

Session: 08h

Flash Talk Theatre 2.

Wednesday @ 14:35 - 14:40

Post-depositional manganese mobilization during the last glacial period in sediments of the eastern Pacific Ocean

J.B. VOLZ^{1,*}, B. LIU¹, M. KÖSTER¹, S. HENKEL¹, A. KOSCHINSKY², S. KASTEN^{1,3}

Motivation

- The Pacific Ocean has experienced substantial glacial/interglacial changes in bottom-water oxygenation associated with enhanced CO_2 storage in the glacial ocean^{1,2}. While the deep Pacific Ocean is currently well oxygenated, bottom-water oxygen concentrations (O_2^{bw}) were most likely lower during the last glacial period (LGP)^{3,4} between 15-28 kyr ago, which must have caused a much more compressed redox zonation in the sediments than at present 5,6,7
- R/V SONNE cruise SO239⁸ in 2015 to four European areas for the exploration of polymetallic nodules in the CCZ and one of the Areas of Particular Environmental Interest (APEI) Leaching of Mn_{mobil} from

Material and Methods

Areas

We have extracted mobilizable MnO₂ (Mn_{mobil}) from surface sediments and used transportreaction modelling in order to reconstruct past redox changes in the NE Pacific.

MUC sediment cores⁹

Transport-reaction modelling

130°W 120°W

Fig. 3: a) Oxygen and pore-water Mn²⁺ data¹⁰, steady-state model results for

current O_2^{bw} (~150 µM) and glacial O_2^{bw} (35 µM). b) Transient model results for

the depth distribution of solid-phase Mn_{mobil} during linearly increasing O₂^{bw} at the

LGT between 14-15 kyr from glacial O_2^{bw} to current O_2^{bw} .

Fig. 1: Study areas in the CCZ. Two sites were studied in the BGR area: Prospective area (BGR-PA; star) and Reference area (BGR-RA; circle).

Results and Discussion

- Mn_{total} maxima of up to 1 wt% in upper 10 cm of oxic sediments
- Constant Mn_{total} contents over depth at site APEI3
- More than 85% of Mn_{total} is extracted as Mn_{leachable}
- Mn_{leachable} is dominated by Mn_{mobil}

Current location of oxic-suboxic redox boundary in >0.5 m

Mn_{mobil} enrichment not formed under modern redox conditions

Continuous mixing of Mn_{mobil} into subsequently deposited oxic sediments due to bioturbation

Near-surface authigenic Mn_{mobil}

precipitation during the LGP

Glacial O_2^{bw} of 35 μ M

oxic-suboxic boundary located in the upper 5 cm of the sediments

Downward migration of the oxicsuboxic boundary due to O_2^{bw} increase during the last glacial termination (LGT)

Conclusions and Implications

Lower O_2^{bw} during glacial periods caused more condensed redox zonation in Pacific

Deep basin-wide de-oxygenation in the glacial NE Pacific Ocean

sediments

- Authigenic Mn_{mobil} precipitation at shallow oxic-suboxic boundary in the upper 5 cm
- Ocean ventilation onset after glacial periods caused downward extension of the oxic zone
- Lower carbon burial rates at site APEI3 did not allow for a more condensed redox zonation during the last glacial period

- Polymetallic nodules in the European areas of the CCZ have experienced suboxicdiagenetic growth "pulses" during glacial periods
- Development of shallow oxic-suboxic redox boundary during lower glacial O_2^{bw} at carbon burial rates >1.5 mg m⁻² d⁻¹
- Site APEI3 is not representative for the sites in the European exploration areas

Affiliations:

Bundesministerium für Bildung und Forschung

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ²Jacobs University Bremen, Department of Physics and Earth Sciences, Bremen, Germany ³University of Bremen, Faculty of Geosciences, Bremen, Germany

Presented manuscript: Volz et al. EPSL, under review

References:

¹Sigman and Boyle. Nature, **407**, 859-869 (2000). ²Jacobel *et al*. Nature Comm., **8**, *17*27 (2017). ³Bradtmiller et al. EPSL, **299**, 417-425 (2010). ⁴Jaccard and Galbraith. Nature Geosciences, **5**, 151-156 (2011).

References (continued): ⁵Wegorzewski and Kuhn. Mar. Geol., **357**, 123-138 (2014). ⁶Heller et al. DSR I, **142**, 16-33 (2018). ⁷Mewes *et al.* DSR I, **91**, 125-141 (2014) ⁸Martínez Arbizu and Haeckel. GEOMAR Report, N. Ser. 025 (2015). ⁹Koschinsky et al. DSR II, **48**, 3683-3699 (2001). ¹⁰Volz et al. DSR I, **140**, 159-172 (2018).

Acknowledgements:

Thanks to the crew and the scientific party of RV SONNE cruise SO239 for the and the Section Marine Geochemistry at AWI Bremerhaven for the technical and scientific support. This project is BMBF-funded (03F0707G), received further funding from the Helmholtz Association and is part of the JPIO EcoMining-DEU-Ecological Aspects of Deep-Sea Mining.

BREMERHAVEN

Am Handelshafen 12 27570 Bremerhaver Telefon 0471 4831-0 www.awi.de