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THESIS ABSTRACT 
 

Viruses are the most abundant biological entity on Earth, dominating the marine environment. Despite 

their small size, viruses have an enormous influence on microbial population dynamics, due to lysis and 

horizontal gene transfer. Due the high abundance of their hosts, bacteriophages or phages comprise the 

majority of viruses and also provide the largest reservoirs of unexplored genetic diversity in marine 

environments. The rise of Next Generation Sequencing (NGS) techniques brings new opportunities to 

investigate the marine virus community. However, there is no current statutory pipeline applied in 

marine phage ecology. Therefore, this thesis proposes a virus-specific pipeline based on the integration 

of existing tools and state of the art techniques. The developed pipeline was applied to accomplish the 

two research aims of this thesis: (1) to analyze the virus community in the North Sea with viromics, and 

(2) to characterize lysogenic phages from potentially pathogenic Vibrio species. 

For the first part of this thesis, the virus community of four sampling stations were described using virus 

metagenomics (viromics). The results show that the virus community is dominated by phages and they 

are not evenly distributed throughout the North Sea. In general, the coastal virus community was 

genetically more diverse than the open sea community. The influence of riverine inflow and currents, 

for instance the English Channel flow affects the genetic virus diversity with the community carrying 

genes from a variety of metabolic pathways and other functions. These results offer the first insights in 

the virus community in the North Sea using viromics and shows the variation in virus diversity and the 

genetic information moved from coastal to open sea areas. Although phages of emerging Vibrio species 

were identified in low percentage in the North Sea virome, is possible they are lysogenic phages 

integrated into the host genome. 

The seawater temperature rise promotes the growth of potentially human pathogenic Vibrio species. In 

the North Sea, V. parahaemolyticus and non-O1/O139 V. cholerae have been isolated and characterized. 

These strains contain prophages that may contribute to the emergence of pathogenic strains in the marine 

environment (40 % of tested isolates). The genome structure and possible biological functions of four 

lysogenic phages were described in the second part of this thesis. The phages from V. parahaemolyticus 

(two tailed phages, one filamentous phage) and V. cholerae (one tailed phages) can integrate into their 

host genome and might have a role in pathogenicity. This study provides new insights with respect to 

the presence of lysogenic phages in environmental Vibrio strains, which might have a role in the 

emergence of new pathogenic strains in the North Sea. 

This thesis represents an exemplary study of the virus community in the North Sea, with special 

emphasis on the marine phages. The settled virus-specific pipeline as well as the obtained insights will 

contribute to extend the study of the virus diversity dynamics in other marine areas, including to estimate 

the abundance and functional diversity of novel phages. 
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Chapter 1 

 

INTRODUCTION 

 

1.1. MARINE VIRUSES: PART OF THE MICRO-UNIVERSE 

Viruses are the most abundant biological entity on Earth (Suttle, 2005). In the ocean, their concentration 

is estimated of ~ 107 virus-like particles (VLP) per milliliter of surface seawater and their abundance is 

over 1030 viral particles (Wommack and Colwell, 2000, Suttle, 2005). In other words, if one bottle of 

wine (~ 750 ml) is filled with seawater, it would contain as many viruses as humans in the whole world. 

Despite their small size (20 – 200 nm), viruses represent 94 % of all the nucleic acid-containing particles 

in the ocean and compose the second largest biomass, exceeded only by prokaryotes (Suttle, 2005, 

Fuhrman, 1999).  

Marine viruses have been identified in every investigated habitat so far. In general, viruses are not evenly 

distributed in the marine environment, and their abundance is highest in euphotic areas and then 

decreases with depth (Breitbart, 2012, Fuhrman, 1999). Furthermore, viral abundance is higher in coastal 

areas than offshores (Marchant et al., 2000). The dynamics of the virus communities is closely connected 

with the environmental parameters and host dynamics variations (Breitbart, 2012). Phages have an 

important role in marine ecosystems, due to horizontal gene transfer and release of dissolve organic 

matter (DOM) to the environment by host lysis (Breitbart et al., 2018). All cellular life forms are 

susceptible to viral infection, which applied both either to eukaryotes and to prokaryotes organisms 

(Fuhrman, 1999). Since bacteria are the most abundant cellular organisms, it is proposed that the most 

abundant infective viruses are bacteriophages or phages (Breitbart et al., 2018). 

Phage particles consist of a single- or double-stranded DNA or RNA surrounded by a protein –in some 

also by a lipid– coat (Sime-Ngando, 2014). Phage genomes possess a mosaicism organization, composed 

in modules of structural cores with related function (Berard et al., 2016). This structure is the result of 

non-homologous recombination during the evolution of viruses in different taxa (King et al., 2012). 

Most of the described marine phages belong to the Caudovirales order, also called tailed phages 

(Ackermann, 2007). This order is divided in four families based on the tail morphology: Podoviridae 

(short noncontractile tail), Siphoviridae (long noncontractile tail), Myoviridae (long contractile tail), 

Ackermannviridae (long contractile tail, formerly known as the Vi1virus genus), and Herelleviridae 
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(long contractile tail, created after Spounavirinae reclassification) (figure 1.1A) (Krupovic et al., 2011, 

Adriaenssens et al., 2018).  

Although most of the studied marine viruses are tailed phages, probably they are not the most abundant 

member in the environment (Ignacio-Espinosa and Fuhrman, 2018, Brum et al., 2013). New approaches 

applied to virus ecology bring new insights about virus groups that traditional methods may have 

overlooked in the marine environment. Examples of these groups are Mimiviruses or giant viruses 

(Fischer et al., 2010), virophages (Zhou et al., 2013), non-tailed phages from Autolykiviridae family 

(Kauffman et al., 2018b), RNA phages (Steward et al., 2012), and ssDNA phages as Inoviridae or 

filamentous phages (Tucker et al., 2011). In general, Inoviridae phages have a small genome size (~ 9 

Kbps) with a filamentous virion structure (figure 1.1B). Members of the family Inoviridae present a 

chronic infection cycle that results in phage integration into the bacterial genome as a prophage (Day, 

2011). In contrast to tailed phages, this process does not lyse the cell as lysogenic phages (section 1.2.2); 

instead, the infected cell can constantly release phage progeny in large amounts (Krupovic et al., 2011). 

Inoviridae prophages can alter host phenotype to express e.g. virulence traits. These filamentous phages 

contribute to bacterial virulence and therefore increase the bacterial survival in animal and plant hosts 

(Rakonjac, 2012). For instance, the filamentous phage CTXφ encodes major virulence factor (cholera 

toxin, CtxAB) in human pathogenic V. cholerae (McLeod et al., 2005, Waldor and Mekalanos, 1996). 

Inoviridae sequences have been identified in almost half of Vibrio genomes (45%, Castillo et al., 2018). 

Moreover, several environmental and harmless Vibrio genomes actually contain virulence trains from 

filamentous phages (Castillo et al., 2018). Despite the high prevalence of filamentous phages in several 

bacterial genomes, the presence of Inoviridae in metagenomic datasets have been overlooked (Roux et 

al., 2019). New approaches have been applied to identify Inoviridae sequences in marine metagenomes, 

showing a global prevalence in marine environments and high genomic diversity (Roux et al., 2019). 

Genome structure of Inoviridae phages and other characteristics are detailed in chapter 4. 
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FIGURE 1. 1. Phage morphotypes. Caudovirales (tailed phages), including its taxonomic families (A). Example of 

non-tailed phage families (B). Modified and updated from (Clokie and Kropinski, 2009). 

 

 

1.1.1. MARINE PHAGES AND OTHER MICROBIAL INHABITANTS 

FROM THE NORTH SEA 

The North Sea is a semi-enclosed basin part of the northwest European shelf (Otto et al., 1990). This 

region is strongly influenced by the riverine inflow, as well the Atlantic ocean current from both the 

northern current inflow and the English Channel (Otto et al., 1990, Mork et al., 1981, Sündermann and 

Pohlmann, 2011). The North Sea is characterized by a complex connection of oceanographic forces, 

physicochemical influences and human activities (Eisma et al., 1987). The average surface water 

temperature varies from 6 °C (winter) to 17 °C (summer), while the salinity increase from 31to 35 PSU 

(Eisma et al., 1987, Otto et al., 1990). The water mass exchange cause hydrographical variations, that 

affects directly the microbial community composition (Leterme et al., 2008, Rink et al., 2011). The 

differences in nutrient concentrations and salinity of the current inflows result in distinct microbial 

clusters throughout the North Sea region (Brandsma et al., 2013) 
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The natural variability of the North Sea has been monitored during long-term programs, including the 

dynamics of the microbial community (Wiltshire et al., 2010, Southward et al., 2004). Previous studies 

proposed a difference of the microbial planktonic community composition between the northern and 

southern North Sea (Handling editor: Ruth et al., 2018). The target organisms included dinoflagellates, 

ciliates, microalgae, bacteria, among others (Bils et al., 2019, Lucas et al., 2016, McQuatters-Gollop et 

al., 2009, Wiltshire et al., 2010, Brandsma et al., 2013). Most of the virus ecology studies in this region 

are focused on culture- and microscopy-based approaches (Duhaime et al., 2016, Duhaime et al., 2011a, 

Gerdts et al., 2004, Wichels et al., 1998, Brandsma et al., 2013). For instance, Moebus (1997b) 

developed key approaches to isolate and characterize marine phages from the North Sea region. Based 

on the enrichment method, marine phage–host systems (PHSs) of lytic and pseudolysogenic phages 

from the Caudovirales order were isolated (Moebus, 1997a, Moebus, 1997b). These studies show the 

spatio-temporal variability of marine phages based on plaque-forming units (PFU) and/or phage–host 

cross-reaction (PHCR) (Moebus, 1991, Moebus, 1992). The pioneer techniques developed by Moebus 

were the basis for future research of marine phages (described in section 1.4.1). Furthermore, the 

occurrence and distribution of Pseudoalteromonas phages isolated from the North Sea have 

characterized in greater detail (Duhaime et al., 2017, Duhaime et al., 2016, Duhaime et al., 2011a, 

Wichels et al., 1998). All these phages are lytic, and they belong to the Caudovirales order (Wichels et 

al., 1998, Wichels et al., 2002). Moreover, the occurrence of Pseudoalteromonas phages was restricted 

to a narrow geographical region of the German Bight, where includes the source area of the bacterial 

host isolate (Wichels et al., 2002). Therefore, Wichels et al. (2002) propose a geographical distribution 

of Pseudoalteromonas phages from the North Sea. In addition, Brandsma et al. (2013) describe similar 

patterns of the virus (as VLP/ml) and phytoplankton abundances, which are influenced by the 

characteristics of the different hydrographic regions. Despite the biogeographical patterns of the virus 

relative abundance, subpopulation differences were not observed with flow cytometry analyses 

(Brandsma et al., 2013). 

In general, the virus community structure can follow the trends of its host community (Brum et al., 2015, 

Sunagawa et al., 2015), which might suggest that the virus community composition in the North Sea 

would follow a similar distribution pattern differentiated between the coastal and the open sea regions.  
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1.2. THE HOST HACKERS VS THE TIME BOMBS: 

PROLIFERATION CYCLE OF TAILED PHAGES 

A virus depends upon its host in order to reproduce, which makes a host organism a crucial part of the 

virus environment (Abedon, 2008). This section introduces the main proliferation cycles of 

Caudovirales, known as tailed phages. The tailed phages were fundamental for early virus descriptions 

(Ackermann, 2003), used as the basis for the first guidelines in taxonomy classification. 

In general, Caudovirales are characterized to inject their dsDNA into the host bacteria upon infection to 

follow the lytic or lysogenic cycle (figure 1.2) (Krupovic et al., 2011). Both cycles entail different effect 

on the fitness and development of the host cell population, as well as the effect on ecological processes 

in the marine environment. 

1.2.1. LYTIC CYCLE, THE HOST HACKERS 

The lytic cycle is a viral replication process highly controlled, where the dsDNA phage redirects the 

host metabolism to the production and release of new phages (Weinbauer, 2004). This cycle follows 

mainly the steps: attachment, expression and replication of the nucleic acid, assembly of new phages 

particles and host cell lysis to release of new phages (figure 1.2) (Goyal et al., 1987, Bondy-Denomy 

and Davidson, 2014). 

After the phage is attached irreversibly with the host membrane receptor, the phage genome is injected 

into the host cytoplasm (Rohwer et al., 2014, Kutter and Sulakvelidze, 2004). Inside the host cell, the 

phage genome is in general circularized (e.g. by linear ends repetitions, sticky ends or terminal 

redundancies) to protect itself from exonucleases and restriction enzymes (Kutter and Sulakvelidze, 

2004). If the genome is not degraded, the host metabolism is redirected to phage genome replication and 

toward the production of virions (Weinbauer, 2004). In tailed phage genomes, this process is regulated 

by genes organized in structural cores (Krupovic et al., 2011). In detail, the immediate early genes are 

transcribed first for protection of the phage genome, follow by middle genes to replicate the new phage 

DNA, and the late genes that encode virion assembly proteins (Kutter and Sulakvelidze, 2004). Finally, 

the mature virions accumulate into the cytoplasm, leading to lysis and release of progeny phage particles 

(Weinbauer, 2004, Breitbart et al., 2018, Rohwer et al., 2014) (figure 1.2). 
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1.2.2. LYSOGENIC CYCLE, THE TIME BOMBS 

During the lysogenic cycle, the temperate phage integrates into the host genome (prophage) and 

replicates along with the host (lysogen) (Breitbart, 2012). In this period, the lysogen can survive and 

proliferate almost normally (Bondy-Denomy and Davidson, 2014, Erez et al., 2017). Many temperate 

phages have their own specific integration sites, such as the attachment (att) sites for insertion into the 

lysogen chromosome of phage lambda (King et al., 2012). Others, such as phage Mu, uses integrases to 

integrate randomly into the lysogen genome (Kutter and Sulakvelidze, 2004, Kamp, 1987). As a 

prophage, the phage genes are repressed until an environmental factor triggers the prophage to become 

lytic, called prophage induction (figure 1.2) (Breitbart, 2012). 

In general, lysogeny presents a survival advantage for the phage during unfavorable conditions. The 

prophages are protected from stress factors like UV radiation, proteolytic digestion, and periods of low 

host abundance (Breitbart, 2012, Fuhrman, 1999, Paul, 2008). On the other hand, the lysogen becomes 

immune to further infection by closely related phages, and increase its fitness due to the acquisitions of 

new functional genes or suppression of unnecessary metabolic functions (Erez et al., 2017, Fuhrman, 

1999, Paul, 2008). The decision between lysis-lysogeny may be driven by several factors, such as the 

relative phage and host densities (Dou et al., 2018, Jiang and Paul, 1998), or the release of a phage 

peptide to regulate the process similar to quorum-sensing (Erez et al., 2017). Other indirect factors are 

temperature, oligotrophy and/or anoxic level; all of them affect the distribution and occurrence of 

potential hosts in marine environments (Paul, 2008, Mcdaniel et al., 2006, Weinbauer et al., 2003, 

Williamson et al., 2002). 
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FIGURE 1. 2. Main proliferation cycles in tailed phages: lytic (left) and lysogenic cycle (right). Based on (Weinbauer, 2004). 
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1.2.3. THE VIRAL EFFECT:  

ROLE ON THE ECOSYSTEM AND POPULATION DEVELOPMENT 

Despite the small size, viruses have a tremendous role in ecological processes. In surface marine waters, 

phages are responsible for approximately half of the bacterial death per day (Breitbart et al., 2018, 

Breitbart and Rohwer, 2005). In contrast to grazers, the DOM is released and remineralized by bacteria 

within the microbial loop (Fuhrman, 1999). By this pathway named viral shunt, nearly 10 billion tons 

of dissolved carbon are released each day to the ocean (Wilhelm and Suttle, 1999). Moreover, up to a 

quarter of photosynthetically fixed carbon comes from the DOM released by viral lysis (Wilhelm and 

Suttle, 1999). Other nutrients, such as nitrogen, phosphorus and trace elements, frequently limit primary 

production are also released by phage lysis (Fuhrman, 1999). On the other hand, recent studies also have 

shown that viruses contribute to shuttle organic carbon from the surface to the deep ocean by the 

production of sticky lysate aggregations (Weinbauer, 2004, Laber et al., 2018). This process named viral 

shuttle, contributes to enhance the efficiency of the biological pump (Sullivan et al., 2016, Breitbart et 

al., 2018). 

Phages can modify the community composition by selective infection (Maslov and Sneppen, 2017). 

According to kill-the-winner (KrW) dynamics, when a bacteria population becomes dominant, the 

abundance of its infectious phage will increase (Thingstad, 2000, Thingstad and Lignell, 1997). This 

mechanism promotes diversity in the population, and prevents the best bacterial competitors to take over 

the community (Thingstad and Lignell, 1997). Other models that include lysogenic phages have been 

proposed (Knowles et al., 2016). In the piggyback-the-winner (PtW) dynamics, the infective phages 

switch to lysogeny when the host population becomes dominant (Knowles et al., 2016, Weynberg, 2018) 

This mechanism avoids the lysogenic phage to compete for host cells or evade immune response 

(Weynberg, 2018). The PtW dynamic contrasts to classical models similar to KtW proposed to lysogenic 

phages. These models proposed that lysogeny is a survival strategy at low host abundance, whereas the 

lytic cycle is triggered at high host abundance (Weinbauer et al., 2003). In any of these cases, the phage 

infection yields a decrease in the population of the original dominant bacteria, opening a new niche. In 

a dynamic ecosystem, the newly dominant bacteria population can be infected by the progeny from the 

previous dominant phage, or by a different phage population that was present in low abundance 

(Breitbart et al., 2018).  
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Another mechanism involved in population development is horizontal gene transfer (HGT). In general, 

about 3 to 10 % of bacterial genomes have a phage origin (Brussow et al., 2004). Moreover, the prophage 

contribution to the host genome inventory can increase up to 20 % (Casjens, 2003, Fernández et al., 

2018). Lytic phages can release complete host plasmids to the environment after lyse their host 

(Fernández et al., 2018, Keen et al., 2017). Also, temperate phages can transfer a gene cluster with an 

entire function to their host through HGT (Weinbauer, 2004). Among these functions are photosynthetic 

genes transferred by phages between cyanobacteria (Hurwitz et al., 2013b, Zeidner et al., 2005), 

antibiotic resistance genes (Lekunberri et al., 2017), spore formation (Fortier and Sekulovic, 2013), 

virulence factors and toxin production (Bondy-Denomy and Davidson, 2014), biofilm formation (Fortier 

and Sekulovic, 2013), and 16S rRNA genes transferred between different bacteria genera (Harrington 

et al., 2012, Beumer and Robinson, 2005). 

The acquisition of new functional genes promotes adaptation and increases the diversity of the bacterial 

population (Weinbauer and Rassoulzadegan, 2004). In consequence, these genes might expand the 

genetic adaptability opening new ecological niches and increase the geographical distribution of species 

(Weinbauer, 2004). With emphasis to the genus Vibrio, HGT by phages can contribute to the 

development of new pathogenic bacteria strains in the marine environment through acquisition of 

virulence traits (Hazen et al., 2010, Fortier and Sekulovic, 2013). 

1.2.4. INCEPTION OF INFECTION: PHAGE INFLUENCE IN THE  

DEVELOPMENT OF HUMAN PATHOGENIC VIBRIO STRAINS 

Vibrio spp. are ubiquitously distributed in aquatic habitats worldwide, such as marine sediments, water 

column brackish water or associated with zoo- and phytoplankton (Thompson et al., 2004, 

Oberbeckmann et al., 2011a). Although this genus comprises more than 100 recognized species, only 

11 are human pathogens (Miyoshi, 2013). For instance, V. cholerae from serogroups O1 and O139 have 

caused epidemics of cholera, while non-O1/O139 V. cholerae and V. parahaemolyticus can cause severe 

gastroenteritis (Chakraborty et al., 2000, Thompson et al., 2004). In general, Vibrio spp. can grow at 

warm seawater temperature (> 18 °C) and low salinity (< 25 ppt NaCl) (Vezzulli et al., 2013). Therefore, 

these pathogens have been commonly associated with tropical and subtropical regions (Baker-Austin et 

al., 2017). In addition, they exhibit a typical pattern of opportunistic blooms in coastal areas (Böer et 

al., 2013). 

In the last decade, the seawater temperature raised significantly in over 70 % of worldwide coasts 

(Baker-Austin et al., 2017, Lima and Wethey, 2012). Several studies demonstrate that this climate 

change promotes the growth of potentially pathogenic Vibrio species throughout the North Sea, such as 

V. parahaemolyticus and V. cholerae (Martinez-Urtaza et al., 2018, Baker-Austin et al., 2017, Roux et 

al., 2015a, Baker-Austin et al., 2013, Bier et al., 2015, Vezzulli et al., 2016). In consequence, reports of 
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Vibriosis cases in the North Sea have been increased (Baker-Austin et al., 2017, Vezzulli et al., 2012). 

Several factors can be involved in the development of human pathogenic strains in the marine 

environment, such as the acquisition of virulence traits via HGT, as hypothesized in other environmental 

species (Chakraborty et al., 2000, Covacci et al., 1997). 

The Vibrio genomes contain significantly more alien genes than other marine bacteria (Lin et al., 2018). 

The HGT by prophages is an important factor to the genetic diversity in Vibrio spp. (Fortier and 

Sekulovic, 2013). Among the pathogenic Vibrio strains, at least 65 genes are present exclusively in the 

pandemic strains compared with the non-pandemic strains, including several genes related to 

pathogenicity (Bastías et al., 2010). Those strains may acquire virulence traits by horizontal gene 

transfer in the environment (Hazen et al., 2010). For instance, the V. cholerae phage CTXφ was the first 

filamentous phage reported to transmit virulence traits, that results on the lysogenic conversion of the 

bacterium to produce toxins (Waldor and Mekalanos, 1996). Thus, the production of cholera toxin (ctx) 

in lysogen V. cholerae has been extensively studied as PHS model (Davis et al., 2000, Faruque and 

Mekalanos, 2012, McLeod et al., 2005, Rakonjac, 2012). Moreover, filamentous phages appear to have 

a widespread distribution as described by Castillo et al. (2018). Among 1,874 Vibrio genomes from 

several species, near a half contain a complete filamentous phage sequence, which encodes for the 

zonula occludens toxin (zot) described in V. cholerae (Castillo et al., 2018). For instance, marine V. 

cholerae from a coastal brackish pond contained the filamentous phage VCYɸ, this phage has a 

widespread distribution within its host population (Xue et al., 2012). Although it was not considered a 

virulence factor in these V. cholerae strains, the genome of VCYɸ contains the zot encoding protein and 

has genomic features similar to CTXφ (Xue et al., 2012). In this manner, the ability of these phages to 

transfer pathogenicity genes (e.g. zot or ctx) in marine V. cholerae strains represent a direct public health 

concern (Casas and Maloy, 2011, Casas et al., 2006). In addition, filamentous phages could play a role 

in transfer of pathogenic genes in other species, such as V. parahaemolyticus (Chang et al., 1998, Iida 

et al., 2001). 

Besides the role of phages in host pathogenicity, lytic phages have been studied as therapeutic agents 

against Vibrio infections. For instance, the phages CK-2 and 153A-5 have been used in the treatment of 

systemic infections of V. vulnificus in mice (Cerveny et al., 2002). Furthermore, Srinivasan and 

Ramasamy (2017) isolated four phages (VV-1, VV-2, VV-3, and VV-4) for biocontrol of V. vulnificus 

in shrimps for aquaculture. These phages belong to the Tectiviridae family, characterized by no head-

tail structure and non-enveloped icosahedral virion (Srinivasan and Ramasamy, 2017). In addition, tailed 

phages have been studied for phage therapy treatment against V. cholerae infections (Seed et al., 2011, 

Yen et al., 2017, Yen and Camilli, 2017). The ICP tailed phages isolated in Bangladesh, show efficiency 

and high specificity to prevent V. cholerae infections in infant mouse and rabbit models (Yen et al., 

2017). Moreover, the epidemiological data from Dhaka (Bangladesh)  



Chapter 1 

11 

 

suggest that the V. cholerae population in that area might be reduced by phage infection during the peak 

of epidemics (Jensen et al., 2006).  

In the case of tailed Vibrio phages, several members belong to Podoviridae, Myoviridae and 

Siphoviridae families have been characterized (e.g. Ackermann et al., 1984). Tailed phages have been 

described in pandemic and potentially pathogenic Vibrio species isolated from the marine environment, 

such as V. cholerae O1 Biotype ElTor strains (Sen and Ghosh, 2005), V. parahaemolyticus (Matsuzaki 

et al., 1992, Miller et al., 2003), V. harveyi (Baudoux et al., 2012), among others. Recently, the non-

tailed phage family Autolykiviridae were characterized by Kauffman et al. (2018b). This novel family 

was identified during the sampling campaign of the Nahant Collection, a large-scale virus-host model 

system of cultivated and genome-sequenced bacterial and viral isolates focused in Vibrionaceae PHS 

(Kauffman et al., 2018a). This collection contains 251 dsDNA phages (Caudovirales and 

Autolykiviridae) infecting diverse marine Vibrionaceae (Kauffman et al., 2018a). As exemplary applied 

in the Nahant Collection, the characterization of marine Vibrio PHSs under a comprehensive approach 

can bring new insights to elucidate the ecological role of phages in the marine environment. 

1.3. YOU CAN JUDGE A PHAGE BY THE SCOPE IT’S SEEN: 

APPROACHES APPLIED IN MARINE PHAGE ECOLOGY 

As only a small fraction of the microbial diversity can be cultivated (approximately 1 %), the marine 

microbial abundance was drastically underestimated in early ecological studies (Rohwer et al., 2014, 

Jannasch and Jones, 1959). In consequence, these studies reflected a ‘desert’ ocean, with an extremely 

low diversity of marine phages (Brum and Sullivan, 2015, Rohwer et al., 2014, Bergh et al., 1989, 

Farrah, 1987, Moebus, 1987). Such was the case, that Zobell (1946) proposed that marine phage could 

not be ecologically significant, due to the low abundance of a possible host or prey. Between 1940 to 

1970s, direct microscopy approaches contrasted with indirect culture-based enumerations (Bergh et al., 

1989, Jannasch and Jones, 1959, Rohwer et al., 2014, Torrella and Morita, 1979, Zobell, 1946). During 

the 1980s, Moebus (1980) was a pioneer to develop new approaches to isolate marine phages from 

mixed communities. After further additional evidence of high abundance of marine viruses (Bergh et 

al., 1989, Torrella and Morita, 1979), the interest of marine phage ecology was increasing till nowadays. 

At present, several techniques have been developed to study the marine virus community under different 

scopes. 
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1.3.1. METHODS TO COLLECT VIRUS BIOMASS 

One of the critical steps to estimate the abundance of marine viruses is the virus biomass collection. The 

traditional method is the large-scale tangential flow filtration (TFF), in which the sample directed 

tangentially across the filter, while a cross-membrane pressure is applied through the filter membrane 

pores (Alonso et al., 1999, Clokie and Kropinski, 2009). Although this prominent method allows to 

concentrate the sample up to > 100-fold VLP in the retained water sample, this method requires large 

sample volume (> 100 l) and can be highly time-consuming (Alonso et al., 1999, John et al., 2011, 

Clokie and Kropinski, 2009). Therefore, other methods have been developed to concentrate viruses, e.g. 

adsorption-elution method and pelleting virus particles with ultracentrifugation. However, selective 

adsorption of viruses to treated filters and low virus recovery are important technique biases with these 

methods (Fuhrman et al., 2005, John et al., 2011, Percival et al., 2004). Additionally, the iron chloride 

flocculation method has several advantages as compared to the traditional TFF method (Hurwitz et al., 

2013a, John et al., 2011). Briefly, the seawater sample is pre-filtered and the ‘virus fraction’ is incubated 

with iron chloride to form a Fe-virus complex, which can be collected onto a polycarbonate filter and 

resuspended with Ascorbate- or Oxalate-EDTA buffer for further analyses (John et al., 2011). The iron 

chloride flocculation method is easy to implement, and has high efficiency, proven by concentrate 

recovery (> 90 %) in tested seawater samples with tailed phages (John et al., 2011). Moreover, this 

advantage accounts for the requirement of relatively low sample volume (~ 20 l), one reason for the 

favor of this chemistry-based concentration method during oceanographic sampling campaigns, as well 

as for freshwater studies (Duhaime and Sullivan, 2012). 

1.3.2. METHODS TO ESTIMATE ABUNDANCE AND DIVERSITY 

The improvements of the analyses of marine virus abundance are in close relationship with the 

development of direct count methods for bacterial enumeration with microscopy-based techniques 

(Wommack and Colwell, 2000). Due the develop of epifluorescence microscopy (EpM) in the late 

1970s, the ocean turns out to be an environment massively inhabited by microorganisms (Rohwer et al., 

2014, Hobbie et al., 1977). Since then, methods to estimate the virus abundance with EpM were 

developed (Bergh et al., 1989, Frank and Moebus, 1987, Noble and Fuhrman, 1998, Torrella and Morita, 

1979). 

EpM appeared as a fast method to quantify VLP from both isolates and direct field samples (Rachel and 

Jed, 1998, Clokie and Kropinski, 2009). The traditional method applies a small pore size membrane 

filter to collect the fixed VLP for staining with a fluorescent dye, such as DAPI, Yo-Pro-1, SYBR Green 

and SYBR Gold (Clokie and Kropinski, 2009, Thurber et al., 2009, Rachel and Jed, 1998). Although 

this technique allows to quantify the total count of VLP in the sample, no deeper information regarding 

their infectivity and further classification is possible. On the other hand, the flow cytometry is a fast and 

precise approach to distinguish virus groups from total counts based on the scatter and fluorescence 
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obtained after stain the virus particles (Weinbauer, 2004, Clokie and Kropinski, 2009, Wommack and 

Colwell, 2000). In addition, these techniques can be complemented with other methods to obtain more 

information about virus infectivity. For instance, the ‘viable’ counts can be obtained as plaque-forming 

units (PFU) on a double agar overlay plaque assay (section 1.4.1) or in culture broth as most-probable-

number (MPN) assay (Weinbauer, 2004, Clokie and Kropinski, 2009). However, the vast majority of 

marine microorganisms remains uncultivated and ‘viable’ counts yield strong underestimation of the 

total abundance (Rappé and Giovannoni, 2003, Brum and Sullivan, 2015, Weinbauer, 2004).  

Therefore, a comprehensive approach must be applied to reduce each technique bias to analyze the virus 

population structures. 

The marine virus diversity can be estimated at the level of virion morphology, growth parameters in 

infection, and nucleic acid sequence (Duhaime, 2010). Electron microscopy (EM) was used to visualize 

phages from marine samples to estimate the abundance of total counts as well as the diversity of virus 

particles (Weinbauer, 2004). Based on the virion morphology (e.g. virion size, tail structure), the phages 

from isolates or direct samples can be classified at the family level (Ackermann, 2011, Ackermann and 

DuBow, 1987). Due to the information outcome from this method, virion morphology classification is 

currently one of the minimal requirements to characterize a phage taxon (Fauquet and Martelli, 2013). 

More information about EM application in phage morphology characterization is detailed in section 

1.4.2. In addition, other features used for characterization include the proliferation cycle, host range, 

plaque morphology, latent period and burst sizes from isolated PHSs (Duhaime, 2010, Weinbauer, 

2004).  

In contrast to cell organisms, phages lack a universal gene to be used as molecular markers to establish 

phylogenetic relationships (Tolstoy et al., 2018, Alavandi and Poornima, 2012). In consequence, protein 

encoding genes such as large subunit terminase, major capsid, major tail proteins, and DNA polymerases 

can be used to build phylogenetic trees from specific phage families (Tolstoy et al., 2018).  

Thus, molecular-based techniques (e.g. PCR amplification) have been used to analyze the virus 

community structure (Williamson et al., 2012). Although PCR is a fast technique to identify the presence 

of specific virus groups from environmental samples, the high mutation rate and mosaicism nature of 

genomes give several problems for the applicability of this technique (Clokie and Kropinski, 2009). For 

this reason, PCR-based approaches are restricted to small-scale projects focusing on specific genes and 

on well-known phage genera (Clokie and Kropinski, 2009). 

Due to the constantly growing number of virus genomes available in the databases, the advance of 

metagenomic-based studies appeared as a reliable alternative to overcome the cultivation bottleneck and 

virus gene marker methods (Brum and Sullivan, 2015, Thurber et al., 2009). The application of massive 

nucleic acid sequencing to characterize the virus community composition is detailed in section 1.5.  
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1.4. METHODS APPLIED TO 

TAILED PHAGE’S CHARACTERIZATION 

The study of tailed phages (Caudovirales) was fundamental for the current understanding of the nature 

and function of nucleic acids and proteins (Grose and Casjens, 2014). Several phage strains from 16 

Caudovirales genera have been isolated from the ‘model’ bacteria Escherichia coli (Grose and Casjens, 

2014). These phage–host model systems were the basis to discover the proliferation cycle of 

Caudovirales phages (Krupovic et al., 2011, King et al., 2012). Particularly, the model T‑phages (phages 

T1 to T7, Demerec and Fano, 1945) facilitated the comparability of results between laboratories, as well 

as the definition of key phage-related concepts (Salmond and Fineran, 2015). The study of these model 

phages was the basis to define the main shared criteria of phage taxonomic classification. 

The ability to identify the members of an ecosystem is one of the first steps to understand the community 

structure and function (Systems et al., 1995). In ecological studies, the taxonomical identification of the 

community composition also permits the identification of the taxa with most ecological importance 

(Systems et al., 1995). In the case of viruses, the viral taxonomy is a discipline that constantly refining 

definitions of a virus species and their classifications (Morgan, 2016). As most of the phage 

classification was primarily based on the particle morphology, other properties such as replication, 

protein characterization and genome organization are described only in a small percentage of well-

studied species (King et al., 2012). Phage taxonomy has evolved from that morphology-based 

classification to a comprehensive approach with multiple criteria (Tolstoy et al., 2018). However, 

several discrepancies in phage classification cause a limited number of higher hierarchies groups 

(Desselberger, 2018). For instance, the high rate of horizontal gene transfer (HGT) and the mosaicism 

nature of genomes give problems to classify phages with highly similar genomes but with distinct 

morphology (King et al., 2012, Van Regenmortel et al., 2013). Moreover, the taxonomic system of the 

International Committee on Taxonomy of Viruses (ICTV) comprises only cultivated viruses, and 

recently a ‘consensus statement’ propose the incorporation of uncultivated viruses (Desselberger, 2018, 

Simmonds et al., 2017). Thus, there are no current universal criteria in Caudovirales classification and 

they can vary between different genus (King et al., 2012, Fauquet and Martelli, 2013). 
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1.4.1. METHODS FOR ISOLATION OF PHAGE–HOST SYSTEMS 

Phage–host systems (PHSs) have been used to study the interaction of phages and their hosts, including 

co-evolution and gene transfer (Weinbauer, 2004, Brum and Sullivan, 2015). The PHS enables to 

propagate phages to analyze their growth parameters, to integrate methods for temperate phages, as well 

as cross-reaction tests against other potential isolated hosts (Moebus, 1983, Weinbauer, 2004). The 

majority of the gained knowledge is based only on a narrow group of isolated phages, which represents 

only a small fraction of the total phage diversity (Brum and Sullivan, 2015, Holmfeldt et al., 2013). 

Thus, the isolation of novel hosts and their viruses is crucial to improve our understanding of the 

interaction of marine phages and their hosts. 

Once the potential host is isolated, lysis-based screenings are typically used to identify infective phages 

(Clokie and Kropinski, 2009). Firstly described by Adams (1959), viable phages can be detected via 

plaque formation in the double agar overlay assay (DAOA). For DAOA, the phage sample is mixed 

with the host into a soft agar lawn (Clokie and Kropinski, 2009, Adams, 1959). After incubation, a phage 

plaque is a clearing spot in a bacterial lawn (figure 1.3A), formed by consecutive phage infections on 

adjacent host cells (Clokie and Kropinski, 2009). Modified methods, such as spot test assay (STA), 

allow the fast screening of several phage samples against one single potential host (figure 1.3B). 

