a different localiza-

tion method for the EnKPF was developed which proceeds by

sequentially assimilating observations 𝑦𝑘, limiting the state

components influenced by 𝑦𝑘 to a subset. It smoothes out the
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discontinuities that occur when a resampled particle in the

region influenced by 𝑦𝑘 is connected to a background parti-

cle outside of this region. The smoothing is done in such a

way that the second-order properties of the smoothed particle

remain correct.

5.3 Second-order exact filters
A second-order exact filter ensures that the posterior ensem-

ble mean and ensemble covariance matrix are equal to those

obtained from the particle filter weights. Thus, the require-

ment for the mean of the analysis ensemble is

x𝑛 = 1

𝑁

𝑁∑
𝑖=1

x𝑛𝑖 =
𝑁∑
𝑖=1

𝑤𝑖xf
𝑖 , (124)

where the superscript f denotes the forecasted state vec-

tor. Likewise, the posterior ensemble covariance matrix is

required to fulfil

P𝑎 = 1

𝑁

𝑁∑
𝑖=1

(
x𝑛𝑖 − x𝑛

) (
x𝑛𝑖 − x𝑛

)T
(125)

=
𝑁∑
𝑖=1

𝑤𝑖

(
xf
𝑖 − x𝑛

) (
xf
𝑖 − x𝑛

)T
. (126)

5.3.1 Merging particle filter
The merging particle filter by Nakano et al. (2007) explores

the sampling aspect of the resampling step. The method draws

a set of 𝑞 ensembles each of size 𝑁 from the weighted prior

ensemble at the resampling step. Then these sets are merged

via a weighted average to obtain a new set of particles that

has the correct mean and covariance but is more robust than

the standard particle filter. Define x𝑖,𝑗 as ensemble member

𝑖 in ensemble 𝑗. The new merged ensemble members are

generated via

xa
𝑖 =

𝑞∑
𝑗=1

𝛼𝑗x𝑖,𝑗 . (127)

To ensure that the new ensemble has the correct mean and

covariance, the coefficients 𝛼𝑗 have to be real and need to

fulfil the two conditions

𝑞∑
𝑗=1

𝛼𝑗 = 1;
𝑞∑
𝑗=1

𝛼2
𝑗 = 1. (128)

When 𝑞 > 3, there is no unique solution for the 𝛼s, while

for 𝑞 = 3 one finds

𝛼1 = 3

4
; 𝛼2 =

√
13 + 1

8
; 𝛼3 = −

√
13 − 1

8
. (129)

We can make the weights space-dependent in

high-dimensional systems and, since the new particles

are merged previous particles, the resulting global parti-

cles are expected to be smooth. The scheme is depicted in

Algorithm 15.

Algorithm 15 Merging Particle Filter

for 𝑖 = 1, .., 𝑁 do
𝑤𝑖 ← 𝑝(y𝑘|x𝑖)

end for
w ← w∕wT1
(Xa

1
, ...,Xa

𝑞) ← 𝑞 times resampled prior ensemble

Find 𝛼𝑖 such that
∑

𝑖 𝛼𝑖 = 1 and
∑

𝑖 𝛼
2
𝑖
= 1

Xa ←
∑
𝛼𝑖Xa

𝑖

5.3.2 Nonlinear Ensemble Transform
Filter
A simple formulation of a second-order exact filter can be

obtained by using Equation 124 to compute the mean of the

posterior ensemble (Xiong et al., 2006; Tödter and Ahrens,

2015). For the associated ensemble perturbations, we can

derive from Equation 126 with w = (𝑤1,… , 𝑤𝑁 )T and W =
diag(w) that

Pa = Xf
(
W − wwT

)
(Xf)T. (130)

Posterior ensemble perturbations can now be obtained by

factorizing A = W − wwT, for example, by a singular value

decomposition as A = V𝚲𝑉 T. This leads to A1∕2 = V𝚲1∕2VT

and posterior perturbations are then given by

X′𝑛 =
√
𝑁X𝑓V𝚲1∕2VT. (131)

Finally, the full posterior particles are given by

x𝑛𝑖 = Xf
(

w1T +
√
𝑁V𝚲1∕2VT

)
𝑖
. (132)

