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Abstract. We investigated light, water velocity, and CO2 as drivers of primary production in Mediterranean seagrass (Posidonia 

oceanica) meadows and neighboring bare sands using the aquatic eddy covariance technique. Study locations included an open-10 

water meadow and a nearshore meadow, the nearshore meadow being exposed to greater hydrodynamic exchange. A third meadow 

was located at a CO2 vent. We found that, despite the oligotrophic environment, the meadows had a remarkably high metabolic 

activity, up to 20 times higher than the surrounding sands. They were strongly autotrophic, with net production half of gross 

primary production. Thus, P. oceanica meadows are oases of productivity in an unproductive environment. Secondly, we found 

that turbulent oxygen fluxes above the meadow can be significantly higher in the afternoon than in the morning at the same light 15 

levels. This hysteresis can be explained by the replenishment of nighttime-depleted oxygen within the meadow during the morning. 

Oxygen depletion and replenishment within the meadow do not contribute to turbulent O2 flux. The hysteresis disappeared when 

fluxes were corrected for the O2 storage within the meadow and, consequently, accurate metabolic rate measurements require 

measurements of meadow oxygen content. We further argue that oxygen-depleted waters in the meadow provide a source of CO2 

and inorganic nutrients for fixation, especially in the morning. Contrary to expectation, meadow metabolic activity at the CO2 vent 20 

was lower than at the other sites, with negligible net primary production. 

1  Introduction 

Seagrass meadows retain suspended sediments (Fonseca and Fisher, 1986), provide habitat for fish and invertebrates (Heck and 

Wetstone, 1977; Jenkins and Wheatley, 1998), and supplement food webs in neighboring environments (Fry and Parker, 1979). 

Seagrass meadows are highly productive (Zieman and Wetzel, 1980; Bay 1984; Frankignoulle and Bouquegneau, 1987) with net 25 

production commonly exceeding 1 kg dry weight m-2 y-1 (Duarte and Chiscano, 1999). Seagrass productivity for a given meadow 

is determined by the balance of photosynthesis and respiration. These are driven by irradiance (Dennison and Alberte, 1982; Peralta 

et al., 2002; Ralph et al., 2007) nutrient availability (Short, 1987; Powell et al., 1989; Udy and Dennison, 1987), and temperature 

(Bulthuis, 1987; Alcoverro et al., 1995; Collier and Waycott, 2014). These responses are modified by water velocity (Fonseca and 

Kenworthy, 1987; Thomas et al., 2000; Peralta et al., 2006), and CO2 availability (Koch et al., 1994; Zimmerman et al., 1997). A 30 

challenge of seagrass research is quantifying the response to these drivers in seagrass meadows. The attenuation of light and flow 

in meadows creates steep gradients in irradiance (Dalla Via et al., 1998; Enríquez and Pantoja-Reyes, 2005), turbulent mixing 

(Ackerman and Okubo, 1993; Koch and Gust, 1999), and the concentrations of biologically-active solutes (Frankignoulle and 

Distéche, 1984; Semesi et al., 2009). These conditions may alter the response of seagrass meadows to drivers, leading to different 

observations than in seagrass incubations. 35 
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Self-shading in dense meadows may enhance the importance of irradiance as a driver of primary production. For example, 

in Zostera marina leaf incubations, saturating light intensities occur at photon flux densities of 100 – 230 µmol photon m-2 s-1 

(Drew, 1979; Dennison and Alberte, 1985). Binzer et al., (2006), however, found that measurements on isolated leaves give a false 

impression of light saturation of canopy photosynthesis. They consistently observed light-limitation in canopies, even at peak 

summertime irradiances. As an explanation, the high degree of self-shading in a canopy can create an environment in which a part 40 

of the leaves is almost never light saturated (Sand-Jensen et al., 2007). Indeed, in mature Zostera marina meadows in summer, in 

situ light conditions do not typically saturate primary production (Rheuban et al., 2014a). Instead, seagrass meadow photosynthetic 

production increased linearly to photon flux densities of over 1000 µmol photons m-2 s-1.   

Meadow attenuation of flow enhances the importance of CO2 as a driver of primary production. At current surface ocean 

pH at 20°C, CO2(aq) represents 0.6% (13 µmol L-1) of dissolved inorganic carbon in seawater. Carbon dioxide is the preferred 45 

substrate for Rubisco, the enzyme responsible for carbon fixation (Falkowski and Raven, 1997). Seagrasses maintain productivity 

in spite of the low availability of CO2 with an H+-driven mechanism for HCO3
- uptake (Beer and Rehnberg, 1997). Diffusive 

boundary layers on leaf surfaces commonly limit photosynthetic production due to CO2 depletion and O2 enrichment at the leaf 

surface (Raven et al., 1985; Koch, 1994; Mass et al., 2010; Enríquez and Rodríguez-Román 2006). Seagrass meadows, by 

attenuating flow, may enhance this limitation. Within seagrass meadows, pH may rise and fall by 0.2 pH units or more due to 50 

photosynthesis and respiration (Frankignoulle and Bouquegneau, 1987; Hendriks et al., 2014). During photosynthetic production, 

as pH increases from 7.9 to 8.1, CO2(aq) concentrations decrease by 70% (Lewis et al., 1998). This pH increase diminished seagrass 

photosynthesis in incubations (Invers et al., 2001; Palacios and Zimmerman, 2007). In productive bays, seagrass photosynthesis 

may be reduced by a third due to photorespiration caused by enhanced O2 and depleted CO2 (Buapet et al., 2013).  