In the case of lysogenic phages, induction is needed prior to phage isolation. In laboratory conditions, 

these phages can be induced from lysogen bacteria isolates with mitomycin C or UV radiation (Zhao et 

al., 2010, Jiang and Paul, 1998). Inducing agents found in the marine environment, are sunlight (due to 

UV radiation), temperature, pressure, and hydrocarbons (Jiang and Paul, 1996). The induced phages can 

be concentrated for further host screening with DAOA or STA (Clokie and Kropinski, 2009). 

The phage isolation is based on the consecutive propagation of one single plaque. Once isolated, a high 

titer of lysate elution can be stored as maintenance stock for further analyses, such as electron 

microscopy or genome sequencing (Clokie and Kropinski, 2009). Besides, the plaques can be counted 

as plaque forming units (PFU) to obtain the concentration of ‘viable’ counts (Clokie and Kropinski, 

2009, Weinbauer, 2004). Together with DAOA, the one-step growth permits to determine the burst size 

(number of phages produced per infected bacterium), as well as the phage growth parameters from a 

PHS (Clokie and Kropinski, 2009). In addition, phage–host cross reaction tests can be used to determine 

host range and interaction PHSs (e.g. Moebus, 1983). 

A deep characterization of novel PHSs is based on a comprehensive approach that applies these culture-

based methods together with molecular-based methods. Culture-based methods are the basis to obtain 

data for in-depth characterization of phages, such as the description of the phage genome, virion 

structure, proliferation cycle, gene transfer and role of auxiliary metabolic genes (Breitbart et al., 2018, 

Brum and Sullivan, 2015). 
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1.4.2. METHODS TO CHARACTERIZE MORPHOLOGY 

Electron microscopy (EM) became a basic technique for phage classification (Clokie and Kropinski, 

2009). Transmission EM compresses different techniques, the most used is the negative staining method 

(Clokie and Kropinski, 2009). The principle of the negative staining is to mix the phage particles with 

an electron-dense solution of a metal salt of high molecular weight and small molecular size, frequently 

as uranyl acetate (Ackermann and DuBow, 1987, Clokie and Kropinski, 2009). However, the 

preparation and execution of this technique can be time-consuming and require expensive equipment 

(Rachel and Jed, 1998). This method allows the analysis of free phage particles from PHSs and 

environmental samples (Proctor, 1997). In general, the characterization of a virion is based on digital 

electron microscopical images from the purified phage elution, which give measures for the capsid, the 

tail as well determination of presence and sizes of tail fibers (in nm scale), envelope, and other 

morphological characteristics (Clokie and Kropinski, 2009). 

  

FIGURE 1. 3. The appearance of plaques formed by Vibrio phages with the double agar overlay assay (A),  

and spot test assay (B). 



Chapter 1 

17 

 

1.4.3. METHODS TO CHARACTERIZE A GENOME 

Currently, the most efficient method to determine the genomic sequence of a DNA phage is the whole 

shotgun sequencing. The bioinformatic analysis of the phage genome sequence can give the information 

of the genome size and the guanine and cytosine content (GC content or GC %), as well as to predict 

the topology of the genome, packaging method, and protein encoding genes (Clokie and Kropinski, 

2009, Brüssow and Hendrix, 2002, Hendrix, 2003). These genomic features are crucial for genomic 

characterization of new PHSs (Clokie and Kropinski, 2009). In addition, the identification of key genes 

or GC content differences can be used to detect horizontal gene transfer events and prophage sequences 

(Zhang and Zhang, 2004). 

The development of Next Generation Sequencing (NGS, revised bellow) improved the number of phage 

genomes available in the public databases and the access to detailed characterization of PHSs (Brister 

et al., 2015, Clokie et al., 2018). The accessibility to novel technologies creates dynamism to understand 

the nature of marine viruses under different glances. 
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1.5. NGS APPLIED IN MARINE VIRUS (META)GENOMICS 

In 2005, several high-throughput technologies known as Next Generation Sequencing (NGS) have been 

developed to sequence high-quality nucleotide sequences in large scales, reducing significantly the cost 

per sequenced base pair (Koboldt et al., 2013). Examples of NGS technologies are the pyrosequencing 

by 454 Life Science (now part of Roche) and Solexa (acquired by Illumina in 2007) (Metzker, 2009, 

Vincent et al., 2017). Due to its cost-benefit relation, the Illumina-based technology (e.g. MiSeq and 

Hiseq) dominates the current NGS market (Vincent et al., 2017). 

The NGS access enables the production of genome sequencing from isolated microorganisms, as well 

as complete genomes from environmental samples (metagenomics) (Vincent et al., 2017). The deposited 

bacterial and phage genomes in publicly available databases increased significantly after the emerge of 

NGS technologies. In consequence, new challenges appear to manage this big data outcome. The 

development of new bioinformatic tools to analyze this big data provides unprecedented opportunities 

to address fundamental questions in phage ecology (Ibrahim et al., 2018). 

1.5.1. PHAGE (META)GENOMICS 

Virus metagenomics (hereafter viromics) is environmental sequence analysis of viral assemblages, 

commonly based on the genome reconstruction de novo of uncultivated DNA viruses without previous 

isolation (Martínez et al., 2014, Roux et al., 2018). Since 2016, this technique allowed to identify 

750,000 uncultivated virus genomes (UViGs), five times more than the total number of genomes referred 

to virus isolates (Roux et al., 2018, Paez-Espino et al., 2016, Roux et al., 2016). Unfortunately, the 

general trend of virus genomes from isolates (iVGs) did not increase after the appearance of NGS 

technologies (Perez Sepulveda et al., 2016). Besides the work of Mizuno et al. (2013), the average 

number of marine iVGs is around 10 submitted genomes in the EMBL-EBI database from ENA per year 

(Perez Sepulveda et al., 2016). While most of the UViGs are probably derived from free lytic viruses, 

the characterization of lysogenic viruses remains underexplored (Howard-Varona et al., 2017). 

Approximately, half of the marine bacterial isolates contain prophages (Jiang and Paul, 1998, Mcdaniel 

et al., 2006). Moreover, prophage-like elements were identified in almost a half of marine bacteria 

genomes (Bondy-Denomy and Davidson, 2014, Paul, 2008). In the case of poly-lysogeny (> 1 

prophage), this percentage can increase to almost 70 %, as identified in certain genomes, such ain s 

marine Vibrio species (Castillo et al., 2018). However, the predicted prophage sequences might be 

underestimated, because the experimental prophage induction was demonstrated in some marine 

bacteria where no prophages could be identified on their genome (Zhao et al., 2010). In contrast, there 

are also cases in Gram-negative bacteria that identified prophage sequences does not produce functional 

virions (Summer et al., 2004), such as the Mu-like prophages from Haemophilus influenzae (FluMu), 

Neisseria meningitidis (Pnm1), Deinococcus radiodurans R1 (RadMu) and  
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Shewanella oneidensis (MuSo1 and MuSo2) (Heidelberg et al., 2002, Morgan et al., 2002, Summer et 

al., 2004). Despite the efforts for prophage prediction, these sequences are mostly underreported as part 

of the bacterial genome, or prophage-like sequences might be overreported when the prediction is not 

confirmed by e.g. microscopy or annotation analysis (Canchaya et al., 2003). In addition, metadata of 

published phage genomes contains terminology inconsistencies (e.g. temperate or lysogenic lifestyles) 

or missing information, that misleads to an underrepresentation of lysogenic phages in the public 

databases (Clokie et al., 2018). Thus, a comprehensive approach and data curation are key parts for 

UViGs and iVGs analyses. 

Currently, UViGs represent the majority (≥ 95 %) of the taxonomic diversity of viruses in public 

databases (Roux et al., 2018). In this way, the low number of characterized phage isolates still limits the 

information available to characterize virome datasets and predicts possible phage–host interactions in 

the marine environment (Perez Sepulveda et al., 2016, Roux et al., 2015c). In addition, most of phage 

genomes are poorly annotated, and there is a limited range of computational tools focused on phage 

analysis (Ibrahim et al., 2018). In consequence, these viromes are dominated by unknown sequences (60 

– 95 % of the virome), which show low or none similarity against in-deep characterized virus genomes 

(Krishnamurthy and Wang, 2017, Roux et al., 2015c, Perez Sepulveda et al., 2016). This suggests the 

incredible diversity of marine viruses (Edwards and Rohwer, 2005). In addition, novel approaches have 

been developed to analyze the spatial and temporal variability of virus diversity with viromics (Hurwitz 

et al., 2016). For instance, the predicted gene sequences have been used to compare the virus population 

diversity via virus protein clustering (Bolduc et al., 2016, Paez-Espino et al., 2017). This approach can 

be settled from the sequence comparison between each microbial population to determine the diversity 

of protein sequences of each sample (e.g. Lema et al., 2014, Zehr et al., 1995), as well as the sequence 

comparison using metagenomic virus contigs from the tool database (Paez-Espino et al., 2017). 

However, there is no general database of all available virus sequences (Ibrahim et al., 2018). 
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1.5.2. THE NEEDLE IN THE HAYSTACK: 

PHAGE GENOMES IN THE DATABASES 

The available marine virus datasets are currently deposited across diverse database repositories,  

such as the National Center of Biotechnology Information (NCBI, 

http://www.ncbi.nlm.nih.gov/genome/viruses), and the European Nucleotide Archive 

(www.ebi.ac.uk/ena/ and https://www.ebi.ac.uk/genomes/phage.html) (Bolduc et al., 2016). During the 

last decade, the number of UViGs in the databases increased drastically. In consequence, new databases 

of virus genomes have become available for virus analysis. The JGI IMG/VR database 

(https://img.jgi.doe.gov/cgi-bin/vr/main.cgi) currently represent the largest sequence repository of 

UViGs from virome and metagenomic studies (Roux, 2019). This database permits to visualize the 

UViGs’ dataset across the human body and the habitats around the world (Paez-Espino et al., 2016, Pati 

et al., 2013). In addition, the iMicrobe platform (www.imicrobe.us) unites datasets and tools from 

different sources to bioinformatic analysis in the web-based platform of CyVerse 

(https://de.iplantcollaborative.org/de, Goff et al., 2011, Hurwitz, 2014). This platform is also connected 

with the iVirus (www.ivirus.us), a user-friendly resource for viromic analysis. Near half of the total 

projects available in iMicrobe (44.44%) involves virus identification as UViGs, and around the third 

part of these studies are from marine environments (31.25 % of virus-related projects available until 

April 2019). Several virome datasets are available in this platform, including the first published marine 

virome (Angly et al., 2006), the Tara Ocean Virome (TOV) (Brum et al., 2015), and the Pacific Ocean 

Virome (POV) (Hurwitz and Sullivan, 2013). The lack of integrated databases creates usability 

problems, and often local datasets are created (Bietz and Lee, 2009). In consequence, the analysis of 

marine UViGs for comparative metagenomics can be laborious and time-consuming (Ibrahim et al., 

2018). Hence, the selection of the database has a crucial effect on the genome characterization outcome. 

  

http://www.ncbi.nlm.nih.gov/genome/viruses
http://www.ebi.ac.uk/ena/
https://www.ebi.ac.uk/genomes/phage.html
https://img.jgi.doe.gov/cgi-bin/vr/main.cgi
http://www.imicrobe.us/
https://de.iplantcollaborative.org/de
http://www.ivirus.us/
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1.5.3. VIRUS (META)GENOMIC TOOLS 

The diversity of uncultivated viruses in the databases by far exceeds those of uncultivated bacteria 

(Breitwieser et al., 2017). In addition, the classification of these viruses is far more difficult to conduct 

than in cell organisms and requires different methods from bacteria (Breitwieser et al., 2017). Thus, a 

defined strategy of appropriated virus-specific database and tools is critical to analyze phage genomes 

and viromes. This section describes tools developed for virus sequence analyses, with emphasis on 

phage-based approaches. Examples of bioinformatic tools and databases are present in table A.2.1, 

which can vary in database size, accuracy, and the number of citations. 

As the methods applied in viromic analyses are still in development, there is no state of the art routine 

approach to study viromes in an integrated workflow (Ibrahim et al., 2018). Due the increase of viromic 

studies, the development of flexible and integrative bioinformatic approaches are necessary to allow 

rapid and accurate phage classification (Ibrahim et al., 2018, Chibani et al., 2019). Despite the increase 

of published tools for viromics, e.g. Bolduc et al. (2016) emphasize the lack of reliable tools for phage 

ecologist without deep knowledge in the programming language.  

In general, the analysis of virome reads follows three main steps: (1) sample preparation, focus on 

biomass collection and concentration (section 1.3.1); (2) data preparation, focus on quality control for 

high-quality virome contigs; and (3) data analysis, basis for genome characterization which includes the 

predicted genome features, as well as identification of taxonomic and functional data from the nucleotide 

and predicted protein sequences (Hurwitz et al., 2016, Clokie and Kropinski, 2009). Although the overall 

steps are similar to the pipelines for other metagenomic analyses (e.g. Tragin and Vaulot (2018) and 

https://github.com/genomewalker/microbeco2015/wiki), viromics have critical methodological 

challenges including steps from sample collection to read assembling (Krishnamurthy and Wang, 2017, 

Clokie and Kropinski, 2009, Hurwitz et al., 2016). Virome data is characterized by reads with high 

proportions of repeat regions, hypervariable genomic regions associated with host interaction, high 

mutation rates by strain variation, and limited read coverage due to low DNA biomass (Sutton et al., 

2019, Roux et al., 2017, Warwick-Dugdale et al., 2019). These characteristics can result in fragmented 

virome assemblies (García-López et al., 2015). Thus, the selection of filtration and assembling tools 

developed for short hypervariable reads are essential for high-quality viromes (Sutton et al., 2019). After 

filtration and decontamination of the virus reads, the application of de novo assemblers generates local 

sample-specific databases that avoid reference genomes biases, such as low diversity due to small PHS 

databases (Coutinho et al., 2017, Brum et al., 2015b, Dutilh, 2014, Sunagawa et al., 2015). Currently, 

the most effective tools for assemble viromes are SPAdes, Megahit, and IDBA-UD (Roux et al., 2017, 

Sutton et al., 2019). In addition, SPAdes has been implemented in other frequent used viromic 

approaches such as iVirus (Bolduc et al., 2016). The Newbler assembler was developed for  

454 pyrosequenced reads, which was implemented in the V-GAP assembly pipeline (Nakamura et al., 

https://github.com/genomewalker/microbeco2015/wiki
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2016). Furthermore, comparison of assembled contigs per virome has been applied to study the diversity 

of viral populations (Warwick-Dugdale et al., 2019). 

The genome annotation is a key process to identify and characterize virus genomes from assembled 

contigs during the data analysis (Ibrahim et al., 2018, Hurwitz et al., 2016). Annotation of phage 

genomes includes BLAST (BLASTx, tBLASTx, or BLASTP) similarity search against NCBI databases 

(nr and/or refseq), also HMMER searches against Pfam (Altschul et al., 1997, Henn et al., 2010, 

Bateman et al., 2004, Eddy, 1998). Due to the limited representation of viral genomes in these datasets, 

only a small fraction of the virome can be annotated (Hurwitz et al., 2016). Therefore, several auto-

annotation tools can be applied to analyze the assembled contigs for further curation before submission 

(Clokie et al., 2018). Besides, other tools have been developed to identify prophage-like sequences from 

single bacterial genomes or metagenomic sequences (table A.2.1). Due to the high versatility and 

reliability, VirSorter is currently one of the most widely used approaches to study the dsDNA viruses 

(Zheng et al., 2019). VirSorter (from iVirus) allows to detect prophage regions, as well as virus contigs 

for functional and taxonomic characterization (Bolduc et al., 2016, Paez-Espino et al., 2017, Roux et al., 

2015b). The iVirus is connected with the iMicrobe platform, and contains several available virome 

datasets, including the first published marine virome (Angly et al., 2006), the Tara Ocean Virome (TOV) 

(Brum et al., 2015), and the Pacific Ocean Virome (POV) (Hurwitz and Sullivan, 2013). In addition, 

other tools have been developed for single phage genomes analyses have been developed. For instance, 

the taxonomy of tailed phages can be defined based on neck protein encoding genes and genome context 

with Virfam Caudovirales classifier (Lopes et al., 2014), and the phage method of genome packaging 

can be predicted with PhageTerm (Garneau et al., 2017). Moreover, other prediction tools have been 

developed to identify important linkages, e.g. CRISPR identification (Clustered Regularly Interspaced 

Short Palindromic Repeats), horizontal gene transfer, and potential host prediction (Roux, 2019). 

Unfortunately, most of these tools are based on reference genomes and the results are not optimal for 

novel genomes. 

On first sight, these bioinformatic tools might be a solution to identify a larger portion of uncharacterized 

genomes. However, the functional data in the viromes is still largely unknown. The tools applied in 

virus (meta)genomics still require important methodological and conceptual breakthroughs to 

characterize the large percentage of unknown marine viruses (Ibrahim et al., 2018). The collaboration 

between virologists and bioinformaticians is necessary to improve and interconnect the existing tools 

(Roux, 2019). Although the current tools are powerful and impressive (Ibrahim et al., 2018), the 

interconnection between these tools and databases is highly necessary. Therefore, the application of a 

comprehensive approach using the existing bioinformatic tools can generate a more detailed 

characterization of novel marine phages. Moreover, the analysis of exemplary samples must be included 

to develop a virus-specific pipeline. 
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1.6. MOTIVATION AND RESEARCH AIMS 

Despite the enormous ecological and evolutionary importance of marine phages, much of their 

biodiversity remains uncharacterized (Coutinho et al., 2017). Emerging NGS techniques have 

accelerated the expansion of the viral-universe, which imply new challenges but also yield opportunities 

to address fundamental questions in phage ecology (Ibrahim et al., 2018). Despite that new 

bioinformatics tools appears almost every month and the accelerated increase of marine virus studies, 

there is no statutory pipeline applied in marine phage ecology. Thus, this research is focused on the 

integration of existing tools to develop virus-specific pipelines. This approach was applied in exemplary 

samples to study marine phages from the North Sea. Therefore, this thesis is based on two research aims: 

 

1. To analyze the virus community with viromics (chapter 2). 

Metagenomics has become a powerful tool to characterize the microbial community in greater detail 

(Coutinho et al., 2017). The application of viromics (virus metagenomics) can be used to compare the 

taxonomic composition and the carried genes of viruses from the North Sea. The estimated occurrence, 

diversity and distribution of the virus community can be used for comparison of areas with distinct 

oceanographic features, such as the coast and open sea. To accomplish this research aim, a method 

pipeline was developed to ensure high-quality output for taxonomic, functional and comparative 

analyses. For this, exemplary seawater samples from the North Sea were first selected for virus biomass 

collection and further DNA extraction; the second part was in silico preparation of the genomic data to 

obtain high-quality reads. To reduce possible bias caused by reference genome databases from cultivable 

strains, this pipeline is based on de novo assembling to produce sample-specific databases.  

Addressed questions: 

How distinct is the virus community composition between the coast and the open sea? 

How is their geographic distribution in relation to environmental parameters? 

What is the distribution of environmental relevant genes carried by phages 

(e.g. auxiliary metabolic genes or pathogenicity genes)? 
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2. To characterize lysogenic phages from potentially pathogenic Vibrio species 

(chapter 3 and 4). 

Lysogenic phages may contribute to the emergence of disease-causing strains from environmental 

populations. Considering the increasing abundance of potentially pathogenic Vibrio species in the North 

Sea, the second research aim is focused on the characterization of novel phages from V. 

parahaemolyticus and V. cholerae isolated from the North Sea. For this, the method pipeline set-up must 

be performed to isolate potentially pathogenic Vibrio from water samples, follow by the induction of 

their prophages for DNA extraction. Exemplary isolates were selected for lysogenic phages 

characterization. The data preparation and de novo assembling are critical steps to assemble a complete 

phage genome separated from the– non-sequenced– host genome.  

Addressed questions: 

How is the distribution of lysogen Vibrio in the North Sea? 

What are these Vibrio phages? 

Can these phages be related to pathogenicity in these strains? 

 

The research aims and the overview of the contribution of this thesis is represented in figure 1.4. 
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FIGURE 1. 4. Overview of the components of this thesis, including the main approach to accomplish the main research aims. 
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1.7. CONTENT OVERVIEW 

The present thesis consists of an introductory overview, three chapters based on the achievements of the 

addressed research aims, and a final general discussion. A short overview of the research articles 

follows. 

Chapter 2 

The North Sea goes viral: Occurrence and distribution of North Sea bacteriophages 

Authors: Alexa Garin-Fernandez, Emiliano Pereira-Flores, Frank Oliver Glöckner, Antje Wichels 

Published in: Marine Genomics. 1 Jun 2018. 

This manuscript describes the implementation of virus metagenomics (viromes) to analyze the virus 

community in the North Sea. The influence of environmental parameters on the occurrence and diversity 

of phages is also presented. The planning, experiment designs and genomic data submission were 

conducted by Alexa Garin-Fernandez with the assistance of Antje Wichels. Statistical analyses and the 

comparison of predicted genes distribution were performed by Alexa Garin-Fernandez together with 

Emiliano Pereira-Flores. Data analyses, evaluation and manuscript writing were carried out by Alexa 

Garin-Fernandez under the guidance of Antje Wichels and Frank Oliver Glöckner. 

 

Chapter 3 

Looking for the hidden: Characterization of lysogenic phages  

in potential pathogenic Vibrio species from the North Sea 

Authors: Alexa Garin-Fernandez, Antje Wichels 

Submitted to: Marine Genomics. 28 August 2019 

This manuscript presents the identification of lysogenic phages from potentially human pathogenic 

Vibrio species, and the genomic characterization of Caudovirales phages. This study applies culture and 

molecular techniques to analyze non-model systems, such as V. parahaemolyticus and V. cholerae. The 

genome structure and the predicted biological functions of three novel phages are also described. The 

planning, experiment designs and genomic data submission were conducted by Alexa Garin-Fernandez 

with the assistance of Antje Wichels. Data analyses, genomic characterization and manuscript writing 

were carried out by Alexa Garin-Fernandez under the guidance of Antje Wichels. 
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Chapter 4 

Genomic characterization of filamentous phage vB_VpaI_VP-3218,  

an inducible prophage of Vibrio parahaemolyticus  

Authors: Alexa Garin-Fernandez, Frank Oliver Glöckner, Antje Wichels 

Submitted to: Marine Genomics. 28 August 2019 

Based on the outcome from chapter 3, this manuscript presents the characterization of one filamentous 

phage and its potential role on pathogenicity. This study complements prophage induction and 

bioinformatic analysis applied to non-model V. parahaemolyticus strains. The planning, experiment 

designs and genomic data submission were conducted by Alexa Garin-Fernandez with the assistance of 

Antje Wichels. Data analyses, genomic characterization and manuscript writing were carried out by 

Alexa Garin-Fernandez under the guidance of Antje Wichels and Frank Oliver Glöckner. 

 

In addition, contributions to the following paper were given. 

 

Chapter A.1 

Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles 

Authors: Inga V. Kirstein, Sidika Kirmizi, Antje Wichels, Alexa Garin-Fernandez, Rene Erler, Martin 

Löder, Gunnar Gerdts 

Published in: Marine Environmental Research. Sep 2016. 

This manuscript presents the occurrence of potentially pathogenic Vibrio spp. attached to microplastics 

from Baltic and the North Sea. This study integrates the sample analyses from both cruises HE409 and 

HE430. Sidika Kirmizi (cruise HE409, 2013) and Inga V. Kirstein (cruise HE430, 2014) collected and 

analyzed the microplastic and surface water samples. Isolation of potentially pathogenic Vibrio spp. 

during the cruise HE430 was conducted by Inga V. Kirstein, supported by Sidika Kirmizi and Alexa 

Garin-Fernandez. Identification of Vibrio isolates with MALDI-TOF MS were carried by Rene Erler 

(cruise HE409, 2013) and Alexa Garin-Fernandez (cruise HE430, 2014). Microplastic identification was 

carried by Martin Löder. Data evaluation and manuscript writing were carried out by Inga V. Kirstein 

and Sidika Kirmizi under the guidance of Antje Wichels and Gunnar Gerdts. 
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Chapter 2 

 

NORTH SEA GOES VIRAL:  

Occurrence and Diversity of North Sea Viruses 

Alexa Garin-Fernandeza,b,⁎, Emiliano Pereira-Floresb,c, Frank Oliver Glöcknerb,c, Antje Wichelsa 

a Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, 

Biologische Anstalt Helgoland, Helgoland, Germany 
b Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for 

Marine Microbiology, Bremen, Germany 
c Jacobs University Bremen gGmbH, Bremen, Germany 
*To whom correspondence should be addressed. 

Tel: +49(4725)819-3233; Fax: +49(4725)819-3283; Email: alexa.garin@awi.de 
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Marine Genomics. 2018 Jun 1. pii: S1874-7787(17)30379-3. doi: 10.1016/j.margen.2018.05.004 

Keywords: Metagenome / Virome / Marine phages / Virioplankton 

Abstract: Marine viruses are dominated by phages and have an enormous influence on microbial 

population dynamics, due to lysis and horizontal gene transfer. The aim of this study is to analyze the 

occurrence and diversity of phages in the North Sea, considering the virus-host interactions and 

biogeographic factors. The virus community of four sampling stations were described using virus 

metagenomics (viromes). The results show that the virus community was not evenly distributed 

throughout the North Sea. The dominant phage members were identified as unclassified phage group, 

followed by Caudovirales order. Myoviridae was the dominant phage family in the North Sea, which 

occurrence decreased from the coast to the open sea. In contrast, the occurrence of Podoviridae increased 

and the occurrence of Siphoviridae was low throughout the North Sea. The occurrence of other groups 

such as Phycodnaviridae decreased from the coast to the open sea. The coastal virus community was 

genetically more diverse than the open sea community. The influence of riverine inflow and currents, 

for instance the English Channel flow affects the genetic virus diversity with the community carrying 

genes from a variety of metabolic pathways and other functions. The present study offers the first 

insights in the virus community in the North Sea using viromes and shows the variation in virus diversity 

and the genetic information moved from coastal to open sea areas. 

mailto:alexa.garin@awi.de
https://doi.org/10.1016/j.margen.2018.05.004
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2.1. INTRODUCTION 

Viruses are the most abundant biological entity in world's oceans as well as the second largest 

component of biomass after prokaryotes (Suttle, 2007, Breitbart, 2012). Despite their small size, they 

have an enormous influence on oceanic ecosystems. They do not only affect the global biogeochemical 

cycles, but also many oceanic food webs and marine population dynamics, due to lysis, reprogramming 

of host metabolism and horizontal gene transfer (Puxty et al., 2014, Breitbart, 2012, Fuhrman, 1999). 

Bacteriophages or phages – viruses that infect bacteria –probably comprise the majority of viruses and 

also provide the largest reservoirs of unexplored genetic diversity in marine environments (Mizuno et 

al., 2013). 

Most marine viruses lack both cultivated representatives (Holmfeldt et al., 2013) and a universal marker 

for viral diversity; thus, virus metagenomics (hereafter viromes) currently represent the best approach 

to analyze the viral genomic diversity in terms of taxonomic composition and their putative functions 

(Edwards and Rohwer, 2005, Rosario and Breitbart, 2011, Tangherlini et al., 2016). Viromes generate 

a large amount of sequence data to investigate the unknown marine phage diversity from various 

environments (Simmonds et al., 2017), such as marine ecosystems. 

The microbial community in marine ecosystems is shaped by environmental parameters such as salinity 

(Lozupone and Knight, 2007) and temperature (Fuhrman et al., 2008). The different biogeochemical 

properties in the open sea and coastal environments affect the microbial community composition. In the 

North Sea, the southern estuary regions are characterized by low salinity and high productivity, due to 

the high load of organic and inorganic matter introduced by rivers and weirs (Emeis et al., 2015).  

The southeastern coastal zone of the North Sea is connected to the English Channel through the Dover 

Strait and is characterized by a higher salinity, strong tidal currents, and high storm activity (Guillou et 

al., 2009, Otto et al., 1990). The northern North Sea is influenced by Atlantic Sea currents; therefore, its 

water masses have a higher salinity in contrast of the lower latitude zones and are considered low 

productive zones (Emeis et al., 2015). These different hydrographical regions and the high nutrient 

concentration from land are mixed in the central zone, consequently this area in the North Sea is prone 

to anthropogenic pollution (Emeis et al., 2015). The mean water circulation of this semi-enclosed basin 

is dominated by the Atlantic inflow from the northern North Sea, the English Channel exchange flow, 

and the Norwegian Coastal Current outflow (Otto et al., 1990). Due to the natural variability of the North 

Sea, biotic and abiotic parameters have been monitored for more than five decades around Helgoland 

Island in the German Bight (Wiltshire et al., 2010). The inflow current from the transition zone off the 

southern coast of the UK in the English Channel have been monitored by the Western Channel 

Observatory, which has one of the largest collection data series in the world (Southward et al., 2004). 
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Previous studies were conducted in the North Sea to understand how environmental parameters shape 

the microbial communities. These studies were focused on temporal and spatial variability, applying 

different methods like cultured based isolation, DGGE, metatranscriptomes, and 16S rRNA gene tag 

sequencing (Gerdts et al., 2004, Kopf et al., 2015b, Lucas et al., 2015, Wiltshire et al., 2010). However, 

only a few studies have focused on virus diversity, and all of them were based on virus-like particles 

(VLP) counting or culture dependent techniques (Duhaime et al., 2017, Duhaime et al., 2016, Duhaime 

et al., 2011b, Gerdts et al., 2004, Wichels et al., 1998). 

Like microorganisms, the marine virus community structure is not homogenously distributed, 

delineating that the occurrence and distribution of marine viruses are affected by both virus-host 

interaction and biogeographic patterns at a local and global scale (Chow and Suttle, 2015, Roux et al., 

2016). The distribution dynamics of microbial communities in the North Sea are driven by 

environmental factors (Brandsma et al., 2013, Lucas et al., 2015, Wiltshire et al., 2008), which might be 

reflected in the occurrence and distribution of viruses, especially by dominant bacteriophage families. 

Based on these findings, the aim of this study is to analyze the occurrence and diversity of phages in the 

North Sea. Four viromes were analyzed to (1) identify the phage diversity and the main phage taxa 

present, (2) compare the phage diversity among different hydrographical zones, and (3) study the 

distribution of the genes carried by phages. 
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2.2. EXPERIMENTAL PROCEDURES 

2.2.1. SAMPLE COLLECTION  

Viral concentrates were collected from water samples from August 5 to 9, 2014 during the RV Heincke 

HE430 in four sampling stations in the North Sea (figure 2.1) (Kirstein et al., 2016). Three sampling 

sites were located in the southern North Sea, near to the coastal region of the Netherlands and Belgium 

(station 15), in Dover Strait, near to the English Channel (station 18), and near to the Dogger Bank 

(station 20), and one sampling site was located in the northern North Sea (station 24). The physical 

oceanographic data acquired during this research cruise have been deposited in the Data Publisher for 

Earth & Environmental Science PANGAEA (Gerdts and Rohardt, 2016). 

Surface water samples were taken with a rosette sampler (SBE 911 plus, Sea-Bird Electronics, US). 

Approximately 40 l of seawater per station were pre-filtered in succession with decreasing mesh sizes 

(10, 3 and 0.2 μm pore size filters, 142 mm diameter, polycarbonate membrane). The ‘viral fraction’ 

seawater was concentrated using iron chloride flocculation method (John et al., 2011). Briefly, each 

sample was incubated with iron chloride (1 mg Fe l−1 filtrate) for 1 h before filtration recovering (1 μm 

pore size filter, 142 mm diameter, polycarbonate membrane). The filters were stored dark at 4 °C until 

further processing. Each ‘viral fraction’ seawater was subsampled and fixed with formaldehyde (2% 

final) to determinate the virus concentration. For this, each sample was filtered (0.02 μm pore size 

Anodisc filter, 25 mm) and the filter was stained with SYBR Gold prior VLP counting by 

epifluorescence microscopy (Patel et al., 2007). 

2.2.2. DNA EXTRACTION AND SEQUENCING 

The virus concentrates from each filter were resuspended overnight using modified ascorbate-EDTA 

buffer (0.1 M Mg2EDTA, 0.2 M ascorbic acid, pH 6–7) according to established procedures (John et al., 

2011). The resuspended solution was concentrated by centrifugation (4000 ×g; Sorvall RC-26 Plus, 

DuPont, with a GSA rotor) using Vivaspin 30 Centrifugal Concentrator (Sartorius), followed by 

ultracentrifugation (136,000 ×g, 2 h at 4 °C; Optima™ TL, Beckmann with a TLA 100.4 fixed angle 

rotor). The virus pellet was resuspended with 1 ml modified SM buffer (23.3 gl−1 NaCl, 4.93 gl−1 MgSO4 

× 7H2O, 50 mM Tris HCl, pH 7.5) (John et al., 2011), which was used for further DNA extraction. 
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FIGURE 2. 1. Sampling site map for the four stations in the North Sea, showing the surface circulation of water 

masses currents (grey vectors), influence of English Channel flow (yellow), north Atlantic inflow (blue), and mixed 

flows zone (green). Map modified from (Kirstein et al., 2016) 
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DNA was extracted from the concentrated viral particles using modified CTAB method combined with 

phenol:chloroform method (Williamson, 2011). For this, each sample was incubated (1 h, 55 °C) with 

Proteinase K (100 μgml−1 final) and sodium dodecyl sulphate (0.5% final), followed by addition of 5 M 

NaCl and incubation (10 min, 65 °C) with NaCl/CTAB solution (70 mM NaCl 1% 

cetyltrimethylammonium bromide final). Subsequently, the DNA was phenol:chloroform extracted, 

followed by isopropanol precipitation and resuspension in 1× TE buffer (2 M Tris base, 0.2 M 

ethylenediaminetetraacetic acid, pH 8.5) (Thurber et al., 2009). DNA quantity and quality were 

determined photometrically with a Tecan Infinite©M200, NanoQuant microplate reader (Tecan, 

Switzerland) using the Invitrogen Quant-iT PicoGreen® dsDNA Reagent (Carlsbad, CA, USA) 

according to the manufacturer's instructions. Library preparation and sequencing of the virus dsDNA 

from each sample were done by LGC Genomics (LGC Genomics GmbH, Berlin, Germany). The total 

DNA per sample (50–200 ng each) was first sheared by ultrasonication (Covaris S220), follow by 

purification and concentration using MinElute Spin Columns (Qiagen). Library constructions were 

prepared using Encore Rapid DR Multiplex System (NuGen) according to the manufacturer's 

instructions. In detail, each library was constructed from 40 to 100 ng sheared genomic DNA, including 

end-repair blunt end ligation to indexed adaptors, followed by a final repair step, and purification with 

Ampurebeads. The purified libraries were amplified by PCR for 8 cycles using Illumina primers 

(5PE/3PE) with MyTaq DNA Polymerase (Bioline) and BioStabII PCR Enhancer (Sigma). The samples 

were sequenced on an Illumina MiSeq sequencer using 2 × 300 bp chemistry.  

