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Abstract

Atmospheric supply of iron (Fe) to the ocean has been suggested to regulate marine produc-
tivity in large parts of the world’s ocean. However, there are still large uncertainties regarding
how the atmospheric inputs of dissolved Fe (DFe) influence the seawater DFe concentrations
and thus net primary production (NPP). Here, we use an atmospheric chemistry model and
two ocean biogeochemistry models with high (Model H) and low (Model L) sensitivities to
atmospheric sources of DFe to explore the responses of ocean biogeochemistry to different
types of atmospheric inputs of DFe: mineral dust and combustion aerosols. When both Fe
content in mineral dust of 3.5% and Fe solubility of 2% are prescribed in sensitivity simula-
tions, the ocean models overestimate DFe concentration in the surface ocean downwind from
the North African and East Asian dust plumes. Considering different degrees of atmospheric
Fe processing reduces the overestimates of DFe concentration in the North Atlantic and
North Pacific. The two ocean biogeochemistry models show substantially different magni-
tudes of responses to the atmospheric input of DFe. The more detailed Model H shows a
much higher sensitivity of NPP to the change in combustion aerosols than to mineral dust,
regardless of relative inputs of the sedimentary sources. This finding suggests that pyrogenic
Fe-containing aerosols are more important sources of atmospheric bioavailable Fe for marine
productivity than would be expected from the small amount of DFe deposition, especially in
the Pacific and Southern oceans.

1. Introduction

Earth system models have considerable potential to incorporate extensive biogeochemistry—
climate interactions between the atmosphere and ocean ecosystems to aid marine management
(Bonan & Doney, 2018). The atmospheric sources of macronutrient nitrogen (N) and
micronutrient iron (Fe) delivered to the ocean have been disturbed by human activities
(Jickells et al. 2005; Duce et al. 2008). The major source of Fe from the atmosphere is mineral
dust. However, pyrogenic Fe-containing aerosols have been suggested to increase the net
primary production (NPP) in large parts of the open ocean because of their enhanced Fe
solubilities (i.e. ratio of dissolved Fe to total Fe) during atmospheric transport (Ito et al.
2019). The atmospheric Fe deposition could have a larger effect on NPP than atmospheric
N in some ocean biogeochemistry models (Krishnamurthy et al. 2009; Okin et al. 2011).
However, the response of ocean biogeochemistry to changes in atmospheric Fe input depends
on the relative importance of the atmospheric source to the other external sources such
as continental shelf and hydrothermal sources, as well as internal sources recycled by
zooplankton and microorganisms (Tagliabue et al. 2008, 2016).

Atmospheric and oceanic communities have used various definitions for different forms
of Fe in aerosols and seawater (Baker & Croot, 2010; Meskhidze et al. in press). To avoid
any confusion in tracking the effect of atmospheric Fe source on the marine Fe cycle and
NPP in this study, we regard dissolved Fe (DFe) as the most readily bioavailable form of Fe,
and use Fe solubility as instantaneously dissolved fraction of total Fe (TFe) input from
atmospheric chemistry models to ocean biogeochemistry models. Note that this fraction
includes ferrihydrite colloids, nanoparticles and aqueous species (Raiswell & Canfield, 2012).

Global atmospheric deposition fluxes of DFe into the ocean have been estimated in the range
0.14-0.43 Tg Fe a™! (Ito et al. 2019). However, global ocean biogeochemistry models use a wider
range of 0.08-1.81 Tg Fe a™!, resulting from model-specific Fe content in dust and Fe solubility
(Tagliabue et al. 2016). Fe content in aerosols depends on the mineralogical composition in clay-
sized and silt-sized soils, because minerals in soils differ in their Fe content (Journet et al. 2014).
Some atmospheric chemistry models (Johnson & Meskhidze, 2013; Myriokefalitakis et al. 2015;
Ito & Shi, 2016; Scanza et al. 2018) have therefore taken into account the soil mineralogy map
and size distribution of Fe contents in mineral dust aerosols, and the resulting global mean Fe
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content in mineral dust emissions ranges from 2.6% to 3.5%
(Myriokefalitakis et al. 2018). Although mineral dust is the major
source of DFe, the aerosol Fe solubility is extremely low at
0.4+0.1% in the eastern North Atlantic near the Saharan dust
source regions (Ito et al. 2019). Further away from the source
regions, much higher Fe solubility is derived from the multiple field
campaigns (up to 98%). While no consensus has emerged on the
factors controlling the observed high Fe solubility for aerosols and
rainwater delivered into the Southern Ocean, it has been concluded
that high Fe solubility in aerosols is mainly attributed to DFe
released from pyrogenic Fe oxides (Ito et al. 2019).

Many ocean biogeochemistry models assume a constant Fe
solubility for mineral dust that is substantially higher than those
measured near dust source regions, and overestimate DFe
concentrations in the tropical and subtropical North Atlantic
downwind of the Saharan dust source regions. Furthermore,
DFe sinks such as scavenging and precipitation in the ocean
models are not well constrained. The first synthesis of a global-
scale dataset of DFe from 354 samples in the open ocean showed
a relatively narrow range of DFe concentration, despite the wide
range of atmospheric inputs (Johnson et al. 1997). In earlier mod-
elling studies, therefore, no particle scavenging was assumed for
DFe below 0.6 nM, presumably in the presence of strong Fe-bind-
ing ligands ubiquitously below that level (Johnson et al. 1997). As
more DFe measurements have become available for different
locations and time periods, a wider range of DFe concentration
has been observed than that accounted for by these models.
Accordingly, a more detailed model including a weaker ligand
and larger concentration of total ligand has led to better
model-measurement agreement (Parekh et al. 2004).
Currently, some ocean biogeochemistry models consider vari-
ability in Fe-binding ligands (Misumi et al. 2013; Volker &
Tagliabue, 2015; Pham & Ito, 2018), although some still assume
a constant ligand concentration of 0.6 or 1 nM (Tagliabue et al.
2016). Furthermore, few ocean biogeochemistry models consider
scavenging of Fe onto mineral dust, in addition to the scavenging
on organic particles (Moore & Braucher, 2008; Aumont et al.
2015; Ye & Volker, 2017; Pham & Ito, 2018). Consequently,
there are large uncertainties in the effects of atmospheric input
of DFe on seawater DFe (Tagliabue et al. 2016).

Here, we use one atmospheric chemistry transport model and two
ocean biogeochemistry models to investigate the effects of atmos-
pheric deposition of DFe from mineral dust and combustion aerosols
on ocean biogeochemistry. The choice of two different ocean biogeo-
chemistry models is intended to demonstrate the uncertainties asso-
ciated with the assumptions of sources and sinks of DFe in ocean
models. The models are referred to in this study as Model H and
Model L after their high and low sensitivities to atmospheric inputs
of DFe, respectively. Section 2 provides background information on
mineral dust and combustion aerosols as sources of DFe to the sur-
face ocean. Section 3 describes the modelling approaches and
numerical experiments performed in this study. The results of differ-
ent simulations are provided in Section 4 to explore the effects of dif-
ferent DFe sources (i.e. lithogenic v. pyrogenic sources and
atmospheric v. sedimentary inputs) on DFe in the surface ocean
and marine productivity. Section 5 presents a summary of our find-
ings and discusses the future outlook.