Forecasts of ocean acidification for the year 2100 are for a drop of up to 0.4 pH units in the surface ocean (Orr et al., 55 

2005), thus tripling the concentrations of H+ and CO2. The reduction in pH will alter seagrass ecosystems. Losses of calcifying 

epiphytes are likely (Martin et al., 2008; Kroeker et al., 2013), and these are a significant contributor to meadow primary production 

(Libes, 1986). The effects of acidification will occur gradually and differ by species, life stage, and environmental factors including 

inter-species interactions (Andersson et al., 2011). CO2 vents serve as a natural laboratory for investigating the effect of CO2 

enrichment. Seagrass at CO2 vents have higher densities, biomass, and greater electron transport rates (Hall-Spencer et al., 2008; 60 

Fabricius et al., 2011; Takahashi et al., 2015). They may also be adversely affected by CO2 vent eruption (Vizzini et al., 2010). 

Further studies of seagrass productivity at CO2 vents is warranted.  

In situ eddy covariance (Berg et al., 2003) or open water techniques (Odum, 1956; Howarth and Michaels, 2000) can be 

used to continuously quantify the productivity of seagrass under the complex conditions that occur within meadows. Recent studies 

include eddy covariance flux measurements over meadows of Zostera marina (Hume et al., 2011; Rheuban et al., 2014a; Rheuban 65 

et al., 2014b), Thalassia testudinum (Long et al., 2015), and Zostera noltii (Lee et al., 2017). Open water measurements of P. 

oceanica productivity confirm the net autotrophy of the ecosystem and reveal a surprising, seven-fold increase in net production 

due to removal of sloughed seagrass leaves by storms (Champenois and Borges, 2012). Further measurements are required to 

investigate the interactions of drivers over diel time-scales.  

To address these issues, we performed field measurements of the metabolic performance of Posidonia oceanica meadows 70 

in the Mediterranean Sea as a function of light intensity, flow and CO2 supply. In summer, surface waters of the Mediterranean are 

highly oligotrophic (Marty et al., 2002). Posidonia oceanica develops dense, productive meadows (Ott, 1980; Bay, 1984). We 

used the non-invasive eddy covariance technique to quantify net O2 fluxes above the seagrass meadows, thus integrating over the 

complete seagrass ecosystems. Diurnal changes in in-situ primary production were examined over 3 different Posidonia oceanica 

meadows in the NW Mediterranean Sea. To account for the effects of hydrologic exchange, reference meadows were included at 75 
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the same depths in open-water and nearshore environments. The nearshore meadow was exposed to greater water velocities and 

waves. Waves particularly enhance hydrodynamic mixing within seagrass canopies (Koch and Gust 1999; Hansen and Reidenbach 

2017). A meadow at a CO2 vent was included to test the hypothesis that an enhanced CO2 supply enhances seagrass primary 

production. We also compared seagrass meadow productivity to that of surrounding sands.  

2  Methods 80 

2.1  Study sites 

Our primary research site was the island of Elba in the Tuscan Archipelago. The island is surrounded by Posidonia oceanica beds 

from depths of 5 m to 40 m.  O2 fluxes were determined over an open-water seagrass meadow in 2016 (15 to 18 May) and a 

nearshore meadow in 2017 (20 – 24 May). The open-water meadow (42.7421 N, 10.1183 E) was located 300 m from the southwest 

corner of the island, whereas the nearshore meadow (42.8087 N, 10.1472 E) was only 60 m off the north shore. Both meadows 85 

were at 13 m depth and known to persist for over 20 years. Percent areal coverage, estimated from plan-view underwater images, 

was high (95-99%) at both meadows (Table 1). Water velocities measured 0.3 m above the open-water meadow (mean of 1.2 cm 

s-1) were lower than at the nearshore meadow (mean of 2.6 cm s-1; Table 1). Oxygen fluxes were also measured over bare sands

adjacent to the nearshore meadow. 

A second study site was 100 m off Basiluzzo islet (38.6625 N, 15.1189 E) near Panarea Island in the Aeolian Archipelago. 90 

We measured O2 fluxes over a P. oceanica meadow (13 m depth) and sediments (17 m depth), where CO2 gas bubbles rise through 

the seafloor over several 100 m2, enriching surface waters with DIC (Caramanna et al., 2011). Meadow height was half that of the 

Elba meadows (Table 1). The vent introduced CO2 as well as reduced substances to the water column. This resulted in slightly 

elevated DIC (2294 ± 34 versus 2220 ± 21 µmol L-1) and N-nutrients (NO3
-, NO2

- and NH4
+; 3.2 ± 3.1 µmol L-1 versus 0.73 ± 1.0 

µmol L-1) at Panarea compared to Elba. At Elba and Panarea phosphates were below detection (0.027 µmol L-1). Water 95 

temperatures at all sites were also similar (17 – 18 °C). 

