

Ensemble Data Assimilation for Coupled Models of the Earth System

Lars Nerger, Qi Tang, Mike Goodliff

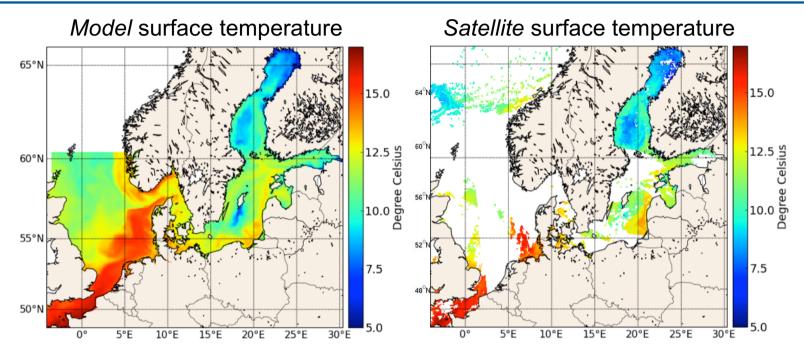
Alfred Wegener Institute
Helmholtz Center for Polar and Marine Research
Bremerhaven, Germany

IGG, University of Bonn, September 27, 2019

Overview

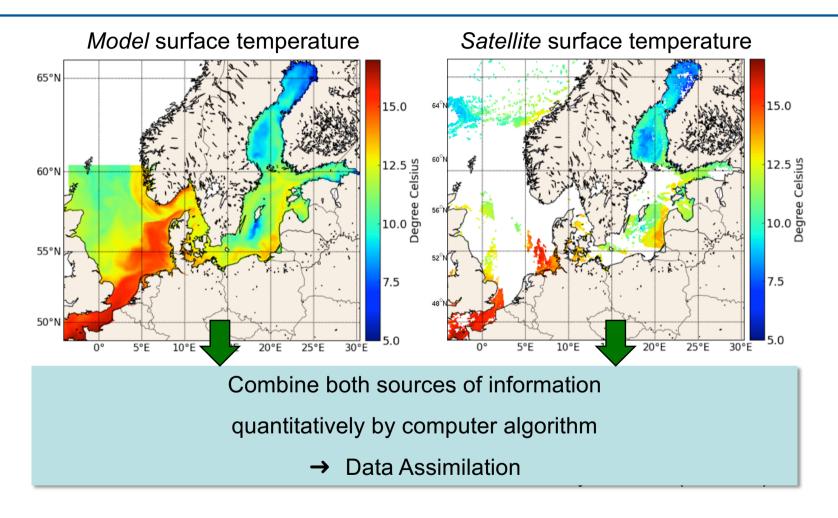
- Ensemble data assimilation
- Importance of software
- Coupled data assimilation
 - Challenges in two application examples

Data assimilation



- all fields, fluxes on model grid
- Generally correct, but has errors Generally correct, but has errors
 - incomplete information: data gaps, some fields ocean data: mainly surface (satellite)

Data assimilation



Data Assimilation

Methodology to combine model with real data

Optimal estimation of system state:

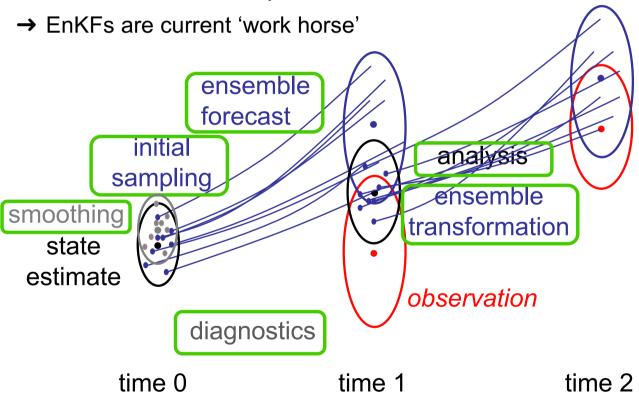
```
    initial conditions (for weather/ocean forecasts, ...)
    state trajectory (temperature, concentrations, ...)
    parameters (ice strength, plankton growth, ...)
    fluxes (heat, primary production, ...)
    boundary conditions and 'forcing' (wind stress, ...)
```

- More advanced: Improvement of model formulation
 - Detect systematic errors (bias)
 - Revise parameterizations based on parameter estimates

Ensemble Data Assimilation

Ensemble Kalman Filters (EnKFs) & Particle Filters

- → Use ensembles to represent probability distributions (uncertainty)
- → Use observations to update ensemble



There are many possible choices!