2. Lithogenic and pyrogenic Fe-containing aerosols

Different emission and atmospheric transformation processes
affect Fe solubilities in ambient aerosols (Fig. 1). The aerosol
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Fig. 1. Mechanisms and processes of Fe dissolution in aerosols.

Fe solubility can be affected by acidic processing during long-
range transport in the atmosphere. Formation rates of DFe from
Fe-containing mineral aerosols strongly depend on concentra-
tions of proton and ligands in solutions absorbed on hygroscopic
particles (i.e. aerosol waters) (Spokes et al. 1994; Chen &
Grassian, 2013; Ito & Shi, 2016). Based on laboratory experiments
for Fe-containing mineral aerosols, atmospheric chemistry trans-
port models adopted a parameterization of DFe from mineral
aerosols that involves a thermodynamic equilibrium module to
estimate the acidity in aqueous phase of hygroscopic particles
(Meskhidze et al. 2005; Ito & Feng, 2010; Myriokefalitakis et al.
2015). In the thermodynamic equilibrium calculations, the esti-
mates of pH strongly depend on the mixing of Fe-containing
aerosols with alkaline compounds such as carbonate minerals
(e.g. CaCO3) and sea salt (i.e. NaCl) (Meskhidze et al. 2005;
Ito & Xu, 2014; Guo et al. 2017). A highly acidic condition is
therefore very rare for mineral dust in larger particles because
alkaline minerals neutralize the acidic species in most
cases (Ito & Feng, 2010; Johnson & Meskhidze, 2013;
Myriokefalitakis et al. 2015). Under higher pH conditions (>4)
in oxygenated waters, Fe dissolution stops and DFe precipitates
as poorly crystalline nanoparticles without strong ligands
(Spokes et al. 1994; Shi et al. 2015). The internal mixing of alka-
line components in mineral dust with Fe-containing minerals can
lead to higher pH and thus suppression of Fe dissolution in
atmospheric chemistry models (Ito et al. 2019). As for submicron
aerosols, the carbonate buffering capacity is eventually exhausted
via sulphate formation from marine sources of dimethyl sulphide
(DMS) during long-range transport (Ito & Xu, 2014; Ito &
Shi, 2016).

Aerosols from combustion sources are dominated by fine-
mode particles that typically have high Fe solubility and low mass
concentration. Fly ash could be emitted with a large amount
of acidic pollutants such as sulphate (SO,), nitrate (NO3) and
oxygenated organic species. Fe in oil fly ash is mainly present
as ferric sulphate salt (Fe,(SO,)3-9(H,0)) and nanoparticles,
and is therefore associated with high Fe solubility observed over
the oceans (Sedwick et al. 2007; Schroth et al. 2009; Furutani et al.
2011; Ito, 2013). Fe oxides emitted from coal burning are coated
with sulphate during atmospheric transport and dissolved due
to strong acidity in the form of Fe sulphate (Fang et al. 2017;
Li et al. 2017). In the presence of enough organic ligands, DFe is
maintained in solution, resulting in relatively high Fe solubility
for combustion aerosols over the ocean (Wozniak et al. 2015;
Ito & Shi, 2016).
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3. Method
3.a. Atmospheric chemistry model

The three-dimensional (3D) global chemistry transport model
used in this study is a coupled gas-phase (Ito et al. 2007) and
aqueous-phase chemistry version (Lin et al. 2014) of the
Integrated Massively Parallel Atmospheric Chemical Transport
(IMPACT) model (Ito et al. 2018). Here, we describe the methods
relevant to this study. To improve the accuracy of our simulations
of DFe deposition to the oceans, we have upgraded the reanalysis
meteorological data (Gelaro et al. 2017) and deposition schemes
(Wang & Penner, 2009).

The model is driven by the Modern Era Retrospective
analysis for Research and Applications 2 (MERRA-2) reanalysis
meteorological data from of the National Aeronautics and Space
Administration (NASA) Global Modeling and Assimilation
Office (GMAO) (Gelaro et al. 2017) with a horizontal resolution
of 2.0°%2.5° and 59 vertical layers for the year of 2004. The
IMPACT model simulates the emissions, vertical diffusion,
advection, gravitational settling, convection, dry deposition, wet
scavenging and photochemistry of major aerosol species, which
include mineral dust, Fe-containing combustion aerosols, black
carbon, organic carbon, sea spray aerosols, sulphate, nitrate,
ammonium and secondary organic aerosols, and their precursor
gases. We calculated dust emissions using a physically based
emission scheme (Kok et al. 2014; Ito & Kok, 2017) while we pre-
scribed the combustion sources (Ito et al. 2018). A mineralogical
map was used to estimate the emissions of Fe in aeolian dust
(Journet et al. 2014; Ito & Shi, 2016). Atmospheric processing of
Fe-containing aerosols is predicted in four size bins (diameters:
0.1-1.26, 1.26-2.50, 2.5-5.0 and 5-20 pm) (Ito, 2015; Ito & Shi,
2016). The chemical composition of mineral dust and combustion
aerosols can change dynamically from that in the originally emit-
ted aerosols due to reactions with gaseous species. The aerosol
acidity depends on the aerosol types, mineralogy, particle size,
meteorological conditions and transport pathway of aerosols
(Ito & Feng, 2010; Ito & Xu, 2014; Ito, 2015; Ito & Shi, 2016).
Transformation from relatively insoluble Fe to DFe in aerosol
waters due to proton-promoted, oxalate-promoted and photo-
reductive Fe dissolution schemes is dynamically simulated
for the size-segregated mineral dust and combustion aerosols
(Ito, 2015; Tto & Shi, 2016).

The mineral dust and combustion aerosols are mainly
supplied to the ocean through a variety of hydrological processes
(i.e. wet deposition). The aerosols and soluble gases can be
incorporated into cloud drops and ice crystals within cloud
(i.e. rainout), collected by falling rain and snow (i.e. washout)
and be entrained into wet convective updrafts (Mari et al.
2000; Ito et al. 2007; Ito & Kok, 2017). The fraction of aerosol
removal within convective updrafts is calculated from the updraft
velocity and scavenging efficiencies of aerosols (Mari et al. 2000;
Lin et al. 2014). The sub-grid vertical velocity is related to the
vertical diffusivity (Morrison et al. 2005), which is given by
MERRA2. The scavenging efficiencies of aerosols are calculated
as the mass fraction of aerosol that is activated to cloud droplets
in liquid cloud (Wang & Penner, 2009). Five externally mixed
aerosols are used for the aerosol chemistry and scavenging effi-
ciencies of aerosols in bin 1 (radius, 0.05-0.63 pm) for: sulphates;
carbonaceous aerosols from fossil fuel and biofuel combustion;
carbonaceous aerosols from open biomass burning, marine

sources and secondary formation; mineral dust; and sea spray
aerosols (Xu & Penner, 2012). Three externally mixed aerosol
types are used for the aqueous-phase chemistry and scavenging
efficiencies of aerosols in bins 2-4 (radius, 0.63-1.25, 1.25-2.5
and 2.5-10 pm) for mineral dust, Fe-containing combustion
aerosols and sea spray aerosols (Ito, 2015).