2.2  Flux measurements 

The eddy covariance technique utilizes high frequency measurements of solute concentration and water velocity at a 

single point above the habitat of interest to quantify solute fluxes over 10 m2 footprint located directly upstream (Berg et al., 2003; 

Berg et al., 2007). Water velocity was determined at 16 Hz with an acoustic Doppler velocimeter (Nortek). Oxygen concentration 100 

was determined at 5 Hz with high speed (t90 = 0.25s) micro-optode sensors of 50 or 430 µm in diameter (PyroScience). Their 

illumination, and measurement of their fluorescence, were managed by an oxygen meter (PyroScience) in a submersible housing. 

Optodes have been successfully used for eddy covariance measurements previously (Chipman et al., 2012; Berg et al., 2016) and 

they lack stirring sensitivity (Holtappels et al., 2015). Optodes were calibrated in air-saturated and anoxic water before and after 

each deployment. The instruments were mounted to a tripod frame with narrow legs (4 cm in diameter) spaced 1.2 m apart. The 105 

sensors were aligned at a 40-degree angle to the velocimeter, and the tip located 1 cm from the velocimeter measuring volume. 

The legs of the frame were adjusted to allow for measurements at a height of 0.25 m over sands and 0.3 m above the top of seagrass 

canopies.  

Multi-parameter probes that measured O2 concentration and pH (RBR) were mounted near the top and bottom of the 

instrument frame. Probes were used to record the vertical O2 concentration gradient in order to identify oxic stratification, which 110 

can cause spurious O2 fluxes (Holtappels et al., 2013). The pH sensors were calibrated to NBS buffers. Observed pH values were 

converted to total scale by subtracting 0.13 pH units, according to Zeebe and Wolf-Gladrow (2001). Irradiance was quantified with 
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HOBO Pendant sensors (Onset Computer Corp.). Because these luminance sensors are sensitive from 300 – 1200 nm, we cross-

calibrated them to quantify the photosynthetically active radiation (PAR, 400-700 nm) using a LI-192 sensor (Li-COR) placed at 

the same location underwater (Long et al., 2012). The instrument frame was deployed by divers at the research sites and was 115 

aligned to minimize tilt. The time series of mean O2 concentration variation recorded by the fast optodes reproduced those recorded 

by the O2 logger. Thus, fluctuations recorded by the fast optode were accurate. 

2.3  Flux calculations 

The velocity and oxygen time series, recorded at 16 Hz by the ADV, were downsampled to the optode sampling frequency of 5 

Hz and were processed similarly to the procedure described by Holtappels et al., (2013). The tilt of the ADV was corrected using 120 

the planar fit method by Wilczak et al., (2001). A running average with a window of 300 s was subtracted from the time series to 

calculate the fluctuating vertical velocity (𝑤′) and O2 concentration (𝐶’). Subsequently, the time series of 𝑤′ and 𝐶’ were cross-

correlated for 1-hour bursts allowing stepwise time shifts to a maximum 4 s (McGinnis et al., 2008). The median time shift was 

0.8 s. The time shift with the highest cross correlation coefficient was used to calculate the flux. The mean turbulent O2 flux in the 

vertical direction was calculated following Eq. (1):  125 

𝐽𝑤 = 𝑤′𝐶′̅̅ ̅̅ ̅̅ ,  (1) 

where the overbar indicates averaging. Instantaneous fluxes (𝑤’𝐶’) were added over time to calculate cumulative fluxes. Particle 

collision with the tip of O2 minisensors can cause erratic fluxes (e.g., Lorrai et al., 2010). We examined the dataset for spikes in 

the O2 data that co-occurred with abrupt changes in calculated fluxes. Few hour-long averaging intervals (4%) were affected and 

they were excluded from further analyses. 130 

In a further step, we accounted for oxygen storage in the water layer between the measurement volume of the eddy 

covariance system and the sediment surface. The diurnal variations in mean O2 concentration within this layer do not contribute to 

oxygen fluxes above the meadow but are nevertheless caused by photosynthesis and respiration. In a first approximation, to account 

for this O2 storage and quantify biotic production, we assumed that the O2 concentrations at the measurement volume represented 

the O2 concentrations in the entire bottom layer. This assumes that there was no vertical oxygen gradient in the bottom layer. We 135 

made this correction according to Rheuban et al., (2014b) following Eq. (2): 

𝑂2 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝐸𝐶𝐹𝑙𝑢𝑥 + ℎ
𝛥𝐶

𝛥𝑡
  (2)  

where EC Flux is the eddy covariance flux, h is the eddy covariance measuring height above the bed, and 
ΔC

Δ𝑡
 is the change in the 

mean O2 concentration at the measurement volume over time for each 1h burst. From these corrected fluxes we infer benthic O2 

production and consumption. Negative production represents O2 consumption.  140 

The corrected O2 fluxes, quantified over hourly intervals, were grouped into light and dark (<1% irradiance). These were 

used to calculate respiration (R), gross primary production (GPP), and net ecosystem metabolism (NEM) in an approach similar 

to Hume et al., (2011), and reported here in mmol O2 m-2 d-1. To accommodate datasets that lacked complete daytime or nighttime 

observations, metabolic fluxes were calculated following Eqs. (3), (4), and (5): 