The computations of this filter are very similar to those

in ensemble square-root Kalman filters like the ETKF (Hunt

et al., 2007) or ESTKF (Nerger et al., 2012). As such, we

can can also localize the filter in the same way. The localized

NETF has been successfully applied to a high-dimensional

geophysical system based on primitive equations in Tödter

et al. (2016). In addition, the filter can be easily extended

to a smoother by applying the filter transform matrix (the

term in parentheses in Equation 132) to previous analysis

times (Kirchgessner et al., 2017). The scheme is depicted in

Algorithm 16.
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Algorithm 16 NETF

for 𝑖 = 1, .., 𝑁 do
𝑤𝑖 ← 𝑝(y𝑘|x𝑖)

end for
w ← w∕wT1
A ← diag(w) − wwT

VΛVT ← A
T ←

√
𝑁VΛ1∕2VT

T ← T + w
Xa ← XfT

5.3.3 Nonlinear ensemble adjustment filter
There is also a stochastic variant of the previous algorithm

(Lei and Bickel, 2011), which is motivated from the Stochas-

tic Ensemble Kalman filter (Burgers et al., 1998; Houtekamer

and Mitchell, 1998). In this filter, we generate a set of per-

turbed model observations

y𝑖 = H(x𝑖) + 𝝐𝑖, 𝑖 = 1,… , 𝑁, (133)

which represents the observation probability distribution. We

now obtain an analysis mean of each particle analogously to

Equation 124 by

x𝑛(y𝑘) =
𝑁∑
𝑖=1

𝑤𝑖(y𝑘)𝑥f
𝑖 , (134)

where each weight 𝑤𝑖(y𝑘) is computed from the likelihood of

the perturbed measured ensemble member H(x𝑖) . When we

now define

P̂a(y𝑘) =
𝑁∑
𝑖=1

𝑤𝑖(y𝑘)
(
xf
𝑖 − x𝑛(y𝑘)

) (
xf
𝑖 − x𝑛(y𝑘)

)T
, (135)

we obtain the posterior ensemble members as

x𝑛
𝑘
= x𝑛 + (Pa)1∕2P̂a(y𝑘)−1∕2{xf

𝑘 − x𝑛(y𝑘)}, (136)

where x𝑛 is given by Equation 124 and 𝑃 a is given by

Equation 126. This update equation only yields the correct

first and second moments of the posterior distribution in the

limit of a large ensemble.

5.3.4 Second-order exact ETPF
The ETPF (Section 4.2) can also be formulated to be

second-order accurate (de Wiljes et al., 2017). For this, we

approximate

A = W − wwT ≈ 1

𝑁

(
D̂ − w1T

)(
D̂ − w1T

)T

, (137)

where the matrix D̂ is obtained through Equation 98. To

ensure the second-order accuracy, we introduce a correction

term such that

D̃ = D̂ + 𝚫, (138)

with 𝚫 being a symmetric 𝑁 × 𝑁 matrix. Using D̃ in

Equation 137 and requiring that the result is equal to A leads

to the condition

𝑁(W − wwT) − (D̂ − W1T)(D̂ − W1T)T

= (D̂ − W1T)𝚫 + 𝚫(D̂ − W1T)T + 𝚫𝚫,
(139)

which is a quadratic equation in 𝚫 in the form of a

continuous-time algebraic Riccati equation and there are

known solution methods for this type of equation (e.g. de

Wiljes et al. 2017). Note that D̃ still satisfies Equation 96.

However, 𝑑𝑖𝑗 ≥ 0 no longer holds, in general.

5.4 Hybrid LETPF–LETKF
The hybrid LETPF–LETKF is also based on the simple idea

of splitting the likelihood function into two factors at each

grid point 𝑘, i.e.

𝑝(x𝑘|y(𝑘)) = 𝑝(x𝑘|y(𝑘))1−𝛼 𝑝(x𝑘|y(𝑘))𝛼, (140)

with 𝛼 ∈ (0, 1), but now the particle filter is employed first,

followed by the ensemble Kalman filter. This is similar to

tempering in just two steps. When the likelihood is Gaussian,

the posterior is expected to be more Gaussian than the prior.

Hence it makes sense to use a particle filter in the first step,

and to try to use an EnKF in the second step of the tempering

procedure.