2.2.3. VIROME SEQUENCE ANALYSIS 

All sequence reads were processed following a modified protocol established primarily by the Ocean 

Sampling Day (OSD) analysis group (https://github.com/MicroB3-IS/osd-analysis/wiki/Sequence-

Data-Pre-Processing) (Kopf et al., 2015a). In detail, the obtained reads from each virus metagenome 

were first processed using BBtools (https://sourceforge.net/projects/bbmap/) to trim Illumina adaptor 

sequences and remove low quality and short reads with ambiguous bases. First, the bbduk tool was used 

under the defined set values of k-mer size (k = 23), minimum k-mer size (kmin = 11), right-trimming 

(ktrim = r), quality score (trimq = 20), minimum length (minlen = 50) values and trim both ends (qtrim 

= rl) to remove low quality reads without ambiguous nucleotides (maxns = 0); follow by bbmerge tool 

(default parameters). Reads were de novo assembled using Megahit (version 1.0.2, default generic 

metagenome parameters) under minimum contig length (−min-contig-len) set to 300 (Li et al., 2015), 

and IDBA-UD (version 1.1, default generic metagenome parameters) with minimum contig length 

(−min_contig) set to 300 (Peng et al., 2012). The assembly quality was evaluated using MetaQUAST 

(Mikheenko et al., 2016), based on the best recommended values of assembled contigs, contig legth and 

number of predicted genes per contig. After evaluation under the mentioned parameters, the assembled 

Megahit contigs were selected for downstream analyses. To identify and classify potential viral 

sequences and avoid possible host contamination, the predicted Megahit contigs were analyzed using 

https://github.com/MicroB3-IS/osd-analysis/wiki/Sequence-Data-Pre-Processing
https://github.com/MicroB3-IS/osd-analysis/wiki/Sequence-Data-Pre-Processing
https://sourceforge.net/projects/bbmap/
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the VirSorter tool (default settings, Virome Decontamination mode) from iVirus 

(https://de.iplantcollaborative.org/de/) (Bolduc et al., 2016). VirSorter can identify viral sequences from 

metagenome datasets, which contigs were classified under different ‘confidence’ categories and also 

predicted their potential proteins gene sequences (Bolduc et al., 2016, Roux et al., 2015b). The viral 

contigs predicted with VirSorter were mapped using BWA-MEM (version 0.7, default parameters)  

(Li and Durbin, 2009) and the mapped sequences were converted from SAM to BAM files using 

SAMtools (version 1.2) (Li et al., 2009). The mean coverage per contig was calculated using 

genomeCoverageBed from Bedtools (version 2.23, default parameters) (Quinlan and Hall, 2010). The 

virus contig statistic values were calculated using BBtools (stats.sh, default parameters). All the protein 

sequences predicted as genes with VirSorter were used as potential virus amino acid sequences for the 

following analyses. 

2.2.4. VIRUS GENE COMPARISON 

To compare the overall virus gene diversity present in each virome, all the predicted viral protein 

sequences with VirSorter (section 2.2.3) were clustered into operational protein units (OPU) using 

UCLUST software (ID = 0.6, default parameters) (Edgar, 2010). To compare the total predicted virus 

protein distribution through each virome, the OPU abundance table was build using the UCLUST 

software followed by the visualization using the VennDiagram Package (version 1.6.0 for R version 

3.3.2, default parameters) (Chen, 2013). 

2.2.5. TAXONOMIC IDENTIFICATION OF VIRUS CONTIGS  

To identify the viral and functional gene diversity from each virome, the predicted viral protein 

sequences were compared against the GenBank nonredundant protein (nr) database (January 2017) using 

BLASTP version 2.2.30+ (Altschul et al., 1997). BLAST hit alignments of genome sequences with e-

value below 0.001 and a similarity > 50% were considered significant. The taxonomic classifications 

were assigned only for predicted virus contigs larger than 3 Kbps and with at least one significant 

BLAST hit matched a virus or phage sequence. Virus taxonomy is still under development, and the virus 

classification methods for metagenomic data are constantly improved (Adams et al., 2017, Simmonds 

et al., 2017). Thus, the taxonomy classification for each contig was done using a semi-automated 

approach. First, the identified genes in each contig were classified using the NCBI taxonomy ID of each 

BLAST hit with home written scripts. Then, the contigs larger than 3 Kbps and with at least one virus 

gene were selected and classified to the highest possible taxonomic level (e.g. family or genus level), 

based on the taxonomic information shared by the majority of genes in each virus contig. In case a contig 

matched several taxa and the taxonomic classification was not conclusive, the contig was manually 

assigned to its respective next lower taxonomic level, either family or class. 

https://de.iplantcollaborative.org/de/
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Additionally, the virus contigs were classified in groups based on their potential prokaryotic hosts. The 

identification was based on either the manual comparison of the virus genus names which contain host 

names, or on related relevant literature from each genome sequence entry if available (Mihara et al., 

2016). 

The contig mean read coverage (section 2.2.3) was used to estimate proportion and abundance indices 

of virus taxa within each virome. Rare taxonomic groups were arbitrarily defined as having a frequency 

below 1% within each station. The relative abundance visualization as heatmap was built using Vegan 

(version 2.4–4) (Oksanen et al., 2017) and Gplots Package (version 3.01) (Warnes et al., 2005).  

2.2.6. IDENTIFICATION OF GENES CARRIED BY PHAGES  

To analyze the virus genes and their possible effect on the host, all the virus-related proteins previously 

identified (section 2.2.5) were functionally classified using the UniProt Knowledgebase (UniProtKB) 

database (Magrane and Consortium, 2011). The functional classification was based on their ontology's 

biological or molecular function from comparable reference organism annotated in Swiss-Prot or 

TrEMBL. 

We analyzed the distribution of the proteins identified in the virus was created using main coverage of 

the contigs in which protein was identified. The resulting matrix was z-score normalized and just values 

with a maximum relative abundance higher than 0.5 per sample were retained. The dissimilarity matrices 

of sampling sites and protein functions were computed using the Bray Curtis dissimilarity index. 

Subsequently, these two matrices were used to create a two-way clustering using the average 

hierarchical clustering method. All data analyses were performed using R Package Vegan (version 2.4–

4) (Oksanen et al., 2017) and the heatmap was built using ggplot2 package (version 2.2.1, default 

parameters) (Wickham, 2009). 

2.2.7. NUCLEOTIDE SEQUENCE ACCESSION NUMBERS 

The virome sequence data have been deposited under the INSDC accession number PRJEB21210 in the 

European Nucleotide Archive (www.ebi.ac.uk/ena/) (Toribio et al., 2017) using the data brokerage 

service of the German Federation for Biological Data (www.gfbio.org/) (Diepenbroek et al., 2014). The 

sequence associated contextual (meta) data are Minimal Information about any (X) Sequence (MIxS) 

compliant (Yilmaz et al., 2011). 

  

http://www.ebi.ac.uk/ena/
http://www.gfbio.org/
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2.3. RESULTS 

2.3.1. NORTH SEA WATER SAMPLES 

Surface water samples were obtained from four North Sea stations (figure 2.1): Station 15 was located 

in the coastal area with riverine influence, station 18 was near to the English Channel exchange flow, 

station 20 near to mixing zone from Dogger Bank, and station 24 was located in the open sea of the 

northern North Sea, which is indirectly influenced by the Atlantic inflow (Emeis et al., 2015). The mean 

VLPs concentration was 2.48 × 106 VLP/ml (SD ± 0.79) and it was statistically not different between 

the stations. Samples, metadata and metagenomic descriptive statistics are summarized in table 2.1. 

Altogether, the four viromes analyzed (> 36 million reads in total) represent diverse pelagic ocean 

features, which vary in salinity and temperature correlated with their proximity to land (table 2.1). The 

proteins from all predicted virus contigs were grouped into 114,768 OPUs (operational protein units). 

Their distribution decreased from station 15 and 18 in the coastal area (mean = 56,378 OPUs, SD ± 

8,891.5) to station 24 in the open sea (21,060 OPUs) (figure 2.2). 

From the total OPUs, 2.06% were omnipresent in all analyzed samples, 61.18% were distributed 

exclusively in coastal areas (station 15 and 18), 18.10% were exclusively present in the intermediate or 

open sea (station 20 and 24) and the remaining 18.66% of all OPUs were present in three of the four 

stations (figure 2.2). Around half of the OPUs were unique for each station (mean = 52.21%, SD ± 2.78), 

with an exception of 32.88% from station 20. Station 20 represents a mixing area between the coastal 

and open sea, which together with its closest station 15 (coastal area) comprise 66,268 OPUs and 15.70% 

of them were shared by both stations (10,402 OPUs). 

In case of stations 20 and 24 (intermediate area and open sea), they comprise together 44,555 OPUs, 

and 12.77% of them were shared by both stations (5689 OPUs) (figure 2.2). 
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TABLE 2.1. . Description of virome samples and associated metadata 

Station 

No. 

 

Sampling 

date 

Latitude 

N 

Longitude 

E 

Temperature 

(°C) 

Salinity 

(PSU) 
Site location # reads 

Viral contigs > 3 kbps predicted by VirSorter 

# viral 

contigs 
Mbps 

Longest 

contig 

(Kbps) 

Avg.  

contig 

length 

(Kbps) 

N50 

(Kbps) 
# cat 1 # cat 2 # cat 3 # cat 4 # cat 5 # cat 6 

15 08/05/2014 51.5395 3.1823 20.70 32.75 Coastal 8,904,876 719 3.66 26.18 5.10 240 90 505 124 0 0 0 

18 08/06/2014 50.4967 1.1655 18.34 35.00 Coastal 16,898,592 711 3.53 34.06 4.97 246 97 498 115 0 1 0 

20 08/07/2014 52.1498 2.8427 18.38 34.87 Intermediate 7,235,850 369 1.77 22.81 4.81 369 50 243 75 0 1 0 

24 08/09/2014 55.8355 3.5624 18.7 34.2 Open sea 3,224,142 197 0.94 19.57 4.76 69 37 141 18 0 1 0 

3
8

 

C
h
ap

ter 2
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FIGURE 2.2. Distribution of predicted viral proteins according to their sample origin. The predicted virus 

genes per contigs (n) using VirSorter were clustered (ID=0.6) and the operational protein unit (OPU) of 

each predicted amino acid sequence was used to compare the virus genes distribution. 

 

2.3.2. TAXONOMIC COMPOSITION OF NORTH SEA VIROMES 

The predicted viral contigs from North Sea viromes were selected and compared against the 

GenBank nr database. From the 929,666 assembled contigs, 8,195 were predicted by VirSorter 

in one of the probabilistic categories (table A.3.1). Contigs larger than 3 Kbps were retained 

for further taxonomic analysis, representing 1,996 putative partial virus genomes in size range 

of 3 to 34.06 Kbps (Table 2.1). The distribution of these larger contigs decreased from coastal 

stations to open sea, where stations 15 and 18 presented more predicted viral contigs  

(mean = 715 contigs) than stations 20 (369 contigs) and 24 (197 contigs) (table 2.1). From 

them, 24.43% were unidentified and 58.49% were classified as virus contigs (table 2.2). In 

general, station 24 demonstrated the highest proportion of virus contigs per station and station 

20 the lowest. Almost all virus contigs per station originated from bacteriophages and were 

dominated by unclassified phage group (mean = 62.45%, SD ± 4.56), followed by Caudovirales 

order (mean = 32.28%, SD ± 4.24) (table A.3.2).  

To examine the taxonomic composition of the marine virus community of our samples in 

greater detail, we compared the abundance of classified virus contigs based on their best 

BLAST hit at family level (figure 2.3). Although unclassified phages were present in a high 
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proportion through all the stations, they were excluded for the analysis of taxonomic 

composition, due to their unclear taxonomy. Excluding the unclassified phages, the Myoviridae 

family dominated the total community in the North Sea (Myoviridae = 58.92 %;  

Podoviridae = 13.04 %; other viral family = 10.28 %; Siphoviridae = 8.21 %; unclassified 

Caudovirales = 5.66 %; Phycodnaviridae = 3.9 %). From each station, the virus community 

from station 15 was dominated by Myoviridae (67.49 %), followed by Phycodnaviridae, 

Siphoviridae, Podoviridae and other virus family in similar amounts (total mean = 7.01 %,  

SD ± 0.83). Stations 18 and 20 were dominated by Myoviridae (mean = 54.20 %, SD ± 3.73), 

followed by Podoviridae family (mean = 14.04 %, SD ± 3.08). The virus community at station 

24 was dominated by Myoviridae family (45.74 %) and the Podoviridae family abundance 

increased to 30.84% (figure 2.3). Overall, the community distribution was not uniform 

throughout the North Sea. Myoviridae and Phycodnaviridae appeared to decrease from the 

coast to the open sea, and Siphoviridae showed differences between the station 24 (open sea) 

(3.61 %) and the rest of the stations (mean = 9.29 %, SD ± 1.53). On the other hand, the 

occurrence of Podoviridae viruses increased from 7.33 % at station 15 (coastal area) to 30.84 

% at station 24 (open sea) (figure 2.3). 

 

 TABLE 2. 2. Percentage of contig's BLAST hit per station and in the North Sea virome at all stations. The contigs 

were first analyzed using VirSorter tool from iVirus prior BLAST comparison against GenBank nr database. The 

contigs larger than 3 Kbps were classified as Virus, Bacteria or other organism (Archaea or Eukaryote), contigs 

without BLAST hit was classified as NA (not available). 

BLAST hit 
St. 15 

Contigs (%) 

St. 18 

Contigs (%) 

St. 20 

Contigs (%) 

St. 24 

Contigs (%) 

Total station 

Contigs (%) 

virus 

Unclassified phage 34.17 39.69 36.92 39.40 37.12 

Caudovirales 20.21 15.02 17.65 25.59 18.34 

Other virus family 2.88 3.17 2.40 4.42 3.03 

Bacteria 13.50 18.18 15.22 18.06 15.9 

Other organism 1.57 1.44 0.49 0.00 1.18 

NA 27.67 22.50 27.32 12.53 24.43 
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FIGURE 2.3. Percentage abundance 

of taxonomical classification from 

selected virus contigs identified by 

alignment-based (BLASTp) 

analysis (Unclassified phage 

excluded). 
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The selected virus contigs were additionally classified in 95 virus groups, based on their highest 

identified virus taxonomic level (Figure 2.4). Overall, the virus community at stations 15  

and 18 (coastal area) was richer than station 24 (open sea), which presented the highest 

Margalef index values (mean = 6.75, SD ± 0.35) in comparison of station 24 (3.89) (Table 

A.3.3). This trend was reflected by a higher number of virus groups (Figure 2.4). In terms of 

abundance of virus group members, phages (unclassified phages and order Caudovirales) 

dominated the North Sea virome, and Myoviridae was the most diverse family of the whole 

virus community (Figure 2.4). The dominant virus group at all stations was the Uncultured 

Mediterranean Phage uvMED (mean = 47.33 %, SD ± 4.70) (figure 2.4), identified for the first 

time from environmental samples of the deep chlorophyll maximum in oligotrophic open ocean 

waters (Mizuno et al., 2013). Most of the virus taxa at all stations belonged to the rare 

taxonomic groups (< 1 % per station), while 27 virus groups were present in a higher proportion 

in at least one station (yellow-red shading, figure 2.4). Most of the identified potential phage 

hosts belonged to Cyanobacteria (47.85 %) or Proteobacteria Phylum (45.04 %). Cyanophages 

from all Caudovirales families and unclassified phages were present in the viromes, 

unclassified Myoviridae cyanophages were present in high proportion all over the stations. 

Cyanophages S-CAM8 (Myoviridae), cyanophage S-SKS1 (Siphoviridae) and unclassified 

Caudovirales cyanophages were present at intermediate and coastal areas (stations 15 to 20), 

whereas they were not identified at station 24 (open sea) (figure 2.4). Phages from all 

Caudovirales families and unclassified phages seem to be able to infect  

Gamma- and Alphaproteobacteria hosts (figure 2.4). Betaproteobacteria phages were identified 

as Deftia phage (Myoviridae) and Methylophilales phage (unclassified phages) groups at 

stations  

15 and 18. At these stations, Epsilonproteobacteria phages were identified only as 

Campylobacter phage (Myoviridae and unclassified phages). The Phycodnaviridae was the 

eukaryotic virus family with the highest number of taxonomic groups identified, which 

occurrence decreased from the coast to the open sea (figure 2.4). 
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FIGURE 2.4. Percentage abundance of selected 

virus contigs identified up to genus level. Station 

viromes from North Sea (x axis), are arranged by 

their taxonomic group at family and genus level 

(y axis). The potential Prokaryote host phylum 

was aditionally classified. Heatmap shading is 

separated between rare taxonomic groups (blue 

shading,<1%) and the dominant taxonomic 

groups (yellow-red shading,>1%); if not shaded, 

the group was not identified in the sampling 

station. 
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FIGURE 2.5. Heatmap comparison of the 

filtered protein functions from virus-encoded 

genes. Identified genes from contigs larger 

than 3 Kbps were classified in base of their 

taxonomical family and molecular or 

biological function of the encoded protein. 

The gene abundance was transformed to z-

score, the values with a maximum relative 

abundance higher than 0.5 were retained for 

clustering by Bray Curtis dissimilarity index. 

The Each dendrogram represents the 

Average Hierarchical analysis of the 

sampling stations (x axis) and the classified 

gene function (y axis). 
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2.3.3. IDENTIFICATION OF GENES CARRIED BY PHAGES 

To explore the distribution and function of genes carried by phages, we classified the identified 

virus proteins based on the taxonomy of the contig and the molecular or biological function. 

Contigs larger than 3 Kbps and identified as virus were selected to classify their carried genes. 

Overall 3,662 genes were classified in 320 groups, differentiated by their protein function and 

contig taxonomic group. Protein functions less abundant were omitted from further analyses 

(section 2.2.6). The resulting subset comprises 52 protein functional groups (figure 2.5). Most 

of these proteins were classified as hypothetical proteins from Myoviridae, Podoviridae and 

unclassified phages. All the other proteins were related to virion production processes. Other 

identified protein functions were related to host fitness and metabolism, which includes 

carbohydrate metabolism, de novo IMP synthesis and LPS synthesis (figure 2.5). These 

identified protein functions were more abundant at stations 15, 18 and 20. 

Overall, the protein functions from stations 15 and 18 (coastal area) were more similar than 

station 24 (open sea) (figure 2.5). Low abundance functions related to host fitness and 

metabolism were evenly present at all stations (figure A.3.2), which includes genes related to 

photosynthesis, polysaccharide synthesis, pathogenicity, and biofilm formation. 
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2.4. DISCUSSION 

The hydrographic features in the North Sea affect the planktonic diversity, including viruses 

and their hosts. This study offers the first characterization of the phage community in the North 

Sea by virome analysis. It reveals highly dynamic virus distribution and occurrence patterns 

distinguishing the coast from the open sea.  

2.4.1. GEOGRAPHIC DISTRIBUTION OF VIRUS GENES 

To expand our knowledge on the virus community, we first compared all predicted virus contigs 

from the North Sea viromes regardless of their predicted identity. This approach assumes that 

similar phage communities share more genetic features than dissimilar communities (Angly et 

al., 2006). This avoids the potential bias by relying the identification of viruses using only 

previously characterized sequences (Thurber, 2009). As there were potential host related reads 

in our assemblies, only the predicted virus contigs were used for our analysis. Additionally, we 

performed an analysis of all virus predicted contigs regardless of their length or identification, 

thereby contributing informative output to compare the stations. However, the detection of 

BLAST homologs using translated amino acid proteins was significantly low for short-reads 

sequences from natural viral communities (Wommack et al., 2008). Thus, all the predicted virus 

contigs were used to compare the overall virus gene distribution and only the larger (> 3 Kbps) 

predicted virus contigs were compared against the GenBank database to identify the viral and 

functional gene diversity from each virome. 

The environmental variability and its impact on the marine viral and host community have been 

reported previously in other (meta) genomic studies (Brown et al., 2012, Hurwitz and U’Ren, 

2016, Jiang et al., 2012). The predicted virus genes were translated and grouped in operational 

protein units (OPUs), which were not evenly distributed throughout the North Sea viromes. The 

OPUs distribution showed an abundance gradient from coast to open sea and only a small 

proportion of them were found at all stations (figure 2.2). This trend is also reflected in species 

and functional richness, which have been previously reported in surface water viromes 

(Hurwitz and Sullivan, 2013) and planktonic microorganisms (Fuhrman et al., 2008). The North 

Sea station with the highest number of OPUs was station 18, where the influence of the English 

Channel increases the temperature and salinity concentrations in the Southern Bight (Mathis et 

al., 2015). Station 20 revealed the lowest percentage of unique OPUs (32.88 %), which might 

result from the mixing of currents in the intermediate North Sea (figure 2.1). 
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2.4.2. TAXONOMIC CLASSIFICATION OF  

NORTH SEA VIRUSES 

The North Sea virome exhibited high richness with a large number of distinctly identified virus 

groups. Although almost a quarter of the sequences appear to be uncharacterized, the remaining 

identified virus sequences indicated clear differences between the stations. The identified virus 

communities from the coastal areas possess a higher diversity and richness than the open sea 

community (table A.3.3). Although we discarded 15.9 % of the contigs due to probable host 

contamination, we obtained a mean coverage of 11.36 × of virus contigs. This is a reasonable 

coverage for the reliable assembling of virome reads (Roux et al., 2017). The assembly of long 

contigs allow a more accurate open reading frame detection and better sensitivity for similarity 

searches by BLAST (Wommack et al., 2008). The reduction of bacterial DNA, to increase the 

number of samples and their sampling size would reduce the potential technical bias. 

The virus contigs from all stations were dominated by phages (Unclassified phage and order 

Caudovirales = 94.82 % total virus contigs, table A.3.2), which is comparable to viromes from 

the Atlantic Ocean (92.3 %), Mediterranean Sea (83.6 %) (Winter et al., 2014), and Chesapeake 

Bay (> 90 %) (Bench et al., 2007). The virus family assigned groups presented a distinct 

distribution pattern, which might be explained by each oceanographic feature (figure 2.3). This 

trend was reported in previous studies of marine viruses in surface waters (Roux et al., 2016, 

Suttle, 2016), where some identified taxa were represented across the surface ocean, and others 

seemed to be persistently rare in particular environments (Clokie et al., 2011, Roux et al., 2016). 

As described in other marine environments (Rastrojo and Alcamí, 2017), most of the classified 

viruses in our viromes belonged to the Caudovirales order (tailed phages) and were generally 

dominated by the Myoviridae (contractile tailed phages) family at all stations. Myoviridae have 

been previously identified as dominant Caudovirales family in other environments (Rastrojo 

and Alcamí, 2017), and in high abundance in nutrient-poor waters of the tropics (Thurber, 2009, 

Williamson et al., 2008) as well as in surface waters of the Pacific Ocean (Hurwitz and Sullivan, 

2013).  

The abundance of Siphoviridae (long noncontractile tailed phages) decreased from station 15 

(coastal area) to station 24 (open sea), while Podoviridae (short tailed phages) increased from 

coast to open sea (figure 2.3). The Podoviridae family has been identified as the most abundant 

member of Caudovirales of the Baltic Sea (Zeigler Allen et al., 2017). 
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In general, a small number of taxa dominate the community while the low abundant community 

is highly diverse and represented by several different taxa (Sogin et al., 2006). This supports 

the hypothesis of the presence of an unknown community of low abundant phages in the North 

Sea  

(< 1 % virome). Previous studies suggest that prokaryotes exhibit a preference for particular 

environments, which in turn means that phages can also develop biogeographic patterns (Clokie 

et al., 2011). However, there is a debate about the existence of such biogeographic patterns in 

phages (Dennehy, 2014, Thurber, 2009). Although phage abundance and richness were higher 

in the coastal area, the diversity was similar throughout the North Sea (figure 2.4, table A.3.3). 

Interestingly, a richness and diversity gradient were observable in Phycodnaviridae and 

Siphoviridae families from lower to higher latitudes. The difference in virus community 

richness seems to reflect the oceanographical conditions of the region and the decrease in host 

abundance from southern to northern North Sea regions (Brandsma et al., 2013). 

The abundant viruses might be permanently active in the ecosystem and the rare taxonomic 

groups, which carry a diverse gene pool, might be activated under certain environmental and 

host conditions (Breitbart and Rohwer, 2005, Jousset et al., 2017). The virus community 

analyzed in this study represents a snapshot of the community in time, where these rare viruses 

(< 1 % virome) might have a different adaptive strategy to proliferate or present a restrictive 

response caused by unfavorable environmental conditions (Skopina et al., 2016). Besides the 

large number of rare taxonomic groups in the North Sea viromes there were a few taxonomic 

groups with high abundance (figure 2.4). High abundant viruses are active as long as the host 

population is susceptible to infection (Breitbart and Rohwer, 2005). Thus, the virus community 

in the North Sea would be especially dynamic and further studies are needed to elucidate how 

lytic and lysogenic viruses interact with their hosts under a spatial-temporal scale. 

Throughout the North Sea, cyanophages were evenly present in high proportions in all phage 

families at each station (figure 2.4). Most known cyanophages are lytic and affect the host 

diversity over monthly timescales (Rosario and Breitbart, 2011), which is ecologically 

important due to the role of their host as predominant primary producers in oligotrophic ocean 

areas and their role in global carbon cycling (Clokie et al., 2011). The dominant cyanophage 

family in the North Sea was Myoviridae, followed by Podoviridae. These cyanophage families 

are ubiquitous and present in high abundance in several coastal water and open ocean 

environments (Huang et al., 2015). In contrast to these studies (Huang et al., 2015, Sabehi et 

al., 2012), cyanophages S-CBP2, S-TIM5 S-SSM5 and P-SSM7 did not occur at all stations, 

and cyanophage P-SSM7 was only detected at station 15 (figure 2.4). Podoviridae cyanophage 

MPP-B group was detected in coastal and intermediate zones.  
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The cyanophage S-EIVI represents a distinct evolutionary group of cyanophages, which is 

widespread and relatively abundant in aquatic systems (Chénard et al., 2015). The polar 

freshwater cyanophage S-EIVI was only detected at station 15 (figure 2.4), which is the area 

with the highest riverine influence. 

The major clades of heterotrophic bacteria in surface marine environments include 

Roseobacter, SAR 11, SAR116 clades, among others (Giovannoni et al., 1990, Luo and Moran, 

2014). Phages able to infect these abundant marine bacteria were also identified. Roseobacter 

clade is present in marine environments worldwide and represents an abundant component of 

the bacterial community in the North Sea (Giebel et al., 2010, Luo and Moran, 2014). 

Roseophages (Siphoviridae, Podoviridae and unclassified Caudovirales) were identified in 

coastal and open sea areas (figure 2.4). Roseo- and pelagiphages have been identified in high 

abundance in other marine viromes (Hwang et al., 2016). SAR11 phages as pelagiphages 

(Myoviridae and Podoviridae) were identified at all stations (figure 2.4). The SAR11 phages 

are highly represented in several marine viromes (Zhao et al., 2013). Phages of SAR116 clade 

were identified both in coastal and open sea areas (figure 2.4). These abundant Podoviridae 

phages were formerly found in ocean surfaces (Kang et al., 2013). Cellulophaga phages 

(Podoviridae and Syphoviridae) were identified in low abundance throughout the North Sea, as 

reported in other marine ecosystems (e.g. Holmfeldt et al., 2013). Previous studies of the virus 

diversity in the North Sea were performed with culture-dependent methods (Duhaime et al., 

2016, Wichels et al., 1998). Wichels et al. (1998) identified cultivable Pseudoalteromonas 

phages within several years in a narrow geographical region of the North Sea. Although stations 

20 and 24 were near the sampling cruise routes of that study, we did not identify these phages 

in the North Sea viromes. This supports the hypothesis of natural barriers causing a reduced 

geographical distribution of Pseudoalteromonas phages (Wichels et al., 2002). In general, viral 

and bacterial communities are highly dynamic (Breitbart, 2012). Further investigations are 

needed in order to have a better overview of the spatial and temporal variability of the North 

Sea viruses. 
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2.4.3. IDENTIFICATION OF GENES CARRIED BY VIRUSES 

Until now, at least half of predicted phage genes in viral (meta) genomes are predicted as 

hypothetical proteins without an assigned function (Clokie et al., 2011, Hurwitz et al., 2014, 

Klumpp et al., 2013). Therefore, despite the growth of databases it is still difficult to predict a 

molecular or ecological function (Clokie et al., 2011). Further genome and proteome 

characterization would be necessary to elucidate the function of these phage proteins. 

Additionally, a high proportion of identified virus-encoded genes in our viromes were involved 

in genome packaging and virion production of different phage groups. A phage population 

composed by a higher diversity of virion production might increase the opportunities to 

recognize more host lineages, which is reflected of a higher proportion of these functions in 

variable genome regions from viromes (Mizuno et al., 2014). 

Horizontal gene transfer by viruses is widespread among microorganisms, significantly 

affecting organism survival, competition, interspecific interactions, and even the community 

assembly (Dennehy, 2014). These foreign genes might represent critical steps in host 

metabolism such as photosynthesis processes. Their expression can affect the success of certain 

marine phages (Breitbart, 2012). Thus, the possible ecological implications of virus gene 

transfer on the host and virus community are important to analyze (Dennehy, 2014). The virus 

communities in coastal areas (stations 15 and 18) carry the most similar virus protein functions 

(figure 2.5), which might be related to a closer exchange of water masses between these 

stations. The indirect influence of the Atlantic inflow at station 24 might cause the observed 

differences concerning the other stations. In case of identified low abundance virus genes, 

foreign genes involved in host metabolism and fitness as well as genes related to host virulence 

as biofilm formation, LPS synthesis, pathogenesis and antibiotic response were identified 

(figure A.3.2). These virulence genes can be carried to the host, which can be major factors in 

the emergence of new diseases (Dennehy, 2014). However, there is still a debate about the role 

of phages in transferring antibiotic resistance to their hosts in clinical and environmental strains 

(Anand et al., 2016, Enault et al., 2017, Subirats et al., 2016). More information is needed 

before drawing conclusions in the North Sea and other marine environments. Other protein 

functions, for instance photosynthesis, have been identified in Myoviridae, Podoviridae and 

unclassified phages (figure A.3.2). These genes come from cyanophages and their presence in 

surface seawater has been reported previously in other marine environments (Hurwitz et al., 

2013b). Probable cyanobacterial hosts such as Synechococcus play a major role in carbon 

fixation in marine environments and their phages acquire important genes to adapt to new 

environments (Sullivan et al., 2005), which boost the host metabolism and subsequent viral 

propagation in surface waters (Hurwitz and U’Ren, 2016). The transfer of these functional 
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genes would increase the fitness of low abundant host taxa and might open novel metabolic 

pathways. 

Further studies are necessary to extend the knowledge not only of the gene inventory of the 

virus community, but also of the relationship with their hosts possibly due to the expression of 

their carried genes. The application of other approaches based on metatranscriptomics and -

proteomics or culture dependent techniques would complement the virome analyses to increase 

our knowledge of the ecological role of marine phages in the North Sea. 

2.4.4. CONCLUDING REMARKS 

Despite the high ecological and evolutionary importance of phages, the methodological 

approaches are still under development and fundamental questions of virus ecology are difficult 

to investigate (Hurwitz et al., 2014). Viromes have significantly contributed to expand our 

understanding of phage–host interactions and characterize environmental virus communities. 

Although a large sequence fraction still remains functionally unknown (Hurwitz et al., 2016, 

Hurwitz et al., 2014), this provides a basis for comparisons with future (meta)genome studies 

in marine environments. 

With this study, we were able to show that the virus community in the North Sea is dominated 

by phages, with significant variations in different hydrographical zones. Despite the low 

sampling number, a gradient between coastal and open sea communities was observed. The 

present study offers the first insights into the virus community of this highly dynamic area. The 

environmental differences seem to influence occurrence and diversity of viruses as shown by 

patterns of different taxonomic groups as well as their functional genes. 

A small fraction of the identified phage community appears in high abundance, which might 

be active and evenly present throughout the stations. However, the richness of each area is 

driven by a large number of low abundant virus taxa, which carry a diverse pool of genes. These 

results represent a snapshot of the virus community in time, and further studies are needed to 

investigate the spatiotemporal variation of the North Sea viruses. 

Supplementary data to this article can be found online and in chapter A.3. 

https://doi.org/10.1016/j.margen.2018.05.004
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Abstract: The incidence of potentially pathogenic Vibrio species is correlated with the increase of the 

seawater temperature in Europe. Despite their importance, little is known about the trigger factors of 

potential outbreak-causing strains in this region. As prophages may compose a major reservoir of 

virulence traits in marine ecosystems, this study aims to identify and characterize the genomes of 

lysogenic Vibrio phages exemplarily from the North Sea. Therefore, 31 isolates from potentially 

pathogenic Vibrio species from the North Sea were screened for inducible prophages with mitomycin 

C. From them, one V. cholerae isolate and 40 % V. parahaemolyticus isolates carried inducible 

prophages. Three lysogenic phages were selected for genomic characterization. The phage 

vB_VpaM_VP-3212 (unclassified Myoviridae) has a genome with a length of 36.81 Kbp and 55 CDS 

were identified. This lysogenic phage of V. parahaemolyticus contains genes related to replicative 

transposition mechanism, such as transposase and mobile elements similar to Mu-like viruses. The 

phage vB_VpaP_VP-3220 (Podoviridae, unclassified Nona33virus) has a genome length of 58,14 Kbp 

and contains 63 CDS. This V. parahaemolyticus phage probably uses a headful (pac) packaging 

replication mechanism. The phage vB_VchM_VP-3213 (unclassified Myoviridae) has a genome with a 

length of 41 Kbp and 63 CDS were identified, including integrase and Xer system for lysogenic 

recombination. This lysogenic phage of V. cholerae has similar genomic features as lambdoid phages. 

Although none pathogenicity genes were identified, their similarity among other phage genomes 

indicates that these phages can affect the development of pathogenic Vibrio strains in marine 

environments.

mailto:alexa.garin@awi.de
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3.1. INTRODUCTION 

Tailed phages are probably the most abundant viruses, comprising the majority of the marine virus 

community (Wommack and Colwell, 2000, Ackermann, 2007). Tailed phages compose the order 

Caudovirales, which is divided into five families: Podoviridae (short noncontractile tail), Siphoviridae 

(long noncontractile tail), Myoviridae (long contractile tail), Ackermannviridae (long contractile tail, 

formerly known as the Vi1virus genus), and Herelleviridae (long contractile tail, created after 

Spounavirinae reclassification) (Krupovic et al., 2011, Adriaenssens et al., 2018, Barylski et al., 2018). 

Caudovirales are characterized to inject their dsDNA into the host bacteria upon infection to follow the 

lytic or lysogenic cycle (Krupovic et al., 2011, King et al., 2012). In the lytic cycle, the phage redirects 

the host metabolism to produce new particles and lyses the host cell to release them (Weinbauer, 2004, 

Bondy-Denomy and Davidson, 2014). In the lysogenic cycle, the phage genome is integrated into the 

host genome as a prophage, and the host cell replicates as a lysogen. Prophage genes are repressed to 

maintain cell viability until the prophage induction triggers the lytic cycle (Breitbart, 2012, Bondy-

Denomy and Davidson, 2014). Prophage infection can alter the lysogen phenotype to increase the 

bacterial fitness (Paul, 2008, Breitbart, 2012). These changes include the production of toxins, biofilm 

formation, sporulation, and antibiotic resistance (Chen et al., 2015, Fortier and Sekulovic, 2013). 

Therefore, prophages can modify the physiological properties of the lysogen bacteria, which can develop 

on new pathogenic strains in marine environments (Fortier and Sekulovic, 2013, Breitbart, 2012, Paul, 

2008). Approximately half of the sequenced bacterial genomes present prophage-like elements  

(Paul, 2008), which can increase to almost 70 % of sequenced genomes from certain species, as 

described in Vibrio genomes (Castillo et al., 2018). 

Vibrio is a diverse bacterial genus that comprises more than 100 species, only 11 of them are human 

pathogens (Miyoshi, 2013). Representative pathogenic species of gastrointestinal diseases are  

V. parahaemolyticus and V. cholerae (Miyoshi, 2013, Thompson et al., 2004). Strains of  

V. parahaemolyticus and non-O1/O139 V. cholerae can cause severe gastroenteritis, while serogroups 

O1 and O139 of V. cholerae have caused epidemics of cholera (Chakraborty et al., 2000, Thompson et 

al., 2004). Due to the increase of the sea surface temperature, their niche is expanding to new areas 

(Baker-Austin et al., 2016, Baker-Austin et al., 2013). In Northern Europe, the number of Vibrio 

infections is increasing rapidly, including human illnesses caused by V. parahaemolyticus and  

non-O1/O139 V. cholerae (Martinez-Urtaza et al., 2010, Baker-Austin et al., 2017, Roux et al., 2015a). 