3.b. Ocean biogeochemistry models

DFe deposition from the IMPACT model is fed to two ocean
biogeochemistry models to analyse the oceanic DFe distribution
and the biological response to changes in DFe. The two ocean
biogeochemistry models differ in the sensitivity of seawater DFe
to the atmospheric input and are described below as Model H
(high-sensitivity case) and Model L (low-sensitivity case). All
simulations of the ocean models are run for 1000 years and output
for the last 10 years is used for analysis.

3.b.1. High-sensitivity ocean model (Model H)

Model H uses the DFe deposition from the IMPACT model to
drive a 3D global biogeochemistry model Regulated Ecosystem
Model, version 2 (REcoM2) (Hauck et al. 2013), with a complex
description of the Fe cycle (Ye & Volker, 2017). REcoM2
describes two phytoplankton classes, diatoms and non-diatoms
(i.e. small phytoplankton); a generic zooplankton; and one class
of organic sinking particles whose sinking speed increases with
depth (Kriest & Oschlies, 2008). The model for phytoplankton
growth is based on a quota approach (Geider et al. 1998) and
allows for variable cellular C:N:Chl:(Si, Fe) stoichiometry
(Schartau et al. 2007). The Fe cycle in the model is driven by
atmospheric Fe-containing aerosols (0.23 Tg Fe a™!), sedimentary
(0.27 TgFea™) and hydrothermal inputs of DFe, biological
uptake and remineralization, and scavenging onto particles.
The sedimentary Fe source at the sea floor is given by the release
of Fe proportional to the degradation of organic carbon (with a
fixed C:Fe ratio of 30 000:1) in a homogeneous sediment layer,
which is based on a high-resolution bathymetry product
(Schaffer et al. 2016). Two classes of settling particles are taken
into account in the model: small dust particles, and large aggre-
gates consisting of an organic and lithogenic fraction. More
details of their settling, aggregation and disaggregation can be
found in Ye & Volker (2017). Two ligands are considered to cal-
culate organic complexation of Fe, and the binding strengths of
these two ligands are made dependent on pH and concentration
of dissolved organic carbon. This parameterization of organic
complexation results in a higher variability of DFe distribution,
but also much higher DFe concentrations than assuming a
constant ligand concentration of 1nM, if using the same
scavenging rates as in Ye & Volker (2017). The scavenging
rate for organic particles is therefore increased to 0.752
(mmolCm™)~! day™' in this study from that (0.0156
(mmol Cm™)~! day™') used by Ye & Vélker (2017), to keep
modelled DFe close to the range of global observations.
REcoM2 is coupled with the Massachusetts Institute of
Technology general circulation model (MITgcm) (Marshall et al.
1997), spanning the latitude range from 80°N to 80°S at a
zonal resolution of 2° and a meridional resolution of 0.39-2.0°.
It has 30 vertical layers increasing in thickness from 10m at
the surface to 500 m at depths >3700 m.
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3.b.2 Low-sensitivity ocean model (Model L)

Model L receives atmospheric DFe input from the IMPACT model
in a 3D global biogeochemistry model (Yoshikawa et al. 2008)
with a simplified description of Fe cycle (Watanabe et al. 2018),
which has been implemented to the Earth system model
(Hajima et al. 2014). The horizontal coordination for the ocean
is a tripolar system, and the model has 62 vertical levels with a
hybrid 6-z coordinate system. The ecosystem model is of the
nutrient-phytoplankton-zooplankton-detritus (NPZD) type. The
carbon/nitrogen/phosphorus/oxygen/iron ratio in plankton is
prescribed with the elemental stoichiometric ratios of C:N:P:
O =106:16:1:138 (Takahashi et al. 1985) and C:Fe =150 000:1
(Gregg et al. 2003), following the concept of the Redfield ratio.
NPP of phytoplankton is controlled according to the availability
of light, macronutrients and DFe, and depends on water temper-
ature. The Fe cycle in the model is driven by sources of DFe
through atmospheric Fe-containing aerosols (0.23 Tg Fe a™), sedi-
ments (2.35 TgFea™) and hydrothermal vents (0.47 TgFea™)
and sinks of the dissolved pool through biological uptake and
scavenging on biogenic and lithogenic particles (Moore et al.
2004; Moore & Braucher, 2008). The sedimentary DFe source is
crudely incorporated as a constant flux of 2 pmol Fe m~2 day~!
(Moore et al. 2004) from the continental shelf sources (Aumont
& Bopp, 2006), which is based on a high-resolution database
(National Geophysical Data Center, 2006). The Fe scavenging is
parameterized based on the mass of sinking particles (i.e. particu-
late organic material, dust and calcium carbonate) and DFe
concentration (Moore & Braucher, 2008). DFe is slowly scavenged
on the sinking particles when the concentration is below 0.6 nM,
to account for the presumed influences of Fe-binding ligands on
preventing DFe from rapid scavenging losses (Moore et al. 2004).

3.c. Sensitivity experiments

Sensitivity simulations are carried out to examine how the vari-
ability of DFe input from mineral dust and combustion sources
affects DFe concentrations in the surface ocean. Results of the
simulations are compared with a compilation of measurements
for aerosols and seawater, following the atmospheric and oceanic
Fe model intercomparison studies (Tagliabue et al. 2016;
Myriokefalitakis et al. 2018; Ito et al. 2019). Finally, the effect
of DFe on the carbon cycle is quantified by comparing integrated
water column NPP and export production (EP) at 100 m between
different simulations.

In the standard simulation (Experiment 1), spatially varying Fe
solubilities for both mineral dust and combustion aerosols are
used, considering different degrees of atmospheric processing in
Fe-containing aerosols. In addition to the standard simulation,
two experiments are performed with different assumptions of
the atmospheric sources of Fe and transformation from relatively
insoluble Fe to DFe for mineral dust (Table 1). To illustrate the role
of combustion sources, Experiment 2 considers spatially varying
solubility for mineral dust only, neglecting the combustion sources.
Most ocean biogeochemistry models assume both the mass frac-
tion and solubility of Fe in mineral dust to be constant. To quantify
the effect of spatially varying solubility relative to constant solubil-
ity, we run the ocean biogeochemistry models with a uniform Fe
content (3.5%) and Fe solubility (2%) for mineral dust only in
Experiment 3.

We estimate the effects of atmospheric DFe inputs of mineral
dust and combustion aerosols on DFe in seawater, NPP and EP by
subtracting Experiment 2 from Experiment 3 and Experiment 1

Alto et al.