𝑅 = |𝐹𝑙𝑢𝑥𝑑𝑎𝑟𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | (3) 145 
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𝐺𝑃𝑃 = (𝐹𝑙𝑢𝑥𝑙𝑖𝑔ℎ𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑅)

ℎ𝑙𝑖𝑔ℎ𝑡

ℎ𝑑𝑎𝑦
  (4) 

𝑁𝐸𝑀 = (𝐺𝑃𝑃 − 𝑅) (5) 

where Fluxdark is a nighttime flux of 1 h duration, Fluxlight is a daytime flux of 1 h duration, and hlight and hday are the durations of 

the illuminated (14 h) and total length (24 h) of a diurnal cycle. To examine the photosynthetic response of seagrass meadows to 

their changing light environment, photosynthesis-irradiance relationships were fit with a hyperbolic tangent function (Jassby and 150 

Platt, 1976) which was modified to account for respiration according to Rheuban et al., (2014a). The fit was calculated following 

Eq. (6): 

𝐹𝑙𝑢𝑥 = 𝑃𝑚𝑎𝑥𝑡𝑎𝑛ℎ
𝐼

𝐼𝑘
− 𝑅𝐼  (6) 

where 𝑃𝑚𝑎𝑥  is the maximum photosynthetic rate, 𝐼𝑘 is the light-saturation parameter, and 𝑅𝐼 is respiration. The light-saturation 

parameter marks an optimal irradiance above which the quantum yield of photosynthesis substantially declines and photoinhibition 155 

may occur (Talling 1957; Falkowski and Raven 1997). The irradiance at which net oxygen production occurs is the irradiance 

compensation point (𝐼𝐶).  

2.4  Additional measurements 

Supporting measurements were made of nutrient concentrations and the carbonate chemistry in the water column at each of the 

study sites. Water samples, collected 1 m above the bed by divers, were filtered over 0.2 µM and then frozen until analysis. Nutrient 160 

concentrations (NH4
+, NO3

-, PO4
+) were determined with a QuAAttro nutrient analyzer according to the methods employed by 

Lichtschlag et al., (2015). Samples for both alkalinity and DIC were collected by divers at the beginning and end of each 

deployment. Alkalinity samples were kept cool and analyzed by titration on the day of their collection. Samples for DIC analysis 

were preserved with a saturated mercuric chloride solution (1% by volume), then quantified by flow injection (Hall and Aller, 

1992). Time-varying CO2(aq) concentrations at the CO2 vent were calculated assuming a stable alkalinity and time-varying pH 165 

supplied as inputs to the software package CO2SYS (Lewis et al., 1998). Diurnal alkalinity variation caused by seagrass 

photosynthesis and respiration had a negligible effect on these calculations.  

3  Results 

3.1  Oxygen storage in the open-water meadow 

Diel cycles of oxygen fluxes were measured over seagrass meadows (Figs. 1, 3, 4, S1). When plotting eddy covariance fluxes 170 

versus light intensities in order to obtain photosynthesis-irradiance curves we observed a hysteresis, namely oxygen fluxes were 

lower in the morning than in the afternoon at the same light intensities (Fig. 2a). For example, O2 flux at 18:00 h was 175 mmol 

m-2 d-1 while at the same light intensity in the morning (08:00) it was close to zero. The correction for storage below the 

measurement volume (Eq. 2) was insufficient to fully reduce this hysteresis. Storage of O2 within P. oceanica gas-bearing tissues 

could also not explain this pattern. Our laboratory measurements showed that O2 production by the leaves ceased within a few 175 

minutes of the cessation of light (data not shown). Instead, we found that the hysteresis in O2 flux at the open-water meadow was 

caused by O2 storage in the water column within the meadow. The concentration of dissolved O2 within the meadow, at 0.2 m 

above the bed, differed substantially from the concentration in the eddy covariance measuring volume at 0.3 m above the meadow 
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(Fig. 1). Thus, there is a mass transfer resistance between the water in- and above the meadow that effectively separates the water 

in the meadow from the seawater.  180 

To obtain metabolic rates from measured fluxes, an additional calculation had to be performed to correct for oxygen 

storage within the open-water meadow. We assumed a linear O2 concentration profile between the measurement volume and an 

O2 logger placed 0.2 m above the bed. Storage was calculated according Eq. 2, but now from the change over time in the estimated 

mean O2 concentration below the eddy covariance measurement volume (Fig. S1). Respiration and GPP, calculated from the thus 

corrected O2 fluxes (Eqns. 3 & 4), were 1.5 and 1.2 times the measured above-meadow fluxes, respectively. The photosynthesis 185 

irradiance curves of corrected fluxes showed a smaller, reversed hysteresis (Fig. 2b). After the correction, the photosynthetic 

production in the early morning was greater than production in the evening at the same light levels, consistent with the diel 

photosynthetic production of a Zostera marina meadow (Rheuban et al., 2014b). This additional correction for the retention of 

water within the meadow was not required at the other seagrass meadows where dissolved O2 concentrations in overlying water 

matched concentrations within the meadow during the day and at night (data not shown).   190 