What is optimal is part of our research

Different choices in PDAF

Lars Nerger et al. - Ensemble DA with PDAF

PDAF: A tool for data assimilation

PDAF - Parallel Data Assimilation Framework

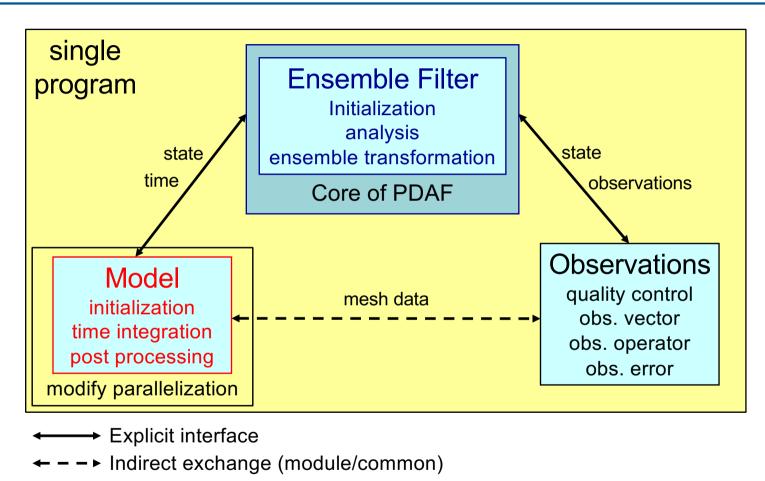
- a program library for ensemble data assimilation
- provides support for parallel ensemble forecasts
- provides filters and smoothers fully-implemented & parallelized (EnKF, LETKF, LESTKF, NETF, PF ... easy to add more)
- easily useable with (probably) any numerical model
- run from laptops to supercomputers (Fortran, MPI & OpenMP)
- Usable for real assimilation applications and to study assimilation methods
- first public release in 2004; continued development
- ~400 registered users; community contributions

Open source:

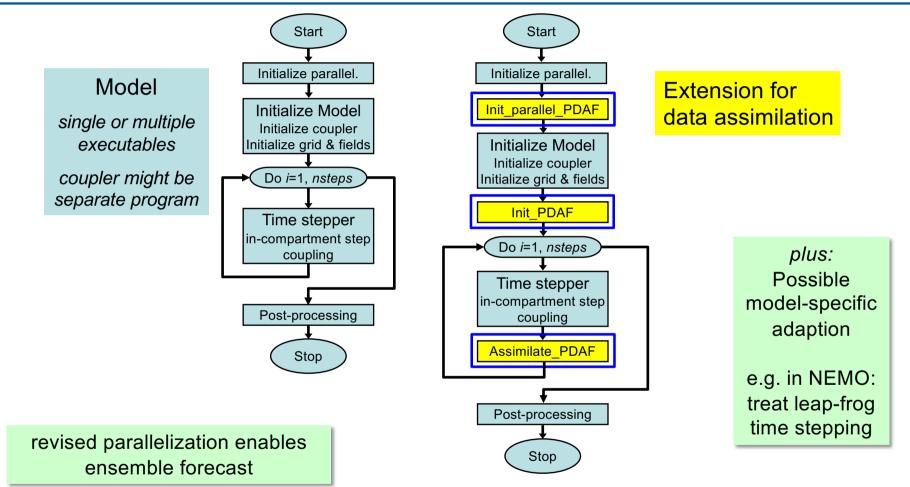
Code, documentation, and tutorial available at

http://pdaf.awi.de

3 Components of Assimilation System



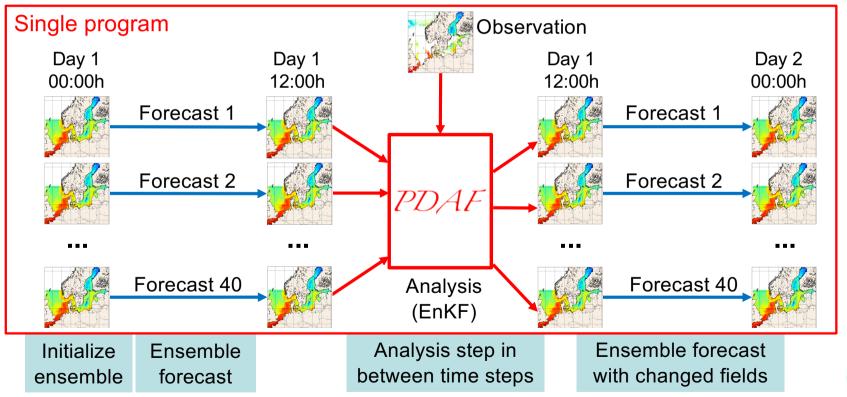
Augmenting a Model for Data Assimilation