Table 1. Summary of sensitivity simulations performed for atmospheric input

Fe solubility
in dust

Fe solubility in

Exp. Fe content in dust combustion

1 Mineralogical map  Online calculation Online calculation
2 Mineralogical map  Online calculation Not included
3 Constant at 3.5% Constant at 2% Not included

Table 2. Summary of effects of atmospheric DFe
biogeochemistry

input on ocean

Dissolved Fe effect  Difference

Alithogenic effect ~ Experiment 3 - Experiment 2 (for lithogenic source)

Apyrogenic effect ~ Experiment 1 - Experiment 2 (for pyrogenic source)

Table 3. Summary of sensitivity simulations performed for sedimentary sources

Ocean model Experiment DFe source (Tg Fe a™})
Model H Sedimentary default (D) 0.27

Model H Sedimentary low (L) 0.55

Model H Sedimentary middle (M) 1.38

Model H Sedimentary high (H) 2.78

Model L Sedimentary high (H) 24

from Experiment 2, respectively (Table 2). The differences between
experiments 3 and 2 are mainly caused by the differences in Fe
solubility for lithogenic source in addition to those in Fe content,
because the variability in Fe solubility is much larger than Fe con-
tent. The differences between experiments 1 and 2 are mainly
caused by the additional DFe input by pyrogenic source, since
scavenging onto pyrogenic particles is negligibly small. In
Section 4.5, the difference caused by change in lithogenic source
is referred to as Alithogenic effect, and that caused by change
in pyrogenic source as Apyrogenic effect. Efficiency (1) describes
how the change in DFe source affects marine productivity,
and is calculated for lithogenic (pyrogenic) source by dividing
Alithogenic (Apyrogenic) NPP or EP by Alithogenic
(Apyrogenic) DFe deposition. Additionally, sensitivity simulations
are carried out to examine how the variability of DFe sedimentary
input affects j of NPP or EP in terms of additional DFe deposition
fluxes with Model H (Table 3). The annual sedimentary source
flux is increased from 0.27 TgFea™ in the standard run (D), to
0.55, 1.38 and 2.78 TgFea! in the three sensitivity simulations
of low (L), middle (M) and high (H) cases, respectively. To
maintain a comparable NPP to the standard run, the scavenging
rate for organic particles is increased accordingly in each
sensitivity run.

3.d. Dissolved Fe concentrations in aerosols and seawater

Measuring DFe in aerosols involves releasing DFe from the
surface of the particles into solutions that typically represent either
rain- (i.e. wet deposition) or seawater (i.e. dry deposition).
Subsequently, the aerosol extracts are commonly passed through
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0.2 or 0.45um filters to measure DFe and TFe, separately.
Indirectly, Fe solubility is determined by dividing DFe by TFe
(i.e. DFe/TFe). A global dataset of aerosol measurements shows
an increase in Fe solubility with a decrease in TFe concentration
(Baker & Jickells, 2006; Sholkovitz et al., 2012). However, the
inverse relationship between the Fe solubility versus TFe may be
an artefact of plotting two variables against each other that
are not independent (TFe is used to calculate Fe solubility)
(Meskhidze et al. in press). To evaluate the ability of the
IMPACT model to reproduce the observed distributions of DFe
aerosol concentrations near the surface over the oceans, the model
results are compared with available observations over the North
Atlantic (Baker & Jickells, 2006; Baker et al. 2006, 2013; Buck
et al. 2010; Powell et al. 2015; Longo et al. 2016; Achterberg et al.
2018; Shelley et al. 2018) and North Pacific (Buck et al. 2006,
2013). A total of 277 observations of TFe and 396 measurements
of DFe over the oceans have been used in this study. We also
compare our model results with specific cruises GA02 in 2010
(April 2-July 4; Achterberg et al. 2018), GA03 in 2010 (October
15-November 2) and 2011 (November 7- December 9) (Shelley
et al. 2018) and IOC in 2002 (May 2-June 3; Buck et al. 2006).

It is problematic to validate model results with observations of
DFe deposition in the open ocean through direct sampling, due to
highly episodic rain events. Traditionally, dry deposition flux of
aerosol DFe is derived from a deposition velocity and DFe concen-
trations in aerosols, which are sampled from shipboard during the
cruise period. However, the short-term dry deposition estimate
could substantially differ from long-term estimate, given the spo-
radic nature of dust events. In contrast, long-term dust deposition
flux could be indirectly estimated, based on dissolved aluminium
(DAI) concentration in the surface water, assuming that the dust is
the major source of DAI to the ocean (Measures et al. 2005).
However, these estimates inherently include other sources, such
as coastal inputs from the surrounding continental shelves and
physical advection of surface water from other regions (Hatta et al.
2015; Measures et al. 2015).

Measurements of reference samples from an international
study of the marine biogeochemical cycles of trace elements and
their isotopes (GEOTRACES) programmes ensure a consistent
and comparable global dataset for trance elements such as Fe in
the ocean (Rijkenberg et al. 2014; Hatta et al. 2015; Nishioka &
Obata, 2017). The results from the two ocean biogeochemistry mod-
els are compared with specific observations over the North Atlantic
(Rijkenberg et al. 2014; Hatta et al. 2015) and North Pacific (Brown
et al. 2005; Nishioka & Obata, 2017). A total of 246 observations of
DFe in the upper 50 m at 112 locations have been used in this study.
DFe in the models are averaged over the months of the sampling
period and interpolated at the depths of the sampling. A mixed-layer
depth of 50 m is assumed in this study, based on the measurements
ranging from 28 m to 61 m along the GA03 (Hatta et al. 2015). The
average concentrations and the standard deviations of model esti-
mates and measurements are calculated from surface data and ver-
tical profiles at the sampling locations.

4. Results and discussion

4.a. Comparison with observational data of dissolved Fe in
aerosols

We compare our modelled concentrations of TFe and DFe in
aerosols with observations over the North Atlantic (Baker &
Jickells, 2006; Baker et al. 2006, 2013; Buck et al. 2010; Powell et al.

5
(a) Observation (b) Experiment 1
10° 10°
O N. Pacific O N. Pacific
IN. Atlantic o IN. Atlantic

10 10186 °
107" 10' 10° 107 10’ 10°
) (c) Experiment2 N (d) Experiment 3
10 10
O N. Pacific O N. Pacific
[IN. Atlantic IN. Atlantic

Dissolved Fe concentration (ng Fe m-?)

1 3

10 10 10° 107 10 10
Fe concentration (ng Fe m~2)

Fig. 2. Relationship between total Fe and dissolved Fe concentrations (ng Fe m™3) in
aerosols for (a) observation, (b) Experiment 1, (c) Experiment 2 and (d) Experiment 3
over the North Pacific (red circles) and the North Atlantic (black squares). The solid
black line shows a linear trend with a constant Fe solubility of 2%.

2015; Longo et al. 2016; Achterberg et al. 2018; Shelley et al.
2018) and North Pacific (Buck et al. 2006, 2013) (Fig. 2).
Overall, only the simulation for Experiment 1 reproduces both
the lower DFe concentration at higher TFe concentration over
the North Atlantic and the higher DFe concentration at lower
TFe concentration over the oceans (Fig. 2b). The difference
between Experiment 3 and observations (Fig. 2a, d) indicates
that the model with a constant Fe solubility of 2% overestimates
DFe near the source regions of mineral dust. On the other hand,
the difference between Experiment 2 and observations (Fig. 2a,
c) suggests that the model without combustion sources under-
estimates the higher DFe concentrations in both ocean basins.
This is particularly substantial in the North Pacific, since a
combustion source from the East Asia can be a significant
DFe source, compared with a sporadic mineral dust source
(Tto, 2015; Ito et al. 2019).