3.2  Primary production and respiration at Elba 

O2 production and consumption, inferred from storage-corrected eddy covariance O2 fluxes, followed similar diurnal patterns at 

both meadows in Elba (Fig. 3). Daytime O2 production exceeded nighttime O2 consumption at both meadows on both days. As a 

result, both meadows were net autotrophic (Table 2). Peak GPP was greater in the nearshore meadow, but nighttime O2 uptake was 

similar between meadows. The mean NEM of the nearshore meadow exceeded that of the open-water meadow (Table 2). 195 

Downwelling PAR was similar in the meadows at Elba and slightly greater over nearshore sands (Fig. 3). The bare sands at Elba 

were also net autotrophic. Bare sand GPP exceeded R by 40%. However, GPP was 10- to 17-fold smaller than meadow GPP (Table 

2). As a result, the NEM of seagrass meadows was up to 20-fold greater than the NEM of sands.     

3.3  Primary production and respiration at a CO2 vent 

At the CO2 vent at the island of Panarea, gas bubbles emerged from sediments at both the seagrass meadow and at the bare sand 200 

sites. The rate of gaseous CO2 release increased at low tide, and this increase coincided with a decrease in bottom water pH (Fig. 

S2). These observations show that gas efflux was affected by tidally-driven expansion of gas reservoirs in the sediments. The pH 

fell from 8.05 at high tide to a low of 7.55 at low tide, corresponding to a 3.7-fold increase in CO2(aq) concentration (Lewis et al., 

1998). Thus, CO2 was elevated by seepage. Oxygen production followed the same diurnal patterns as the Elba meadows, with 

daytime production and nighttime uptake (Fig. 4). Oxygen production by the meadow did not closely follow irradiance. 205 

Surprisingly, the GPP of the CO2 vent meadow was less than half of the Elba meadows (Table 2). Mean R at the CO2 vent meadow, 

however, was similar to the lowest R at Elba. As a result, the meadow was autotrophic but with an NEM five- to ten-fold smaller 

than the NEM of the Elba meadows. Over neighboring bare sands, the pH of bottom waters dropped from 8.05 at high tide to 7.75 

at low tide, corresponding to a doubling of the CO2(aq) concentration. The GPP of the CO2 vent sands was similar to the GPP of 

sands at Elba (Table 2). Respiration of the CO2 vent sands exceeded R in bare sands at Elba. The sands were net autotrophic, but 210 

with a small NEM.  

3.4  Flux-irradiance curves 

In all meadows, the diel oxygen flux was a non-linear function of irradiance (Fig. 5), resembling a saturation curve. In none of the 

meadows 𝑃𝑚𝑎𝑥  was reached. The light compensation point (𝐼𝐶 ) varied between 6 and 17% of the peak irradiance. The light-

6

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-199
Manuscript under review for journal Biogeosciences
Discussion started: 27 April 2018
c© Author(s) 2018. CC BY 4.0 License.



saturation parameter (𝐼𝐾) varied was one-third of peak irradiance in the Elba meadows and two-thirds of peak irradiance in the 215 

CO2 vent meadow. 𝑃𝑚𝑎𝑥  was greatest at the nearshore meadow, followed by the open-water and CO2 vent meadows.

4  Discussion 

4.1  Seagrasses versus sands 

The seagrass meadows at Elba and Panarea were 10-20 times as productive as surrounding sands. This is consistent with the high 

productivity of P. oceanica individuals determined by laboratory-, chamber-, leaf tagging-, or biomass measurements (Zieman, 220 

1974; Ott, 1980; Drew, 1979; Libes, 1986; Pergent et al., 1994), thus emphasizing the importance of seagrass for CO2 sequestration 

(Fourqurean et al., 2012). Implicit in these prior observations is the high productivity of seagrasses relative to surrounding sands, 

however, direct comparisons have rarely been made. Previous comparisons were made with benthic chambers, where sand oxygen 

fluxes were close to the detection limit, and seagrass oxygen fluxes were of the same order as our quantifications (Holmer et al., 

2004; Barrón et al., 2006a). Using DIC mass balance, Gazeau et al., (2005) found smaller primary production than we observed in 225 

seagrass and negligible primary production in bare sands.  

Meadow productivity in this study was consistent with other open water measurements of P. oceanica seagrass meadow 

productivity. Respiration in P. oceanica meadows is much lower than primary production, thus the meadows are highly autotrophic 

(Champenois and Borges, 2012). Therefore, the decomposition of leaf litter within the ecosystem was substantially smaller than 

production. Prior studies utilizing the eddy covariance technique in summer identified greatrer similarity between respiration and 230 

primary production in Zostera marina meadows in the mid-Atlantic Bight (Rheuban et al., 2014a) and in Thalassia testudinum 

meadows in Florida Bay, USA (Long et al., 2015). In those studies NEM was one-fifth of GPP. Thus, P. oceanica meadows may 

function differently in the highly oligotrophic Mediterranean than Zostera and Thalassia meadows in a more eutrophic sea. It is of 

interest why seagrass respiration in the Mediterranean is so much lower than in meadows from Florida or the mid-Atlantic Bight. 