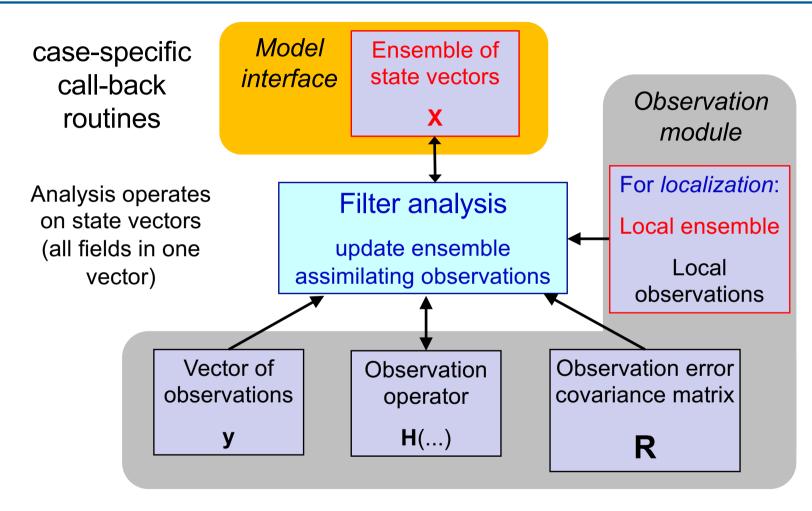
Augmenting a Model for Data Assimilation

Couple PDAF with model

- Modify model to simulate ensemble of model states
- Insert correction step (analysis) to be executed at prescribed interval
- Run model as usual, but with more processors and additional options



Ensemble Filter Analysis Step



The Ensemble Kalman Filter (EnKF, Evensen 94)

Ensemble
$$\{\mathbf{x}_0^{a(l)}, l=1,\ldots,N\}$$

Ensemble covariance matrix
$$\mathbf{P}_k^f := \frac{1}{N-1} \sum_{l=1}^N \Big(\mathbf{x}_k^{f(l)} - \overline{\mathbf{x}_k^f} \Big) \Big(\mathbf{x}_k^{f(l)} - \overline{\mathbf{x}_k^f} \Big)^T$$

Ensemble mean (state estimate)
$$\mathbf{x}_k^a := \frac{1}{N} \sum_{l=1}^N \mathbf{x}_k^{a(l)}$$

Analysis step:

Update each ensemble member

Kalman filter
$$\mathbf{x}_k^{a(l)} = \mathbf{x}_k^{f(l)} + \mathbf{K}_k \left(\mathbf{y}_k^{(l)} - \mathbf{H}_k \mathbf{x}_k^{f(l)} \right)$$
 $\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T \left(\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k \right)^{-1}$

Expensive to compute

If elements of x are observed:

- K contains
 - observed rows
 - unobserved rows

Unobserved variables updated through cross-covariances in **P** (linear regression)

Current algorithms in PDAF

PDAF originated from comparison studies of different filters

Filters and smoothers

- EnKF (Evensen, 1994 + perturbed obs.)
- (L)ETKF (Bishop et al., 2001)
- SEIK filter (Pham et al., 1998)
- ESTKF (Nerger et al., 2012)
- NETF (Toedter & Ahrens, 2015)

All methods include (except PF)

- global and localized versions
- smoothers

Model binding

MITgcm

Toy models

• Lorenz-96, Lorenz63

- Particle filter (PF)
- Generate synthetic observations

Not yet released:

- serial EnSRF
- EWPF

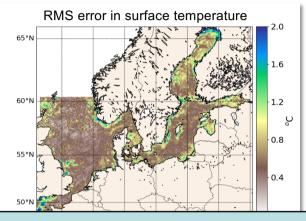
Not yet released:

- AWI-CM model binding
- NEMO model binding

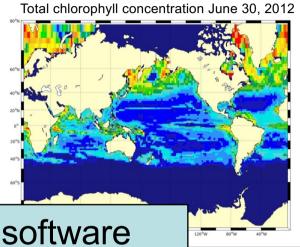
PDAF Application Examples

HBM-ERGOM:

Coastal assimilation of SST, in situ and ocean color data (Svetlana Losa, Michael Goodliff)



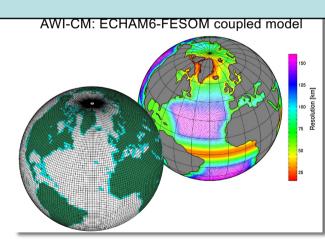
MITgcm-REcoM: global ocean color assimilation (Himansu Pradhan)



Different models - same assimilation software

AWI-CM:

coupled atmos.-ocean assimilation (Qi Tang, Longjiang Mu)