4.b. Comparison along North Atlantic (GA02 and GA03) and
North Pacific (I0C 2002 and GP02) cruises

We compare our model results with specific cruises GA02
(Rijkenberg et al. 2014; Achterberg et al. 2018), GA03 (Hatta et al.
2015; Shelley et al. 2018), IOC 2002 (Brown et al. 2005; Buck et al.
2006) and GP02 (Nishioka & Obata, 2017). The atmospheric
Fe-containing aerosol deposition fluxes are contoured to illustrate
the geographical distribution of the gradients along the cruise
tracks (Fig. 3a). Annually averaged dust deposition fluxes decrease
from 77 gm™2a! in the eastern North Atlantic near the Saharan
dust source to 0.57gm=a’! in the western North Atlantic
along the GAO03. At the latter locations, the model estimates are
significantly lower than the calculated dust deposition from DAl
concentration in seawater (3.61 g m~2a!) (Measures et al. 2015).
The latter value does not represent a geographically static region
as in the former values, but reflects a c. 5-year running average
of dust input into the surface water as it moves from the south
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Fig. 3. Annually averaged deposition fluxes of atmospheric Fe-containing aerosol
along the cruise tracks from the IMPACT model. The locations of the four cruises
are taken from GA02 (squares) during April-July (Achterberg et al. 2018), GAO3 (circles)
during October-November (Shelley et al. 2018), 10C 2002 (circles) during May-June
(Buck et al. 2006) and GPO02 (squares) during August-September (Nishioka & Obata,
2017). Estimates from (a) annually accumulated and (b) monthly accumulated depo-
sition fluxes during the cruises.

due to substantial advection of surface water in the Gulf Stream
(Measures et al. 2015). This is consistent with the higher simulated
dust deposition fluxes (up to 7.73 g m~2 a™!) into the Caribbean Sea
along the GA02. The simulated dust deposition fluxes decrease
from 3. 9gm‘2 -1 in the western North Pacific near Japan to
0.23gm™2a! in the central North Pacific along the IOC 2002,
which are in reasonable agreement with those based on the mea-
surement of Al concentration in seawater (Measures et al. 2005).
The annually averaged dust deposition fluxes are also calculated
from monthly accumulated deposition fluxes during the cruise
periods to illustrate seasonal variability in dust (Fig. 3b). The dust
deposition fluxes near Japan in spring (up to 8.12 gm™a"! along
the IOC 2002) are significantly larger than those in summer
(0.26 gm™a™! at the westernmost location along the GP02).

The comparison of the calculated and measured DFe in aerosols
indicates that Experiment 1 captures the DFe observations reason-
ably well (Fig. 4a—c). Experiments 2 and 3 underestimate the
aerosol DFe influenced by anthropogenic sources in the western
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North Atlantic near the North American continent (Fig. 4b),
while Experiment 3 overestimates DFe concentration over the
tropical and subtropical Atlantic downwind from the North
African dust plume (Fig. 4a, b). The model underestimates DFe
concentrations in aerosols over south Greenland, which are above
background levels and probably resulted from the Eyjafjallajokull
2010 eruption. The IMPACT model does not consider aerosol
emissions from the specific volcanic events, and therefore shows
good agreement with the observations for samples which are
not affected by the volcanic ash in the region (Achterberg et al.
2018). Along IOC 2002, high DFe in aerosols during short-term
events of Asian dust over east Japan might be captured by the
daily averaged estimates of DFe in the model but not by the
monthly mean, given the sporadic nature of dust events
(Fig. 4c) (Ito et al. 2019).

The atmospheric deposition flux (Fig. 4f) is decoupled from
DFe concentration in aerosols along IOC 2002 (Fig. 4c). This
result reflects the greater level of atmospheric processing of
aerosols at lower altitudes because of the more acidic air pollu-
tants near the ground surface. The relatively high Fe solubility
was derived from shipboard aerosol sampling (2.5 + 1.2% in sea-
water leaches north of 45° N) for mineral dust, which could be
transported at higher altitudes and delivered into the ocean via
rainout. Use of the high Fe solubility of 2% for mineral dust in
Experiment 3 would therefore lead to overestimations of DFe
supply in the North Pacific Ocean. The shipboard-sampled
aerosol represents the state of the atmosphere over daily time-
scales. In contrast, DAI in seawater is assumed to represent a
moving average of dust input over 5 years as a result of its longer
residence time in seawater than aerosols. This means that a
deposition flux has been estimated (Brown et al. 2005) based
on the measurement of Fe concentration in aerosols (Buck et al.
2006) that is about five times larger than that based on Al
concentration in seawater (Measures et al. 2005), even when
the dry deposition flux of aerosols was compared with total
(dry + wet) deposition flux. As a result, the annually averaged
atmospheric dust deposition fluxes (Fig. 3) are in good agreement
(0.1-0.5gm™2a"! in the eastern part of the cruise, excluding
the vicinity of the Hawaiian Islands) with those based on the
measurement of Al concentration in seawater (Measures et al.
2005), although the monthly averaged DFe concentration in
aerosols over the central North Pacific is significantly underesti-
mated (Fig. 4c).

In addition to the atmospheric input of DFe, surface DFe
concentrations in the two ocean biogeochemistry models along
the four cruises are compared with observations in the upper
50 m (Figs 4, 5). The observations of DFe in the surface ocean show
a N-S gradient along GA02 (Fig. 4g, j), relatively high DFe along
GAO03 under the Saharan dust plume and near the North American
continent (Fig. 4h, k), and relatively low DFe along IOC 2002 with
a peak close to the eastern end of the cruise (Fig. 4i,1). The observed
peak of higher concentrations in the eastern end of the cruise has
been attributed to fluvial runoff from the nearby islands (Measures
et al. 2005), which is not considered in either Model H or Model L.
The observations of DFe along GP02 show relatively high concen-
tration at the westernmost station near the Japanese coast (Fig. 5),
while dust deposition fluxes in summer are much smaller than
those during Asian dust season (Fig. 3). The western DFe-rich
water has been attributed to external sedimentary DFe sources
(Nishioka & Obata, 2017).

DFe in Model H shows a large variability of DFe (0.53 + 0.52 nM
in Experiment 1) with a similar range of measurements in the
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Fig. 4. Comparison of monthly averaged estimates from Experiment 1 (red squares), Experiment 2 (green triangles) and Experiment 3 (blue diamonds) with field data (black
circles) in the North Atlantic and the North Pacific. (a-c) Atmospheric DFe concentration in aerosols. (d-i) DFe deposition and DFe concentrations in the surface ocean in Model H.
Model L shares the same DFe deposition as Model H. (j-I) DFe concentrations in the surface ocean in Model L. The measurements of aerosols are taken from GA02 (Achterberg et al.
2018), GA03 (Shelley et al. 2018) and 10C 2002 (Buck et al. 2006). The measurements of seawater DFe are taken from the same cruises (GA02, Rijkenberg et al. 2014; GA03, Hatta et al.
2015; 10C 2002, Brown et al. 2005). The error bars in (g-l) represent the variability for the depth in the upper 50 m (o).