Potentially pathogenic Vibrio species in the North Sea have been monitored recently and previous 

studies demonstrated that the abundance of V. parahaemolyticus increase during the summer in the 

German Bight, caused by higher water temperature and low salinity conditions (Oberbeckmann et al., 

2012, Oberbeckmann et al., 2011b). Several Vibrio species have been identified in the water column as 

well as attached to microplastic particles found in the North Sea (Kirstein et al., 2016).  
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Due to the increase of reported Vibrio-associated illnesses in Europe, these potentially pathogenic Vibrio 

species are of enhanced importance (Hartnell et al., 2019, Roux et al., 2015a). 

While tailed phages with lytic cycle have been characterized in several potentially pathogenic Vibrio 

species (Hazen et al., 2010), the knowledge of Vibrio prophages with a lysogenic strategy is still limited. 

For instance, the lysogenic phage CP-T1 of V. cholerae carry a pathogenicity island and can infect both 

classical and El Tor biotypes of V. cholerae (Comeau et al., 2012, Guidolin et al., 1984, O’Shea and 

Boyd, 2002). Furthermore, other lysogenic phages have been characterized in V. parahaemolyticus, 

which are able to infect several potentially pathogenic strains of this species (Alanis Villa et al., 2012, 

Lan et al., 2009). Although lysogenic phages have been identified in several pandemic and clinical 

Vibrio strains (Hazen et al., 2010, Faruque and Mekalanos, 2012, Sakib et al., 2018, Bastías et al., 2010, 

Iida et al., 2001, Lan et al., 2009), in particular potentially pathogenic Vibrio strains from marine 

environments have not been studied deeply.  

As Vibrio prophages may compose a major reservoir of virulence traits in marine ecosystems (Castillo 

et al., 2018), there is a need to investigate lysogenic phages as one possible factor affecting the 

development of human pathogenic Vibrio species in the marine environment. Hence this study aims to 

identify and characterize the genomes of lysogenic Vibrio phages exemplarily in marine environmental 

strains of the North Sea. For this, potentially pathogenic Vibrio species isolated from the North Sea were 

screened for inducible prophages. Two lysogenic phages of V. parahaemolyticus and one lysogenic 

phage of non-O1/O139 V. cholerae were selected to apply a novel pipeline to characterize their genome 

without sequencing the lysogen bacterial genome. In this study, we present the genome structure and 

the predicted biological functions of the novel Caudovirales phages vB_VpaM_VP-3212, 

vB_VpaP_VP-3220 and vB_VchM_VP-3213. 
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3.2. MATERIAL AND METHODS 

3.2.1. ISOLATION AND IDENTIFICATION OF LYSOGEN VIBRIO 

For the isolation of V. parahaemolyticus, seawater samples were taken from the North Sea from  

July 31st to August 5th, 2014, during the RV Heincke HE430 (Gerdts and Rohardt, 2016). Filtered 

seawater and particles collected with a Neuston net were analyzed as described in detail by Kirstein et 

al. (2016), to isolate planktonic and synthetic polymer attached Vibrio strains. Additionally,  

V. parahaemolyticus isolates were obtained with the raw-seawater enrichment method. This method was 

primarily established by Moebus (1980) and modified for potentially pathogenic Vibrio species. The 

surface seawater samples were collected with a rosette sampler (SBE 911 plus, Sea-Bird Electronics, 

US). Approximately 1 l of raw seawater per station was incubated with alkaline peptone water (10 g/l 

peptone, pH 8.5, 10 PSU final) at 37 °C in the dark. After overnight incubation, the selective enrichment 

was plated on CHROMagar™Vibrio (MAST Diagnostica GmbH, Germany) (Di Pinto et al., 2011) with 

a Spiral-plater (easySpiral® Dilute; Interscience, France), and incubated at 37 °C for 24 h in the dark. 

The grown colonies were compared with the colony coloration typical for V. parahaemolyticus 

according to the manufacturer’s instruction. All mauve colored single colonies were transferred onto 

marine broth agar (Oppenheimer and Zobell, 1952) with reduced salinity (MB-50% = 16 PSU) and 

serially re-inoculated to pure cultures. 

All selected Vibrio isolates were further subjected to MALDI-TOF analysis and to PCR amplification 

of species-specific and virulence-associated genes for conclusive identification at the species level. 

MALDI-TOF is a rapid and reliable technique to distinguish species of the genus Vibrio (Dieckmann et 

al., 2010, Hazen et al., 2009). MALDI-TOF spectrum of each isolate was obtained and analyzed as 

described by Erler et al. (2015). Each spectrum was compared against the Bruker mass spectra and 

VibrioBase libraries (Erler et al., 2015), as well as the V. parahaemolyticus strains obtained in the cruise 

HE430.  

Since the differentiation value of branch clusters is not defined for Vibrio species, this cut-off value was 

arbitrarily defined (Malainine et al., 2013). Thus, the species cut-off of the principal component analysis 

(PCA) from MALDI-TOF spectra comparison was defined for V. parahaemolyticus at a distance level 

below 850 (Cheng et al., 2015). 

For the PCR identification method, the bacterial DNA of each isolate was extracted with lysozyme/SDS 

lysis and phenol/chloroform, followed by precipitation with isopropanol (Oberbeckmann et al., 2011a). 

Species-specific PCR for toxR genes, as well as PCR screening for thermostable direct hemolysin (tdh) 

and tdh related hemolysin (trh) in assigned V. parahaemolyticus, and cholera toxin gene ctxA, serotypes 

O139 and O1 for assigned V. cholerae, were performed as described by Kirstein et al. (2016).  
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V. parahaemolyticus RIMD 2210633 (German Collection of Microorganisms and Cell Cultures, DSMZ) 

was used as a PCR positive control. After identification, the V. parahaemolyticus isolates were stored 

in liquid nitrogen (VibrioNet, Erler et al., 2015). 

3.2.2. LYSOGENIC PHAGE INDUCTION 

To identify inducible prophages from V. parahaemolyticus and V. cholerae, the isolates were screened 

with the mitomycin C induction method (Raya and H’bert, 2009, Clokie and Kropinski, 2009) modified 

for potentially pathogenic Vibrio spp. For this, the V. parahaemolyticus strains were incubated in 96-

well plates (flat bottom with cover; Corning™Costar™) with MB-50% broth supplied with 0.1 % agarose, 

at 30-37 °C and shaking. The culture was monitored using a TECAN infinite M200 reader (Switzerland), 

and mitomycin C (0.25 µgml-1 final) was added on each tested well after 2 h of incubation. Each 

prophage induction was performed in eight replicates of 200 µl each, negative controls were performed 

in duplicate with MB-50% broth instead of mitomycin C. After 6 h of incubation, all replicates of each 

strain were collected by filtration (0.2 µm, 25 mm diameter, polycarbonate membrane syringe filter, 

Corning™) and stored at 4 °C in the dark. In order to identify possible phage particle release, the induced 

samples were fixed with formaldehyde (2 % final), and the virus-like-particles (VLP) were counted 

using a wet-mount method with SYBR Gold and epifluorescence microscopy (Cunningham et al., 2015). 

The V. parahaemolyticus strain VN-3212, VN-3220 and V. cholerae strain VN-3213 were selected to 

characterize their inducible prophages. Each isolate was incubated in 600 ml MB-50% broth at 37 °C 

and shaking. As performed in the first screening, mitomycin C (0.25 µgml-1 final) was added at an optical 

density of 0.1 – 0.2 (600 nm), monitored using a Biophotometer (Eppendorf). Upon prophage induction, 

the culture was first filtrated (0.2 µm pore size, 47 mm diameter, polycarbonate membrane), followed 

by concentration of phage particles with centrifugation (4,000 ×g; Sorvall RC-26 Plus, DuPont, with a 

GSA rotor) with a Vivaspin 30 Centrifugal Concentrator (Sartorius). This concentrate was subjected to 

DNAse I treatment using Baseline-ZEROTM DNase (Epicenter) according to the manufacturer’s 

instructions, and final ultracentrifugation (136,000 ×g, 2 h at 4 °C; Optima™ TL, Beckmann with a TLA 

100.4 fixed angle rotor). The concentrated phage elution pellet was resuspended with 500 µl of modified 

SM buffer (23.3 gl-1 NaCl, 4.93 gl-1 MgSO4×7H2O, 50 mM Tris HCl, pH 7.5) (John et al., 2011), and 

stored at 4 °C in the dark. The strain VN-3218 without induction was used as a negative control, V. 

cholerae strain AC53 together with its lytic phage ICP1 (Seed et al., 2011), and the lysogenic Vibrio 

phage PV94 induced from the V. vulnificus strain VN-0094 (Pryshliak et al., 2014) were used as positive 

experimental controls. 
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3.2.3. DNA EXTRACTION AND SEQUENCING 

The DNA from each lysogenic induction was extracted with a modified CTAB and phenol:chloroform 

extraction method (Williamson, 2011, Garin-Fernandez et al., 2018). For this, the concentrated phage 

elution was incubated with proteinase K (100 µgml-1 final) and sodium dodecyl sulfate (0.5 % final) for 

1 h at 55°C, terminated by addition of sodium chloride (5 M final), and incubated with NaCl/CTAB 

solution (70 mM NaCl, 1 % cetyltrimethylammonium bromide final) for 10 min at 65 °C. The DNA 

was phenol:chloroform extracted, precipitated with isopropanol and resuspended in 1× TE buffer (2 M 

Tris base, 0.2 M ethylenediaminetetraacetic acid, pH 8.5). The concentration and purity of the extracted 

DNA were determined photometrically via a Tecan Infinite©M200, NanoQuant microplate reader 

(Tecan, Switzerland) with Invitrogen Quant-iT PicoGreen® dsDNA Reagent (Carlsbad, CA, USA) 

according to the manufacturer’s instructions. 

Library preparation and sequencing were performed at LGC Genomics (LGC Genomics GmbH, Berlin, 

Germany). The DNA was sheared by ultrasonication (Covaris S220), purified and concentrated with 

MinElute Spin Columns (Qiagen). The library was constructed with the Encore Rapid DR Multiplex 

System (NuGen) according to the manufacturer’s instructions. The purified libraries were amplified by 

PCR for 17 cycles using Illumina primers (5PE/3PE) with MyTaq DNA Polymerase (Bioline) and 

BioStabII PCR Enhancer (Sigma). Sequencing was performed on an Illumina MiSeq V3 sequencer using 

2 × 300 bp chemistry. 
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3.2.4. GENOME SEQUENCE ANALYSIS 

The sequence reads were first processed using BBtools (version 35.14, 

https://sourceforge.net/projects/bbmap) to decontaminate and discard low-quality reads before 

assembling them into contigs. In detail, the bbduk tool was used to define k-mer size (k = 23), hamming 

distance (hdist = 1), right and left trimming (qtrim = rl), screen in reverse-complement sequences (rcomp 

= t), remove low quality (trimq = 20, maq = 20), short reads (minlen = 100), trim Illumina adapter and 

Escherichia virus Phi-X174 genome (NC_001422.1) reads. The bbnorm tool was used to error-correct 

and normalize the over-coverage reads from the phage genome by selection of reads with an average 

depth of 100 × (target = 100) and discard low coverage reads (min = 5). The resulting reads were 

assembled with SPAdes (version 3.11.1, --only assembler) (Nurk et al., 2013). The contigs were then 

filtered using VirSorter tool (default settings, Virome Decontamination mode) from iVirus 

(https://de.iplantcollaborative.org/de/) (Bolduc et al., 2016), followed by identification of (pro)phage 

sequences with PHASTER (https://phaster.ca) (Arndt et al., 2016, Zhou et al., 2011). The phage genome 

sequence was mapped using BWA-MEM (version 0.7, default parameters) (Li and Durbin, 2009) and 

converted to BAM files with SAMtools (version 1.2) (Li et al., 2009). Coverage values of the genome 

were analyzed using the total reads with Qualimap (version 2.2.1) (García-Alcalde et al., 2012, 

Okonechnikov et al., 2016). The annotation was firstly performed using the annotation software Rast 

(http:// http://rast.nmpdr.org/rast.cgi, default parameters) (Aziz et al., 2008, Overbeek et al., 2014), 

followed by manual comparison with Prokka (viruses and bacteria databases, default parameters) 

(Seemann, 2014), and Metavir from VirSorter tool (default parameters) (Roux et al., 2014, Bolduc et 

al., 2016). The manual curation and software outcome comparison was performed with Artemis (version 

17.0.1) (Rutherford et al., 2000) to obtain the final annotated genome in flat format. Genome 

organization, visualization, and GC content were performed with Artemis (version 17.0.1) (Rutherford 

et al., 2000). Overview of the data analysis is provided in figure 3.1. 

 

https://sourceforge.net/projects/bbmap
https://de.iplantcollaborative.org/de/
https://phaster.ca/
http://rast.nmpdr.org/rast.cgi
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FIGURE 3. 1. Workflow overview of data preparation and analysis for genome characterization used in this study. 

Details of each step are described in section 3.2.4. 

 

For the taxonomic classification, the head-neck-tail modules of the phage genomes were first analyzed 

using Virfam Caudovirales classifier (http://biodev.extra.cea.fr/Virfam), which compares the protein 

profiles and gene context against representative tailed bacteriophages of its database to classify them 

into Caudovirales family clusters (Lopes et al., 2014). Furthermore, the phage genomes were compared 

with tBLASTx (version 2.2.30+) against the virus genomes available in the National Center of 

Biotechnology Information (NCBI, refseq database). Genome comparison with the Sequence 

Demarcation Tool (SDT version 1.2) was performed to pairwise genetic identity determine species or 

genus level (Muhire et al., 2014). If applicable, the genus level was based on the demarcation criteria of 

the most similar genus (King et al., 2012). As recommended by the International Committee on 

Taxonomy of Viruses (ICTV), the genus demarcation criteria were performed with EMBOSS Stretcher 

(https://www.ebi.ac.uk/Tools/psa/emboss_stretcher) (McWilliam et al., 2013) and CoreGenes 3.5 

(http://binf.gmu.edu:8080/CoreGenes3.5) (Zafar et al., 2002). Due to discrepancies between the ICTV 

virus taxonomy 2018 release (https://talk.ictvonline.org/taxonomy), and the taxonomy databases of the 

NCBI (https://www.ncbi.nlm.nih.gov/taxonomy) and European Nucleotide Archive (ENA, 

www.ebi.ac.uk/ena/), the taxonomic names used in this study correspond to the nomenclature used by 

NCBI/ENA. Synteny comparison within the most similar virus genomes was visualized with Easyfig 

(version 2.2.3) (Sullivan et al., 2011). The phage termini and packaging mechanism were determined 

with PhageTerm (Garneau et al., 2017). Additionally, the identified terminase encoding genes were 

selected to analyze their phylogenetic relationship. For this, the product sequences identified as 

terminase were aligned together with the terminase large subunit sequences of  

Vibrio phages and model lysogenic phages (> 138 amino acids, refseq database, MUSCLE algorithm), 

which corresponds to genome sequences of Podoviridae (YP_001648943.1, BAT31856.1, 

http://biodev.extra.cea.fr/virfam
https://www.ebi.ac.uk/Tools/psa/emboss_stretcher/
http://binf.gmu.edu:8080/CoreGenes3.5
https://talk.ictvonline.org/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy
http://www.ebi.ac.uk/ena/
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NP_049511.1, BAT32029.1, BAA94156.1, YP_024418.1, YP_009140132.1, YP_009152754.1, 

YP_009153029.1, YP_008239661.1), Myoviridae (NP 536651.1, YP_008766840.1, Q9T1W6.1, 

YP_007877524.1, YP_004251070.1) and unclassified phages (YP 007877435.1). The phylogeny was 

inferred using Neighbor-joining (uniform rates among sites, pairwise deletion of gaps, 1,000 bootstrap 

replicates) in MEGA (version 10.0.1) (Kumar et al., 2018). All used databases were updated to their 

latest version from May 2018, and BLAST hit alignments with e-value below 0.001 and a similarity 

greater than 50 % were considered significant. 

3.2.5. NUCLEOTIDE SEQUENCE ACCESSION NUMBERS 

Lysogenic phages were named based on Kropinski et al. (2009) nomenclature proposal. The nucleotide 

sequences and their associated (meta)data were submitted with the data submission service from the 

German Federation for Biological Data (www.gfbio.org/) (Diepenbroek et al., 2014). The associated 

(meta)data were based on the Minimal Information about any (X) Sequence (MIxS) compliant  

(Yilmaz et al., 2011). 

The phage genomes vB_VpaM_PN-3212, vB_Vpa_PN-3220 and vB_VchM_PN-3213 have been 

deposited in ENA (Toribio et al., 2017) under the INSDC accession number PRJEB33505. 

  

http://www.gfbio.org/
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3.3. RESULTS AND DISCUSSION 
The incidence of reported Vibrio illnesses in northern Europe is correlated with the increase of the 

seawater surface temperature in this region (Vezzulli et al., 2016). Despite the importance to follow up 

the increase of human pathogenic Vibrio in Europe, little is known about the trigger factors of potential 

outbreak-causing strains in this region (Vezzulli et al., 2016, Hartnell et al., 2019, Roux et al., 2015a). 

Most ecological studies of pathogenic bacteria have focused on the presence and activity of these 

bacterial strains in situ, which might overlook the role of their phages in the disease persistence and 

spread (Breitbart et al., 2005). The interaction within prophages can also influence the emergence of 

pathogenic clones, as described in V. cholerae (Faruque and Mekalanos, 2003, Banerjee et al., 2014). 

As lysogenic phage infection is known as a key factor for the development of new pathogenic strains in 

marine environments (Fortier and Sekulovic, 2013, Breitbart, 2012, Paul, 2008), lysogenic phages  

of potential pathogenic Vibrio species from the North Sea were characterized in this study. The genomic 

characterization of these inducible phages can provide valuable information concerning the potential to 

transfer and carry relevant machinery of bacterial pathogenesis in the marine environment. 

3.3.1. IDENTIFICATION OF VIBRIO  

AND INDUCTION OF PROPHAGES 

During the cruise HE430, 30 V. parahaemolyticus isolates and one V. cholerae strain were obtained near 

the coastline of the North Sea (figure 3.2A, station 1 to 15) in a temperature range from 19.64 to  

21.53 °C and at salinities between 30.62 and 33.51 PSU (Gerdts and Rohardt, 2016). All but two isolates 

were classified to the secure species level by MALDI-TOF spectra comparison against the VibrioBase 

database (Erler et al., 2015 and table A.4.1). Two isolates were identified to a probable species level 

(table A.4.1). All species identification results of V. parahaemolyticus were additionally verified by 

positive species-specific PCR (section 3.2.1). Virulence-associated genes encoding tdh and trh 

hemolysins were not identified in any of these isolates (table A.4.1). The V. cholerae isolate was 

classified to the secure species level by MALDI-TOF, and positive for the species-specific PCR.  

This isolate was neither tested positive for cholera toxin gene (ctxA) nor positive for the pandemic 

serotypes O139/O1 (table A.4.1). Despite all these 31 Vibrio isolates do not carry virulence-associated 

genes, these isolates were identified as species related to human pathogen strains. Thus, these  

V. parahaemolyticus and V. cholerae strains isolated from the North Sea were considered as  

potentially pathogenic Vibrio species.  
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FIGURE 3. 2. Sampled site coastal map from research cruise HE430 (A) and principal component analysis (PCA) 

dendrogram generated by MALDI Biotyper mass spectra for all the V. parahaemolyticus strains isolated in this 

campaign and type strains from the Czech collection of microorganisms (CCM), German collection of 

microorganisms and cell cultures (DSM) available in the Bruker mass spectra library (B). The grey shadowed 

clusters correspond to the isolate VN-3212 and VN-3220 cluster groups. The black dots (●) represents successful 

prophage induction with mitomycin C, while the empty dots (○) represents non-lysogen strains under the tested 

conditions. 

Based on PCA MALDI-TOF spectra, the V. parahaemolyticus isolates (distance level < 850) were 

differentiated into two separated clusters (distance level < 600) (figure 3.2B). The first cluster is 

composed of three main branches, which include five type strains from the Czech and German collection 

of microorganisms. The second cluster which includes the representative V. parahaemolyticus strain 

RIMD2210633 is composed of two main branches. The PCA dendrogram did not show a clear 

differentiation at the subspecies level. No pattern was obvious related to either sample site, isolation 

method, or presence of inducible prophage. 

The identified Vibrio isolates were tested for inducible prophages using mitomycin C (section 3.2.2). 

From the 31 tested isolates, 12 V. parahaemolyticus (40 % of this species, figure 3.2B) and one V. 

cholerae carried inducible prophages (41.94 % of total, table A.4.1). Most of lysogen Vibrio isolates 

were from stations 1 to 4, and station 13 and 15 (table A.4.1). The induction rate was in line with other 

marine bacteria (reviewed by Breitbart, 2012) and in silico identification of prophages in  

V. parahaemolyticus genomes (~ 40.3 %, Castillo et al., 2018). In contrast, other studies have shown a 

much lower proportion of lysogen strains, such a former screening study of V. parahaemolyticus isolates 

from food poisoning patients (9.2 %, Muramatsu and Matsumoto, 1991). Besides, a recent in silico study 

of 1,567 Vibrio genomes identified at least one complete prophage in more than 70 % of V. cholerae 

genomes (Castillo et al., 2018). Therefore, it was not surprising that the only V. cholerae isolated during 

the HE430 (station 15) also carries one inducible phage (table A.4.1). 
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The induced Vibrio prophages from the North Sea were tested against 153 potential Vibrio host strains, 

including environmental and clinical strains from V. parahaemolyticus, V. cholerae, V. mimicus and V. 

vulnificus. However, the search for a potential host showing lytic response failed (data not shown). The 

lack of suitable phage propagation has been observed already in other studies investigating inducible 

tailed phages, including V. campbellii and potentially pathogenic V. vulnificus (Lorenz et al., 2016, 

Pryshliak et al., 2014). Presumably this might either be due to the general narrow host range of 

Caudovirales phages from Vibrio species (Matsuzaki et al., 1992) or additional prophages that protect 

the lysogen bacteria from superinfection (Lorenz et al., 2016). 

The prophages from V. parahaemolyticus VN-3212 (cluster I, station 6), V. parahaemolyticus VN-3220 

(cluster II, station 15), and V. cholerae VN-3213 (station 15) were induced with mitomycin C (section 

3.2.2). As expected, the bacterial cell number decreased after induction in the tested replicates from each 

isolate (figure A.4.1) compared to the control replicates (VN-3212 = 40.43 %; VN-3213 = 13 %; VN-

3220 = 34.64 %). The cell density of the V. parahaemolyticus induced cultures decreased significantly 

(Mann-Whitney test, VN-3212 P = < 0,001; VN-3220 P = 0,003). This difference was triggered by 

prophage induction, identified by the presence of VLP in the induced culture (VN-3212 = 1.8 × 108 

VLP/ml; VN-3220 = 3.8 × 108 VLP/ml). The decrease in cell density in the induced V. cholerae cultures 

was not significant (VN-3213 P = 0,066), but VLP were identified in the induced culture (VN-3213 = 6 

× 106 VLP/ml). Each of these Vibrio strains carry a single complete prophage sequence (table 3.1). The 

V. parahaemolyticus VN-3212 and the V. cholerae VN-3213 carried a Myoviridae phage, while the 

strain VN-3220 carried one Podoviridae phage. The complete DNA sequence of the lysogenic phages 

was determined with a shotgun sequencing approach and de novo assembling (section 3.2.4). 
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TABLE 3. 1. Summary of the features from phage genomes analyzed in this study. The tailed phages were induced from potentially pathogenic Vibrio from the North Sea. 

Features include lysogen Vibrio strain and station source from cruise HE430, assembling coverage of genome (×), sequence length (Kbp), GC-content (GC %), number of 

annotated CDS (# CDS), possible packaging mechanism, possible integration mechanism identified in the phage genome, taxonomic classification, as well as most similar 

phage genus (synteny, refseq genome). 

 

Phage name 
Lysogen strain 

 (source) 

Assembling 

coverage (×) 

Length 

(Kbp) 

GC 

(%) 

# 

CDS 
Packaging mechanism 

Integration 

lysogen 

chromosome 

Family 
Closest 

genus 

vB_VpaM_VP-3212 
V. parahaemolyticus  

VN-3212 (station 6) 

3,038.95 

(SD ± 1,548.24) 
36.81 45.47 55 Possibly Mu-like Transposase Myoviridae Muvirus 

vB_VpaP_VP-3220 
V. parahaemolyticus  

VN-3220 (station 15) 

3,297.3 

(SD ± 837.91) 
58.14 43.56 63 

headful packaging 

mechanism (Headful pac) 
Integrase Podoviridae Nona33virus 

vB_VchM_VP-3213 
V. cholerae VN-3213 

(station 15) 

6,204.75 

(SD ± 998.04) 
41 46.25 53 

Headful pac; 

Possible Lambdoid phage 

Integrase | 

recombinase 
Myoviridae - 

  6
5
 

C
h
ap

ter 3
 



Chapter 3 

66 

 

3.3.2. VIBRIO PHAGE VB_VPAM_VP-3212 

The genome of vB_VpaM_VP-3212 has a sequence coverage of 3,038.95 × (SD ± 1,548.24), 

with a length of 36,805 bp and GC content of 45.47 %. In the genome, 55 CDS were identified, 

of which 53 are located on the forward strand and the remaining 2 on the reverse strand (figure 

3.3A). From the 55 identified CDS, 22 encode for hypothetical proteins, 4 encode proteins for 

transcription regulation, 24 encode proteins for virion assembly and lysis, 2 encode proteins for 

mobile elements, the remaining 3 CDS encoded proteins with DNA replication functions 

(figure 3.3A, table A.4.2). Host-pathogenicity related genes were not identified in the lysogenic 

phage genome. Annotation descriptions, as well as the CDS length and transcription positions, 

are summarized in figure 3.3A, and a detailed description of each gene is present in table A.4.2. 

The phage vB_VpaM_VP-3212 shows homology with the Vibrio phage martha 12B12 

(NC_021070.1, 66.6 % pairwise identity) and Enterobacteria phage Mu (NC_000929.1, 47.3 

% pairwise identity) (Morgan et al., 2002) (figure 3.4A). The packaging system was not 

identified with PhageTerm, the general tool for fast and accurate determination of phage termini 

and packaging mechanism (Garneau et al., 2017). However, the function can be assumed at 

least since the coverage mapping spectrum was similar to other Mu-like read mapping patterns 

(Kauffman et al., 2018a). As the host termini of Mu is asymmetric, the short read length from 

Illumina sequencing can bring problems to determine the short end fragment size (~ 50 bp) 

systematically (Garneau et al., 2017). In addition, the small number of well-studied Mu-like 

phage species (King et al., 2012) and the lower similarity within the reference Enterobacteria 

phage Mu genome (47.3% pairwise identity) might result in a method bias to analyze novel 

phage genomes with reference-based tools. Based on the similarity between the packaging 

system and coverage mapping spectrum of Mu-like phages, the phage vB_VpaM_VP-3212 

might amplify its linear genome through replicative transposition. Annotated virion structure 

proteins in the vB_VpaM_VP-3212 genome include major capsid (CDS37), portal (CDS32), 

terminase (CDS31), adaptor (CDS40), tail competition (CDS42), neck (CDS41), and sheath 

(CDS44) proteins (table A.4.2). Due the presence of sheath protein encoding genes, the 

Myoviridae phages can be distinguished from other Caudovirales families (Lopes et al., 2014, 

King et al., 2012). Moreover, the genome context and their assigned function of the virion 

structure proteins were used to identify the phage with Virfam Caudovirales classifier as 

Myoviridae of Type1 (cluster 8, figure A.4.2A). Virfam classification delineates four types of 

morphological subfamilies, the most abundant Type1 yields 10 clusters (Lopes et al., 2014). 

The Type1 cluster 8 contains Siphoviridae and Myoviridae phages, differentiated by absence 

and presence of a sheath protein, respectively (Lopes et al., 2014). This cluster is composed by 

several phages related to Mu (Lopes et al., 2014). In addition, the terminase protein phylogeny 
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shown that the terminase encoding gene of the phage vB_VpaM_VP-3212 clustered together 

within terminase from Mu-like phages (figure 3.5). 

The vB_VpaM_VP-3212 genome contains protein encoding genes related to genetic 

recombination and gene repression, similar to the lysogenic lifestyle of Mu-like viruses  

(Oakey et al., 2002) These protein encoding genes include transposase (CDS03), mobile 

elements (CDS04), and repression genes such as transcriptional regulators (CDS01-02,  

table A.4.2). Several protein encoding genes from Mu-like related sequences of Gram-negative 

bacteria were also identified (table A.4.2). In addition, the vB_VpaM_VP-3212 genome 

contains 34 annotated genes similar to prophages genes of Shewanella oneidensis MR-1. The 

bacteria S. oneidensis MR-1 contain two phylogenetically distinct Mu-like prophages, which 

share syntenic regions with the reference Enterobacteria phage Mu and other Mu-like phages 

from Haemophilus influenzae (Heidelberg et al., 2002). The H. influenzae Rd genome contains 

a Mu-like prophage sequence denominated FluMu (Fleischmann et al., 1995, Morgan et al., 

2002). The prophage FluMu contains only one identified tail fiber gene and lacks an invertible 

segment, these features differ with the described in the Enterobacteria phage Mu (Morgan et 

al., 2002). Interestingly, this structure is present also in the vB_VpaM_VP-3212 genome  

(table A.4.2) and puts this phage in closer correlation to prophage FluMu. Moreover, five 

protein encoding genes similar to prophage FluMu were annotated in the vB_VpaM_VP-3212 

genome (table A.4.2). Besides, a few annotated genes were similar to genes from Shigella 

flexneri bacteriophage V (unclassified Myoviridae), Escherichia phage D108 (unclassified 

Muvirus), Bacteriophage K139 (Myoviridae, Hp1virus), and Vibrio phage Kappa (Myoviridae, 

Hp1virus) (table A.4.2). Although no pathogenicity genes were identified, further approaches 

are necessary to analyze the role of this transposable phage on development of virulence traits 

in infected bacterial strains. 

  



Chapter 3 

68 

 

Although the close similarities within the Muvirus genus, several genomic features cannot 

achieve the overall demarcation criteria to consider the phage vB_VpaM_VP-3212 as part of 

this genus. The Mu-like phages have a lysogenic cycle, integrate into the host chromosome at 

random locations (replicative transposition), have a linear genome of size around 40 Kbp, and 

lack of DNA polymerases (Maniloff and Ackermann, 1998). The pairwise identity value 

between the vB_VpaM_VP-3212 and the Enterobacteria phage Mu genomes (47.3 %) was 

much lower than between the two current Muvirus members (Enterobacteria phage Mu and 

Enterobacteria phage SfMu, 87.5 % pairwise identity). Moreover, the characteristic structure 

of protease/scaffolding/major capsid encoding genes (I, Z and T genes) present in the 

Enterobacteria phage Mu genome (Morgan et al., 2002), differ from the protease/major capsid 

encoding gene structure present in the vB_VpaM_VP-3212 genome (CDS35-36, figure 3.3A). 

Although this is a characteristic structure, this is not conserved in all Mu-like phages e.g. Vibrio 

phage martha 12B12 (Hulo et al., 2015). Although the Vibrio phage martha 12B12 can be 

considered as a Mu-like phage, several key genomic features differ between them (Hulo et al., 

2015). The phage vB_VpaM_VP-3212 share several features within the Vibrio phage martha 

12B12, including the mentioned protease/major capsid encoding gene structure (figure 3.4A). 

Although Vibrio phage martha 12B12 is taxonomically identified as an “Unclassified 

Myoviridae”, no further information except for the genome annotation is available. Currently, 

Vibrio phage martha 12B12 is part of a proposal for the new virus family Saltoviridae, 

composed by more than 20 virus species (Hulo et al., 2015, Kropinski et al., 2018). 

Based on the overall shared genomic properties, we assume that phage vB_VpaM_VP-3212  

is an unclassified Myoviridae phage. This phage might be involved in the enrichment of the 

genetic diversity of marine V. parahaemolyticus due horizontal gene transfer, as described  

in other lysogenic Myoviridae phages from the pandemic O3:K6 strain (Lan et al., 2009). 
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FIGURE 3. 3. Diagram of vB_VpaM_VP-3212 (A) and vB_VpaP_VP-3220 (B) phage genomes. Predicted CDS are shown with arrows pointing in the direction of transcription, 

the colors were assigned accordingly to the possible protein function, as shown in the figure. Sequence length (Kbp), GC-content (GC %) are shown above each genome profile. 
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. 

FIGURE 3. 4. Genome synteny plot. Full-

genome comparison based on tBLASTx 

similarity between vB_VpaM_VP-3212 

(A) and vB_VpaP_VP-3220 (B) and their 

two most similar phage genomes. To 

facilitate the genomic comparison, the 

genomes of Vibrio phages martha 12B12 

and douglas 12A4 are visualized in 

reverse direction. The sequence length 

(Kbp), GC-content (GC %), number of 

predicted CDS (# CDS), and percentage 

of pairwise identity between the studied 

and reference phage genome comparison 

(Pair. Id.), are shown above each genome 

profile. The colors of the protein 

encoding genes are marked accordingly 

to their annotated replication functions, 

as shown in the figure. 
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FIGURE 3. 5. Neighbor-joining tree of large terminase subunit amino acid sequences. The consensus tree 

was built with 1,000 bootstrap replicates. Numbers at the nodes represent percent bootstrap support 

where unlabeled nodes had bootstraps of > 50 %. Terminase sequences of vB_VpaP_VP-3220 and 

vB_VpaM_VP-3212 were aligned with similar terminase sequences of Podoviridae (pink) Myoviridae 

(violet) and unclassified phages (green). 

3.3.3. VIBRIO PHAGE VB_VPAP_VP-3220 

The genome of vB_VpaP_VP-3220 has a sequence coverage of 3,297.3 × (SD ± 837.91), with 

a length of 58,137 bp and GC content of 43.56 %. Within the genome 63 CDS were identified, 

of which 49 are located on the forward strand and the remaining 14 on the reverse strand (figure 

3.3B). From the 63 identified CDS, 40 encode for hypothetical proteins, 2 encode proteins for 

transcription regulation, 17 encode proteins for virion assembly, 1 encodes for integration into 

the bacterial genome, the remained 3 encode proteins with DNA replication functions (figure 

3.3B, table A.4.3). Host-pathogenicity related genes were not identified in the lysogenic phage 

genome. Annotation descriptions, as well as CDS length and transcription positions, are 

summarized in figure 3.3B, and a detailed description of each gene is present in table A.4.3. 

The phage vB_VpaP_VP-3220 shows similarity with the Vibrio phage douglas 12A4 

(NC_021068.1, 45.2 % pairwise identity) and Enterobacteria phage Min27 (NC_010237.1, 

45.8 % pairwise identity) (figure 3.4B). Based on PhageTerm analysis, the phage 

vB_VpaP_VP-3220 probably uses a headful (pac) packaging mechanism during its replication. 

This mechanism is characteristic for linear genomes but circularly permuted structure (King et 

al., 2012). The presence of headful (pac) and integrase have been also described in other 

lysogenic Podoviridae, such as Enterobacteria phage P22 (Tye et al., 1974, Groth and Calos, 

2004). Besides, virion structure proteins used for taxonomic classification with Virfam include 

major capsid (CDS46), portal (CDS41), and terminase (CDS40) proteins (table A.4.3). Two 

head-completion proteins were identified as adaptor protein Ad3 (CDS49),  
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and the head closure protein Hc3 (CDS54, table A.4.3). An additional gene involved in tail 

structure was identified. This gene encodes a phage host specificity protein J of unclassified 

Lambda-like phages, including members of Nona33virus (CDS55, table A.4.3). This protein is 

related to virion attachment to the host membrane and further DNA injection (Roessner and 

Ihler, 1984). Procapsid and tail protein encoding genes were identified in the same genome 

context as found in the Enterobacteria phage Min27 genome (CDS40-41, figure 3.4B).  