- + external applications & users, like
- MITgcm sea-ice assim (NMEFC Beijing)
- Geodynamo (IPGP Paris, A. Fournier)
- TerrSysMP-PDAF (hydrology, FZ Juelich)
- CMEMS Baltic-MFC (operational, DMI/BSH/SMHI)
- CFSv2 (J. Liu, IAP-CAS Beijing)
- NEMO (U. Reading , P. J. van Leeuwen)

Coupled Models and Coupled Data Assimilation

Coupled models

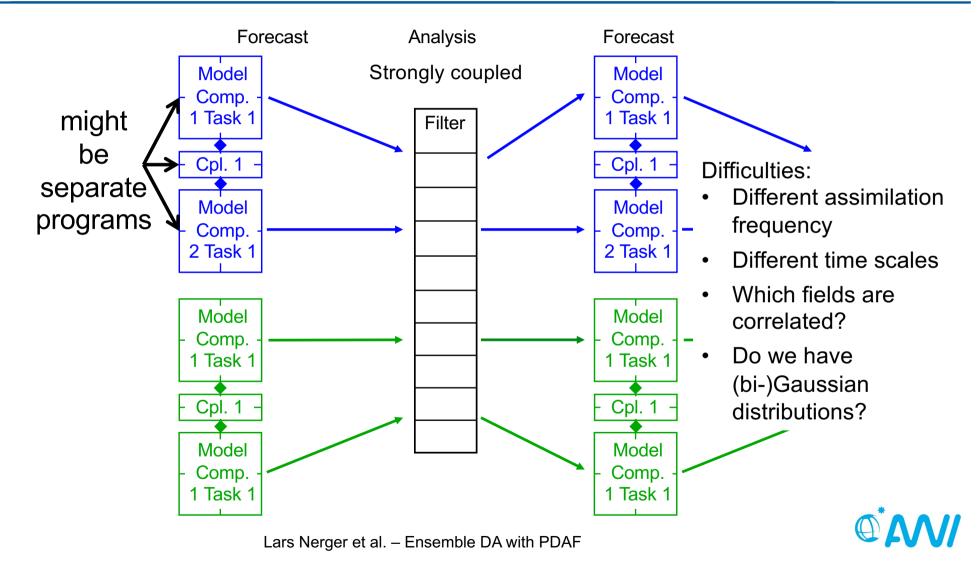
- Several interconnected compartments, like
 - Atmosphere and ocean
 - Ocean physics and biogeochemistry (carbon, plankton, etc.)

Atmosphere Ocean To live to spread to specific to specific to spread to specific to speci

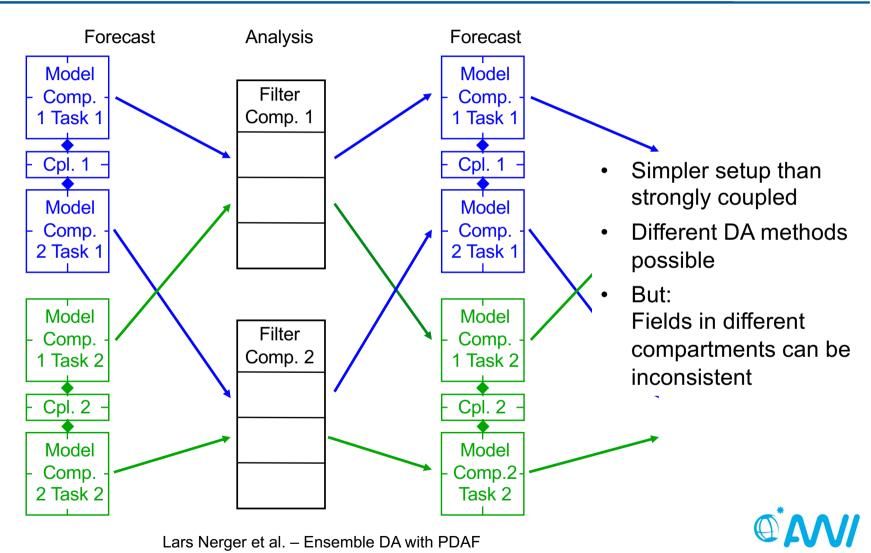
Coupled data assimilation

- Assimilation into coupled models
 - Weakly coupled: separate assimilation in the compartments
 - Strongly coupled: joint assimilation of the compartments
 - → Use cross-covariances between fields in compartments
 - Plus various "in between" possibilities ...