North Pacific, but is clearly overestimated along the two Atlantic
cruises. Along GAO02, the standard simulation (Experiment 1)
basically follows the pattern of deposition (Fig. 4d), increasing
from the equator to 20° N, decreasing to 30° N and then varying
within a small range between 0.5 and 0.75nM (Fig. 4g). All
three experiments reproduce the N-S gradient found in the

measurements, reflecting a strong Fe source in the tropical and
subtropical North Atlantic, which is consistent with the strong
correlation between the measured sea surface DFe and DAl
(Rijkenberg et al. 2014). Comparing the results of the three
experiments, DFe mainly differs between 10°N and 25°N in
the subtropical Atlantic, caused by the change in DFe deposition.
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The error bars represent the variability for the depth in the upper 50 m (+oc).

DFe in Experiment 3 with a fixed Fe content and solubility is more
than 1nM higher than the measurements. The measurements
show a strong decline between 10° N and 20° N assigned to bio-
logical uptake (Rijkenberg et al. 2014). In the model the decline is
much weaker, and is barely discernible in Experiment 3. Several
factors could contribute to this in the model. (1) The model does
not take into account the riverine input of Fe, and therefore
misses a source of DFe between the equator and 20°N where
Fe is transported from the Amazon River plume into the surface
ocean. (2) The model tends to overestimate DFe under dust
plume, and this feature extends from the subtropical North
Atlantic northwards to the high latitudes. However, the atmos-
pheric deposition fluxes are significantly lower than the fluxes
associated with deep winter mixing in the high-latitude North
Atlantic (Achterberg et al. 2018). The possible reasons for the
overestimation are explained below. (3) As well as biological
uptake, scavenging onto living phytoplankton cells could also
play a role in removing DFe from the surface waters (Hudson
& Morel 1989; Pagnone et al. 2019), particularly in regions with
high biological production. The decline of DFe is shown to
correlate well with the high surface fluorescence at c¢. 15°N
(Rijkenberg et al. 2014). These three factors might lead to an
underestimation of the variability of DFe between the equator
and 20°N: the background concentration is too high due to
the overestimation of the lifetime of DFe after rainfall (Baker
& Croot, 2010; Meskhidze et al. 2017), and the contrast between

5 and 15°N is too small due to the missing riverine input and
phytoplankton scavenging.

Along GAO03, the modelled DFe (Fig. 4h) also follows the
pattern of deposition which is clearly elevated under the
Saharan dust plume (Fig. 4e). The model tends to overestimate
DFe concentration in regions with high deposition between
320°E and 340°E, even considering lithogenic scavenging (Ye &
Volker, 2017) and a variable solubility of Fe in dust. A possible
explanation is that the model does not take into account the
size-segregated speciation of DFe between soluble and colloidal
Fe. The latter could significantly contribute to the DFe pool along
the GAO3 cruise in the surface ocean where atmospheric input
from mineral dust is the major source of DFe (Fitzsimmons et al.
2015; Hatta et al. 2015; Measures et al. 2015). It is therefore crucial
for the global Fe models to consider colloid formation and the
subsequent pathway of faster Fe removal via more active aggrega-
tion of colloidal Fe into particulate Fe phase than just via particle
adsorption of soluble Fe (Honeyman & Santschi 1989; Ye et al.
2009). In spite of the high background concentrations of DFe in
the eastern part of the transect, a decline is found in the model east
of 330° E caused by high biological uptake near the African coast
and scavenging by organic and lithogenic particles (Ye & Volker,
2017). Comparing the three experiments, Experiment 3 (assuming
a fixed Fe content and solubility) produces DFe up to ¢.1nM
higher in the eastern part of the transect than the other two experi-
ments. In the western part of the transect (west of 315° E), in spite
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Table 4. Changesindeposition, dissolved iron (DFe) inventory, net primary production (NPP) and export production (EP)
in the three experiments conducted with two ocean biogeochemistry models

Expl Exp2 Exp3 Alithogenic Apyrogenic
Global ocean
Aerosol deposition (Tg a™) 821 802 802 0 18
DFe deposition (Tg Fe a™) 0.23 0.18 0.56 0.38 0.047
DFe inventory Model H (Tg Fe) 52.8 52.1 54.0 1.9 0.7
DFe inventory Model L (Tg Fe) 44.8 445 454 0.8 0.2
NPP Model H (PgC a™?) 46.3 42.4 48.7 6.3 3.9
NPP Model L (PgC a™) 365 36.6 35.6 -0.9 -0.1
EP Model H (PgC a™) 11.4 10.8 11.7 0.9 0.7
EP Model L (PgC a™?) 9.8 9.8 9.7 -0.1 0.0
Northeastern Pacific Ocean (40-60° N, 190-225° E)
Aerosol deposition (Gg Fe a™) 3888 3676 3676 0 212
DFe deposition (Gg Fe a™) 1.8 1.2 2.6 1.4 0.6
DFe inventory Model H (Gg Fe) 18 15 40 25 33
DFe inventory Model L (Gg Fe) 45 41 50 9.5 4.3
NPP Model H (TgC al) 564 421 661 240 143
NPP Model L (TgC a™) 689 684 669 -14 5.0
EP Model H (TgC al) 168 142 174 32 26
EP Model L (TgC a™) 180 178 172 -6.0 1.9

of higher deposition in Experiment 1, DFe in the surface ocean is
slightly lower than in Experiment 3. This decoupling of seawater
DFe from DFe deposition could be caused by the difference of
DFe deposition between experiments 3 and 1 in the surrounding
waters of GAO3 stations and the transport of water masses. Higher
DAI concentrations have been measured in the Gulf Stream, which
carries waters from the Caribbean Sea where a much larger amount
of mineral dust is delivered from North Africa (Measures et al.
2015). Ignoring the atmospheric processing, DFe in seawater is
higher in the Caribbean Sea, and the inflow of water mass from
the Caribbean Sea leads to an elevation of DFe in the western part
of GAO3 in Experiment 3.

Modelled DFe along the IOC 2002 cruise track is higher in
the west and decreases towards the east (Fig. 4i), consistent with
the trend of deposition (Fig. 4f). The modelled DFe of
Experiment 1 (0.16 + 0.12 nM) matches well with measured DFe
(0.23 £0.20 nM), but Experiment 3 generates a twofold higher
concentration on average (0.35+0.22nM), indicating that the
solubility of Fe in the North Pacific Ocean would be severely over-
estimated by assuming a fixed Fe solubility of 2%. Furthermore, the
overestimations of DFe from mineral dust in the seawater may
imply that the atmospheric models need to consider the partition-
ing of DFe into Fe-organic complexes or colloidal inorganic Fe in
rainwater. The latter might be formed due to less Fe-binding
organic compounds in mineral aerosols (Ito & Shi, 2016). The
chemical speciation of organic ligands as well as size-segregated
measurements of DFe between colloids and aqueous species in
rainwater are needed in future work.

A comparison of DFe during summer months along the GP02
shows that the elevated DFe concentrations can be driven by
the sedimentary input that is mixed and advected offshore
(Fig. 5d), with a lesser contribution from atmospheric input

(Fig. 3). Model H reproduces the relatively high DFe concentra-
tions at the westernmost station near the Japanese coast observed
in the surface layer along the GP02, regardless of the relative inputs
of the sedimentary sources (Fig. 5).