The genome synteny comparison (figure 3.4B) and terminase protein phylogeny (figure 3.5) 

showed strong relationship between vB_VpaP_VP-3220 and Vibrio phage douglas 12A4 

(unclassified phage), as well as Nona33virus phages. Although Vibrio phage douglas 12A4 is 

taxonomically identified as an “Unclassified phage”, no further information except for the 

genome annotation is available. Lopes et al. (2014) classified the Vibrio phage douglas 12A4 

genome (Virfam name 12A4) as Podoviridae of Type3 with Virfam Caudovirales classifier 

(figure A.4.2B). The P22-like phages clustered together as Virfam Type3, which includes 

members of Nona33virus genus (Lopes et al., 2014). In similar manner, the genome context 

and the virion structure encoding genes of the vB_VpaP_VP-3220 genome is similar to phages 

from Podoviridae of Type3 cluster (figure A.4.2B, table A.4.3). 

Most of the genomic features from the phage vB_VpaP_VP-3220 are similar to Podoviridae 

phages, specifically within the Nona33virus genus. The Podoviridae phages are characterized 

by virions with short and non-contractile tail structure (King et al., 2012). This tail structure is 

formed by the portal, and two head-completion (adaptor and head-closure) proteins  

(Lopes et al., 2014), which were identified in the vB_VpaP_VP-3220 genome (figure A.4.2B, 

green). Due the integrase encoding gene identified in the vB_VpaP_VP-3220 genome (CDS01, 

table A.4.3), this lysogenic phage might recombine within the bacterial chromosome  

as described in integrases from lysogenic tailed phages (Groth and Calos, 2004). Additionally, 

other genes related to lysogeny, such as prevent host-death, were annotated in the 

vB_VpaP_VP-3220 genome (CDS34, table A.4.3). In the annotated vB_VpaP_VP-3220 

genome, 10 structural protein encoding genes were similar to Nona33virus phage genes (table 

A.4.3). In detail, three annotated protein encoding genes were similar to genes from 

bacteriophage 933W (CDS40-41, CDS46), one gene was similar to Enterobacteria phage 

Min27 (CDS40), and nine genes were similar to Stx phage genes (CDS01, CDS04, CDS40, 

CDS45-46, CDS50, CDS54-55, CDS57, table A.4.3). Although Shiga toxin encoding genes 

were not identified in the vB_VpaP_VP-3220 genome, its similarity with Stx phages (Shiga 

toxin encoding phages) may indicate a potential role in pathogenicity. 
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Five approved species of Nona33virus genus are included in the ICTV virus taxonomy 2018 

release (renamed as Traversvirus). The species number increases to more than 50 in the NCBI 

taxonomy database, including the type species bacteriophage 933W (Adriaenssens et al., 2017, 

Plunkett et al., 1999), Enterobacteria phage Min27 (Su et al., 2010), and several Stx phages 

(Sato et al., 2003). The genome alignment comparison between unclassified Nona33virus  

(e.g. Stx2-converting phage 86, NC_008464.1) and bacteriophage 933W (NC_000924.1) have 

a similarity below 45 % pairwise identity and 70 % shared proteins (data not shown), which is 

lower than the proposed for this genus (above 80 %). The pairwise similarity of unclassified 

Nona33virus and other genomic features are comparable to the phage vB_VpaM_VP-3212. 

Based on the overall genomic properties, the phage vB_VpaP_VP-3220 is assigned as 

unclassified Nona33virus. The phages from Nona33virus are closely related to the develop of 

pathogenicity of E. coli, which contribute to the production of Shiga toxin and antibiotic 

resistance genes in nonpathogenic strains (Gamage et al., 2003, Colavecchio et al., 2017). 

Although no pathogenicity genes were identified in vB_VpaP_VP-3220, this phage is a 

potential contributing factor to disseminate these genes in potentially pathogenic Vibrio strains. 
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3.3.4. VIBRIO PHAGE VB_VCHM_VP-3213 

The genome of vB_VchM_VP-3213 has a sequence coverage of 6,204.75 × (SD ± 998.04), 

with a length of 40,999 bp and GC content of 46.25 %. Within the genome 53 CDS were 

identified, of which 48 are located on the forward strand and the remaining 5 on the reverse 

strand (figure 3.6). From the 53 identified CDS, 24 encode for hypothetical proteins, 2 encode 

proteins for transcription regulation, 19 encode proteins for virion assembly and lysis, 2 encode 

for mobile element proteins, 1 encodes for integration into the bacterial genome, 3 encode for 

proteins with ATPase activity, the remaining 2 encode proteins with DNA replication functions 

(figure 3.6, table A.4.4). In addition, the genome context and similarity of 39 annotated proteins 

with Rast show a close relation with Vibrio vulnificus CMCP6 chromosome I (NC_004459) 

(table A.4.4). Host-pathogenicity related genes were not identified in the lysogenic phage 

genome. Annotation descriptions, as well as CDS length and transcription positions, are 

summarized in figure 3.6, and a detailed description of each gene is present in table A.4.4. 

The phage vB_VchM_VP-3213 shows similarity with the Myoviridae phages Burkholderia 

phage phiE202 (NC_009234.1, 45.1 % pairwise identity) and Vibrio phage VHML 

(NC_004456.1, 

45.2 % pairwise identity) (Oakey et al., 2002) (figure 3.7). The phage vB_VchM_VP-3213 

probably uses Headful (pac) packaging during its replication. This system is present in 

Myoviridae phages with linear but circularly permuted structure, such as phages P1 and T4 

(Garneau et al., 2017, King et al., 2012). The virions structure proteins identified in the 

vB_VchM_VP-3213 genome include major capsid (CDS03), portal (CDS49), tail competition 

(CDS09), tail tube (CDS18) neck (CDS08), and sheath (CDS17) proteins (table A.4.4). In 

detail, one encoding region related to tail and baseplate structure was identified (CDS08-23, 

figure 3.6). This region encodes for four tail structure proteins similar to P2-like phages 

(CDS10, CDS13-14, CDS17, CDS22), including a similar host specificity protein J from 

Lambda-like phages (baseplate assembly protein CDS13, table A.4.4). Several protein 

encoding genes were similar to the Vibrio phage VHML.  

For instance, structural proteins encoding genes showed similarities to genes from phage 

VHML and other Myoviridae Vibrio phages (CDS03, CDS13, CDS17), as well as phage protein 

were similar to the ORF51 from Vibrio phage VHML (CDS36), and portal protein from 

Myoviridae phages (CDS49, table A.4.4). The virion assembly region in the vB_VchM_VP-

3213 genome shows similarity within several virion assembly genes in both Burkholderia 

phage phiE202 and Vibrio phage VHML (green, figure 3.7). Despite their similarity, the 

genomic context is not completely conserved and some CDS are not shared between these 

genomes (e.g. CDS15-16, table A.4.4). Besides, Virfam Caudovirales analysis has shown that 
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the genome context and assigned function of these structural proteins are similar to Myoviridae 

of Type1 (cluster 6, figure A.4.2A). This cluster includes Siphoviridae lambda phage, 

Myoviridae from the Hapunavirus and Vhmlvirus genus, among others (Lopes et al., 2014). 

Despite their morphological differences, lambda phages have a genome organization which is 

closely related to other Myoviridae and Podoviridae phages (King et al., 2012). The presence 

of the sheath protein encoding gene is the main feature to distinguish lambdoid phage genomes 

from the Myoviridae family (Lopes et al., 2014), which was identified in the vB_VchM_VP-

3213 genome (CDS17, table A.4.4). 

The vB_VchM_VP-3213 genome contains an integrase encoding gene (CDS41, table A.4.4), 

and two systems that mediate lysogenic recombination. Two tyrosine recombinases from Xer 

system were identified as CDS30 (XerC) and CDS43 (XerD, table A.4.4). Although Xer system 

is a conserved feature in most bacteria, the Xer system based on two tyrosine recombinases 

XerC and XerD are unusual and vary with the substrate (Rajeev et al., 2009). This system is 

used by the Vibrio phage CTX, VGJ, and TLC (Inoviridae, filamentous phages) to integrate 

into the V. cholerae chromosome I (diff1 site) (McLeod and Waldor, 2004, Das, 2014). 

Moreover, most of the filamentous phages that infect V. cholerae, can integrate at the dif1 site 

(Das, 2014). The V. cholerae XerC/D sites flank the bacterial genome attachment, which is 

required for recombination within the phage CTX genome attachment site (attP) (McLeod and 

Waldor, 2004). In contrast to the described genomes, the phage vB_VchM_VP-3213 carries 

this Xer system (CDS30, CDS43). Further culture-based studies are necessary to define if this 

system may play a role in the lysogenic phage competition between other Vibrio phages. Also, 

the genome of the lysogenic host strain VN-3213 would provide the necessary information to 

define the integration sites in the bacterial chromosome. Besides, annotation results shown that 

39 of 53 protein encoding genes (73.58 %) are similar to V. vulnificus CMCP6 (Rast, table 

A.4.4). Most of them are hypothetical proteins and/or with an unknown function (table A.4.4), 

and other identified functions such as lysogenic recombination (CDS30, CDS43) and integrase 

(CDS41, table A.4.4). The clinical strain V. vulnificus CMCP6 is an opportunistic pathogen 

with no plasmids (Kim et al., 2003, Kim et al., 2011). This similarity might suggest a connection 

between V. cholerae phage vB_VchM_VP-3213 and potential pathogenic V. vulnificus. 

Although Vibrio phages are characterized by a narrow host range, some lysogenic phages can 

infect closely related Vibrio species (Muramatsu and Matsumoto, 1991). Although none of the 

V. vulnificus isolated during the cruise HE430 showed the potential as lytic host of the phage 

vB_VchM_VP-3213 (data not shown), these isolates probably possess other mechanisms (e.g. 

carried prophage in its genome) to protect against infection of the phage vB_VchM_VP-3213, 

as described in V. campbellii phage-host systems (Lorenz et al., 2016). 
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Although phage vB_VchM_VP-3213 were most similar to phage genomes from P2virus 

(renamed by ICTV as Peduovirus) and Vhmlvirus genera, this phage has genomic features that 

differ from these genera. The P2virus genus is characterized by lysogenic phages with linear 

and non-permuted genome, cohesive ends, size around 34 Kbp, and 40 protein encoding genes 

(King et al., 2012). On the other hand, the Vhmlvirus genus is composed by Vibrio phages that 

can exist as linear prophage plasmids, these phages have a linear genome with cohesive ends, 

size around 40 Kbp and 60 encoding-genes (Kropinski et al., 2015, Oakey et al., 2002). P2, 

VHML-like and also Lambda-like phages carry a cos site related to the DNA packaging 

mechanism based on cohesive ends (Garneau et al., 2017, Oakey et al., 2002, King et al., 2012). 

These key genomic features are not present in the phage vB_VchM_VP-3213, which probably 

uses Headful (pac) packaging system. Moreover, the pairwise similarity values between the 

vB_VchM_VP-3213 genome, and the Burkholderia phage phiE202 (P2virus) and Vibrio phage 

VHML (Vhmlvirus), are too low to be considered as part of these genera (~ 45 % each) 

(Kropinski et al., 2015). Moreover, synteny comparison also reflects these differences by the 

lack of conserved structural regions between the vB_VchM_VP-3213 genome and these phage 

genomes (green, figure 3.7). 

Based on the overall shared genomic properties, the phage vB_VpaM_VP-3212 is an 

unclassified Myoviridae. Further studies are necessary to define if this phage belongs to a 

known taxon of Lambda-like phages. Despite the identification of lysogenic tailed phages in 

pathogenic V. cholerae strains, their contribution to virulence has not been characterized as 

deeply as in filamentous phages (Faruque and Mekalanos, 2003). Most of the prophages 

identified in V. cholerae genomes are filamentous phages with associated toxin genes (Castillo 

et al., 2018). Closer phages, such as Vibrio phage VHML can encode a toxin component 

responsible of virulence conversion in V. harveyi (Oakey et al., 2002, Oakey and Owens, 2000). 

Although no pathogenicity genes were identified in vB_VchM_VP-3213, the similarity of the 

overall genome with other toxin encoding phages may indicate the potentiality to transfer 

pathogenicity genes. Further studies are necessary to analyze the role of this phage in infected 

hosts from the North Sea, such as host integration site or effects on the phenotype. 
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FIGURE 3. 6. Diagram of the vB_VchM_VP-3213 phage genome. Predicted CDS are shown with arrows pointing in the direction of transcription, the colors were assigned 

accordingly to the possible protein function, as shown in the figure. Nucleotide base pairs (Kbp) and the GC % are shown above each genome profile. 
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FIGURE 3. 7. Genome synteny plot. Full-genome comparison based on tBLASTx similarity between vB_VchM_VP-3213 and the two most similar phage genomes. To facilitate 

the genomic comparison, the Burkholderia phage phiE202 genome is visualized in reverse direction. The sequence length (Kbp), GC-content (GC %), number of predicted 

CDS (# CDS), and percentage of pairwise identity (Pair. Id.) between vB_VchM_VP-3213 and the reference genome comparison, are shown above each genome profile. The 

colors of the protein encoding genes are marked accordingly to their annotated replication functions, as shown in the figure. 
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3.4. CONCLUDING REMARKS 

Despite the low number of characterized tailed Vibrio phage genomes, previous in silico studies 

have demonstrated that marine Vibrio genomes contain lysogenic phages with virulence-related 

traits, such as the Myoviridae phage VMHL (Castillo et al., 2018, Oakey et al., 2002). Others 

Vibrio phages contain pathogenicity islands transduced e.g. in V. cholerae by the phage CP-T1 

(O’Shea and Boyd, 2002). Moreover, the increase of Vibrio abundance within the plankton-

associated community has coincided with the unprecedented increase in infection cases caused 

by these bacteria in the North Sea (Baker-Austin et al., 2017, Vezzulli et al., 2012). Considering 

the influence of prophages on the development of pathogenic bacteria (Breitbart, 2012, Fortier 

and Sekulovic, 2013), it is crucial to characterize lysogenic phages of potentially pathogenic 

Vibrio in the marine environment. 

Due to horizontal gene transfer, Vibrio species have been evolved in close relationship within 

their lysogenic phages. These phages can affect the development of human pathogenic Vibrio 

strains in marine environments, such as the V. parahaemolyticus and V. cholerae in the North 

Sea. In this study, three inducible Vibrio phages were exemplarily analyzed with a set of very 

powerful tools and based on a growing number of annotated virus genomes which are 

accessible. Although this approach was successful to characterize novel phage genomes, the 

application of reference-based tools were a limiting factor to define taxonomic relationship at 

genus or higher level. As in deep characterization of replication and genomic properties has 

been studied only in a small percentage of well-studied species (King et al., 2012), the lack of 

closely related taxa might be related to the limited number of characterized phage genomes in 

the public databases. Apart from these limitations, it was possible to classify them at family or 

at least genus level. The studied phage genomes corresponded to two phages of V. 

parahaemolyticus and one phage of V. cholerae. The V. parahaemolyticus phage 

vB_VpaP_VP-3220 (Podoviridae) has the longest genome (58.14 Kbp, 63 CDS), and the lowest 

percentage of GC-content (43.56 %, table 3.1). In contrast, the V. parahaemolyticus phage 

vB_VpaM_VP-3212 (Myoviridae) had the shortest genome (36.81 Kbp) and the V. cholerae 

phage vB_VchM_VP-3213 (Myoviridae) had the fewest CDS (53, table 3.1). In general, these 

phages have genomic features that differ from closer genus descriptions, indicates that the 

diversity of Vibrio phages is far from being explored completely. Although these phages did 

not present virulent traits, their similarity among other phage genomes indicates that these 

phages can affect the development of pathogenic Vibrio strains  

in the North Sea. 

Supplementary data to this article can be found in chapter A.4. 
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Abstract: The seawater temperature rise promotes the growth of potentially human pathogenic Vibrio 

species. In the North Sea, V. parahaemolyticus strains have been isolated and characterized. These strains 

contain prophages that may contribute to the emergence of pathogenic strains in the marine environment. 

Here, we present the genome structure and possible biological functions of the inducible phage 

vB_VpaI_VP-3218, a novel filamentous phage carried by the V. parahaemolyticus strain VN-3218. 

Prophages of the strain VN-3218 were induced with mitomycin C and the DNA from the phage induction 

was sequenced. Two incomplete prophages were identified, only one complete phage genome with length 

of 11,082 bp was characterized. The phage vB_VpaI_VP-3218 belongs to the Inoviridae family and shows 

close homology to the Saetivirus genus. This phage can integrate into the chromosomal host genome and 

carries host-related regions absent in similar phage genomes, suggesting that this phage integrates within 

other host genomes. Furthermore, this phage might have a role in pathogenicity due to potential zonula 

occludens toxin genes. Based on genomic similarity, this phage is an episomally reversible integrated 

lysogenic phage. This study complements prophage induction and bioinformatic studies applied to non-

model species of potentially pathogenic Vibrio species. The characterization of this phage provides new 

insights with respect to the presence of filamentous phages in environmental V. parahaemolyticus strains, 

which might have a role in the emergence of new pathogenic strains in the North Sea.
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4.1. INTRODUCTION 

Species of the genus Vibrio are ubiquitous aquatic bacteria present in riverine, coastal, and estuarine 

ecosystems (Vezzulli et al., 2013). This genus comprises more than 100 species, 11 of them negatively 

impact human health and cause serious infections (Miyoshi, 2013). One of them, V. parahaemolyticus, 

is a human pathogen, which primarily causes severe gastroenteritis, as well as wound infections through 

exposure to contaminated seawater (Thompson et al., 2004, Miyoshi, 2013b). 

In the last decade, the seawater temperature raised significantly in over 70 % of coastal areas around the 

world (Baker-Austin et al., 2017, Lima and Wethey, 2012). This temperature rise promotes the growth 

of potentially pathogenic Vibrio species (Baker-Austin et al., 2013), and Vibrio-associated illnesses are 

increasing worldwide (Vezzulli et al., 2013, Baker-Austin et al., 2013). These outbreaks, e.g. caused by 

V. parahaemolyticus infections, are affecting areas where infections by Vibrio pathogens had little 

previous incidence (Baker-Austin et al., 2017, Baker-Austin et al., 2013). Reported pathogenic Vibrio 

outbreak areas in Europe include e.g. the pandemic V. parahaemolyticus O3:K6 spread in France 

(Quilici et al., 2005), V. parahaemolyticus O3:K6 and O4:K11 infections in Spain (Martinez-Urtaza et 

al., 2005, Martinez-Urtaza et al., 2018), and other heat wave-associated Vibrio-associated illnesses in 

Sweden and Finland (Baker-Austin et al., 2016). Recently, potentially human pathogenic Vibrio species 

have been reported in the North Sea (Oberbeckmann et al., 2011a, Kirstein et al., 2016), where the 

abundance of V. parahaemolyticus increased during the summer months (Oberbeckmann et al., 2011b). 

Genomes of the genus Vibrio have a high plasticity and they contain significantly more alien genes than 

other marine bacteria genomes (Lin et al., 2018). These alien genes include pathogenic traits, which can 

be transferred horizontally in the environment by phages (viruses infecting bacteria).  

In Vibrio spp., most lysogenic phages (prophages) are known to encode virulence factors (Castillo et al., 

2018). Virulence and antibiotic resistance genes carried by prophages are widely distributed among 

environmental Vibrio populations, and they can contribute to the dissemination of virulence, niche 

adaptation, and emergence of pathogenic Vibrio strains (Castillo et al., 2018, Hazen et al., 2010). 
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The role of (pro)phages on virulence and bacterial evolution has been described for several important 

pathogens, e.g. for filamentous phages (Fortier and Sekulovic, 2013). Filamentous Inoviridae phages 

can be integrated as prophages without killing or affecting the life cycle of the host bacteria (Day, 2011). 

The virion is composed of a circular single-stranded DNA packed in a two-stranded helix as a replicative 

form (RF) (Rakonjac, 2012). The role of filamentous phages in virulence has been described in 

pathogenic Vibrio species, such as V. cholerae phage CTXφ, which encodes the cholera toxin (CtxAB) 

(McLeod et al., 2005); or the ORF8 region carried by the filamentous phage f237, which is related to 

the pandemic V. parahaemolyticus O3:K6 strain (RIMD2210633) (Chang et al., 2002, Nasu et al., 2000). 

Moreover, filamentous phages are present in nearly every Vibrio genome (Hazen et al., 2010, Day, 

2011), and occur in pandemic and clinical V. parahaemolyticus strains (Nasu et al., 2000, Iida et al., 

2001, Taniguchi et al., 1984). Although about 45 % of Vibrio genomes available in NCBI database carry 

a complete Inoviridae prophage-like element (Castillo et al., 2018), the occurrence and description of 

filamentous phages in potentially pathogenic environmental Vibrio strains have not been thoroughly 

studied so far. 

Based on the possible contribution of filamentous phages on the emergence of pathogenic Vibrio species 

in marine environments such as the North Sea, the aim of this study is to characterize the genome of the 

phage vB_VpaI_VP-3218, a novel filamentous phage carried by the  

V. parahaemolyticus strain VN-3218. 
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4.2. MATERIAL AND METHODS 

4.2.1. ISOLATION AND IDENTIFICATION OF  

V. PARAHAEMOLYTICUS VN-3218 

The V. parahaemolyticus strain VN-3218 was isolated from the North Sea (station 1, figure 4.1A), 

during the RV Heincke HE430 on July 31st, 2014 (Gerdts and Rohardt, 2016). The strain VN-3218 was 

isolated using the raw-seawater enrichment method for potentially pathogenic Vibrio species (chapter 

3) (Garin-Fernandez and Wichels, submitted). Briefly, approximately 1 l of surface seawater was 

collected, and the raw seawater was incubated with alkaline peptone water (10 g/l peptone,  

pH 8.5, 10 PSU final) at 37 °C in the dark. After overnight incubation, the selective enrichment was 

plated on CHROMagar™Vibrio (MAST Diagnostica GmbH, Germany) (Di Pinto et al., 2011) and 

incubated at 37 °C in the dark. The grown colonies were compared with the colony coloration typical 

for V. parahaemolyticus according to the manufacturers’ instruction. The mauve colored single colonies 

were transferred and isolated onto marine broth agar (Oppenheimer and Zobell, 1952) with reduced 

salinity (MB-50% = 16 PSU). The isolate was further identified using MALDI-TOF, and PCR analyses, 

as previously described (Kirstein et al., 2016, Garin-Fernandez and Wichels, submitted). The MALDI-

TOF spectrum from one isolated colony was compared against Bruker mass spectra and VibrioBase 

libraries (Erler et al., 2015), together with the V. parahaemolyticus isolates obtained in the cruise HE430 

(chapter 3) (Garin-Fernandez and Wichels, submitted). The spectra comparison was analyzed with the 

Biotyper™ software (version 3.1), the outcome figure was processed with Adobe Illustrator CS6 

(version 16.0.0). The PCR identification was performed using species-specific PCR for toxR genes 

(Kirstein et al., 2016, Oberbeckmann et al., 2011a). As thermostable direct hemolysin (tdh)  

and/or tdh related hemolysin (trh) play a crucial role in human pathogen V. parahaemolyticus strains 

(Thompson et al., 2004), their protein encoding genes were screened by PCR as previously described 

(Garin-Fernandez and Wichels, submitted, Kirstein et al., 2016). 

After identification, the V. parahaemolyticus strain VN-3218 was stored in a culture collection from 

VibrioNet (Erler et al., 2015). 
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4.2.2. INDUCTION AND PURIFICATION OF PROPHAGES 

The prophages from V. parahaemolyticus were induced as previously described in chapter 3 (Garin-

Fernandez and Wichels, submitted). Briefly, the strain VN-3218 was incubated in 600 ml MB-50% 

broth at 37 °C and shaking to further mitomycin C induction (0.25 µgml-1 final) at an optical density of 

0.1 – 0.2 (600 nm). After induction, the bacteria DNA was reduced with DNAse I before concentration 

by ultracentrifugation (Pryshliak et al., 2014, Garin-Fernandez and Wichels, submitted).  

Virus-like-particles (VLP) after induction were sampled and fixed with formaldehyde (2 % final), and 

the virus-like-particles (VLP) were counted using a wet-mount method with SYBR Gold and 

epifluorescence microscopy (Cunningham et al., 2015). 

The strain VN-3218 without induction was used as negative control, the positive experimental controls 

were the V. cholerae strain AC53 with the lytic phage ICP1 (Seed et al., 2011), and the lysogen  

V. vulnificus VN-0094 (Pryshliak et al., 2014). 

  

FIGURE 4. 1. Sampled site coastal map from research cuise HE430 (A) and principal component analysis (PCA) 

dendrogram generated by MALDI Biotyper mass spectra for all the V. parahaemolyticus strains isolated in this 

campaign (B). The grey shadowed cluster corresponds to the isolate VN-3218 cluster group. The black dots 

(●) represents successful prophage induction with mitomycin C, while the empty dots (○) represents non 

lysogen strains under the tested conditions. Modified from chapter 3 (Garin-Fernandez and Wichels, 

submitted). 
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4.2.3. DNA EXTRACTION AND GENOME ANALYSIS 

The DNA from the lysogenic induction was extracted using a modified CTAB and phenol:chloroform 

extraction method as previously described in chapter 3 (Garin-Fernandez and Wichels, submitted). The 

library preparation was performed by LGC Genomics (LGC Genomics GmbH, Berlin, Germany) and 

the reads were sequenced on an Illumina MiSeq V3 sequencer using 2 × 300 bp chemistry (Garin-

Fernandez and Wichels, submitted). 

The sequence reads were processed as described in chapter 3 (Garin-Fernandez and Wichels, submitted). 

Briefly, the sequences were first decontaminated, and the over-coverage reads were further normalized 

using BBtools (version 35.14, https://sourceforge.net/projects/bbmap). The retained reads were 

assembled with SPAdes (version 3.11.1) (Nurk et al., 2013). The potential phage contigs were filtered 

with VirSorter from iVirus (https://de.iplantcollaborative.org/de/) (Bolduc et al., 2016) and PHASTER 

(https://phaster.ca) (Arndt et al., 2016, Zhou et al., 2011). In order to find the possible genome 

duplication in its replicative form (RF), the intact phage contig was aligned with its reverse complement 

sequence using Mega (version 10.0.1, default parameters MUSCLE algorithm) (Kumar et al., 2018). 

The genome was mapped against the decontaminated reads with BWA-MEM (version 0.7, default 

parameters) (Li and Durbin, 2009), the coverage values were analyzed with Qualimap (version 2.2.1) 

(García-Alcalde et al., 2012, Okonechnikov et al., 2016). Each phage genome was manually curated 

with DNA master (version 5.22.5) to obtain the final annotated genome, based on the results from 

Prokka (Seemann, 2014), Rast (http:// http://rast.nmpdr.org/rast.cgi) (Aziz et al., 2008, Overbeek et al., 

2014) and Metavir (Roux et al., 2014, Bolduc et al., 2016) annotation software, as described in chapter 

3 (Garin-Fernandez and Wichels, submitted). Genome organization, visualization, and GC content were 

performed with Artemis (version 17.0.1) (Rutherford et al., 2000). The outcome figure was processed 

in Adobe Illustrator CS6 (version 16.0.0). 

To identify the genome on a taxonomic level, pairwise genetic identity was computed using a Sequence 

Demarcation Tool (SDT version 1.2, default parameters MUSCLE algorithm) (Muhire et al., 2014). The 

nucleotide sequence of the genome was compared against the Inoviridae complete genomes available in 

NCBI and the SDT Mastrevirus reference dataset. Species level demarcation was based on pairwise 

genetic identity values above 95 %, according to the ICTV species demarcation criterion for this family. 

Based on the genome annotation, at least a threshold of 40 % of the shared orthologous proteins was 

considered as the same genus (Duhaime et al., 2017, Lorenz et al., 2016). 

The phage genome was compared against the phage genomes from GenBank reference sequence 

genomes (refseq) and nonredundant protein (nr) databases using tBLASTx and BLASTx version 

2.2.30+, respectively (Altschul et al., 1997). Synteny comparison was performed within the three most 

similar complete phage genomes with Easyfig (version 2.2.3) (Sullivan et al., 2011) and processed in 

https://sourceforge.net/projects/bbmap
https://de.iplantcollaborative.org/de/
https://phaster.ca/
http://rast.nmpdr.org/rast.cgi
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Adobe Illustrator CS6 (version 16.0.0). All used databases were updated to their latest version from May 

2018, and BLAST hit alignments with e-value below 0.001 and a similarity greater than 50 % were 

considered significant. Additionally, the gene encoding Zonula occludens toxin (zot) was identified and 

compared against zot gene encoding from Vibrio and phage genomes as previously described (Castillo 

et al., 2018). For this, the possible zot gene from the annotated genome was aligned together with the 

zot gene database from Castillo et al. (2018) (Clustal W algorithm), follow by the phylogenetic tree 

(maximum likelihood, 1,000 bootstrap replicates) using Geneious prime (version 2019.0.3) 

 (Kearse et al., 2012). 

4.2.4. NUCLEOTIDE SEQUENCE ACCESSION NUMBERS 

The filamentous phage name was defined based on Kropinski et al. (2009) naming nomenclature 

proposal. The nucleotide sequence was submitted using the data brokerage service of the German 

Federation for Biological Data (www.gfbio.org/) (Diepenbroek et al., 2014). The sequence associated 

contextual (meta)data are Minimal Information about any (X) Sequence (MIxS) compliant (Yilmaz et 

al., 2011). 

The genome vB_VpaI_VP-3218 has been deposited in the European Nucleotide Archive 

(www.ebi.ac.uk/ena/) (Toribio et al., 2017) under the INSDC accession number PRJEB30510. 

  

http://www.gfbio.org/
http://www.ebi.ac.uk/ena/
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4.3. RESULTS 

4.3.1. LYSOGEN V. PARAHAEMOLYTICUS VN-3218 

As described in chapter 3, 30 V. parahaemolyticus isolates were obtained in the North Sea during cruise 

HE430 (Garin-Fernandez and Wichels, submitted). Amongst these V. parahaemolyticus isolates, the 

strain VN-3218 was isolated from surface seawater from station 1 (figure 4.1A), at a temperature of 19.6 

°C and at a salinity of 31.7 PSU (Gerdts and Rohardt, 2016). Based on principal component analysis of 

the MALDI-TOF spectra (figure 4.1B), the lysogen VN-3218 clustered together with the reference strain 

RIMD 2210633 (figure 4.1B, cluster II) in a distinct group from the rest of the V. parahaemolyticus 

isolates at station 1 (figure 4.1B, cluster I). No virulence-associated genes encoding tdh and trh 

hemolysins were identified by PCR nor BLAST search (Garin-Fernandez and Wichels, submitted). 

Potential prophages of the strain VN-3218 were induced with mitomycin C (section 4.2.2). After 

induction of VN-3218, the growth (OD) was reduced to 86.17 % compared to the control replicates 

(figure A.5.1). Despite the high variability between the induced replicates, the cell density of the induced 

cultures decreased significantly (Mann-Whitney test, P = < 0.001). This difference was triggered by 

phage induction, identified by the presence of VLP in the induced culture (mean = 1.4 × 108 VLP/ml). 

For FNA sequencing, larger amounts of phage biomass were obtained by induction of the strain  

VN-3218 in a larger volume (600 ml). 

The strain VN-3218 contained two incomplete and one complete phage genome. Two incomplete phage 

genomes were identified with PHASTER and annotated with Prokka (section 4.2.3). The first 

incomplete prophage VP-3218_C38 has a sequence coverage of 68.17× (SD ± 41.14), length of 19,533 

bp and GC content of 45.67 %. The second incomplete prophage VP-3218_C77 has a sequence coverage 

of 54.69× (SD ± 26.98), length of 17,348 bp and GC content of 46.46 % (figure A.5.2). Most of the 

identified coding sequences (CDS) of the incomplete prophage VP-3218_C38 (20 of 24 CDS) are 

similar to hypothetical proteins from several phages of Gram-negative bacteria, including Psychrobacter 

phage, Mycobacterium phage, and Vibrio phage (figure A.5.2A). In the same manner, most of the 

identified CDS of the incomplete prophage VP-3218_C77 (13 of 15 CDS) are similar to hypothetical 

proteins from Sinorhizobium phages (figure A.5.2B). Due to the lack of clear structural cores, these 

incomplete prophages were considered defective and they were discarded from further characterization. 
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4.3.2. VIBRIO PHAGE VB_VPAI_VP-3218 

The complete genome (RF form) of the filamentous phage vB_VpaI_VP-3218 has a sequence coverage 

of 915.31× (SD ± 265.87), with a length of 11,082 bp and GC content of 44.15 %. Within the genome 

14 CDS were identified, of which 11 are located on the forward strand and the remaining 3 on the reverse 

strand (figure 4.2A). The zero coordinate ATG site was defined by the genome structure of the closest 

genomes, and the fundamental cores and genes were identified in the genome sequence. Annotation 

description, as well as CDS length and transcription positions, are summarized in figure 4.2 and detailed 

description of each gene are present in table A.5.1. 

The phage vB_VpaI_VP-3218 belongs to the Inoviridae family and is similar to the two members from 

Saetivirus genus. This filamentous phage shows high similarity with the V. cholerae phages VFJ 

(NC_021562.1, 64 % shared orthologous proteins and 61.8 % pairwise identity) (Wang et al., 2013) and 

FS-2 (NC_001956.1, 42 % shared orthologous proteins and 61.7 % pairwise identity) (Ikema and 

Honma, 1998), and with the V. parahaemolyticus phage VfO3K6 (NC_002362.1, 28 % shared 

orthologous proteins and 63 % pairwise identity) (figure 4.3A). These three phage genomes carry the 

zonula occludens toxin (zot) gene (Castillo et al., 2018), and the annotated gI gene of  

vB_VpaI_VP-3218 (CDS08, table A.5.1) shows close homology to zot gene from VFJ phage (orf361, 

figure A.5.3). However, all the compared genomes lack an insert region of 2,584 bp (figure 4.3A, orange 

shadowed region). This region is formed by genes encoded for a hypothetical protein with restriction 

endonuclease domain (CDS10), ATP/GTP phosphatase protein (CDS11, ATP/GTP phos) and a second 

hypothetical protein (CDS12) (details in table A.5.1). This region with unknown function is highly 

similar to the V. parahaemolyticus S105 (contig157, NZ_AWJT01000157.1). In detail, the encoding 

genes of CDS10 resembles the DUF2726 domain-containing protein (BLASTx, identity = 99 %), 

CDS11 and CDS12 are identical to genes encoded for hypothetical proteins  

(BLASTx, identity = 100 %) in V. parahaemolyticus S105. 

Due to the high similarity to the VFJ phage, this filamentous phage is probably an episomally reversible 

integrated phage. The phage vB_VpaI_VP-3218 was analyzed to identify a 20 bp att-like sequence 

(attP) near to the transcriptional regulator cluster, similar to VFJ and VfO3K6 phages. Despite the 

difference in the last region, the attP sequence in our phage was more similar to VFJ than the VfO3K6 

phage att-like sequence (figure 4.3B). 
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FIGURE 4. 2. Circular diagram of the vB_VpaI_VP-3218 phage genome and predicted CDS. The three main 

structural cores are marked in violet, green and light blue, transcriptional regulator encoding genes are marked in 

pink, host-related insert is marked in orange, and hypotetical protein encoding genes are marked in gray. Inner 

circle corresponds to nucleotide base pairs (Kbp) and middle circle corresponds to GC %, where blue and red 

represent the sequences above and below the GC average, respectively. 
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FIGURE 4. 3. Genome synteny plot. Full-genome comparison based on 

tBLASTx similarity between vB_VpaI_VP-3218 and the three most similar 

phage genomes: V. cholerae phages VFJ and FS-2, and V. parahemolyticus 

phage VfO3K6 (A). Sequence alignment of the attP region, part of the 

transcriptional regulator (gIV) from vB_VpaI_VP-3218 and compared with 

the analogous regions from VFJ and VfO3K6 phages (B). Protein encoding 

genes with replication functions are marked in violet, virion structure 

functions are marked in green, assembly functions are marked in light blue, 

transcriptional regulator functions are marked in pink, hypothetical protein 

functions are marked in gray, and the host-related insert is marked in orange. 