2 compartment system – strongly coupled DA



2 compartment system – weakly coupled DA



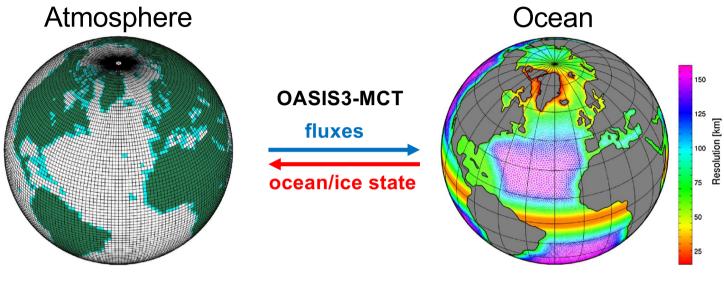
Example 1

Assimilation into the coupled atmosphere-ocean model AWI-CM

(Qi Tang)

Project: ESM – Advanced Earth System Modeling Capacity

Assimilation into coupled model: AWI-CM



Atmosphere

- ECHAM6
- JSBACH land

Coupler library

OASIS3-MCT

Ocean

- FESOM
- includes sea ice

Two separate executables for atmosphere and ocean

Goal: Develop data assimilation methodology for cross-domain assimilation ("strongly-coupled")

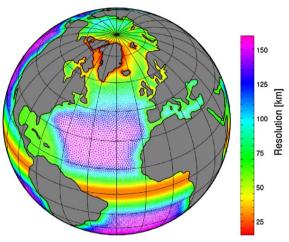
Data Assimilation Experiments

Model setup

- Global model
- ECHAM6: T63L47
- FESOM: resolution 30-160km

Data assimilation experiments

- Observations
 - Satellite SST
 - Profiles temperature & salinity
- Updated: ocean state (SSH, T, S, u, v, w)
- Assimilation method: Ensemble Kalman Filter (LESTKF)
- Ensemble size: 46
- Simulation period: year 2016, daily assimilation update
- Run time: 5.5h, fully parallelized using 12,000 processor cores



Offline coupling - Efficiency

Offline-coupling is simple to implement but can be very inefficent

Example:

Timing from atmosphere-ocean coupled model (AWI-CM) with daily analysis step:

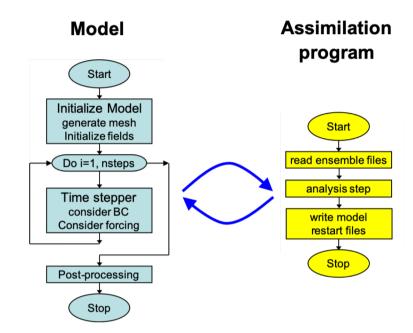
Model startup: 95 s Integrate 1 day: 28 s overhead

Model postprocessing: 14 s

Analysis step: 1 s

Restarting this model is ~3.5 times more expensive than integrating 1 day

→ avoid this for data assimilation



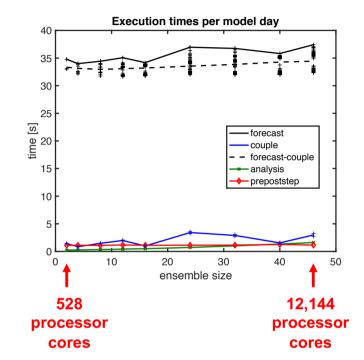
Execution times (weakly-coupled, DA only into ocean)

MPI-tasks

• ECHAM: 72

FESOM: 192

- Increasing integration time with growing ensemble size (11%; more parallel communication; worse placement)
- some variability in integration time over ensemble tasks

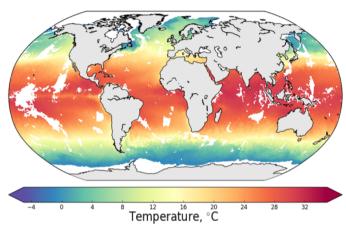


Important factors for good performance

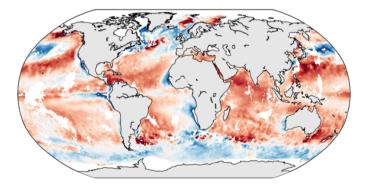
- Need optimal distribution of programs over compute nodes/racks (here set up as ocean/atmosphere pairs)
- Avoid conflicts in IO (Best performance when each AWI-CM task runs in separate directory)

Assimilate sea surface temperature (SST)

SST on Jan 1st, 2016



SST difference: observations-model



- Satellite sea surface temperature (level 3, EU Copernicus)
- Daily data
- Data gaps due to clouds
- Observation error: 0.8 °C
- Localization radius: 1000 km

Large initial SST deviation due to using a coupled model: up to 10°C

DA with such a coupled model is unstable!