Nutrient limitation is an explanation. Nitrogen in pore water can limit the primary productivity of P. oceanica meadows in summer 235 

(Alcoverro et al., 1997). However, heterotrophic activity is also limited by nutrient availability. The addition of inorganic nitrogen 

to P. oceanica meadow pore water enhances benthic respiration and diminishes the amount of stored organic carbon (Lopez et al., 

1998). Because of this, the oligotrophic environment may contribute to the high carbon storage in P. oceanica meadows. 

In addition to the high productivity of meadows, we found that sands from the Mediterranean are unusually unproductive. 

Indeed, R in Elba sands was comparable to that of the continental shelf of the South Atlantic Bight (Jahnke et al., 2000), and among 240 

the lowest reported for coastal systems (Huettel et al., 2014). Pelagic primary production is limited in the oligotrophic 

Mediterranean. Thus, there is little organic carbon to stimulate respiration in this environment. Organic matter concentrations in 

Mediterranean waters become so low in the summer that many benthic suspension feeders undergo dormancy to avoid starvation 

(Coma and Ribes, 2003).  

We may understand the strong differences in activity between seagrasses and sands in oligotrophic waters in the 245 

acquisition and retention of nutrients by seagrass meadows. P. oceanica take up nutrients through roots and leaves primarily in 

winter and early spring, when nutrients are more abundant (Lepoint et al., 2002). Nutrients are reallocated before leaves are shed 

(Alcoverro et al., 2000). In acquiring nutrients from surrounding waters, the filtering of particles by seagrasses or their epiphytes 

may be similar to coral reefs (e.g., Rasheed et al., 2002). Seagrasses collect particles passively, through flow-attenuation and 

particle deposition (Gacia et al., 1999; Gacia and Duarte, 2001). Seagrass also collect particles actively. Macro- and epifaunal 250 

suspension feeders (e.g., hydroids; Fig. S3) enhance particle filtering by orders of magnitude over surrounding sands (Lemmens 

et al, 1996). Epifauna biomass on P. oceanica is one-third of total epiphytic biomass (Lepoint, 1999).  Mineralization of captured 
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particles in seagrass sediment supplies nutrients for seagrass growth (Evrard et al., 2005; Barrón et al., 2006b). Their mineralization 

by epiphytes may be an additional source of nutrients for seagrass growth, as dissolved nutrients can be retained within the waters 

of seagrass meadows (Gobert et al., 2002).   255 

4.2  Meadow productivity at the CO2 vent 

Despite the seemingly favorable dissolved CO2 availability and the elevated inorganic nitrogen in the water column at Panarea, 

seagrasses at the vents did not seem to prosper. So, our hypothesis that seagrass growth would be stimulated at the CO2 vent was 

incorrect. These results contrast with the increased productivity of seagrass at elevated CO2 and reduced pH (Beer and Koch, 1996; 

Invers et al., 2001; Palacios and Zimmerman, 2007). Nevertheless, P. oceanica is also not stimulated under comparable, 260 

intermediate, ocean acidification scenarios at CO2 vents (Hall-Spencer et al., 2008; Cox et al., 2015; Cox et al., 2016). Thalassia 

testudinum is also not stimulated by intermediate CO2 enrichment in mesocosms (Campbell and Fourqurean, 2013). However, 

seagrass production at the CO2 vent in this study was substantially lower than the productivity of reference meadows. GPP was 

40% and R was 70% of that at Elba, and NEM was negligible. The small meadow height (half that of Elba) may contribute to the 

lower GPP and R, but the negligible NEM suggests that this meadow was not storing organic carbon. A concern for seagrass 265 

meadows exposed to high CO2 levels is the loss of calcifiers due to low pH (Martin and Gattuso, 2009; Donnarumma et al., 2014). 

Calcifiers may be a significant component of meadow productivity. Calcification offsets photosynthetic CO2 uptake in seagrass 

meadows by half (Barrón et al., 2006a). However, the community of epibionts at the CO2 vent at Basiluzzo was intact and diverse 

(Guilini et al., 2017). An alternate explanation is that vent fluids alter the chemistry of the site in a way that limits seagrass 

productivity. Seagrass growing near the vent express more stress-related genes than seagrass at reference sites (Lauritano et al., 270 

2015). The vent fluids and sediments at the vents are highly enriched in iron (Price et al., 2015). Iron (III) binds to phosphate and 

makes it less available in bottom waters (Slomp et al., 1996). Thus, phosphorus may limit seagrass productivity. Vent fluids may 

also be enriched in potentially harmful trace elements (Vizzini et al., 2013). Generally, the use of natural CO2 vents for studying 

ocean acidification may require caution. The effects of elevated CO2 may not always be separated from other factors that are 

induced by seepage. 275 

In sands, respiration was enhanced at the CO2 vent relative to Elba but GPP was similar. Enhanced CO2 concentrations 

may enhance the productivity of microalgae and cyanobacteria by alleviating the energetic requirements of their CO2 concentrating 

mechanisms (Beardall and Giordano, 2002). Benthic diatoms dominated the benthic community at Basiluzzo (Molari et al., 2018). 