 

FIGURE 5. 1. FIGURE 4. 4. Genome synteny plot. Full-genome comparison 

based on tBLASTx similarity between vB_VpaI_VP-3218 and the three 

most similar phage genomes: V. cholerae phages VFJ and FS-2, and V. 

parahemolyticus phage VfO3K6 (A). Sequence alignment of the attP 

region, part of the transcriptional regulator (gIV) from vB_VpaI_VP-3218 

and compared with the analogous regions from VFJ and VfO3K6 phages 
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4.4. DISCUSSION 

The increase of V. parahaemolyticus outbreaks in Europe is triggered by the rise of temperature 

in European coastal waters. Therefore, it is crucial to study the possible factors of environmental 

Vibrio species to acquire virulence traits. Filamentous phages are known to play a crucial role 

in pathogenic Vibrio species, through infection and virulence traits transfer (Davis and Waldor, 

2003, Iida et al., 2001, Nasu et al., 2000). In this study, we analyzed the potential pathogenic  

V. parahaemolyticus VN-3218 and its inducible prophage. The genome structure and possible 

biological functions of the inducible filamentous phage vB_VpaI_VP-3218 were analyzed in 

detail. 

4.4.1. LYSOGEN V. PARAHAEMOLYTICUS VN-3218 

Based on principal component analysis of the MALDI-TOF spectra, the strain VN-3218 was 

distinct from other strains isolated from the station 1 (figure 4.1B). The strain VN-3218 

clustered together with other lysogen strains, including the reference strain RIMD2210633 

(figure 4.1B). This reference strain corresponds to the O3:K6 serotype and it is the 

representative member of V. parahaemolyticus. In contrast to the strain VN-3218, the reference 

strain RIMD2210633 contains virulence-associated gene encoding tdh hemolysin  

(Park et al., 2004, Makino et al., 2003), carries the filamentous phage f237 (McLeod et al., 

2005, Chang et al., 2002) and no incomplete prophages were identified in the reference genome 

using PHASTER. MALDI-TOF analysis is a fast and reliable approach to identify Vibrio at 

species level (Erler et al., 2015). If this method is applied together with molecular identification 

techniques, false-positive results at species level are reduced (Croci et al., 2007). In case of 

strain V. parahaemolyticus VN-3218, the additional identification of their prophages and other 

genomic features provides substantial information to define this strain as genetically distinct to 

the reference strain RIMD2210633. 

The lysogen strain VN-3218 contained one complete filamentous phage and two incomplete 

prophages within its genome. The presence of additional incomplete prophages in the bacterial 

genome has been described already for other Vibrio species e.g. V. cholerae and  

V. parahaemolyticus (Castillo et al., 2018, Rakonjac, 2012). In our study, each of the 

incomplete prophages had a coverage greater than three times the mean coverage of the 

discarded contigs (mean 17.06×; mean SD ± 12.38). These discarded contigs did not have 

BLAST hit with virus genomes and may come from the lysogen Vibrio genome. Additionally, 

the incomplete prophages lack clear structural cores, and most of their genes remain 

uncharacterized. As incomplete prophages depend on inducible functional prophages for 
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packaging and infection (Hassan et al., 2010), we hypothesize that the incomplete prophages 

VP-3218_C38 and VP-3218_C77 may be produced at a low rate after induction and that they 

may use the machinery of the complete prophage vB_VpaI_VP-3218 to proliferate. Whole 

genome analysis of strain VN-3218 would provide details on these incomplete prophages, their 

possible topology, as well as their possible relationship with the filamentous phage. 

4.4.2. VIBRIO PHAGE VB_VPAI_VP-3218 

In general, filamentous phages are organized in three main structural cores: replication, virion 

structure and assembly (Rakonjac, 2012, Wang et al., 2013, Model and Russel, 1988).  

The predicted CDS of vB_VpaI_VP-3218 are organized in this structure, with an additional 

transcriptional regulator core (figure 4.2A). The replication core was composed by the CDS01 

to CDS03, which encoded replication proteins repA and repB (table A.5.1). The predicted virion 

structure core was composed of CDS04 to CDS07 (table A.5.1). This region translates coat and 

attachment proteins necessary for the filamentous particle formation. The CDS03 encodes a 

hypothetical protein, which had a similar length and genome position to the minor coat  

gVII protein (figure 4.3A, table A.5.1). However, the predicted protein lacks similarity against 

other described proteins and further studies are necessary to elucidate its properties and its role 

in virion packaging. The assembly core was composed of CDS08 and CDS9, which encoded 

for morphogenesis proteins (table A.5.1). The transcriptional regulator core was composed of 

the CDS13 and CDS14 (table A.5.1), this region is common in chromosomally integrated 

filamentous phages and it is transcribed in the opposite direction of the rest of the genes  

(Wang et al., 2013). Between the transcription regulator and the replication core is a non-coding 

sequence, which includes an att-like sequence similar to VFJ phage (Wang et al., 2013).  

The phage vB_VpaI_VP-3218 showed high similarity with V. cholerae phages VFJ and FS-2 

phages, both comprise the Saetivirus genus (Adriaenssens et al., 2017). The VFJ phage 

produces high rates of virion particles and its infection has a direct effect on cell growth and 

phenotype. The phenotypic differences include lost cell mobility and resistance to ampicillin 

and kanamycin (Wang et al., 2013). The FS-2 phage has a wide host range among several 

different V. cholerae biotype strains, visualized by opaque plaque formation (Ikema and 

Honma, 1998). The FS-2 genome of FS-2 contains an intergenic homologous region involved 

in CTX phage integration into the host chromosome (Ikema and Honma, 1998); this region was 

not identified in the phage vB_VpaI_VP-3218. Furthermore, Castillo et al. (2018) identified 

zonula occludens toxin (zot) genes in the VFJ and FS-2 phage genomes, which are similar to 

other V. parahaemolyticus zot genes (figure A.5.3). Based on the phylogenetic analysis, the 

morphogenesis protein gI encoded by CDS08 in vB_VpaI_VP-3218 would have a zot toxin 

function highly similar to VFJ phage. Despite the high similarity with the members of the 
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Saetivirus genus, further experiments are necessary to define if the filamentous phage 

vB_VpaI_VP-3218 belongs to this genus. Vibrio phages are generally species- or even strain- 

specific, although a few isolates can have a broader host range to Vibrio and Photobacterium 

(Matsuzaki et al., 2000). Several genes from the phage genome vB_VpaI_VP-3218 were similar 

to Photobacterium profundum genes (table A.5.1), including capsid proteins, maturase and 

morphogenesis encoded genes. The strain P. profundum 3TCK contains four questionable 

prophages identified with PHASTER, and three of them are similar to other filamentous Vibrio 

phages. After lysogenic induction, the induced phage was tested against 153 potential Vibrio 

hosts. However, none of them showed inhibition (data not shown). As Photobacterium is 

closely related to Vibrio (Thompson et al., 2004), host screening against Photobacterium strains 

would help to investigate the relationship between this phage and other host genera. 

Phage infection contributes to the emergence of disease-causing strains of the environmental 

population (Bastías et al., 2010, Hazen et al., 2010). Previous in silico studies showed that 

several Vibrio environmental and harmless species contain virulence traits acquired from 

filamentous phages of pathogenic donors (Castillo et al., 2018). Several factors affect the 

pathogenicity of V. parahaemolyticus, including the tdh and trh hemolysins production during 

infection (Thompson et al., 2004). Castillo et al. (2018) identified hemolysin encoding genes in 

prophage like elements of V. parahaemolyticus. Although these genes were not detected in the 

phage vB_VpaI_VP-3218, this phage carries host-related regions absent in other similar phage 

genomes. Similar to other non-hemolysin V. parahaemolyticus phages (Chang et al., 1998), this 

phage integrates into the chromosomal genome of the V. parahaemolyticus VN-3218, 

suggesting that this phage could interact within other host genomes. This possible role of gene 

transfer may include the spread of virulence-associated genes in marine environments, as 

suggested for other filamentous Vibrio phages (Castillo et al., 2018). An important factor in 

pathogenicity is the resistance to antibiotics, which was identified in Vibrio infected strains with 

VFJ phage (Wang et al., 2013). Although the VFJ phage does not carry antibiotic resistance 

genes, Wang et al. (2013) showed that the infected host strains acquired ampicillin and 

kanamycin resistance after phage infection. The portal proteins of VFJ phage, such as gI, gIV, 

and gXI, may be involved into membrane structures as drug resistance pumps or efflux systems 

(Wang et al., 2013, Rishovd et al., 1994). The sequence and genetic context of these VFJ 

phage’s proteins were highly similar to vB_VpaI_VP-3218 encoding genes (CDS04 and 

CDS08-09, table A.5.1). Based on the high similarity of the vB_VpaI_VP-3218 phage and the 

V. cholerae phages VFJ and FS-2, further experimental analyses need to be done to elucidate 

the role of this phage onto pathogenicity in Vibrio, such as antibiotic resistance in infected cells 

and production of zot-like proteins. 
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In conclusion, the general characteristics of the V. parahaemolyticus phage vB_VpaI_VP-3218 

are similar to other filamentous phages such as the VFJ and FS-2. Based on their genomic 

similarity, the phage vB_VpaI_VP-3218 is an episomally reversible integrated lysogenic phage. 

This phage can replicate as a plasmid and integrate reversibly in its RF into the genome of the 

V. parahaemolyticus VN-3218, due to the presence of an attp like site. 

Filamentous phages have an important impact in environmental Vibrio species, such as marine 

V. cholerae populations, specifically regarding physiology and fitness (Xue et al., 2012). Most 

of the characterized lysogen V. parahaemolyticus genomes available in public databases 

correspond to clinical or pathogenic strains, therefore studies of phages of these Vibrio species 

in environmental populations are highly necessary to understand the development of new 

pathogenic Vibrio strains in the marine environment. In this context, bioinformatic studies are 

important and helpful to understand the potential role of filamentous phages in the 

pathogenicity of Vibrio species (Castillo et al., 2018). This study complements prophage 

induction and bioinformatic analysis applied to non-model species of potentially pathogenic 

Vibrio species, which can be applied in other filamentous Vibrio phages from marine 

environments. The characterization of this phage has provided new insights with respect to the 

presence of filamentous phages in environmental V. parahaemolyticus strains, which might 

have a role in the emergence of new pathogenic strains in the North Sea. 

Supplementary data to this article can be found in chapter A.5. 
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Chapter 5 

GENERAL DISCUSSION 

 

The formerly assumed ‘desert ocean’ is nowadays known for its diversity of microorganisms 

(Rohwer et al., 2014). The emerging Next Generation Sequencing (NGS) techniques have 

brought new opportunities to investigate the marine virus community, and thousands of newly 

discovered phages indicate that phages are genetically more diverse than once thought (Barylski 

et al., 2018, Ibrahim et al., 2018). While the NGS and related tools are advantageous to study 

the virus community composition, they can be limited also in scope and resolution (Roux, 

2019). Therefore, the NGS-based techniques solely cannot be applied in phage ecology studies. 

The application of a comprehensive approach can reduce each technique bias and increase the 

scope of the research. As there is no current statutory pipeline applied in marine phage ecology, 

an important issue as well as one big challenge of this PhD thesis was to decide the most reliable 

and significant tools to develop a virus-specific pipeline for the analyses of novel viruses 

(meta)genomes (section 5.1). The fully developed pipeline was applied to accomplish these two 

research aims of this thesis: (1) to analyze the virus community with viromics, and  

(2) to characterize lysogenic phages from potentially pathogenic Vibrio species. This chapter 

discusses the settled pipeline in a general context based on the main results of this thesis 

research. Finally, further outlook and conclusions from this PhD thesis are emphasized. 
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5.1. VIRUS-SPECIFIC PIPELINE:  

FROM THE SEA TO THE GENE 

The application of NGS technologies achieves tremendous advances in virus (meta)genomics 

and permitted to analyze the virus community composition under a broader scope (Koonin and 

Dolja, 2018, Ibrahim et al., 2018). Since currently there are a wide range of approaches applied 

in these studies, there is no a statutory pipeline for virus-specific analyses. This may cause 

several problems to obtain reliable (meta)genomic comparisons, which results in a limited 

analysis outcome. The establishment of a comprehensive approach that connects the existing 

tools and databases can provide a solution to this issue. In this thesis, a selection of available 

tools was settled to propose a virus-specific pipeline. The proposed pipeline comprises the 

following main stages: 

• Sample preparation. Selection of methods applied from the virus biomass collection 

from seawater or laboratory samples, to obtain virus DNA for sequencing with Illumina 

MiSeq. 

• Data preparation. In silico tools used for (meta)genome pre-processing, which includes 

read filtration and virus contig assembling. This stage permits to retain only high-

quality virus contigs for further characterization. 

• Data analysis. In silico analysis of virus contig(s) using automated tools together with 

manual or semi-automated curation. 

The outcome from these analyses provides information regarding the taxonomic 

classification of the viruses as well as the functional genes carried by them.  

This information can be applied to suggest potential host taxa, lateral gene transfer and 

abundance in the sample. 

This virus-specific pipeline can be used for viromic (section 5.1.1) and lysogenic phage 

genomics (section 5.1.2). The description of the tools and methods used in each approach are 

summarized in the following sections.  
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5.1.1. VIROMIC’S PIPELINE 

1. Sample preparation. 

For viromic analyses of planktonic viruses, the iron chloride flocculation method was used for 

virus biomass collection (chapter 2). Based on the chemical interaction between the virus 

particle and the iron chloride, this method provides several advantages compared to the TFF 

method (section 1.3.1, Hurwitz et al., 2013a, John et al., 2011). For instance, the iron chloride 

flocculation method has a high recovery rate (> 90 %), requires a low sample volume (~ 20 l), 

and it is easy to implement (John et al., 2011). However, this method can present several 

technical difficulties that must be considered (results discussed in section 5.2). After the 

biomass collection, the virus particles were resuspended in ascorbate-EDTA buffer and 

concentrated by centrifugation. The concentration with Vivaspin tubes and further 

ultracentrifugation allowed for the virus resuspension to be obtained in a small volume  

(up to 2 ml) for DNA extraction without major difficulties. In case the virus DNA contains rest 

of iron, additional purification steps can be implemented in viromic analyses (Henn et al., 2010, 

Hurwitz et al., 2013a). 

In the course of this thesis, the virus biomass was collected from 10 stations during the RV 

Heincke HE430. However, due to different reasons, the concentration of a half of the DNA 

extraction was too low for sequencing (> 3 ng/ml, data not shown). The increase of sample 

volume (to 40 l), and optimization of the DNA recovery and extraction process (e.g. DNAse I 

addition, virus biomass recovery from the filter right after the end of the sampling campaign), 

may improve the quality of the virus DNA samples. In addition, the iron chloride flocculation 

method was implemented only with lytic Caudovirales phages (John et al., 2011), and the Fe-

virus interaction with other viruses is not completely clear. For instance, there is no robust 

information regarding Fe-lipid virus complex in virion recovery. Besides, as Inoviridae phages 

have a long and flexible virus particle morphology (Brum and Sullivan, 2015, Roux et al., 

2019), it is possible that these virions were not recovered from the iron chloride flocculation 

method. The TFF can be used to collect virus biomass without the biases faced with the iron 

chloride flocculation method (section 1.3.1). However, it must be considered that the TFF 

method is laborious, time-consuming and requires a large sample volume (Alonso et al., 1999, 

John et al., 2011). Despite the limitation of the techniques, the sample preparation allowed to 

obtain enough virus DNA for sequencing with Illumina MiSeq. 
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FIGURE 5. 1. General flow chart of the virus-specific pipeline applied in viromics. The pipeline comprises 

from the sample preparation of marine viruses, the main bioinformatic analyses of data preparation and 

data analysis, and expected outcome data to describe the virus and protein diversity. 

 

2. Data preparation. 

Once the forward (R1) and reverse (R2) reads are sequenced, the quality control with FastQC 

is applied to determine downstream quality control parameters (Hurwitz et al., 2016). The 

decontamination steps involve adapter clipping, merging reads, removing short reads, 

duplicates and low quality reads (figure 5.1) (Hurwitz et al., 2016, Clokie and Kropinski, 2009). 

The retained high-quality reads are used for contig assembly. The selection of the assembler 

tool is a critical step for virome preparation and more than one assembler should be tested 

before the final analysis (Sutton et al., 2019). Therefore, the MetaQUAST comparison tool 

provides the best overview before selection between these de novo assembler tools. 

MetaQUAST is a fast tool to visualize the number of assembled contigs, the contig length and 

the number of predicted genes per contig, among others (Garin-Fernandez et al., 2018, 

Mikheenko et al., 2016). The contigs selected for further analyses must be longer than 3 Kbps 

and have a coverage higher than 10 × (Roux et al., 2017, Roux et al., 2015b). Web-based tools 

such as VirSorter (table A.2.1) provide a fast and accurate approach to identify virus contigs as 

multifasta format. Despite rigorous virus DNA purification, host contaminant cannot be 

excluded from the total reads (Hurwitz et al., 2016). Therefore, the expect host contig 

contaminants can be used only for preliminary host gene screening, and discarded for virus 

community analyses. After the selection of virus contigs, a quality control is applied before data 

analysis. 
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3. Data analysis and outcome 

In virus community analysis, several tools are available to identify the taxonomy and functional 

data from virus contigs. For instance, VirSorter automated annotation with Metavir provides a 

fast and solid outcome for virus contig sorting and identification of protein-encoding genes 

(Bolduc et al., 2016, Roux et al., 2015b). Subsequently, the predicted virus contigs can be 

compared with other virus (meta)genomes using BLAST and other comparison tools (table 

A.2.1). Since a high percentage of the virome sequences have no close matches in databases, 

there is a greater potential of misalignment and inaccurate taxonomic assignment (Hurwitz et 

al., 2016). Therefore, manual or semi-automated curation is necessary after annotation steps. 

Assuming one contig is one partial virus genome, this approach allows to define the taxa of 

each virus contig, as well as to identify predicted genes, and potential virus hosts (section 2.2). 

Additionally, to study the diversity of virus protein-encoding genes with unknown function, 

protein clusters for comparative analyses can be calculated to determine the virome protein 

richness (Hurwitz and Sullivan, 2013, Hurwitz et al., 2016). Based on their reliability, 

effectiveness, and open source accessibility, the tools for viromic analyses in this thesis were 

Metavir annotation from VirSorter, protein cluster comparison (as OPU), and BLAST 

comparison with curated databases (as local server) (Garin-Fernandez et al., 2018). After semi-

automated curation, the annotated contigs can be analyzed with software for statistical 

computing (e.g. R, Matlab). To obtain further insights about virus-host linkage, the virus 

contigs highly similar to reference genomes can be analyzed using tools such as HostPhinder, 

WIsH, and PHACTS (table A.2.1).  

In this last stage, the major limitation was the quality and online availability of reference-based 

tools. For instance, Metavir is an automated annotation tools for virus sequences available in 

VirSorter and also an independent web-based interface (Dudhagara et al., 2015, Roux et al., 

2015b, Roux et al., 2014). However, the last maintenance of the Metavir website was in 2016 

(http://metavir-meb.univ-bpclermont.fr), and it is updated only in VirSorter. Thus, the web-

based tool VirSorter available in the Discovery Environment from Cyverse was reliable and 

immediately accessible to identify virus sequences. 

  

http://metavir-meb.univ-bpclermont.fr/
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5.1.2. GENOMIC’S PIPELINE 

1. Sample preparation. 

After isolation and screening of lysogen bacteria, the prophage induction method with 

mitomycin C was applied (section 1.4.1, figure 5.2). This method is widely used and can be 

complemented with another screening method, such as UV radiation (Zhao et al., 2010, Jiang 

and Paul, 1998). To confirm the presence of virus like particles (VLP) in the sample, a count 

method with SYBR Gold was applied prior to DNA extraction as described by Thurber et al. 

(2009). For all the cultured isolates, the phage induction in a larger volume (600 ml) produced 

enough virus DNA for further sequencing. The virions produced by the induced prophages are 

filtered and centrifuged. The membrane filtration (> 0.2 µm) removes cellular debris of the 

lysogen strain (Solonenko and Sullivan, 2013). Due to the low weight of virus particles, the 

final concentration by (ultra-)centrifugation is applied to concentrate the virus particles before 

DNA extraction (Clokie and Kropinski, 2009). As in the DNA extraction for viromic analyses, 

the modified CTAB and phenol:chloroform extraction method resulted in high-quality samples 

for sequencing with Illumina MiSeq (Williamson, 2011, Garin-Fernandez et al., 2018). In case 

the samples would need extra purification, methods such as density gradient (CsCl, Cs2SO4, 

sucrose, metrizamide) can be implemented (Clokie and Kropinski, 2009). 

In general, the main difficulty was implementing the prophage induction screening of several 

samples with 96-well plates. The cultivation for long periods of time can cause water loss in 

the culture broth, which can be reduced with agarose addition (Hengstl et al., 2012). Overall, 

the sample preparation yielded enough virus DNA for further analyses.  

FIGURE 5. 2. General flow chart of the virus-specific pipeline applied in prophage genomics. The pipeline 

comprises from the prophage induction with mitomycin C in lysogen bacteria isolates, the main 

bioinformatic analyses of data preparation and data analysis for virus genome characterization, including 

the functional and taxonomic analyses. 

 

Figure 5. 3. GEOGRAPHICAL OCCURRENCE OF VIBRIO SPECIES ISOLATED FROM SURFACE SEAWATER AND 

MICROPLASTIC PARTICLES COLLECTED FROM THE NORTH SEA. THE NUMBERS IN BLACK INDICATES THE STATION 

NUMBER FROM THE RESEARCH CRUISE HE430 ON THE RV HEINCKE IN JULY/AUGUST 2014. EACH PIE CHART 

REPRESENTS THE PROPORTION OF VIBRIO ISOLATES FROM EACH STATION, INCLUDING THE TOTAL ISOLATES PER 

STATION AT THE MIDDLE OF EACH CHART (WHITE NUMBERS). THE VIOLET HEXAGON INDICATES THE SAMPLE 
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2. Data preparation 

After sequencing, the R1/R2 reads are filtrated and decontaminated to retain only the high-

quality reads. The decontamination procedure is similar to the one described in the viromic 

pipeline. Nevertheless, some extra steps are necessary (figure 5.2, violet box). Since the 

Escherichia virus Phi-X174 is used for quality and calibration for sequencing runs in Illumina, 

the reads identical to Phi-X174 genome must be removed to avoid potential contamination 

(Mukherjee et al., 2015). In addition, most of the lysogen Vibrio genomes contain up to four 

prophage sequences (~ 80 %, Castillo et al., 2018). Therefore, the set of virus genomes is much 

smaller than in viromic analyses. In consequence, Illumina MiSeq might sequence hundreds of 

reads of the same phage genome, which generates overrepresentation in the resulting R1/R2 

reads. Hence, an extra normalization step can be applied to retain only reads with coverage 

values between 5 and 100 ×, which can be reduced up to 30 × (Rihtman et al., 2016). In 

comparison to other tools, SPAdes provides the highest successful genome assemblies 

(Rihtman et al., 2016). Therefore, the SPAdes tool was selected for genome assembling of 

inducible prophages. 

After assembling, the virus contigs can be searched using web-based tools such as VirSorter or 

PHASTER (table A.2.1). The VirSorter tool identifies possible viral sequences and classifies 

them in ‘confidence’ categories from 1 (highly probable phage sequence) to 6 (probable 

prophage sequence) (Roux et al., 2015b). This filtration can be followed by PHASTER 

screening. The PHASTER tool allows for a rapid identification and classification of the 

sequences as complete, partial or incomplete prophage (Arndt et al., 2016). After both 

filtrations, the virus contig(s) can be mapped against the decontaminated reads (prior 

normalization) to obtain the real coverage value. 

3. Data analysis and outcome 

The identified virus contig can be annotated using several tools. The MetaVir (from VirSorter) 

is an annotation tool connected with a curated virus-specific database, which permitted to obtain 

information about the predicted protein encoding genes as well as similarity within local virus 

protein clustering (Roux et al., 2015b, Roux et al., 2014). In addition, Prokka and Rast are 

commonly used for bacterial genome annotation (Loman et al., 2012, Motro and Moran-Gilad, 

2017). Due to the set of predicted complete phage genomes, it was possible to implement 

manual curation prior to further analyses. The manual curation must include the comparison of 

the Open Reading Frames (ORFs) and predicted product of each encoding protein genes, as 

well as the identification of duplicated genome sequence due to e.g. replicative form (RF) 

(section 4.2.3). 
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The genome characterization is based on functional and taxonomic analysis (figure 5.2, yellow 

box). The BLAST comparison of the annotated phage genome against reference genomes (as 

tblastx) can bring information regarding the gene functions that might be overlooked by 

automated annotation tools. This functional data offers insights about the potential effect on the 

lysogen bacteria, as well as to identify phage genomic regions with a possible host source (e.g. 

vB_VpaI_VP-3218 phage, chapter 4). In addition, the identification of packaging mechanism 

and key genes involved in lysogeny (e.g. integrase, transposase) provide more details regarding 

the lysogenic cycle of the phage. This outcome together with the genome length, topology, and 

GC content, are part of the key genomic features necessary for taxonomic classification. This 

classification is based on demarcation criteria described in each virus genus (King et al., 2012), 

which includes the percentage of shared proteins, pairwise genetic identity value and shared 

genomic features. Besides, other analyses such as phylogeny and synteny comparison can be 

used to analyze the relationship between the characterized phage and members of the closest 

taxa. 

As mentioned in the viromic pipeline, the major limitation in this step was the quality and online 

availability of reference-based tools. In this case, the Phage Classification Tool Set (PHACTS)  

is an open source software available as an online web interface and downloadable for local 

analyses (Bailey et al., 2012). However, the web server is temporarily unavailable 

(http://www.phantome.org/PHACTS, last checked in June, 2019). In addition, the webserver 

CoreGenes3.5 helps determine core genes between genomes and is commonly used in ICTV 

species or genus proposals (e.g. Allison et al., 2016, Kropinski et al., 2015, Kropinski et al., 

2018). Unfortunately, this server is currently available only for genomes archived at NCBI and 

it is not possible to analyze new genomes (http://binf.gmu.edu:8080/CoreGenes3.5/index.html, 

checked in June, 2019). Despite these limitations, other tools could be applied instead to 

characterize the phage genomes.  

http://www.phantome.org/PHACTS
http://binf.gmu.edu:8080/CoreGenes3.5/index.html
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5.2. MARINE VIRUSES,  

PART OF THE MICRO-UNIVERSE FROM THE NORTH SEA 

The application of a virus-specific pipeline provided the successful approach to answer of the questions 

addressed in the first research aim of this thesis: 

“How distinct is the virus community composition between the coast and the open sea?” 

“How is their geographic distribution in relation to environmental parameters?” 

“What is the distribution of environmental relevant genes carried by phages?” 

Overall, the North Sea is dominated by phages and it reveals biogeographic patterns between the coast 

and the open sea. Although almost a quarter of the sequences appear to be uncharacterized, the remaining 

identified virus sequences indicated clear differences between the stations (Garin-Fernandez et al., 

2018), chapter 2). Although the diversity values were similar between each station, the higher richness 

and abundance values in the coastal area suggest that the environmental parameters can affect but not 

determine to shape the virus diversity. In this case, the biotic and abiotic factors might affect the 

abundance and diversity of viruses. As described in planktonic communities, the rare taxonomic groups 

(< 1 % per station) are highly diverse but in low abundance, while a small number of phage taxa 

dominate the community in the North Sea. These results suggest that the rare taxonomic groups might 

be activated under certain environmental and host conditions, as described by Breitbart and Rohwer 

(2005), and Jousset et al. (2017). On the other hand, the occurrence and geographic distribution varied 

between the identified virus families. For instance, algae viruses (Phycodnaviridae) were identified in 

higher abundance in the coastal areas, where their potential hosts are also highly abundant (Krause-

Jensen et al., 2005, McQuatters-Gollop et al., 2009). In addition, fresh water-related cyanophages were 

detected at station 15, which represents the highest riverine influence. In the case of the identified 

Caudovirales, the Myoviridae phages (long contractile tail) are highly abundant and their occurrence 

decreased from the coast to the open sea. In contrast, the occurrence of Podoviridae (short noncontractile 

tailed phages) increased from the coast to the open sea and the occurrence of Siphoviridae was low 

throughout the North Sea (figure 2.3).  

https://jacobsuniversity-my.sharepoint.com/personal/agarinfern_jacobs-university_de/Documents/Thesis-MS/A%20Garin%20thesis_v2.4_AW.docx#_North_Sea_Goes
https://jacobsuniversity-my.sharepoint.com/personal/agarinfern_jacobs-university_de/Documents/Thesis-MS/A%20Garin%20thesis_v2.4_AW.docx#Figure_2_3
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The coastal virus community was genetically more diverse than the open sea community  

(Garin-Fernandez et al., 2018). Apart from the genes related to hypothetical proteins and virion 

production, functional genes related to host virulence and metabolism were detected in low abundance 

(section 2.4.3). The comparison of virus-encoded genes analyzed in the North Sea virome shows 

differences between coastal and open sea regions. The indirect influence of the Atlantic inflow at station 

24 (open sea) might cause these differences. Further studies are necessary to increase the knowledge 

about the ecological role of the virus-encoded genes, in terms of expression and host transference.  

The application of the newly developed viromic pipeline in this thesis yield new insights into the virus 

community composition which is the basis for future studies of virus community dynamics. However, 

continuous improvements of these tools will help increase our understanding in the future.  

https://jacobsuniversity-my.sharepoint.com/personal/agarinfern_jacobs-university_de/Documents/Thesis-MS/A%20Garin%20thesis_v2.4_AW.docx#_Identification_of_genes_1
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5.3. INCEPTION OF INFECTION: 

CHARACTERIZATION OF LYSOGENIC PHAGES FROM 

POTENTIALLY PATHOGENIC SPECIES 

The application of a virus-specific pipeline to identify lysogenic Vibrio phages provided the information 

to answer the questions addressed in the second research aim of this thesis: 

“How is the distribution of lysogen Vibrio in the North Sea?” 

“What are these Vibrio phages?” 

“Can these phages be related to pathogenicity in these strains?” 

In general, potentially pathogenic Vibrio species were identified only near the coast in the North Sea 

(figure 5.3). Moreover, ca. 42 % of tested isolates carried prophages induced with mitomycin C (Garin-

Fernandez and Wichels, submitted). These lysogen Vibrio strains were widely distributed along the 

coasts of the North Sea (figure 3.2) and they did not show a clear pattern in terms of sample site or 

isolation method (section 3.3.1). 

Four lysogen Vibrio isolates were selected to sequence the genome of their inducible prophages. Each 

one of the selected isolates carried a single complete inducible prophage. The characterized Vibrio 

phages belong to the Caudovirales and Inoviridae groups. In detail, the phages correspond to the families 

Inoviridae (vB_VpaI_VP-3218 from V. parahaemolyticus), Podoviridae (vB_VpaP_VP-3220 from V. 

parahaemolyticus) and Myoviridae (vB_VpaM_VP-3212 from V. parahaemolyticus; vB_VchM_VP-

3213 from V. cholerae). Among them, only the phage vB_VpaI_VP-3218 carried genes related to 

virulence (zonula occludens toxin gene, Garin-Fernandez et al., submitted). In addition, the resemblance 

of the studied tailed phages with other Vibrio phages with pathogenic related genes indicates a potential 

effect on the development of pathogenic Vibrio strains. For instance, the vB_VpaP_VP-3220 show 

similarity with Stx phages, which contribute to the production of Shiga toxin in nonpathogenic E. coli 

strains (Gamage et al., 2003, Colavecchio et al., 2017, Garin-Fernandez and Wichels, submitted).  

If the increase of the surface sea water temperature continues, the abundance of potentially pathogenic 

Vibrio spp. and their phages may also increase. Other events, such as transport of alien species, may 

affect the rise of pathogenic or pandemic Vibrio strains, as discussed by Kirstein et al. (2016). Further 

studies are necessary to elucidate the effect of lysogenic phages in the development of pathogenic or 

pandemic Vibrio strains from the North Sea.  
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FIGURE 5. 3. Geographical occurrence of Vibrio species isolated from surface seawater and microplastic 

particles collected from the North Sea. The numbers in black indicates the station number from the research 

cruise HE430 on the RV Heincke in July/August 2014. Each pie chart represents the proportion of Vibrio 

isolates from each station, including the total isolates per station at the middle of each chart (white numbers). 

The violet hexagon indicates the sample stations for viromic analyses. Data collected from Garin-Fernandez 

and Wichels (submitted), Kirstein et al. (2016), Garin-Fernandez et al. (2018). 
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5.4. THE ROAD AHEAD FROM THE NORTH SEA:  

SUMMARY AND OUTLOOK 

The application of NGS techniques has been highly effective for the exploration of virus diversity (Roux, 

2019). Nevertheless, new challenges appear to face the limitations of these techniques. Despite the 

accelerated increase of marine virus studies, there is no statutory pipeline applied in marine phage 

ecology. The virus-specific pipeline settled in this thesis was applied to analyze an exemplary virus 

community in the North Sea, which can be applied to other samples. Overall, this pipeline offers a solid 

base that can be complemented with forthcoming new tools. 

Chapter 2 was focused on the description of the virus community composition in the North Sea applying 

viromics. The knowledge gained in this study allowed for the detection of a biogeographical pattern of 

the identified virus groups, which may be influenced by the oceanographic features. In this study, four 

stations at the North Sea’s coast and open sea were selected and analyzed. Further spatio-temporal 

monitoring using both viromics and metagenomics can bring new insights regarding the relationship of 

the viruses with their potential hosts in the North Sea. Due to their low DNA concentration, six additional 

stations from the research journey HE430 were sampled but the virus DNA was not sequenced (data not 

shown). Sample barcoding is an approach to label samples for multiplex sequencing and analysis (Meyer 

and Kircher, 2010), which can be applied to analyze these uncharacterized samples. 

Despite the increase of virome and metagenome studies from several environments, the description of 

novel phage sequences is still a problem (Paez-Espino et al., 2016, Hurwitz et al., 2018). Since several 

in silico tools for (pro)phage sequence identification are based on reference-based searches, many novel 

phage cannot be identified with these methods (Hurwitz et al., 2018). For instance, non-tailed viruses 

such as Inoviridae phages are highly diverse, globally distributed and can often dominate the marine 

samples (Roux et al., 2019, Brum et al., 2013); however, due to their underrepresentation in curated 

genome databases, Inoviridae phages might be overlooked in the virus community descriptions by 

applying either a culture-based approach or NGS sequencing (Edwards, 2018, Roux et al., 2019). In 

addition, the VirSorter tool is widely used to identify virus sequences based on characteristic nucleotide 

patterns of DNA viruses, which may cause the omission of sequences from non-tailed phages (Edwards, 

2018). The re-analysis of the North Sea virome using the machine learning program from Roux et al. 

(2019) might offer new insights about non-tailed phages in this region. Besides, Archaea virus contigs 

were identified only in short discarded contigs (< 3 Kbps, data not shown). Due to possible 

fragmentation and low abundance, viruses of Archaea might be overlooked from these analyses. Other 

approaches, such as RNA virus sampling, single-virus genomics (Martinez-Hernandez et al., 2017), 

linker amplification (Duhaime and Sullivan, 2012), cultivation, and virome sampling improvement 

https://jacobsuniversity-my.sharepoint.com/personal/agarinfern_jacobs-university_de/Documents/Thesis-MS/A%20Garin%20thesis_v2.4_AW.docx#_North_Sea_Goes
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discussed in section 5.1.1, can be applied to analyze the virus community in the North Sea to obtain a 

broader scope. 