Model L captures the average of DFe in the surface ocean,
but shows a small variability (0.48 £0.17 nM in Experiment 1)
compared with the measurements along the three cruises
(0.44 £ 0.61 nM). The results of three experiments in most cases
do not significantly differ from each other because the maximum
Fe solubility in seawater is mainly controlled by the threshold of
0.6 nM. This threshold approach leads to an underestimation of
relatively high DFe concentrations along GAO02. Nevertheless,
using the constant Fe solubility in Experiment 3, extremely large
DFe deposition along the GAO3 cruise near the dust source regions
(Fig. 4e) leads to overestimations of DFe in the eastern North
Atlantic (Fig. 4k). These overestimations are reduced in both
experiments 1 and 2, which consider different degrees of atmos-
pheric Fe processing. Model L shows an overestimation of DFe
at relatively low concentrations along the IOC 2002 in the
North Pacific (except the nearshore data from Hawaii), mostly
because of low scavenging rates when DFe is below the threshold
of 0.6 nM (Fig. 41).

4.c. Global distribution of dissolved Fe deposition fluxes
during spring

Mineral dust is the major source of aerosol DFe deposition (79%)
on a global scale, compared with pyrogenic Fe-containing aerosols
(Table 4). Here, we focus on the analysis of data averaged from
March to May in spring when the major dust plume typically
moves out from East Asia to the North Pacific. The standard
simulation (Experiment 1) shows that most DFe is deposited in
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Fig. 6. Deposition fluxes of dissolved Fe (ng Fe m™ s7) from dust and combustion
sources to the oceans during spring (March-May). (a) Spatial distribution of DFe for
Experiment 1. (b) Differences (Experiment 3 - Experiment 2) for lithogenic source
(Alithogenic). (c) Differences (Experiment 1 - Experiment 2) for pyrogenic
(Apyrogenic) source. Some areas shaded in white contain small negative values.

the North Atlantic, Arabian Sea and South Atlantic downwind
of the arid and semi-arid regions of North Africa, the Middle
East and Patagonia (Fig. 6a). When atmospheric processing of
mineral dust is not considered, Experiment 3 overestimates
deposition to most parts of the oceans such as the North
Atlantic, North Pacific and Southern Ocean, and specifically to
the south of Patagonia, Australia and southern Africa (Fig. 6b).
Mineral dust deposited in regions far away from the dust source
could have undergone intensive atmospheric processing during
long-range transport. The simulated solubility can therefore
be higher than 2% over the tropical and South Pacific, part of
the Indian Ocean, subtropical South Atlantic and Southern
Ocean. However, the total deposition is very small over these
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areas. When additional combustion sources are neglected,
Experiment 2 underestimates the deposition flux to the North
Pacific, North Atlantic and tropical oceans (Fig. 6¢).

4.d. Global distribution of dissolved Fe in the surface ocean
during spring

Results from Model H show a similar spatial pattern to Model L,
but a higher sensitivity of DFe to changes in atmospheric
deposition (Table 4 and Fig. 7); this is partly due to the faster
Fe scavenging on sinking particles when DFe concentrations
exceed 0.6 nM in Model L (Moore et al. 2004). When atmospheric
processing of mineral dust is not considered, both models pro-
duce higher DFe concentrations, mainly in regions close to dust
source regions but also in large areas in the subtropical North and
South Pacific (Fig. 7c, d). When additional combustion sources
are considered simulated DFe in both models becomes higher
(Fig. 7e, f), particularly in the tropical and subtropical South
Atlantic, the subtropical North Pacific and Indian Ocean.

4.e. Effects on marine primary production and export
production

Each phytoplankton functional type responds differently to
the imposed changes in DFe deposition, according to their
physiological nature. Large open-ocean diatoms are mostly less
efficient in nutrient uptake compared with small non-diatom
phytoplankton (Sunda & Huntsman, 1997). Diatoms are assumed
to have a requirement for silicate (Si) (no such requirement
for non-diatoms) and a higher half-saturation constant for N
uptake (ie. 1.0 v. 0.55mmol Nm™) and Fe uptake (i.e. 0.12
v. 0.02 pmol Fem™) compared with non-diatoms (Sunda &
Huntsman, 1997). Model H also takes into account the fact that
diatoms are more resistant to grazing and can grow better under
conditions of low light. The geographical distribution of NPP
for diatoms therefore shows lower production in most Fe-limited
oceanic regions such as the subtropical gyres during spring
(Fig. 8a). At the same time, diatoms have a larger maximum growth
rate (ie. 3.5 v. 3.0day™!). Fe inputs from the atmosphere and
upwelling of nutrient-rich water could therefore fuel the spring
blooms of diatoms in high-nutrient-low-chlorophyll (HNLC)
regions such as the subarctic North Atlantic, North and equatorial
Pacific. On the other hand, relatively high NPP for non-diatoms is
estimated in Si-limited regions of diatoms such as the tropical
Indian Ocean, where enough DFe is supplied (Fig. 8b). In regions
where N is the predominantly limiting nutrient, for example the
Atlantic Ocean (Fig. 8b), small phytoplankton outcompetes
diatom by its lower half saturation constant for N uptake.

To illustrate the magnitude of biological response to change
in atmospheric DFe sources, we compared Alithogenic and
Apyrogenic NPP from Model H. By assuming a constant solubil-
ity of 2% (Fig. 8¢, d) or adding the pyrogenic source (Fig. 8e, f),
NPP clearly increases in regions with intense Fe-limitation
(e.g. the Pacific Ocean and Southern Ocean) and decreases in
regions limited by macronutrients, although DFe input is larger
(e.g. low latitudes in the Atlantic Ocean and Arabian Sea). More
macronutrients are therefore consumed in Fe-limiting regions,
and less can be transported to other ocean regions. This causes
the decrease of NPP in N-limiting regions, particularly for
non-diatoms. The Pacific Ocean is generally Fe-limiting in the
model; however, the response pattern of NPP does not simply
follow the pattern of enhanced DFe concentration. This is
explained by competition for Fe and macronutrients between
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Fig. 7. Dissolved Fe concentration (umol m™) in the surface oceans during spring. (a, b) Spatial distribution of DFe for Experiment 1. (c, d) Differences
(Experiment 3 - Experiment 2) for lithogenic source (Alithogenic). (e, f) Differences (Experiment 1 - Experiment 2) for pyrogenic source (Apyrogenic).

the two phytoplankton groups: diatoms and non-diatoms.
Diatoms demand much more DFe uptake than non-diatoms
and are therefore out-competed if DFe supplies decrease.
Surrounding the areas of enhanced diatoms, excess nutrients
become available for non-diatoms and support higher produc-
tion. The net change of NPP is therefore controlled by both
nutrient supply and community composition of phytoplankton.