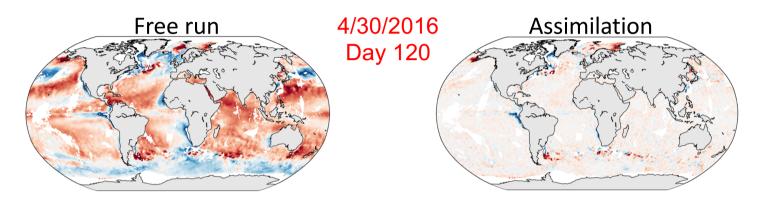
omit SST observations where

$$|SST_{obs} - SST_{ens\ mean}| > 1.6 \, ^{\circ}C$$

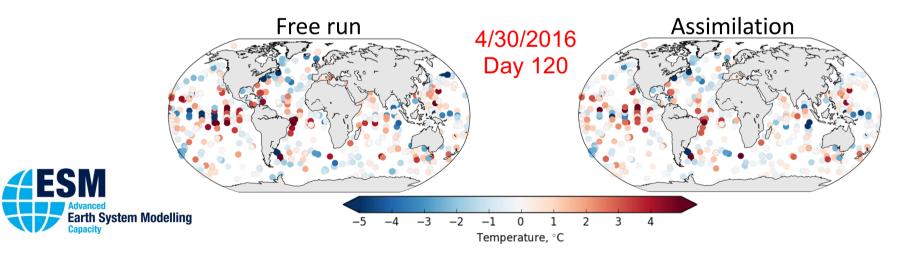
(30% initially, <5% later)

SST assimilation: Effect on the ocean

SST difference (obs-model): strong decrease of deviation

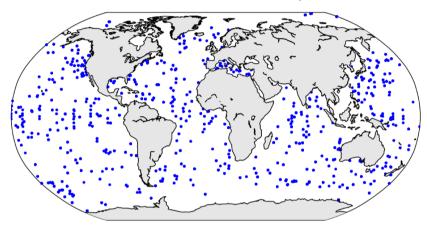


Subsurface temperature difference (obs-model); all the model layers at profile locations



Assimilate subsurface observations: Profiles

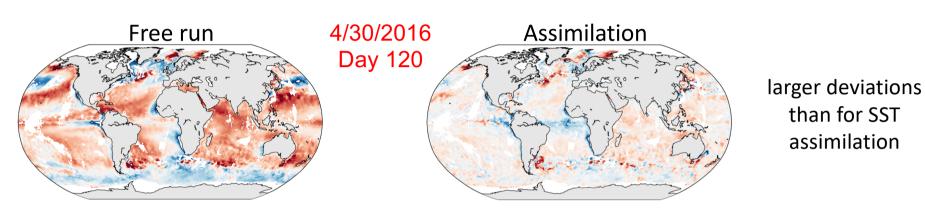
Profile locations on Jan 1st, 2016



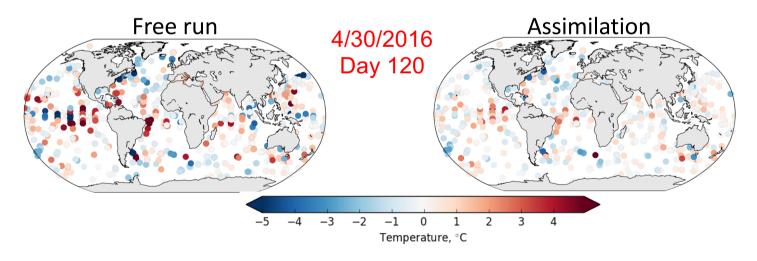
- Temperature and Salinity
- EN4 data from UK MetOffice
- Daily data
- Subsurface down to 5000m
- About 1000 profiles per day
- Observation errors
 - Temperature profiles: 0.8 °C
 - Salinity profiles: 0.5 psu
- Localization radius: 1000 km

SST assimilation: Effect on the ocean

SST difference (obs-model)

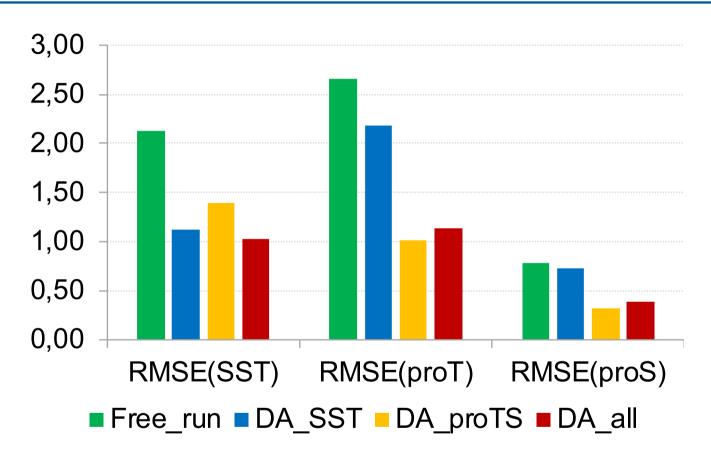


Subsurface temperature difference (obs-model); all the model layers at profile locations