If the likelihood is Gaussian with localized error covari-

ance matrix R𝑘, then the factorization is equivalent to scaling

this matrix by 1∕𝛼 and 1∕(1−𝛼), respectively. Hence, one can,

for example, first apply an LETPF to the forecast particles xf
𝑖

with inflated covariance matrix R𝑘∕𝛼 in order to obtain new

particle values

x̃𝑘
𝑖
=

𝑁∑
𝑗=1

𝑑𝑘𝑖𝑗(𝛼)x
𝑘
𝑖 (141)

at each grid point 𝑘. One then applies the LETKF to these

intermediate particles x̃𝑖 with inflated covariance matrix

R𝑘∕(1 − 𝛼). The choice of 𝛼 is, of course, crucial. Numer-

ical experiments indicate (Chustagulprom et al., 2016) that

𝛼 > 0 can lead to substantial improvements over a purely

LETKF-based implementation and that the choice of 𝛼 can be

based on the effective sample size of the associated LETPF.

However, more refined selection criteria for the parameter 𝛼

are needed to make the hybrid LETPF-LETKF method widely

applicable.
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5.5 Hybrid EnVar PF
Based on the localized adaptive particle filter (LAPF)

described in Section 4.1.3, a hybrid particle filter-based

ensemble variational data assimilation system (PfVar) can

also be constructed. The idea is to replace the LETKF-based

ensemble in an EnVar by an LAPF-based ensemble.

We briefly discuss a practical numerical weather pre-

diction example here. Following Buehner et al. (2013), the

operational EnVAR system of DWD for the ICON model with

13 km global resolution and 6.5 km resolution of its two-way

nested area over Europe is using the ensemble of the global

40-member LETKF for its dynamic covariance matrix with

a ratio of 70:30 towards the classical NMC-based covariance

matrix of the three-dimensional variational data assimilation

system with 3 hr cycling interval. The LETKF ensemble is

replaced by the LAPF ensemble, where the quality control of

the variational high-resolution run is used for the ensemble

data assimilation system under consideration. In the current

system, no recentring of the ensemble with respect to the vari-

ational mean estimator is carried out, leading to a form of

weak coupling of the systems.

In a quasi-operational set-up (without a high-resolution

nest), the hybrid PfVAR is running stably for a period of one

month. The observation minus background statistics show

very promising behaviour in several case-studies which are

under investigation at DWD (Walter et al., 2018). In the

current state of tuning, the forecast quality of the PfVAR

seems comparable to the forecasts based on the LETKF-based

EnVAR. These new results studied in combination with

Robert et al. (2018) show that today’s particle filters are

approaching the quality of state-of-the-art operational ensem-

ble data assimilation systems and are already becoming

important tools on all scales of NWP.

5.6 Discussion
Hybrid particle-ensemble Kalman filter schemes, especially

when implemented adaptively, can avoid weight collapse in

the particle filter part of the hybrid in any situation. The

price paid is that not all information from the observations

is extracted when the posterior pdf is severely non-Gaussian,

but in many situations this is not the dominant source of error.

The reason why these schemes are competitive is that they do

take into account some non-Gaussianity via the particle filter,

while the particle filter alone is very inefficient compared to

the EnKF when the posterior is actually close to a Gaussian.

So the objective is not necessarily to make the 𝛼 as small as

possible, but indeed to find an optimal 𝛼 to ensure that the

EnKF is used whenever possible. The same is true for the

bridging parameter in the Adaptive Gaussian Mixture Filter.

The second-order exact filters are hybrids of a differ-

ent kind, focussing on obtaining the posterior mean and the

covariance correct given the limited prior ensemble. These

methods are expected to be quite competitive to the hybrid

filters discussed above, and the relative performance will

depend strongly on the measure used to define what is

best. For instance, RMSE are expected to be better for the

second-order exact filters, while full ensemble measures like

rank histograms and continuous ranked probability scores

might benefit from the hybrid schemes.

One question that emerges when comparing the EnKPF

and the LETPF–LETKF hybrid is which should be used first,

the particle filter or the ensemble Kalman filter? Different

experimental results seem to indicate that either ordering can

be superior. The PF-first methods have the advantage of a the-

oretical justification via a two-step tempering interpretation

in which the particle filter step makes the prior for the EnKF

much more Gaussian. Applying the EnKF first will bring the

particles closer to the observations, leading to better weight

balance in the particle filter. At this moment it is unclear

which order is best; much more research is needed.

6 CONCLUSIONS AND
DISCUSSION

The largest issue of standard particle filters was until recently

their degeneracy in high-dimensional settings: when the num-

ber of independent observations is large and the number of

particles is limited (of order 10–1,000 for geophysical appli-

cations), one particle gets weight one, and all others get

weight zero.