Table 4 gives an overview of annually accumulated deposition
of aerosols and DFe inventory from lithogenic and pyrogenic
sources, and their effects on NPP and EP in the three experiments,

for the global ocean and northeastern Pacific (40-60°N,
190-225°E), respectively. Global DFe input from dust
(0.18-0.56 Tg Fea™) and DFe inventory (45-54 Tg Fe) are within
the range (0.08-1.81 Tg Fe a™! and 27-70 Tg Fe, respectively) of 13
global Fe models compared in the framework of the iron model
intercomparison project (FeMIP) (Tagliabue et al. 2016).
Despite the much larger Alithogenic DFe deposition
(0.38 TgFea™!) than Apyrogenic (0.05 Tg Fea™!), we find compa-
rable Alithogenic and Apyrogenic NPP of 6.3 and 3.9 PgCa’l,
respectively, in Model H. The parameters Alithogenic and
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Apyrogenic EP in Model H are also similar (0.9 and 0.7 PgCa™).
Response of marine productivity to atmospheric DFe input depends
on the magnitude of Fe-limitation of phytoplankton growth.
Lithogenic and pyrogenic Fe deposition fluxes are distributed over
different regions of the oceans. Regions that receive the most sub-
stantial amounts of pyrogenic Fe are the Pacific and Southern
oceans, where phytoplankton growth is strongly limited by Fe.
New production can therefore be stimulated by additional input
of pyrogenic Fe, resulting in a more efficient increase in NPP
(n=285) and EP (n=14) than lithogenic Fe on a global scale

(Fig. 9). In contrast, phytoplankton growth is not predominantly
limited by Fe in most regions receiving the majority of the lithogenic
DFe, such as the subtropical North Atlantic Ocean and Arabian Sea.
At the same time, phytoplankton growth at lower latitudes in
the Pacific Ocean is still predominantly limited by Fe, even in
Experiment 3. Change in lithogenic source therefore still has a pos-
itive effect on marine productivity, but a low efficiency for NPP
(n=16) and EP (n = 2) compared with a pyrogenic source (Fig. 9).

Globally, Model L shows little and negative Alithogenic NPP
(-2.6%) and EP (-1.5%), even although global DFe deposition
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from mineral dust increases from 0.18 TgFea™ to 0.56 Tg Fea™!
by a factor of 3. The spatial reorganization in NPP is responsible
for the small net change in global NPP (Aumont et al. 2003;
Sarmiento et al. 2004; Tagliabue et al. 2008). NPP is enhanced
in the Southern Ocean assuming a constant Fe solubility of
the lithogenic deposition, because the simulated Fe solubility in
mineral dust is much lower than the prescribed value of 2%.
This enhancement of NPP increases the utilization of macronu-
trients, which are exported into the deep water. Since Model L
does not consider the return path of macronutrients from the
sediments, the depleted macronutrients reduce NPP in the
macronutrient-limited low latitudes. A similar mechanism also
occurs for Apyrogenic NPP (-0.3%) and EP (0.1%) in the global
ocean, as the elevated NPP in the northeastern Pacific is balanced
by the reduced NPP at lower latitudes.

In the northeastern Pacific, Model H shows a more intensive
increase in DFe inventory than Model L by both Alithogenic
and Apyrogenic, while Model L has a much larger DFe inventory
(lower part of Table 4). This can be partly explained by the ratio of
atmospheric to sedimentary input: 1:1.2 in Model H versus 1:10 in
Model L. We examine the effects of sedimentary sources on 1 of
NPP or EP to the additional DFe deposition (Fig. 9). The results
clearly demonstrate higher n of NPP and EP to the combustion
aerosols than to mineral dust, regardless of the relative inputs of
the sedimentary sources in Model H. In contrast to the global
ocean, lithogenic Fe can stimulate NPP in Model H with a high
and comparable efficiency to pyrogenic Fe in the northeastern

Pacific. A key factor here is the seasonality. Asian dust delivers
the majority of DFe in spring when marine biological activity is
high but often limited by Fe. Thus, both the spatial distribution
and temporal variation of atmospheric DFe sources affect their
efficiency in changing NPP.

5. Conclusions

Human activity perturbs both the sources of Fe and the effects of
atmospheric processing on the bioavailability of Fe delivered to the
ocean. The IMPACT model simulates less Fe emissions from
pyrogenic sources, but faster photochemical transformation for
pyrogenic Fe-containing aerosols and therefore more DFe deposi-
tion to the HNLC regions. The two ocean biogeochemistry models
receive DFe from the atmosphere and simulate the Fe cycle and
associated biogeochemical cycles of other nutrients. The more
detailed model with higher sensitivity to change in the atmospheric
input of DFe (Model H) suggests that pyrogenic Fe-containing
aerosols stimulate NPP and EP more efficiently than lithogenic
aerosols, relative to the smaller Fe amount in pyrogenic deposition,
because biological production in oceanic regions receiving most
of the pyrogenic deposition would be predominantly limited by
DFe if ignoring the pyrogenic source of DFe.

The two ocean biogeochemistry models show substantially
different magnitudes of response to the atmospheric input of
DFe, depending on the parameterization of DFe sinks as well as
assumptions about other DFe sources. Model H uses variable
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ligand-binding capacity and describes scavenging as a function
of DFe and settling particle concentrations, which allows higher
variability and sensitivity of DFe to its sources. Moreover, the
variable (and in many cases higher) binding capacity of ligands
keep more Fe in the dissolved form, and therefore available
for scavenging and biological uptake in the model. The trend of
overestimation of DFe in high-deposition regions indicates that
parameterization of scavenging loss becomes critical to shaping
the pattern of DFe distribution. On the other hand, Model L still
uses the threshold approach by assuming the presence of Fe-
binding ligands ubiquitously. That yields a modelled DFe that is
in good agreement with the average concentration of DFe
measured in the surface ocean, but suppresses the variability
and therefore results in the low sensitivity of DFe to changes in
its sources. Furthermore, the models use the same atmospheric
input of DFe but substantially different sedimentary source
strengths. Using Model H, we examined the sensitivity to the
sedimentary input of DFe by increasing the sedimentary default
(D) by a factor of 2, 6 and 12 compared with that used in the default
version of Model H. The results suggest that our conclusion of
higher sensitivity of NPP to the change in combustion aerosols
than to mineral dust is robust, regardless of the relative sedimen-
tary source inputs.

These results highlight that it is not only the atmospheric
processing and deposition of Fe, but also the capacity of the
ocean to keep deposited DFe available for biology, that are key
to understanding the role of atmospheric deposition to the ocean.
Knowledge of chemical speciation of Fe, such as size-segregated
measurements of DFe in both rain- and seawater, is needed in con-
junction with concentrations and complexing capacities of organic
ligands. Solubility of Fe in the surface ocean may also be affected by
certain organic ligands supplied via atmospheric deposition
(Meskhidze et al. 2017). By incorporating Fe-containing aerosols
with organic ligands emanating from natural and anthropogenic
sources in the assessment of atmospheric fluxes of DFe to the
surface ocean, we can improve our understanding of the effect
of human perturbations on DFe supply, especially in HNLC
regions. Since atmospheric DFe input plays a key role in prediction
of marine biogeochemical properties (e.g. oxygen, primary produc-
tion; Park et al. 2019; Yamamoto et al. 2019), the effect of
anthropogenic Fe-containing aerosols on the marine ecosystem
should be explored for marine resource management with Earth
system models in the future.
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