As described in V. cholerae, new pathogenic strains may appear by horizontal gene transfer (HGT) in 

the environment (Banerjee et al., 2014, Hazen et al., 2010). The HGT by phages is an important factor 

of the genetic diversity in Vibrio spp. (Fortier and Sekulovic, 2013). In general, Vibrio phages were 

identified in low abundance in the North Sea virome (< 1 % per sampled virome, figure 2.4). The 10 

virus biomass samples collected with iron chloride flocculation method were tested against the 41 

isolates described in table A.4.1. However, no lytic activity was identified in double agar overlay assay 

(DAOA, data not shown). Considering the narrow host infection range of  

Vibrio phages, it is possible that the recovered virions would infect other Vibrio strains isolated in the 

same research cruise, such as V. vulnificus, V. fluvialis, V. alginolyticus and V. mimicus (figure 5.2). 

Potential host screening directly after virus biomass collection may improve the isolation of lytic Vibrio 

phages. Moreover, the constant monitoring of lytic Vibrio phages from marine coasts as described by 

Kauffman et al. (2018a) can be applied to improve the isolation approach. Due to a lack of infective host 

for lytic Vibrio phages from the North Sea, only lysogenic Vibrio phages were characterized in this 

thesis using a genomic approach. 

Chapter 3 was focused on characterization of lysogenic phages from potentially pathogenic Vibrio 

species. The application of the virus-specific pipeline enables the successful identification of these 

phages at the family or at least genus level based on their genome sequence and without isolation. The 

tailed phages characterized in this chapter possess a mosaic genome structure. Phages with this mosaic 

genome structure are especially complex for taxonomic classification (Tolstoy et al., 2018, Ibrahim et 

al., 2018). Due to non-homologous recombination from viruses of different taxa, the features of these 

phages are highly dynamic and diverse (Tolstoy et al., 2018). Moreover, their general features differ 

from closer genus descriptions, which indicates that the diversity of Vibrio phages is far from being 

explored completely. The lack of closely related taxa might be related to the limited number of 

characterized phage genomes in the public databases. To enrich the characterization of these lysogenic 

phages, the prophage induction samples were additionally analyzed with electron microscopy (EM) to 

describe their virion morphology. However, only the induced sample from lysogen VN-3212 was 

successful (figure 5.4A). The Myoviridae phage vB_VpaM_VP-3212 identified with in silico approach 

(section 3.3.2) was confirmed by identification of characteristic virion morphology of Myoviridae 

phages with transmission EM pictures (figure 5.4A). The EM analysis with a larger sample volume can 

improve the characterization of these lysogenic phages. In addition, the characterized phage genomes 

can be used as template for labeled DNA probes for phageFISH analyses (Allers et al., 2013).  

The application of this technique enables the tracking of the proliferation cycle after induction, and 

https://jacobsuniversity-my.sharepoint.com/personal/agarinfern_jacobs-university_de/Documents/Thesis-MS/A%20Garin%20thesis_v2.4_AW.docx#Figure_2_4
https://jacobsuniversity-my.sharepoint.com/personal/agarinfern_jacobs-university_de/Documents/Thesis-MS/A%20Garin%20thesis_v2.4_AW.docx#_Looking_for_the_1
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phage-host infection dynamics (Barrero-Canosa and Moraru, 2019). Moreover, other induction 

methods, such as UV radiation, can provide new insights of non-identified prophages. 

Chapter 4 continues the characterization of Vibrio phage genomes, focused on the filamentous phage 

vB_VpaI_VP-3218. The results of this study bring new insights about Vibrio phages from the Inoviridae 

family and the possible role on pathogenicity in V. parahaemolyticus. Since both tailed and filamentous 

phages can produce single plaques (Nakasone et al., 2013), all induced prophage samples were tested 

against 154 potential Vibrio host strains, including clinical and environmental V. parahaemolyticus, V. 

cholerae, V. vulnificus and V. mimicus (data not shown). However, no strain was suitable for phage 

propagation using spot test or DAOA. The absence of plaque formation in host screening of lytic and 

lysogenic Vibrio phages might be due to the integration of prophages, which protects the lysogen against 

superinfection (Bondy-Denomy and Davidson, 2014, Hazen et al., 2010). Other resistance mechanisms 

is the acquisition of spacer sequences, named Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR), which provides a rapid and efficient response against several possible phage 

infections (Marraffini, 2015). 

Despite the importance of prophages in the development of pathogenic Vibrio strains, little is known 

about the relationship between lysogenic phages and Vibrio strains in the marine environment (Johnson 

et al., 2008, Banerjee et al., 2014). In this thesis, 13 lysogen Vibrio species from the North Sea were 

identified (section 3.3.1), and four genomes of inducible prophages were characterized (Garin-

Fernandez et al., submitted, Garin-Fernandez and Wichels, submitted). Additionally, the DNA of five 

prophage inductions were sequenced (table 5.1, data not shown). The obtained reads were analyzed as 

described in section 3.2.4, and more than one virus contig was identified in each lysogen strain (table 

5.1). Unfortunately, the characterization of the virus contigs from polylysogen strains was not possible. 

The assembled genome of the lysogen Vibrio strain can provide advantageous information for virus 

genome mapping and assembling for further data analyses. In addition, EM analysis can improve the 

characterization of these polylysogen strains and their phages. For instance, at least two different 

Myoviridae virions were identified in the VN-3247 isolate with EM (figure 5.3B), and 8 phage 

sequences from the assembled reads were identified with VirSorter (table 5.1). Besides, Erler (2015) 

assumed the influence of phages on the population development of potentially pathogenic Vibrio spp. 

from the North and Baltic Sea. These bacteria isolates are currently available in the culture collection 

from VibrioNet (Erler, 2015, Erler et al., 2015). The application of this approach to characterize these 

potential lysogen strains can bring new insights of the influence of horizontal gene transfer from Vibrio 

phages in the North Sea. 
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FIGURE 5. 4. Inducible tailed phages from potentially pathogenic Vibrio species. Transmission electron 

microscopic images from the Myoviridae phage vB_VpaM_VP-3212 induced from the monolysogen VN-3212 

(A) and induced phages from the polylysogen VN-3247 (b). Scale bar represents 100 nm.  
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TABLE 5. 1. Species identification of polylysogen Vibrio strains and the viral contigs identified from the lysogenic induction. The tested isolates were firstly isolated by 

Kirstein et al. (2016). MALDI-TOF hit score results against Vibriobase (≥ 2.3 highly probable species; 2.0-2.29 secure genus and probable species identification), PCR 

results of species-specific (toxR), virulence-associated-gene (trh; tdh) , N-acetylneuraminate lyase of the sialic acid catabolism cluster (nanA), the mannitol fermentation 

operon (manIIA), flanking region of PRXII (VVA1612), and part of one putative chondroitinase AC lyase (VVA1636). The DNA from each lysogenic induction per isolate 

was sequenced and analyzed until VirSorter classification as described by Garin-Fernandez and Wichels (submitted)(chapter 3.2). The VirSorter identify possible viral 

sequences and classify them ‘confidence’ categories from 1 (highly probable phage sequence) to 6 (probable prophage sequence) . 

 

 

Identification of lysogen V. parahaemolyticus. 

 

Isolate label 

(VibrioNet Number) 

Station 

No. 
Source 

MALDI-TOF 

HIT-score 
toxR trh tdh 

Viral contigs predicted by Virsorter 

# cat 1 # cat 2 # cat 3 # cat 4 # cat 5 # cat 6 

VN-3231 3 Microplastic particle 2.38 + - - 1 3 8 0 0 1 

VN-3234 1 Microplastic particle 2.47 + - - 2 12 7 0 1 0 

VN-3247 14 Seawater 2.64 + - - 2 6 0 0 0 0 

VN-3268 2 Seawater 2.41 + - - 0 0 0 0 3 0 

 

Identification of lysogen V. vulnificus 

Isolate 

label 

(VibrioNet 

Number) 

Station 

No. 
Source 

MALDI-TOF 

HIT-score 
toxR NanA ManIIA VVA1612 VVA1636 

Viral contigs predicted by Virsorter 

# cat 1 # cat 2 # cat 3 # cat 4 # cat 5 # cat 6 

VN-3264 14 Seawater 2.55 + - - + - 0 5 1 0 0 1 
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5.5. FINAL CONCLUSION 

Marine phage genomics will continue improving with the progress of NGS technologies and 

development of more integrative virus-specific tools. As most microorganisms remain 

uncultivable, so do their viruses. The vast diversity of uncultivated viruses contains a 

tremendous potential to discover entirely new strategies tailored to specific hosts and 

environmental conditions, and the approaches to characterize them might become viable in the 

next years (Roux, 2019). In this manner, the accomplishments of this thesis included the 

development and initial application of novel tools to characterize marine phage genomes. The 

outcome of this research represents a snapshot of the virus community in in the North Sea, 

which reflect a high diversity of viruses distinct from published genomes. Hence, the biggest 

current challenge in this phage ecology is to characterize novel phage genomes. 

This thesis represents an exemplary study of the virus community in the North Sea, with special 

emphasis on marine phages. The developed virus-specific pipeline as well as the obtained 

insights will contribute to expand the study of the virus diversity dynamics in other marine 

areas, including estimating the abundance and functional diversity of novel phages. For years 

to come, the discovery of novel virus groups will continue (Koonin and Dolja, 2018). The 

detailed characterization of novel phages under a comprehensive approach is highly necessary 

to improve the virus genomic databases. Hence, the application of (meta)genomic-based 

approach provides an impressive tool to face the new challenges for micro-universe exploration 

under an integrative scope.
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Appendix 

ADDITIONAL SCIENTIFIC 

PUBLICATIONS 

 

A.1. DANGEROUS HITCHHIKERS? EVIDENCE FOR 

POTENTIALLY PATHOGENIC VIBRIO SPP. ON 

MICROPLASTIC PARTICLES 

Authors: Inga V. Kirstein, Sidika Kirmizi, Antje Wichels, Alexa 

Garin-Fernandez, Rene Erler, Martin Löder, Gunnar Gerdts 

Published in: (2016) Marine Environmental Research 120. 1-8. 

DOI: 10.1016/j.marenvres.2016.07.004 

Contribution: Experimental analyses for Vibrio spp. isolation and 

identification using MALDI-TOF (HE430, 2014). Contribution details 

in section 1.7. 

https://doi.org/10.1016/j.marenvres.2016.07.004


 

118 

 

A.2. SUPPLEMENT TO CHAPTER 1 

TABLE A.2. 1. Exemplary tools and databases developed for virus genomics and viromics. 

Tool/Data

base 

Name Description Reference and software link 

De novo 

Assembly 

SPAdes* Tool to assembly genomes and mini-metagenomes (metaSPAdes) from 

highly chimeric reads. 

http://cab.spbu.ru/software/spad

es (Nurk et al., 2013) 

 IDBA-

UD* 

Iterative De Bruijn Graph De Novo Assembler developed for short read 

sequencing data from single-cell and metagenomic reads. 

https://i.cs.hku.hk/~alse/hkubrg/

projects/idba_ud/index.html  

(Peng et al., 2012) 

 Megahit* Fast and memory-efficient NGS assembler via succinct de Bruijn graph. 

Optimized for metagenomic reads. 

https://github.com/voutcn/mega

hit  

(Li et al., 2015) 

 AV454 Assemble Viral 454. Designed for small and non-repetitive human virus 

genomes sequenced at high depth. 

https://www.broadinstitute.org/v

iral-genomics/av454 (Henn et 

al., 2012) 

 VrAP Viral Assembly Pipeline. Tool based on SPAdes with additional read 

correction and filter steps. This tool classifies contigs to distinguish host from 

viral sequences. 

https://www.rna.uni-

jena.de/research/software/vrap-

viral-assembly-pipeline  

(Fricke et al., in press) 

 V-GAP Viral Genome Assembly Pipeline. Developed for reconstruction of phage 

genome into single contig from shotgun reads. 

(Nakamura et al., 2016) 

Annotatio

n 

RAST* Rapid Annotation using Subsystem Technology. Fully-automated service for 

annotation of prokaryotic genomes available as web tool or to download (as 

multi fasta). 

http://rast.nmpdr.org  

(Aziz et al., 2008, Meyer et al., 

2008, Overbeek et al., 2014) 

 PROKKA Rapid annotation tool developed for prokaryotic and viral genomes (as multi 

fasta). 

https://github.com/tseemann/pro

kka (Seemann, 2014) 

 Metavir Original as web-based, currently is part of iVirus. Developed for annotation 

of viral metagenomic sequences as raw reads or assembled contigs (multi 

fasta). 

(Bolduc et al., 2016, Roux et al., 

2014) 

1
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TABLE A.2.1. Continuation. 

Tool/Data

base 

Name Description Reference and software link 

Database 

(db) 

ICTV International Committee on Taxonomy of Viruses. Focused on organize and 

authorize the taxonomy and nomenclature of viruses.  

Contain a detailed database with the approved virus species. 

https://talk.ictvonline.org/tax

onomy (Lefkowitz et al., 

2018) 

 ViralZone Web resource with general molecular and epidemiological information of each 

virus family, including access to UniProtKB/Swiss-Prot viral protein entries 

(EMBL-EBI). 

http://viralzone.expasy.org  

(Hulo et al., 2010) 

 GenBank NCBI* NIH genetic sequence database (U.S.). Associated with the International 

Nucleotide Sequence Database Collaboration (INSDC), together with the DNA 

DataBank of Japan (DDBJ) and the European Nucleotide Archive (ENA).  

Also provides the viral genome sequence data resource. 

https://www.ncbi.nlm.nih.go

v/genbank; 

http://www.ncbi.nlm.nih.gov

/genome/viruses (Brister et 

al., 2015) 

 ENA EMBL-EBI* European Nucleotide Archive, part of the European Bioinformatic Institute. 

Associated with the (INSDC). This database provides nucleotide sequences with 

their input information (e.g. sample, experimental setup, software configuration), 

output machine data (e.g. reads and quality scores), and other related information 

(e.g. assembly, mapping, gene annotation). 

https://www.ebi.ac.uk/ena 

(Toribio et al., 2017) 

 JGI IMG/VR Curated virus db associated with the Genomes On-Line Database (GOLD), that 

contains both UViGs ans iVGs. The virus data is obtained from the Microbiomes 

system IMG/M database (https://img.jgi.doe.gov), that contains reference virus 

genomes from NCBI, and predicted virus sequences from metagenomes and 

scaffolds. 

https://img.jgi.doe.gov/cgi-

bin/vr/main.cgi  

(Paez-Espino et al., 2016, 

Pati et al., 2013) 

    

 The 

Actinobacteriophag

e database 

Database focused in Actinobacteriophages, genomes from PHS. https://phagesdb.org  

(Russell and Hatfull, 2016) 

 ACLAME A Classification of Mobile genetic Elements. This database collects information 

from various resources about mobile genetic elements from plasmids, viruses and 

prophages. 

http://aclame.ulb.ac.be 

(Toussaint et al., 2009) 
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TABLE A.2.1. Continuation. 

Tool/Data

base 

Name Description Reference and software link 

Viral 

sequence 

screening 

VirFinder k-mer based tool for identification of viral sequences in metagenomic data. https://github.com/jessieren/Vi

rFinder (Ren et al., 2017) 

 virMine An in silico detection tool of virus sequences from metagenomic reads https://github.com/thatzopoulo

s/virMine (Garretto et al., 

2019) 

 ViraMiner Deep learning-based method to identify and quantify virus reads from raw 

metagenomic contigs of human biospecimens. 

https://github.com/rega-

cev/virulign (Tampuu et al., 

2019) 

 virMiner Web-based phage contig prediction tool using on random forest algorithm. http://sbb.hku.hk/VirMiner  

(Zheng et al., 2019) 

Prophage 

screening 

PHAST Phage Search Tool. Web-based tool for identification of prophage sequences. http://phast.wishartlab.com  

(Zhou et al., 2011) 

 PHASTER Upgraded web-based tool PHAST for fast identification and annotation of prophage 

sequences in bacteria genome, metagenomes and viromes. 

http://phaster.ca 

(Arndt et al., 2016) 

 Phage_Fin

der 

Heuristic computer program written in PERL to identify prophage regions  

within bacterial genomes. 

http://phage-

finder.sourceforge.net 

(Fouts, 2006) 

 Prophinder Web-based program for prophages detection, based on BLASTP against the ACLAME 

db. 

http://aclame.ulb.ac.be/Tools/

Prophinder (Lima-Mendez et 

al., 2008) 

 PhiSpy Computer program written in C++, Python and R to identify prophages sequences in 

complete bacterial genomes. 

https://github.com/linsalrob/P

hiSpy (Akhter et al., 2012) 

Others 

virus-

based tools 

VIRALpro Part of Scratch suite. Identification of capsid and tail protein sequences in single query 

protein sequence, based on the amino acid composition and secondary structure 

prediction. 

http://scratch.proteomics.ics.u

ci.edu (Galiez et al., 2016) 

 Virfam Web-based tool for classification of tailed phages based on head-neck-tail modules  

in their genomes. 

http://biodev.extra.cea.fr/virfa

m (Lopes et al., 2014) 
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http://scratch.proteomics.ics.uci.edu/
http://biodev.extra.cea.fr/virfam/
http://biodev.extra.cea.fr/virfam/
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TABLE A.2.1. Continuation. 

Tool/Data

base 

Name Description Reference and software link 

 ClassiPhag

es 

This tool uses a reference phage-derived-HMMs scoring matrix to develop and train an 

Artificial Neural Network (ANN) to find patterns for phage genome classification. 

(Chibani et al., 2019) 

 VICTOR Virus Classification and Tree Building Online Resource. Developed by DSMZ, this tool 

permits to classify phages based on the amino acid or nucleotide sequences as multi or 

single fasta. The resulting trees (mostly monophyletic) revealed the classification of whole 

genome comparison (ICTV db). 

https://ggdc.dsmz.de/victor.p

hp (Meier-Kolthoff and 

Göker, 2017) 

 PhageTer

m 

Fast tool to determine DNA termini and phage packaging mechanisms using NGS data.  

Also available on the Galaxy-based server (https://galaxy.pasteur.fr). 

https://sourceforge.net/proje

cts/phageterm (Garneau et 

al., 2017) 

 HostPhind

er 

Based on the query similarity within the reference complete phage genomes (NCBI, 

EMBL-EBI and other phagedb from latest 2017), it can predict the bacterial host species  

based on a query phage genome (as single fasta). 

https://cge.cbs.dtu.dk/service

s/HostPhinder (Villarroel et 

al., 2016) 

 PHACTS Phage Classification Tool Set. PERL-based tool to predict proliferation cycle (as 

temperate or virulent) based on a local reference database, similarity algorithm of 

predicted proteins  

and a supervised Random Forest classifier. 

http://www.phantome.org/P

HACTS (Bailey et al., 2012) 

 WIsH Tool written in C++ code for prediction of prokaryotic hosts  

based on the phage genome sequence.  

https://github.com/soedingla

b/wish (Galiez et al., 2017) 

 iMicrobe Integrated and federated system that interconnects diverse microbiome data sets, tools, and 

community resources from own data users. This system is associated with CyVerse to 

analyze data in the web-based friendly platform Discovery Environment 

(https://de.cyverse.org).  

This system contains its own database, which is connected to iVirus. 

https://imicrobe.us 

(Hurwitz, 2014) 

 VirSorter 

(iVirus) 

Original as web-based tool, currently is part of iVirus (http://ivirus.us) and available in 

Cyverse (https://de.iplantcollaborative.org/de/). 

Detection of virus sequence in multi fasta sequences, sorted 6 confidence levels. It can be 

based on reference-dependent or independent method. 

(Bolduc et al., 2016) 

* = Not developed for virus analysis. However, this tool contains important information in this field. 
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A.3. SUPPLEMENT TO CHAPTER 2 

Rarefaction analysis, general information.  

To obtain the figure A.3.1, all virus genes predicted by VIRSorter and identified by BLAST 

(Material and Methods, section 2.5) were analyzed using rarecurve function from Community 

Ecology Package (Vegan package for R version 3.3.2) (Oksanen et al., 2017). 

 

FIGURE A.3.1. Rarefaction analysis of hits to identified proteins from all North Sea viromes. 
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Heatmap subset of host-related genes, general information. 

The total number of the classified virus proteins from each North Sea virome was compared as 

described in experimental procedures from chapter 2. The dataset of this heatmap was not 

reduced. Identified genes of contigs larger than 3 kbps were first classified in base of their 

molecular or biological function of the encoded protein and then separated by the contig 

identified family. The abundance of the classified functions was z-scored and clustered by Bray 

Curtis dissimilarity index. The dendrogram represents the Average Hierarchical analysis of the 

classified gene function (y axis) of each sampling station (x axis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE A.3.2 (NEXT PAGE). Heatmap comparison of the filtered protein functions from virus-encoded 

genes. Identified genes from contigs larger than 3 kbps were classified in base of their taxonomical family 

and molecular or biological function of the encoded protein. The gene abundance was transformed to z-

score and clustered by Bray Curtis dissimilarity index. The dendrogram represents the Average 

Hierarchical analysis of the classified gene function (y axis) of each sampling station (x axis). 
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FIGURE A.3.2. Continuation. 
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FIGURE A.3.2. Continuation. 
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FIGURE A.3.2. Continuation. 
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FIGURE A.3.2. Continuation. 
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TABLE A.3.1. Number of reads, total assembled contigs and total predicted viral contigs. 

The total of assembled Megahit contigs were analyzed using the VirSorter tool (default settings, Virome Decontamination mode) (section 2.3) prior a 3 Kbps cutoff for 

improved recall of the virus community classification. 

Station 

No. 

 

#  

reads 
Mbps 

Avg. read 

length 

Stdev 

read 

length 

#  

contigs 

Avg. 

coverage 

per contig 

Avg. 

contig 

length 

Total viral contigs predicted by VirSorter 

# viral 

contigs 

N50 

(Kbps) 

# cat  

1 

# cat  

2 

# cat  

3 

# cat  

4 

# cat  

5 

# cat  

6 

15 8,904,876 1,905.12 210.38 84.82 227,675 4.66 675.04 2,577 627 228 2,127 222 0 0 0 

18 16,898,592 1,227.36 212.15 82.24 368,223 6.50 694.44 2,706 665 226 2,240 239 0 1 0 

20 7,235,850 1,718.34 233.57 78.77 210,601 6.85 594.82 1,719 423 133 1,458 127 0 1 0 

24 3,224,142 659.93 201.26 84.93 123,167 3.98 626.30 1,193 302 120 1,033 39 0 1 0 
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TABLE A.3.2. Percentage of virus contig's BLAST hit per station and overall the North Sea virome. 

The subset of identified virus contigs from table 2.2 were additionally classified as Podoviridae, 

Siphoviridae, Myoviridae, Unclassified Caudovirales, Unclassified phage, Phycodnaviridae and Other 

Virus Family. 

  

BLAST homolog St. 15 

Contigs 

(%) 

St. 18 

Contigs 

(%) 

St. 20 

Contigs 

(%) 

St. 24 

Contigs 

(%) 

Total 

Station 

Contigs (%) 

       Unclassified phage 59.67 68.57 64.80 56.76 63.46 

Caudovirales 

Podoviridae 2.95 3.44 6.03 13.34 4.76 

Siphoviridae 3.32 2.57 4.03 1.56 3.00 

Myoviridae 27.22 18.21 17.76 19.78 21.53 

Unclassified-Caudovirales 1.81 1.73 3.17 2.19 2.07 

      Phycodnaviridae 2.53 0.90 0.71 0.62 1.42 

        Other-Virus-Family 2.50 4.58 3.50 5.75 3.76 
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Diversity and species richness indices, general information. 

To determinate the values on table A.3.3, the percentage of identified virus species per sampling 

station were evaluated with following formula using PRIMER 6 software version 6.1.11 

(PRIMER-E Ltd., Plymouth, United Kingdom). 

Species richness 

  Margalef d = (S-1)/Log(N) 

Diversity index 

Shannon H’ = -SUM(Pi×Log(Pi)) 

 S: total species 

 N: total individuals  

 H’: Log base 2 

 

 

 

TABLE A.3.3. Diversity and species richness indices for identified taxonomic virus groups in North Sea. 

Total species (S), species richness (d) and Shannon (H’) values were determinate based on the percentage 

of identified virus species per sampling station. 

 Station No. S N d H’ 

15 61 4,674 7.101 3.796 

18 55 4,616 6.4 3.205 

20 33 2,367 4.119 3.036 

24 29 1,347 3.886 3.177 
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A.4. SUPPLEMENT TO CHAPTER 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE A.4. 1 Prophage induction of V. parahaemolyticus VN-3212 (A), VN-3220 (B), and V. 

cholerae VN-3213 (C). Mitomycin C (+MitC, red) and MB-50% broth (control C-, blue) was added to 

the culture at optical density 0.1-0.2 (600 nm) (MitC induction, grey arrow) and incubated at 37 °C and 

shaking. The induction (+MitC) was performed in eight replicates, and the negative control (C-) was 

performed in duplicate. The error bar indicates the standard error of the mean from replicate 

experiments. 
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FIGURE A.4. 2. Tree representation of Myoviridae Type 1 phage clustering, including the phages  

vB_VpaM_VP-3212 and vB_VchM_VP-3213 (A); and Podoviridae Type 3 clustering with phage 

 vB_VpaP_VP-3220 (B). The phage genomes were analyzed with Virfam Caudovirales classifier,  

the resulting trees were built automatically in Virfam with Aclame (Lopes et al., 2014). 
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TABLE A.4. 1. Species identification of V. parahaemolyticus tested for inducible prophages. (Vp = V. 

parahaemolyticus; Vc = V.cholerae). MALDI-TOF hit score results against Vibriobase (≥ 2.3 highly 

probable species; 2.0-2.29 secure genus and probable species identification), PCR results of species-

specific (toxR), virulence-associated-gene (trh; tdh) cholera toxin gene (ctxA), and serotypes (O139; O1) 

screening, and prophage induction results using mitomycin C (+ = positive, - = negative). 

Identification of V. parahaemolyticus 

Isolate label 

(VibrioNet Number) 

Station 

No. 
Source 

MALDI-TOF 

HIT-score 
VptoxR trh tdh 

Inducible 

prophage 

VN-3216a 1 Seawater 2.57 + - - - 

VN-3218a 1 Seawater 2.48 + - - + 

VN-3257b 1 Seawater 2.49 + - - - 

VN-3234b 1 Microplastic particle 2.47 + - - + 

VN-3268b 2 Seawater 2.41 + - - + 

VN-3222a 3 Seawater 2.48 + - - + 

VN-3265b 3 Seawater 2.6 + - - - 

VN-3223a 3 Microplastic particle 2.64 + - - - 

VN-3225b 3 Microplastic particle 2.42 + - - - 

VN-3228b 3 Microplastic particle 2.22 + - - - 

VN-3231b 3 Microplastic particle 2.38 + - - + 

VN-3255b 4 Seawater 2.34 + - - - 

VN-3266b 4 Seawater 2.24 + - - - 

VN-3275b 4 Seawater 2.6 + - - - 

VN-3251b 5 Seawater 2.49 + - - - 

VN-3212* 6 Seawater 2.37 + - - + 

VN-3261b 9 Seawater 2.41 + - - + 

VN-3273b 10 Seawater 2.6 + - - + 

VN-3278b 10 Seawater 2.53 + - - - 

VN-3221a 12 Seawater 2.56 + - - - 

VN-3254b 13 Seawater 2.33 + - - - 

VN-3249b 13 Seawater 2.38 + - - + 

VN-3263b 13 Seawater 2.32 + - - - 

VN-3272b 13 Seawater 2.5 + - - - 

VN-3274b 13 Seawater 2.45 + - - - 

VN-3285b 13 Seawater 2.6 + - - - 

VN-3240b 14 Seawater 2.44 + - - - 

VN-3247b 14 Seawater 2.64 + - - + 

VN-3220a 15 Seawater 2.55 + - - + 

VN-3258b 15 Seawater 2.69 + - - + 

 

Identification of V. cholerae 

Isolate label 

(VibrioNet Number) 

Station 

No. 
Source 

MALDI-TOF 

HIT-score 
VctoxR ctxA 

O139 

/O1 

Inducible 

prophage 

VN-3213a 15 Seawater 2.39 + - - + 

 

References 

a This study. 
b Kirstein Kirstein et al. (2016) 
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TABLE A.4. 2. Coding sequences (CDS) identified in the vB_VpaM_VP-3212 phage, including the position of transcription and sequence length of each CDS. The product was 

defined after comparison of automated annotation and genome context comparison. Description details include additional information based on annotation software used (Rast, 

Prokka, Metavir) or genome synteny comparison of the tBLASTx similarity and genome context from the most similar phage genomes (synteny), as well as the protein 

superfamily, defined with Virfam Caudovirales classifier. Synteny details and Virfam results were not used for final annotated flat file. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS01 735 – 1 735 
Transcriptional 

regulator, C 

• Phage repressor protein C from Vibrio phage martha 12B12 (synteny). 

• Transcriptional regulator prophage MuSo2, and Cro/CI family from Shewanella oneidensis 

MR-1 (Rast). 

• Product similar to phage_cluster_895_PFAM-Peptidase_S24 (Metavir). 

CDS02 909 – 1133 225 
Transcriptional 

regulator, Ner family 

• Negative regulator of early transcription from Enterobacteria phage Mu (synteny). 

• Ner-like regulatory protein from Photorhabdus asymbiotica subsp. asymbiotica and Salmonella 

enterica subsp. enterica serovar Choleraesuis str. SC-B67 (Rast). 

• Product similar to phage_cluster_9975_PFAM-HTH_35 (Metavir). 

CDS03 1140 – 3134 1995 Transposase 

• Transposase from Enterobacteria phage Mu and Vibrio phage martha 12B12 (synteny). 

• Putative mobile element protein, similar to transposase from S. oneidensis MR-1, and DNA 

transposition protein A from Enterobacteria phage (Rast). 

• DDE-recombinase A (Prokka). 

• Product similar to phage_cluster_6696_PFAM-DDE_2 (Metavir). 

CDS04 3170 – 4117 948 Mobile element 

• DNA transposition protein from Enterobacteria phage Mu and Vibrio phage martha 12B12 

(synteny). 

• Mobile element protein, similar to putative prophage MuSo2, DNA transposition protein from 

S. oneidensis MR-1; and DNA transposition protein B from Enterobacteria phage Mu (Rast). 

CDS05 4126 – 4365 240 Hypothetical protein  
• CDS05-06 sequence similar to phage_cluster_6695_PFAM-Phage-MuB_C (Metavir). 

CDS06 4369 – 4521 153 Hypothetical protein 

CDS07 4530 – 4904 375 Hypothetical protein  

CDS08 4897 – 5220 324 kil 
• kil protein from Enterobacteria phage Mu (Synteny). 

• Hypothetical protein (Rast). 

CDS09 5230 – 5424 195 Hypothetical protein   

CDS10 5414 – 6031 618 Hypothetical protein 
• hypothetical protein from Vibrio phage martha 12B12 (synteny). 

• hypothetical protein from S. oneidensis MR-1 (Rast). 

CDS11 6044 – 6316 273 Hypothetical protein • hypothetical protein from Vibrio phage martha 12B12 (synteny). 
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TABLE A.4. 2. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS12 6309 - 6527 219 Hypothetical protein • hypothetical protein from Vibrio phage martha 12B12 (synteny). 

CDS13 6520 - 6747 228 Hypothetical protein • hypothetical protein from Vibrio phage martha 12B12 (synteny). 

CDS14 6744 - 7310 567 
DNA methyl 

transferase 
• phage-associated DNA methyl transferase from Bacteriophage K139 and Phage protein from 

K139-like from Vibrio phage kappa (Rast). 

CDS15 7307 - 7579 273 Hypothetical protein 
• hypothetical protein from S. oneidensis MR-1 (Rast). 

• Product similar to gi_481019186_ref_YP_007877541.1_ (Metavir). 

CDS16 7576 - 8109 534 Hypothetical protein 
• hypothetical protein from Haemophilus ducreyi 35000HP (Rast). 

• Product similar to phage cluster 1901 (Metavir). 

CDS17 8112 - 8309 198 Hypothetical protein • Product similar to phage cluster 682 (Metavir). 

CDS18 8398 - 8634 237 Hypothetical protein  

CDS19 8643 - 8822 180 Hypothetical protein  

CDS20 8826 - 9341 516 Hypothetical protein 
• hypothetical protein from S. oneidensis MR-1 and Acidovorax avenae subsp. citrulli AAC00-1 

(Rast). 

CDS21 9334 - 9810 477 Hypothetical protein  

CDS22 9879 - 10280 402 Mor 

• Middle operon regulator (Mor) from Enterobacteria phage Mu (synteny). 

• Putative prophage MuSo2, positive regulator of late transcription from S. oneidensis MR-1 

(Rast). 

CDS23 10367 - 10933 567 
Secretion activator 

protein 
• Secretion activator protein from S. oneidensis MR-1 and Delftia acidovorans SPH-1 (Rast). 

CDS24 10933 - 11205 273 Putative Mor • Hypothetical protein from S. oneidensis MR-1 (Rast). 

CDS25 11190 - 11786 597 Hypothetical protein 
• Hypothetical protein from S. oneidensis MR-1 (Rast). 

• Product similar to Phage_cluster_253_PFAM-Glyco_hydro_108 (Metavir). 

CDS26 11786 - 12001 216 
C4-type zinc finger 

protein  

• C4-type zinc finger protein from Vibrio phage martha 12B12 (synteny). 

• Product similar to gi_481019176_ref_YP_007877531.1_ (Metavir). 

CDS27 12001 - 12306 306 Hypothetical protein 
• Hypothetical protein from S. oneidensis MR-1 (Rast). 

• Product similar to gi_481019176_ref_YP_007877531.1_ (Metavir). 

CDS28 12315 - 12608 294 
Mu-like prophage 

protein gp26 
• Mu-like phage gp26 from S. oneidensis MR-1; and phage protein from Enterobacteria phage 

Mu (Rast). 

CDS29 12618 - 13184 567 
Terminase, small 

subunit gp27 
• Phage terminase, small subunit from S. oneidensis MR-1; and Mu-like phage gp27 from H. 

ducreyi 35000HP (Rast). 

CDS30 13184 - 13375 192 Phage protein  

 

1
3
6

 

 

A
p
p
en

d
ix

 

 



 

137 

 

TABLE A.4.2. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS31 13496 - 15058 1563 
Terminase, large 

subunit gp28 

• Portal protein (gp28) from Enterobacteria phage Mu and portal protein (VPCG_00023) from 

Vibrio phage martha 12B12 (synteny). 

• Putative portal protein prophage MuSo2 from S. oneidensis MR-1; Mu-like phage gp28 protein 

from H. ducreyi 35000HP (Rast). 

• Terminase (TermL) from Myoviridae of Type1 (Cluster 8) (Virfam). 

CDS32 15055 - 16617 1563 Portal protein gp29 

• Hypothetical protein (VPCG_00022) from Vibrio phage martha 12B12 (synteny). 

• Mu-like prophage FluMu protein gp29 from S. oneidensis MR-1 and Azorhizobium caulinodans 

ORS 571 (Rast). 

• Portal protein from Myoviridae of Type1 (Cluster 8) (Virfam). 

CDS33 16610 - 17389 780 
Putative capsid 

assembly protein F 

• Virion morphogenesis late F ORF from Enterobacteria phage Mu and F protein (VPCG_00021) 

from Vibrio phage martha 12B12 (synteny). 

• Phage (Mu-like) virion morphogenesis protein from S. oneidensis MR-1 (Rast). 

• Product sequence part of Phage_cluster_1285_PFAM-DUF935 (Metavir). 

CDS34 17610 - 17470 141 Hypothetical protein  

CDS35 17691 - 18668 978 Protease I, gp32 

• I protein (VPCG_00020) from Vibrio phage martha 12B12 (synteny). 

• Putative prophage MuSo2, protein Gp32 from S. oneidensis MR-1; and Mu-like prophage I 

protein from A. caulinodans ORS 571 (Rast). 

CDS36 18668 - 19567 900 Major capsid protein 

• Phage major capsid protein from Enterobacteria phage Mu and Vibrio phage martha 12B12 

(synteny). 