Two developments have revived the interest in par-

ticle filters: efficient proposal densities and localization,

while hybrids with EnKFs and recently transportation filters

enhance confidence in the usefulness of particle filters in

high-dimensional settings. The new development is particle

flow methods, whose popularity in the large machine-learning

community ensures rapid progress here, too. It is unclear at

this moment how competitive these new ideas will be. It is

clear that developments on particle filters have been very fast,

and the first tests of both localized and hybrid particle-EnKF

filters in operational numerical weather prediction have been

performed and show highly encouraging results.

This paper discussed these new developments and demon-

strates that particle filters are useful in even the largest dimen-

sional geophysical data assimilation problems and will allow

us to make large steps towards fully nonlinear data assimi-

lation. The emphasis was here on explaining and connecting

existing and new ideas, including new understanding of the

optimality of the optimal proposal density and equal-weight

filters.

From the presentation it has become clear that the field is

too young to provide solid guidance on which method will be

most fruitful for which problem. Given that most data assim-

ilation practitioners will have an implementation of a local
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EnKF in some form, localized particle filters seem to be the

fastest way to make progress. However, one has to keep in

mind that the resampling step needs smoothing that is more

complex than in an EnKF, although exciting new variants like

the ETPF and LAPF allow for smooth updates in a very nat-

ural way. Furthermore, with the small ensemble sizes now

practical (10–100), more than ten independent observations

in a localization area may already lead to filter degeneracy,

forcing us to look into methods that limit the weights from

below. This is another 𝑎𝑑 ℎ𝑜𝑐 procedure that limits informa-

tion extraction from observations, but it is unclear how severe

this issue is.

Even easier are implementations of hybrid PF-EnKF fil-

ters, but it is still unclear what these filters target. At the

moment their value lies in bringing more non-Gaussianity

into EnKFs, but at the same time ensure that an EnKF is used

when that is warranted.

We discussed two main variants that try to avoid

localization because of the issues discussed above: the

equal-weight particle filters and transportation particle fil-

ters. The equal-weight variants, which avoid weight collapse

by construction, do not have a complete mathematical foun-

dation yet. We know these schemes are biased, but since

they are tailored to high-dimensional problems with small

ensemble sizes, the bias error might be smaller than the

Monte-Carlo error from the small ensemble size. Transporta-

tion particle filters still have to demonstrate their full potential

in geoscience applications, but initial experiments with, for

example, mapping particle filters on low-to-moderate dimen-

sional systems together with the way they are formulated

suggest they could become mainstream competitive schemes.

All in all, huge progress has been made in particle filtering,

and initial attempts to implement the schemes into full-scale

numerical weather prediction models have succeeded, with

promising initial results. This shows that particle filters can

no longer be ignored for high-dimensional geoscience appli-

cations.
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APPENDIX

LAW OF TOTAL VARIANCE

The law of total variance is an elementary theorem in statis-

tics and probability. It can be proven as follows. First we need

the Law of Total Expectation, which reads, using 𝐸𝐴[𝐵] as

denoting the expectation of 𝐵 under pdf 𝑝(𝑎):

𝐸𝑌 [𝐸𝑋|𝑌 [𝑓 (𝑋)]] = ∫ ∫ 𝑓 (𝑥)𝑝(𝑥|𝑦)𝑝(𝑦) d𝑥 d𝑦

= ∫𝑥∫𝑦𝑓 (𝑥)𝑝(𝑥, 𝑦) d𝑦 d𝑥

= ∫ 𝑓 (𝑥)𝑝(𝑥) d𝑥

= 𝐸𝑋[𝑓 (𝑋)]. (A 1)

Using this equality on varX[X] leads to:

varX[X] = 𝐸X[X2] − 𝐸2
X[X]

= 𝐸𝑌

[
𝐸X|𝑌 [X2]

]
− 𝐸2

𝑌 [𝐸X|𝑌 [X]]

= 𝐸𝑌

[
varX|𝑌 [X] + 𝐸2

X|𝑌 [X]
]
− 𝐸2

𝑌 [𝐸X|𝑌 [X]]

= 𝐸𝑌

[
varX|𝑌 [X]

]
+ 𝐸𝑌

[
𝐸2

X|𝑌 [X]
]
− 𝐸2

𝑌 [𝐸X|𝑌 [X]]

= 𝐸𝑌

[
varX|𝑌 [X]

]
+ var𝑌

[
𝐸X|𝑌 [X]

]
, (A 2)

which proves the theorem.
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