smaller deviations than for SST assimilation

Assimilation effect: RMS errors



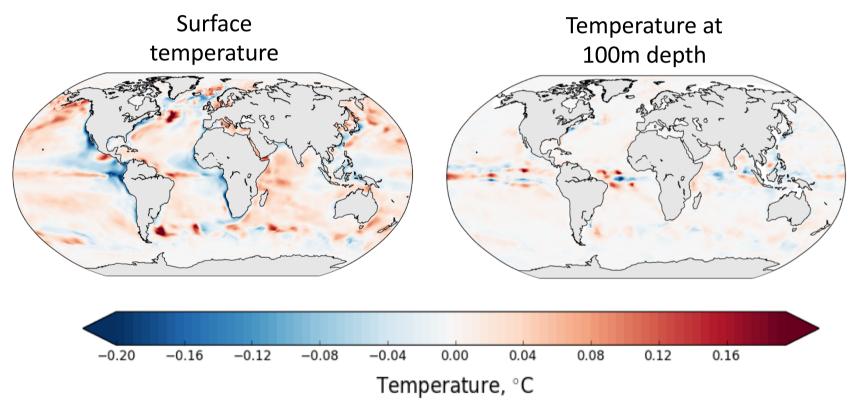
Overall lowest errors with combined assimilation

But partly a compromise

Mean increments

Mean increments (analysis – forecast) for days 61-366 (after spinup)

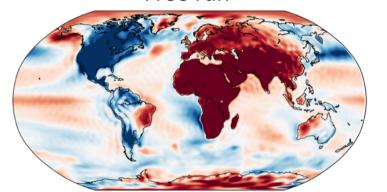
→ non-zero values indicate regions with possible biases



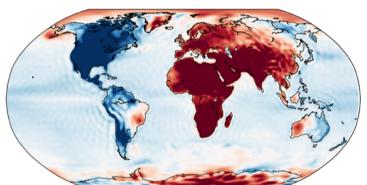
Effect on Atmospheric State (annual mean)

2-meter temperature

Free run



Assimilation



Relevant is

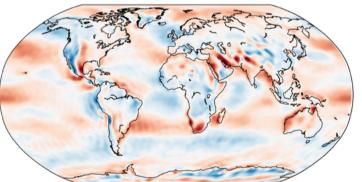
ocean surface

ーーー - - -G + & と t Temperature (°C) / Velocity (m/s)

10 meter zonal wind velocity

Free run

Assimilation



Lars Nerger et al. – Ensemble DA with PDAF

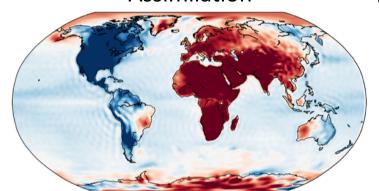
Effect on Atmospheric State (annual mean)

2-meter temperature

Assimilation

Relevant is ocean surface

Free run

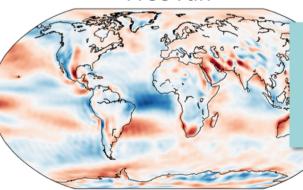


10 meter zonal wind velocity

Free run

Assimilation

and The Control



Next step: strongly coupled assimilation

- → assimilate ocean SST into the atmosphere
- → technically rather simple in practice?

Lars Nerger et al. - Ensemble DA with PDAF

Example 2

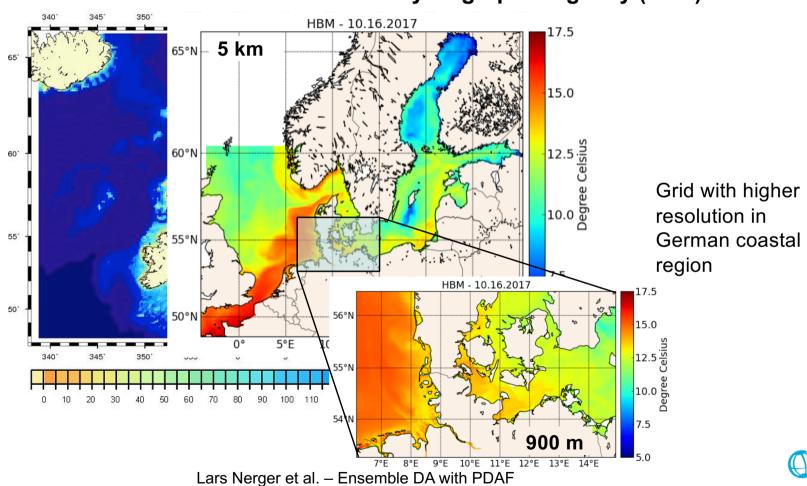
Weakly- and Strongly Coupled Assimilation to Constrain Biogeochemistry with Temperature Data

(MERAMO – Mike Goodliff)