• Phage major capsid protein #Fam0046 from S. oneidensis MR-1, and Desulfovibrio vulgaris 

str. Miyazaki F (Rast). 

• Major capsid protein (MCP) from Myoviridae of Type1 (Cluster 8) (Virfam). 

CDS37 19646 - 19903 258 Hypothetical protein • Hypothetical protein from Vibrio phage martha 12B12 (synteny). 

CDS38 19906 - 20445 540 Hypothetical protein 
• Hypothetical protein from Vibrio phage martha 12B12 (synteny). 

• Hypothetical protein from S. oneidensis MR-1 (Rast). 

CDS39 20473 - 21057 585 Hypothetical protein 

• Hypothetical protein from Vibrio phage martha 12B12 (synteny). 

• Hypothetical protein from S. oneidensis MR-1; and phage protein from unclassified SPO1-like 

viruses Listeria phage A511 (Rast). 

CDS40 21076 - 21510 435 Adaptor protein gp36 

• Gene product J. 

• Mu-like prophageprotein GP36 from S. oneidensis MR-1 (Rast). 

• Adaptor protein (Ad1) from Myoviridae of Type1 (Cluster 8) (Virfam). 
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TABLE A.4.2. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS41 21510 - 22052 543 Neck protein Ne1 

• Phage virion morphogenesis protein (VPCG_00014) from Vibrio phage martha 12B12 

(synteny). 

• Putative prophage MuSo2, virion morphogenesis protein from S. oneidensis MR-1 (Rast). 

• Neck protein (Ne1) from Myoviridae of Type1 (Cluster 8) (Virfam). 

CDS42 22049 - 22639 591 
Tail competition 

protein gp37 

• Hypothetical protein from Vibrio phage martha 12B12 (synteny). 

• Mu-like prophage FluMu protein gp37 from S. oneidensis MR-1 (Rast). 

• Tail competition protein (Tc) from Myoviridae of Type1 (Cluster 8) (Virfam). 

CDS43 22653 - 22889 237 Hypothetical protein • Hypothetical protein from Enterobacteria phage Mu and Vibrio phage martha 12B12 (synteny). 

CDS44 22892 - 24370 1479 
Tail sheath protein 

gpL 

• Major tail subunit from Enterobacteria phage Mu; and tail sheath protein GpL (VPCG_00011) 

from Vibrio phage martha 12B12 (synteny). 

• Bacteriophage tail sheath protein from S. oneidensis MR-1; and tail sheath protein from 

Escherichia phage D108 (Rast).  

• Sheath protein from Myoviridae of Type1 (Cluster 8) (Virfam). 

CDS45 24386 - 24739 354 
Phage tail tube 

protein 

• Hypothetical protein with possible phage tail tube protein function from Enterobacteria phage 

Mu; and tail tube protein (VPCG_00010) from Vibrio phage martha 12B12 (synteny). 

• Phage tail tube protein from S. oneidensis MR-1 (Rast). 

CDS46 24739 - 25110 372 
Tail assembly protein 

gp41 

• Hypothetical protein with possible phage tail assembly chaperone proteins, E, or 41 or 14 

function from Enterobacteria phage Mu; and extracellular solute-binding protein family 7 

protein (VPCG_0009) from Vibrio phage martha 12B12 (synteny). 

• Hypothetical protein from V. cholerae O1 biovar el tor str. N16961; and Mu-like prophage 

FluMu protein gp41 from S. oneidensis MR-1 (Rast). 

CDS47 25227 - 26903 1677 
Tape measure protein 

gp42 

• Phage tail measure protein (VPCG_0008) from Vibrio phage martha 12B12 (synteny). 

• Similar to Mu-like prophage protein from V. cholerae O1 biovar el tor str. N16961; and Mu-

like prophage FluMu protein gp42 from S. oneidensis MR-1 (Rast). 

CDS48 26915 - 28234 1320 
Phage tail/DNA 

circulation protein N 

• DNA circulation protein (VPCG_00007) from Vibrio phage martha 12B12 (synteny). 

• Phage tail/DNA circulation protein from S. oneidensis MR-1 and Shigella flexneri 

bacteriophage V (Rast). 
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TABLE A.4.2. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS49 28227 - 29321 1095 Baseplate hub protein 

• Low similarity with putative tail protein (phage late control gene D protein, GPD) from 

Enterobacteria phage Mu, and highly similar to P protein (VPCG_00006) from Vibrio phage 

martha 12B12 (synteny). 

• Prophage tail protein (Phage late control gene D protein) from S. oneidensis MR-1 and 

Chromobacterium violaceum ATCC 12472 (Rast). 

CDS50 29322 - 29927 606 
Baseplate puncturing 

device gp45 

• Baseplate assembly protein gp45 from Enterobacteria phage Mu, and hypothetical protein 

(VPCG_00005) from Vibrio phage martha 12B12 (synteny). 

• Prophage baseplate assembly protein V from S. oneidensis MR-1; and phage baseplate from 

Enterobacteria phage Mu (Rast). 

CDS51 29930 - 30382 453 
Baseplate protein 

gp46 

• Hypothetical protein with phage protein gp46 function from Enterobacteria phage Mu, and 

hypothetical protein (VPCG_00004) from Vibrio phage martha 12B12 (synteny). 

• Bacteriophage protein gp46 from S. oneidensis MR-1 (Rast). 

CDS52 30372 - 31439 1068 
Baseplate protein 

gp47 

• Hypothetical protein with phage protein gp47 function from Enterobacteria phage Mu, and 

baseplate J-like protein (VPCG_00003) from Vibrio phage martha 12B12 (synteny). 

• Phage FluMu protein gp47 from S. oneidensis MR-1; and phage protein Enterobacteria phage 

Mu (Rast). 

CDS53 31424 - 32011 588 Tail protein 
• Hypothetical protein from Enterobacteria phage Mu and Vibrio phage martha 12B12 (synteny). 

• Prophage tail protein from S. oneidensis MR-1 (Rast). 

CDS54 32032 - 33918 1887 
Long tail fiber 

protein 
• Prophage long tail protein from S. oneidensis MR-1 (Rast). 

CDS55 33929 - 35935 2007 

5-methylcytosine-

specific restriction 

related 

• Conserved domain protein from Flavobacterium psychrophilum JIP02/86, and hypothetical 

protein from Desulfotalea psychrophila LSv54 (Rast). 
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TABLE A.4. 3. Coding sequences (CDS) identified in the vB_VpaP_VP-3220 phage, including the position of transcription and sequence length of each CDS. The product was 

defined after comparison of automated annotation and genome context comparison. Description details include additional information based on annotation software used (Rast, 

Prokka, Metavir) or genome synteny comparison of the tBLASTx similarity and genome context from the most similar phage genomes (synteny), as well as the protein 

superfamily, defined with Virfam Caudovirales classifier. Synteny details and Virfam results were not used for final annotated flat file. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS01 303 - 1463 1161 Integrase 

• Similar to site-specific recombinase, phage integrase from unclassified Lambda-like viruses 

Stx2-converting phage 1717, and Enterobacteria phage 2851 (Rast). 

• Hypothetical protein (Prokka) 

• Product function similar to phage_cluster_3275_PFAM-Phage_integrase (Metavir). 

CDS02 1870 - 1445 426 
Transcriptional 

regulator 

• XRE family transcriptional regulator (WP_020840939) from V. parahaemolyticus (tBLASTx). 

• Similar to hypothetical protein (Rast, Prokka). 

CDS03 2088 – 1879 210 Hypothetical protein  

CDS04 2699 - 2073 627 
Adenine DNA 

methyltransferase 

• Adenine methylase (VPAG_00059) from Vibrio phage douglas 12A4 (synteny). 

• Similar to adenine DNA methyltransferase, phage-associate from unclassified Lambda-like 

viruses Stx2-converting phage 86; and adenine methylase from Streptococcus pyogenes 

MGAS2096 (Rast). 

• Product function similar to phage_cluster_395_PFAM-MT-A70 (Metavir). 

CDS05 3886 - 2696 1191 Hypothetical protein 
• Product function similar to hypothetical protein VPAG_00058 from Vibrio phage douglas 

12A4, part of phage cluster gi_481019127_ref_YP_007877483.1_ (Metavir). 

CDS06 4710 - 3886 825 Phage protein 

• Similar to phage protein from unclassified Lambda-like viruses Enterobacteria phage cdtI, and 

phage protein from Shigella flexneri bacteriophage V (Rast). 

• Product function similar to phage_cluster_4539_PFAM-DUF2303 (Metavir). 

CDS07 5152 - 4724 429 Hypothetical protein  

CDS08 6111 - 5476 636 Hypothetical protein 
• Similar to hypothetical protein from Vibrio fischeri ES114 (Rast). 

• Product function similar to phage_cluster_667 (Metavir). 

CDS09 6403 - 6717 315 Hypothetical protein  

CDS10 6792 - 7751 960 
Replication initiation 

protein 
• Product function similar to phage_cluster_1092 (Metavir). 

CDS11 7696 - 8181 486 Hypothetical protein 
• Product function similar to hypothetical protein VPGG_00001 from Vibrio phage VBM1, part 

of phage cluster gi_472340789_ref_YP_007674310.1_ (Metavir). 

CDS12 8178 - 8543 366 Hypothetical protein  

CDS13 8606 - 9007 402 Hypothetical protein • Product function similar to hypothetical protein, part of phage_cluster_5210 (Metavir). 
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TABLE A.4.3. Continuation. 

CDS Position of 

transcription 

Nucleotides 

(bp) 

Product Description details 

CDS14 9004 - 9309 306 Phage protein Product function similar to phage_cluster_2433_PFAM-DUF4406 (Rast). 

CDS15 9317 - 9466 150 Hypothetical protein  

CDS16 9469 - 9660 192 Hypothetical protein  

CDS17 9704 - 10513 810 
Phage antirepressor 

protein 

• Phage antirepressor protein from Acidithiobacillus ferrooxidans ATCC 23270 (Rast). 

• Product function similar to Phage_cluster_12_PFAM-Bro-N (Metavir). 

CDS18 10527 - 10799 273 Hypothetical protein  

CDS19 10877 - 11335 459 Hypothetical protein 
• Product function similar to hypothetical protein VPAG_00034 from Vibrio phage douglas 

12A4, part of phage cluster gi_481019103_ref_YP_007877459.1_ (Metavir). 

CDS20 11405 - 11701 297 Hypothetical protein  

CDS21 11944 - 12372 429 Hypothetical protein  

CDS22 12296 - 12556 261 Hypothetical protein  

CDS23 12477 - 12869 393 Hypothetical protein  

CDS24 12880 - 13386 507 Hypothetical protein 
• Product function similar to hypothetical protein VPAG_00017 from Vibrio phage douglas 

12A4, part of phage cluster gi_481019086_ref_YP_007877442.1_ (Metavir). 

CDS25 13373 - 13651 279 Hypothetical protein  

CDS26 13656 - 13865 210 Hypothetical protein  

CDS27 14658 - 14203 456 Hypothetical protein  

CDS28 15850 - 14873 978 Hypothetical protein 
• Product function similar to ORF54 from Lactococcus phage TP901-1, part of phage cluster 

gi_13786585_ref_NP_112717.1__PFAM-FRG (Metavir). 

CDS29 16529 - 15996 534 
Putative DnaJ-related 

protein 
 

CDS30 17153 - 16728 426 Hypothetical protein  

CDS31 17673 - 17314 360 Hypothetical protein  

CDS32 18181 - 17825 357 Hypothetical protein  

CDS33 19065 - 18334 732 Hypothetical protein • Hypothetical protein from Dechloromonas aromatica RCB (Rast). 

CDS34 19997 - 20239 243 Hypothetical protein  

CDS35 20252 - 20587 336 Hypothetical protein • Hypothetical protein from Vibrio sp. MED222 (Rast). 

CDS36 20628 - 21356 729 Hypothetical protein  

CDS37 21381 - 21506 126 Hypothetical protein  

CDS38 21599 - 22021 423 
Phage-related 

hypothetical protein 

• Similar to phage-related hypothetical protein from Aeromonas hydrophila subsp. hydrophila 

ATCC 7966 (Rast). 

• Product similar to Phage_cluster_2683 (Metavir). 
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TABLE A.4.3. Continuation. 

CDS Position of 

transcription 

Nucleotides 

(bp) 

Product Description details 

CDS39 22060 - 22977 918 Hypothetical protein 
• Product function similar to hypothetical protein VPAG_00011 from Vibrio phage douglas 

12A4, part of phage cluster gi_481019080_ref_YP_007877436.1_ (Metavir). 

CDS40 22967 - 24760 1794 
Terminase large 

subunit 

• Terminase large subunit (pMIN27_52) from Enterobacteria phage Min27, and large subunit 

terminase (VPAG_00010) from Vibrio phage douglas 12A4 (synteny). 

• Phage protein from Podoviridae Enterobacteria phage Min27; DNA packaging from 

Bacteriophage 933W; and phage protein from Stx1 converting bacteriophage (Rast). 

• Product function similar to phage_cluster_1744_PFAM-Pfam-B_3639 (Metavir). 

• Terminase (TermL) from Podoviridae of Type3 (Virfam). 

CDS41 24772 - 26877 2106 Portal protein 

• Putative portal proteins (pMIN27_53–54) from Enterobacteria phage Min27, and portal protein 

(VPAG_00009) from Vibrio phage douglas 12A4 (synteny). 

• DNA packaging from Bacteriophage 933W; and phage protein from Bacteriophage VT2-Sa 

(Rast). 

• Product function similar to phage_cluster_2090_PFAM-Pfam-B_7381 (Metavir). 

• Portal protein from Podoviridae of Type3 (Virfam). 

CDS42 26897 - 27409 513 Phage protein • Product function similar to probable DNA polymerase, part of phage_cluster_933 (Metavir). 

CDS43 27414 - 27731 318 Hypothetical protein • Product function similar to phage_cluster_1131_PFAM-Phage_gp49_66 (Metavir). 

CDS44 27758 - 28243 486 Phage protein • Product function similar to Phage_cluster_4449 (Metavir). 

CDS45 28451 - 29563 1113 Phage protein 

• Hypothetical protein (pMIN27_55) from Enterobacteria phage Min27 (synteny). 

• Phage protein from unclassified Lambda-like virus Stx2-converting phage 86, and phage 

protein from Bacteriophage VT2-Sa (Rast). 

• Product function similar to phage_cluster_13759 (Metavir). 

CDS46 29578 - 30801 1224 Major capsid protein 

• Hypothetical protein (pMIN27_56) from Enterobacteria phage Min27 (synteny). 

• Phage protein from unclassified Lambda-like virus Stx2-converting phage 86, and phage 

protein from Bacteriophage 933W (Rast). 

• Product function similar to phage_cluster_7279_PFAM-DUF4043 (Metavir). 

• Major capsid protein (MCP) from Podoviridae of Type3 (Virfam). 

CDS47 30861 - 31307 447 Hypothetical protein  

CDS48 31421 - 31885 465 Phage protein 
• Product function similar to hypothetical protein VPAG_00004 from Vibrio phage douglas 

12A4, part of phage cluster gi_481019073_ref_YP_007877429.1_ (Metavir). 

CDS49 31885 - 32463 579 Adaptor protein 
• Product part of gi_481019072_ref_YP_007877428.1_ (Metavir). 

• Adaptor protein (Ad3) from Podoviridae of Type3 (Virfam). 
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TABLE A.4.3. Continuation. 

CDS Position of 

transcription 

Nucleotides 

(bp) 

Product Description details 

CDS50 32472 - 33143 672 Phage protein 

• Hypothetical protein (pMIN27_60) from Enterobacteria phage Min27 (synteny). 

• Phage protein from unclassified Lambda-like viruses Stx2-converting phage 86, and phage 

protein from Stx2 converting bacteriophage I (Rast). 

• Product function similar to hypothetical protein, part of phage_cluster_1736 (Metavir). 

CDS51 33163 - 37374 4212 
Putative phage tail 

fiber protein 

• Conserved protein of unknown function from Pseudoalteromonas haloplanktis TAC125 (Rast). 

• Product function similar to hypothetical protein VPDG_00121 from Vibrio phage henriette 

12B8, part of phage cluster gi_481019742_ref_YP_007878093.1_ (Metavir). 

CDS52 37371 - 38231 861 Hypothetical protein 
• Product function similar to hypothetical protein VPDG_00120 from Vibrio phage henriette 

12B8, part of phage cluster gi_481019741_ref_YP_007878092.1_ (Metavir). 

CDS53 38353 - 38577 225 Hypothetical protein  

CDS54 38577 - 40187 1611 
Putative head-closure 

phage protein 

• Hypothetical protein (pMIN27_64) from Enterobacteria phage Min27 (synteny). 

• Phage protein from Bacteriophage VT2-Sa, and phage protein from Stx2 converting 

bacteriophage I (Rast). 

• Product function similar to probable scaffolding protein, part of phage_cluster_2027 (Metavir). 

• Head-closure protein (Hc3) from Podoviridae of Type3 (Virfam). 

CDS55 40188 - 42605 2418 

Phage tail fiber 

protein, phage host 

specificity protein J 

• Similar to phage tail fiber protein #Phage host specificity protein J from Stx1 converting 

bacteriophage, and phage tail fiber protein #Phage host specificity protein J from Stx2 

converting bacteriophage I (Rast).  

• Product function similar to phage_cluster_9484_PFAM-DUF3672 (Metavir). 

CDS56 42668 - 43084 417 Hypothetical protein  

CDS57 43077 - 43754 678 Phage protein 

• Similar to phage protein from Stx2 converting bacteriophage II, and phage protein from 

Bacteriophage VT2-Sa (Rast). 

• Product function similar to phage_cluster_9048_PFAM-Pfam-B_9451 (Metavir). 

CDS58 43774 - 44280 507 Phage protein • Product function similar to hypothetical protein, part of phage_cluster_7280 (Metavir). 

CDS59 44290 - 44550 261 Phage protein  

CDS60 44562 - 46313 1752 Hypothetical protein 
• Product function similar to hypothetical protein VPAG_00063 from Vibrio phage douglas 

12A4, part of phage cluster gi_481019132_ref_YP_007877488.1 (Metavir). 
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TABLE A.4.3. Continuation.  

CDS Position of 

transcription 

Nucleotides 

(bp) 

Product Description details 

CDS61 46405 - 56862 10458 Hypothetical protein 

• Hypothetical protein (VPAG_00062) from Vibrio phage douglas 12A4 (synteny). 

• Conserved phage mega protein from Stenotrophomonas maltophilia K279a, and conserved 

phage mega protein from Podoviridae Thalassomonas phage BA3 (Rast). 

• Product function similar to phage_cluster_3084 (Metavir). 

CDS62 56905 - 57456 552 Hypothetical protein  

CDS63 57733 - 57894 162 Hypothetical protein  
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TABLE A.4. 4. Coding sequences (CDS) identified in the vB_VchM_VN-3213 phage, including the position of transcription and sequence length of each CDS. The product was 

defined after comparison of automated annotation and genome context comparison. Description details include additional information based on annotation software used (Rast, 

Prokka, Metavir) or genome synteny comparison of the tBLASTx similarity and genome context from the most similar phage genomes (synteny), as well as the protein 

superfamily, defined with Virfam Caudovirales classifier. Synteny details and Virfam results were not used for final annotated flat file. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS01 230 - 460 231 Hypothetical protein 
• Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to phage cluster PFAM-DUF3423 (Metavir). 

CDS02 435 - 764 330 Hypothetical protein • Hypothetical protein from Vibrio vulnificus CMCP6 (Rast). 

CDS03 866 - 3442 2577 Major capsid protein 
• Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

• Major capsid protein (MCP) from Myoviridae of Type1 (Cluster 6) (Virfam). 

CDS04 3522 - 4115 594 
ATPase component 

of ABC transporter 
• ATPase component of ABC transporter from Vibrio vulnificus CMCP6 (Rast). 

CDS05 4167 - 4694 528 Hypothetical protein 

• Hypothetical protein from Vibrio vulnificus CMCP6; and phage protein from Podoviridae 

Thalassomonas phage BA3 (Rast). 

• Product function similar to phage_cluster_933 (Metavir). 

CDS06 4684 - 4980 297 YaeH protein 
• UPF0325 function (Rast). 

• Chromosome segregation ATPase from Vibrio vulnificus CMCP6 (Rast). 

CDS07 4990 - 5595 606 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

CDS08 5588 - 6082 495 Neck protein 

• Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to hypothetical protein, part of phage_cluster_3539 (Metavir). 

• Neck protein (Ne1) from Myoviridae of Type1 (Cluster 6) (Virfam). 

CDS09 6095 - 6640 546 
Tail completion 

protein 

• Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

• Tail completion protein (Tc) from Myoviridae of Type1 (Cluster 6) (Virfam) 

CDS10 6633 - 7139 507 
Phage P2 baseplate 

assembly protein gpV 
• Similar to phage P2 baseplate assembly protein gpV from Vibrio vulnificus CMCP6 (Rast). 

CDS11 7142 - 7435 294 
10.2 kDa protein in 

segC-Gp6 intergenic 
 

CDS12 7436 - 7783 348 
dTDP-glucose 

pyrophosphorylase 

• Similar to dTDP-glucose pyrophosphorylase from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to probable replicase of phage_cluster_1829 (Metavir). 
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TABLE A.4.4. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS13 7780 - 8646 867 

Phage-related 

baseplate assembly 

protein 

• Baseplate assembly protein gene J (VHMLp32) from Vibrio phage VHML, and gp34, phage 

baseplate assembly protein (BTHphiE202_0034) from Burkholderia phage phiE202 (synteny). 

• Phage-related baseplate assembly protein from Vibrio vulnificus CMCP6, phage-related 

baseplate assembly protein from Stenotrophomonas maltophilia K279a, and phage-related 

baseplate assembly protein from P2-like viruses Burkholderia phage phiE202 (Rast). 

• Product function similar to phage_cluster_1429_PFAM-Baseplate_J (Metavir). 

CDS14 8646 - 9296 651 
Phage P2-related tail 

formation 

• gp33, phage tail protein I (BTHphiE202_0033) from Burkholderia phage phiE202 (synteny). 

• Bacteriophage P2-related tail formation protein from Vibrio vulnificus CMCP6, phage tail fibers 

from Pseudomonas aeruginosa PAO1, and tail protein I from P2-like viruses Mannheimia 

phage phiMHaA1 (Rast). 

•  Product function similar to phage_cluster_1334_PFAM-Tail_P2_I (Metavir). 

CDS15 9293 - 10402 1110 Phage tail fiber 

• Phage-related tail fibers protein Vibrio vulnificus CMCP6, phage tail fibers from K139-like 

phages Vibrio phage K139, and phage tail fibers from bacteriophage K139 (Rast). 

• Product function similar to putative tail fiber protein from Vibrio phage VPUSM 8, part of 

phage cluster gi_557307513_ref_YP_008766855.1 (Metavir). 

CDS16 10402 - 10920 519 Phage tail fiber 

• Phage tail fibers from K139-like phages Vibrio phage kappa, phage tail fibers from 

bacteriophage K139, and phage tail fibers from K139-like phages Vibrio phage K139 (Rast). 

• Product function similar to putative tail fiber assembly protein from Vibrio phage VPUSM 8,  

• part of phage cluster gi_557307514_ref_YP_008766856.1_ (Metavir). 

CDS17 11008 - 12174 1167 Tail sheath protein FI 

• Major tail sheath protein gene FI (VHMLp38) from Vibrio phage VHML, and gp30, phage tail 

sheath protein (BTHphiE202_0030) from Burkholderia phage phiE202 (synteny). 

• Phage tail sheath protein FI from Vibrio vulnificus CMCP6, phage tail sheath monomer from 

Roseobacter sp. GAI101, and ORF39 from Thioalkalivibrio sp. HL-EbGR7 (Rast).  

• Product function similar to phage_cluster_1045_PFAM-Phage_sheath_1 (Metavir). 

• Sheath protein (Sheath) from Myoviridae of Type1 (Cluster 6) (Virfam). 

CDS18 12187 - 12699 513 
Major tail tube 

protein FII 

• Phage tail tube protein FII from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to phage_cluster_1431_PFAM-Phage_tube (Metavir) 

• Major tail protein (MTP) from Myoviridae of Type1 (Cluster 6) (Virfam). 

CDS19 12708 - 13064 357 Hypothetical protein 
• Unknown protein from Vibrio vulnificus CMCP6 (Rast).  

• Product function similar to PFAM-FluMu_gp41 (Metavir). 
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TABLE A.4.4. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS20 13137 - 15278 2142 Tail protein 

• Putative phage tail tape measure protein, TP901 family from Vibrio vulnificus CMCP6, and 

methyl-accepting chemotaxis protein from Pseudomonas aeruginosa PAO1 (Rast). 

• Product function similar to phage tail tape measure protein from Vibrio phage martha 12B12, 

part of phage cluster gi_481019154_ref_YP_007877509.1__PFAM-PhageMin_T (Metavir). 

CDS21 15288 - 15680 393 Phage tail protein U 

• Phage protein U from Vibrio vulnificus CMCP6, and pyocin R2_PP, tail formation protein from 

Synechococcus elongatus PCC 6301 (Rast). 

• Product function similar to phage_cluster_1599_PFAM-Phage_P2_GpU (Metavir). 

CDS22 15683 - 15889 207 Baseplate protein X 
• P2-like prophage tail protein X from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to phage_cluster_1598_PFAM-Phage_tail_X (Metavir). 

CDS23 15880 - 16887 1008 Phage protein D 

• Phage protein D from Vibrio vulnificus CMCP6, phage protein D from Rhodobacter 

sphaeroides 2.4.1, and phage protein D Vibrio harveyi bacteriophage VHML (Rast). 

• Product function similar to phage_cluster_1048_PFAM-Phage_GPD (Metavir). 

CDS24 17123 - 16884 240 Hypothetical protein  

CDS25 18116 - 17160 957 Hypothetical protein  

CDS26 18418 - 19293 876 Hypothetical protein  

CDS27 20697 - 19891 807 
Transcriptional 

regulator 
• Predicted transcriptional regulator from Vibrio vulnificus CMCP6 (Rast). 

CDS28 20832 - 21020 189 Hypothetical protein  

CDS29 21210 - 21689 480 
Phage phi gp55-like 

protein 

• Bacteriophage phi gp55-like protein from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to phage_cluster_14655 (Metavir). 

CDS30 21719 - 22420 702 
Tyrosine 

recombinase XerC 

• Site-specific recombinase XerC from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to phage_cluster_415_PFAM-Phage_integrase (Metavir). 

CDS31 22408 - 22620 213 Hypothetical protein  

CDS32 22635 - 22946 312 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

CDS33 22939 - 23238 300 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

CDS34 23222 - 23527 306 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

CDS35 23493 - 26252 2760 

DNA segregation 

ATPase FtsK/SpoIIIE 

and related 

• conserved hypothetical protein gp11 (BTHphiE202_0011) from Burkholderia phage phiE202 

(synteny). 

• Hypothetical protein from Vibrio vulnificus CMCP6, and phage protein from P2-like viruses 

Ralstonia phage phiRSA1 (Rast). 

• Product function similar to phage_cluster_7128_PFAM-Pfam-B_9177 (Metavir). 
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TABLE A.4.4. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS36 26263 - 26556 294 Phage protein 

• ORF51 (VHMLp49) from Vibrio phage VHML (synteny). 

• Phage protein from Myoviridae Vibrio phage VP882, and phage protein from Vibrio harveyi 

bacteriophage VHML (Rast). 

• Product function similar to phage_cluster_14375 (Metavir). 

CDS37 26553 - 26810 258 Hypothetical protein 

• Hypothetical protein from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to hypothetical protein VPUSM8P11 from Vibrio phage VPUSM 8, 

part of phage cluster gi_557307485_ref_YP_008766827.1 (Metavir). 

CDS38 26797 - 27048 252 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

CDS39 27079 - 27594 516 

Transcriptional 

regulator, PadR 

family 

• Transcriptional regulator, PadR family from Vibrio vulnificus CMCP6 (Rast).  

• Product function similar to putative transcriptional regulator from Vibrio phage 

vB_VpaS_MAR10, part of phage cluster gi_428782101_ref_YP_007111862.1 PFAM-PadR 

(Metavir). 

CDS40 27791 - 27985 195 Hypothetical protein •  

CDS41 28003 - 29169 1167 Integrase 

• Unknown protein and DNA-directed RNA polymerase, beta subunit/140 kD subunit, both from 

Vibrio vulnificus CMCP6, and mobile element protein from Serratia marcescens Db11 (Rast). 

• Product function similar to hypothetical protein, part of phage_cluster_6427 (Metavir) 

CDS42 30016 - 29453 564 
Secretion activating 

protein 

• ORF19 (VHMLp19) from Vibrio phage VHML (synteny). 

• Putative secretion activating protein Vibrio vulnificus CMCP6, secretion protein from Vibrio 

harveyi bacteriophage VHML, and phage protein from Myoviridae Vibrio phage VP882 (Rast). 

• Product function similar to phage_cluster_1376_PFAM-Glyco_hydro_108 (Metavir). 

CDS43 30657 - 31703 1047 
Tyrosine 

recombinase XerD 

• Site-specific recombinase XerD from Vibrio vulnificus CMCP6, and integrase/recombinase 

(XerC/CodV family) from Acidobacteria bacterium Ellin345 (Rast). 

• Product function similar to phage_cluster_415_PFAM-Phage_integrase (Metavir). 

CDS44 31700 - 31963 264 
10 kDa chaperonin 

groS3 

• Heat shock protein 60 family co-chaperone GroEs from Vibrio vulnificus CMCP6 (Rast). 

• Product function similar to PFAM-Cpn10 (Metavir). 

CDS45 32106 - 33251 1146 Hypothetical protein  

CDS46 33656 - 34351 696 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

CDS47 34348 - 35313 966 Hypothetical protein  

CDS48 35306 - 36904 1599 Hypothetical protein • Unknown protein from Vibrio vulnificus CMCP6 (Rast). 
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TABLE A.4.4. Continuation. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 
Product Description details 

CDS49 36901 - 38280 1380 Portal protein 
• Unknown protein from Vibrio vulnificus CMCP6 (Rast). 

• Portal protein (Portal) from Myoviridae of Type1 (Cluster 6) (Virfam). 

CDS50 38286 - 39374 1089 Hypothetical protein 
• Unknown protein from Vibrio vulnificus CMCP6 (Rast).  

• Product function similar to hypothetical protein, part of phage_cluster_4063 (Metavir). 

CDS51 39465 - 39656 192 Hypothetical protein  

CDS52 39748 - 40416 669 hypothetical protein  

CDS53 40825 - 40451 375 hypothetical protein  
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A.5. SUPPLEMENT TO CHAPTER 4 

 

FIGURE A.5.1. Prophage induction screening of V. parahaemolyticus VN-3218. Mitomycin C (+MitC, 

red) and MB-50% broth (control C-, blue) was added to the culture at optical density 0.1-0.2 (600 nm) 

(MitC induction, grey arrow) and incubated at 37 °C and shaking. The induction test (+MitC) was 

performed in eight replicates, and the negative control (C-) was performed in duplicate. The error bar 

indicates the standard error of the mean from replicate experiments. 
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FIGURE A.5.2. Incomplete prophages sequences from V. parahaemolyticus VN-3218. The incomplete prophages VP-3218_C38 (A) and VP-3218_C77 (B) were identified 

from the to the assembled contig 38 and 77, respectively. Sequences were assembled with SPAdes, identified with PHASTER and annotated with Prokka (section 4.2.3). 

Predicted hypothetical proteins are marked in grey, automatically annotated proteins are marked in pink with their corresponding function. 
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FIGURE A.5.3. Maximum Likelihood tree of zot-encoding prophages. Unrooted phylogenetic tree 

constructed from 702 zot-like toxin amino acid sequences from and the CDS08 encoding sequence of 

vB_VpaI_VP-3218, using the maximum likelihood algorithm with 1,000 bootstrap replicates. The tree 

shows the most similar sequences corresponding to V. parahaemolitycus B4 cluster and Vibrio phages. 

Numbers at the nodes represent percent bootstrap support where unlabeled nodes had bootstraps of  

> 50 %. 



 

153 

 

TABLE A.5.1. Coding sequences (CDS) identified in the vB_VpaI_VP-3218 phage and their description details. 

CDS 
Position of 

transcription 

Nucleotides 

(bp) 

Product 

(gene abbr., 

Figure 4.2A) 

Description details 

Analogous protein  

(based on genome position) 
Rast/Seed 

VirSorter cluster 

(Metavir+MAG) 

CDS01 1 - 2031 2031 
Replication gene A 

protein (repA) 

Analogous to replication protein 

(orf698) from VFJ. 

Similar to RstA-like protein from 

V. cholerae, RstA-like protein 

Vibrio virus CTXphi; and putative 

replication protein from 

Photobacterium profundum 

3TCK. 

 

CDS02 2109 - 2420 312 

Putative replication 

gene B protein 

(repB) 

Analogous to ssDNA-binding V 

protein (orf104) from VFJ. 
 

Product function 

homologous to 

DNA replication 

protein DnaC, part 

of phage_cluster_ 

1359_PFAM-

Phage_GPA. 

CDS03 2431 - 2550 120 
Hypothetical 

protein 
   

CDS04 2551 - 2667 117 
Putative minor 

capsid protein (gIX) 

Analogous to minor coat IX 

protein (orf38-2) from VFJ. 
  

CDS05 2691 - 2954 264 
Putative major coat 

protein (gVIII) 
 

Similar to phage major capsid 

protein from Fs-2; and phage 

major capsid protein of P. 

profundum 3TCK. 

 

CDS06 3032 - 4657 1626 

Putative receptor-

binding protein 

(gIII) 

Analogous to attachment III 

protein (orf499) from VFJ. 

Similar to phage protein from 

phage VfO3K6. 
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TABLE A.5.1. Continuation. 

CDS07 4657 - 5016 360 
Putative minor coat 

protein (gVI) 

Analogous to minor coat VI 

protein (orf124) from VFJ. 

Similar to putative capsid protein 

of P. profundum 3TCK; and 

phage minor capsid protein from 

Fs-2. 

Product function 

homologous to 

minor coat VI 

protein from VFJ, 

part of phage 

cluster 

gi_514361039_ref_ 

YP_008130280.1 

CDS08 5016 - 6089 1074 

Phage 

morphogenesis 

protein (gI) 

Analogous to I protein (orf361) 

from VFJ, with possibly zot 

toxin function. 

Similar to phage maturase 

Inoviridae G1p from Fs-2; and 

gene I protein from P. profundum 

3TCK 

Product function 

homologous to 

Phage_cluster_4966

_PFAM-Zot. 

CDS09 6107 - 7459 1353 

Phage 

morphogenesis 

protein (gIV) 

Analogous to IV protein 

(orf442) from VFJ. 

Type II secretion pathway protein 

D, virion export protein. Similar 

to Gene IV protein from P. 

profundum 3TCK; and phage 

assembly protein from Fs-2. 

 

CDS10 8135 - 7497 639 
Hypothetical 

protein 

Contains restriction 

endonuclease-like superfamily 

domain. 

Similar to hypothetical protein 

from Nitratiruptor sp. SB155-2. 
 

CDS11 8325 - 9428 1104 

putative ATP/GTP 

phosphatase  

(ATP/GTP phos) 

   

CDS12 9431 - 10081 651 
Hypothetical 

protein 
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TABLE A.5.1. Continuation. 

CDS13 10381 - 10109 273 
Transcriptional 

regulator (regA) 
 

Bacteriophage f237 ORF9. 

Similar to phage protein from 

phage VfO3K6, and 

transcriptional regulator of phage 

VEJphi 

Product 

homologous to 

hypothetical protein 

of 

Phage_cluster_7477 

CDS14 10611 - 10450 162 
Transcriptional 

regulator (regB) 
 

Similar to bacteriophage f237 

ORF10 from P. profundum 

3TCK; and transcriptional 

regulator of phage VGJphi 

Product 

homologous to 

Phage_cluster_5834 
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