Many benthic diatoms are insensitive to pH changes (Hinga, 2002). However, Johnson et al., (2013) found changes in benthic 

diatom assemblages and increases in chlorophyll a concentrations at a CO2 vent. Nevertheless, the negligible enhancement of 280 

primary production at the CO2 vent is consistent with the small net effects of acidification on benthic diatoms and benthic primary 

production in other studies (Alsterberg et al., 2013; Fink et al., 2017). Nutrient limitation in oligotrophic environments may limit 

the response of phytoplankton to elevated CO2 (Gazeau et al., 2017). These results indicate that reduced seawater pH has little net 

effect on photosynthesis by microphytobenthos.  

4.3  Hydrodynamic exchange 285 

Reduced nighttime hydrodynamic exchange has ecological benefits for seagrass. The depletion of oxygen at the open-water 

meadow during the night (Fig. 1) is evidence that hydrodynamic exchange with surrounding waters is limited. Ecologically, the 

reduced exchange would benefit seagrass if limiting nutrients that were produced during mineralization at night were retained for 

primary production during the day. To estimate the potential benefit of nutrient retention we assumed Redfield ratios. A 20 µmol 

L -1 O2-deficit between the meadow and ambient waters corresponds to a 2.3 µmol L -1 increase in NO3
-. For a 0.6 m-high canopy 290 
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this amounts to 1.4 mmol m-2 of extra NO3
-, and 12 mmol m-2 d-1 of GPP. This is between 7 and 9% of GPP of the meadow. Using 

Redfield ratios for respiration and production, the same increase in GPP applies to phosphorus. These amounts of enrichment are 

approximately double the observed inorganic nitrogen and phosphorus enrichment near the bed in P. oceanica meadows (Gobert 

et al., 2002). Seagrass are depleted in nitrogen and phosphorus relative to marine seston (Duarte et al., 1990), so the mineralization 

of marine seston may stimulate greater GPP. Mineralization would also be a source of CO2 for carbon fixation. Assuming a 295 

respiratory quotient of 1, the 20 µmol L -1 DIC enrichment corresponds to a small, 0.04 pH decrease (Lewis et al., 1998). This 

would enhance CO2(aq) by 10%. The potential enrichment of seagrass primary production by nutrient and CO2(aq) retention would 

be greater for greater excursions in O2 and pH.    

Posidonia oceanica may be adapted to diel oscillations in water velocity and waves caused by the solar-driven sea breeze. 

For a seagrass meadow to take advantage of nutrient retention, the nutrients would be retained during the night and into the 300 

morning. Late in the morning, after nutrients had been depleted, it would be an advantage for hydrodynamic exchange to be 

enhanced. This would prevent accumulation of O2 which can cause photorespiration (Falkowski and Raven, 1997). This diel pattern 

in hydrodynamic exchange would be caused by low nighttime water velocities and higher daytime water velocities. Interestingly, 

this is exactly the diel pattern in water velocities that occurs at the meadow (Fig. 1). The pattern is the result of the solar-driven 

sea breeze. This velocity pattern is dominant in the Mediterranean (Azorin-Molina et al., 2011), where tides are almost absent, and 305 

thus may be exploited by P. oceanica.  

4.4  Flux-irradiance curves 

Our results showed that seagrass meadows are not always light-limited during a typical diel cycle (Fig. 5). Light limitation means 

that higher light levels will lead to higher photosynthesis rates. Essentially, self-shading from the thick meadow is thought to 

effectuate light limitation (Binzer et al., 2006; Sand-Jensen, 2007). Light saturation (𝐼𝑘) at the Elba meadows occurred at less than 310 

half of peak irradiance. These results are surprisingly similar to light saturation of photosynthesis in P. oceanica fragments (Drew, 

1979; Pirc, 1986; Figueroa et al., 2002). Unlike in incubations, saturation occurred for a complete meadow under low in situ light 

conditions. It contrasts with light-limitation of mature Z. marina and T. testudinum meadows under in situ irradiance (Rheuban et 

al. 2014; Long et al., 2015), and suggests that a factor other than light may limit primary production at peak irradiance. Nutrient 

limitation may contribute. Chlorophyll content and the maximum photosynthetic rate of seagrasses increase with nutrient 315 

availability (Agawin et al., 1996; Alcoverro et al., 1998; Lee and Dunton 1999). Further measurements would improve our 

understanding of this response.    

5  Summary 

Open water techniques, including eddy covariance, allow measurements of productivity that integrate all ecosystem components 

under in situ environmental conditions. For seagrass, accurate metabolism measurements may require correction for diel changes 320 

in dissolved O2 within meadows. Ecologically, the behavior of P. oceanica meadows differed in one fundamental way from 

expectation – at a CO2 vent productivity was diminished. This may result from the effect of enhanced CO2 on seagrass ecosystem 

productivity, but it also may result from adverse effects of other vent fluid constituents. In other respects, P. oceanica ecosystem 

GPP, R, and NEM under in situ conditions behaved similarly to measurements of P. oceanica productivity alone in prior studies. 

These meadows had a high productivity, close to half of GPP, and were far more productive than surrounding sands. This is in 325 

agreement with prior studies and supports the assertion that P. oceanica is a significant location for biotic carbon storage 

(Fourqurean et al., 2012). Unlike in other seagrass meadows, photosynthesis did not increase linearly with irradiance during 
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summer, but instead approached a saturating irradiance. This feature, the low productivity of surrounding sands, and low respiration 

in seagrass meadows, are all consistent with nutrient limitation in this oligotrophic system. Finally, diel cycles of dissolved oxygen 

within a meadow suggest a functional adaptation to nutrient limitation in this environment. Daytime peaks and nighttime lulls in 330 

wind speed are characteristic of the region in summer and align well with an ideal scenario for a seagrass meadow. Nutrients 

remineralized during the night can be retained into the morning hours before hydrodynamic exchange is renewed. 
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Table 1. Characteristics of the benthic habitats investigated at Elba and Panarea (CO2 vent sites) including the distance from 601 

shore, the mean water depth at the site, the mean water velocity during benthic flux measurements (± s.d.), the mean meadow 602 

height, and the meadow coverage.    603 

Site 

Distance 

from shore 

(m) 

Water 

depth 

(m) 

Water 

velocity 

(cm s-1) 

Meadow 

height 

(cm) 

Meadow 

coverage 

(%) 

Seagrass meadows 

Open-water 300 13.0 1.2 ± 0.7 60 99 

Nearshore  60 13.1 2.6 ± 1.3 60 95 

CO2 vent  80 12.8 3.8 ± 2.6 30 100 

Bare sands 

Nearshore 100 13.1 2.3 ± 1.2 - 

CO2 vent  100 16.8 2.9 ± 1.7 - 

604 

Table 2. Benthic fluxes measured at Elba and Panarea in May of 2016 and 2017. Respiration (R), gross primary production 605 

(GPP), and net ecosystem metabolism (NEM) calculated according to Eqs. 1, 2, and 3. n is the number of hour-long averaging 606 

intervals. Errors represent standard error. Because daytime oxygen production is not normally distributed, the error of GPP 607 

was estimated as the standard error of R, determined over one night, normalized to GPP. 608 

Site 

R 

(mmol m-2 d-1) 

n 

(h) 

GPP 

(mmol m-2 d-1) 

n 

(h) 

NEM 

(mmol m-2 d-1) 

Seagrass meadows 

Open-water day 1 105.9 ± 9.3 10 159.1 ± 13.9 14  53.2 ± 16.7 

Open-water day 2  72.2 ± 11.6 10 129.3 ± 20.7 14  57.1 ± 23.7 

Nearshore day 1  65.9 ± 17.3 10 151.1 ± 39.8 14  85.2 ± 43.4 

Nearshore day 2  91.8 ± 18.4a 20 203.7 ± 40.8 14 111.9 ± 44.7 

CO2 vent  58.5 ± 10.0a 20  67.4 ± 19.6 14  8.9 ± 22.1 

Bare sands 

Nearshore  7.3 ± 1.6 9  12.2 ± 2.7 14  4.9 ± 3.1 

CO2 vent  11.0 ± 1.1 8  14.3 ± 1.4b 7  3.3 ± 1.7b 

a indicates R was calculated from data collected over two, sequential nights. b indicates GPP was calculated from fluxes 609 

measured over a partial day.610 
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Figure 1. Diel changes in photosynthetically active radiation (PAR) (a), houry-mean water velocity (b), and 

dissolved oxygen (c) at the open-water seagrass meadow in May of 2016. PAR and water velocity were measured 

above the meadow. Dissolved oxygen is presented at a sampling frequency of once per minute and as a running 

average. Dissolved oxygen was measured above the meadow and within it.  
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Figure 2. Diurnal hysteresis in oxygen flux at the open-water seagrass meadow. Eddy covariance O2 fluxes 

measured above the meadow as a function of irradiance (a). O2 fluxes corrected to account for O2 

concentration change (i.e. storage) in the water between the eddy covariance measurement volume and the 

sediment, including the meadow (b). Labels represent the hour of the day.  
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Figure 3. Temporal variation in hourly oxygen production (eddy covariance flux + storage) and PAR in the open-

water (a) and nearshore (b) seagrass meadows and bare sands (c). Measurements were made at the island of Elba in 

May of 2016 and 2017. Note the order of magnitude smaller O2 production in sand.   
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Figure 4. Temporal variation in hourly oxygen production (eddy covariance oxygen flux + storage) and PAR in a 

seagrass meadow (a) and over bare sands (b) at a CO2 vent at the island of Panarea in May of 2016.  
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Figure 5. Seagrass oxygen production as a function of PAR at open-water (a), nearshore (b), and CO2 vent (c) 

meadows. From (a)-(c) the photosynthetic maxima (𝑃𝑚𝑎𝑥) were 375 ± 27, 449 ± 36 and 289 ± 75 mmol m-2 d-1;

light compensation points (𝐼𝐶) were 28, 15, and 49 µmol photons m-2 s-1; and light saturation parameters (𝐼𝐾) were

113 ± 21, 77 ± 15, and 185 ± 98 µmol photons m-2 s-1.  
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