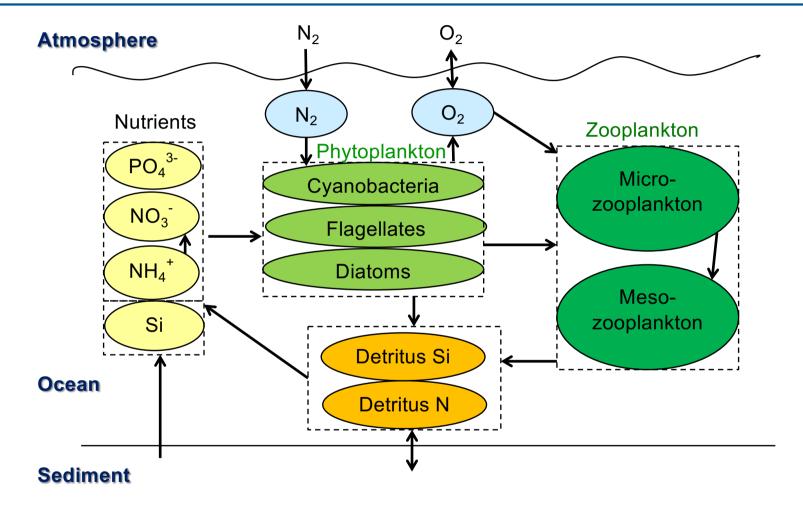
Cooperation with German Hydrographic Agency (BSH) (Ina Lorkowski, Xin Li, Anja Lindenthal, Thoger Brüning)

Coastal Model Domain

HBM (Hiromb-BOOS Model) – operationally used at German Federal Maritime and Hydrographic Agency (BSH)

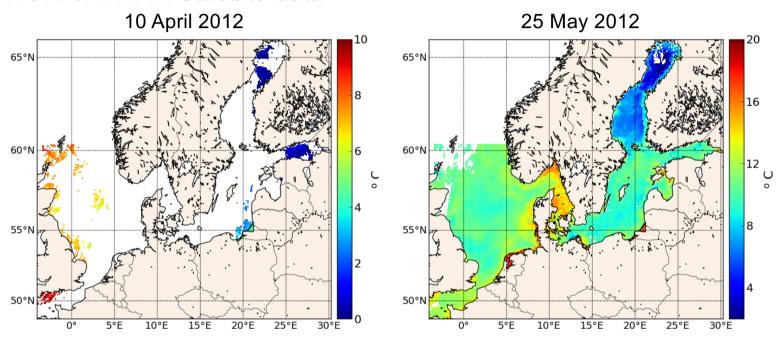


Biogeochemical model: ERGOM



Observations – Sea Surface Temperature (SST)

NOAA/AVHRR Satellite data



- 12-hour composites on both model grids
- Vastly varying data coverage (due to clouds)
- Effect on biogeochemistry?

Comparison with assimilated SST data (4-12/2012)

 RMS deviation from SST observations up to ~0.4 °C

Coarse grid:

 Increasing error-reductions compared to free ensemble run

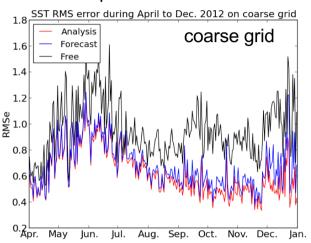
Fine grid:

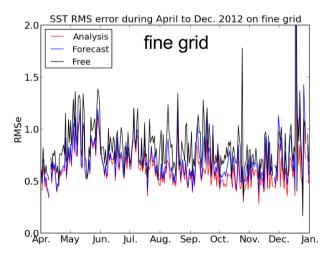
- much stronger variability
- Forecast errors sometimes reach errors of free ensemble run

RMS errors (deg. C)

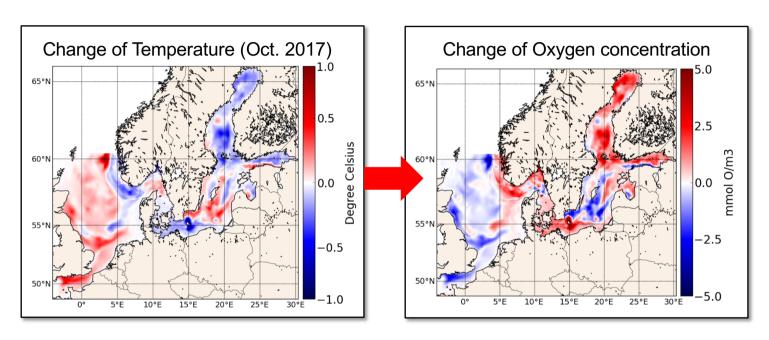
	Free	Forec.	Ana.
Coarse	0.95	0.68	0.63
Fine	0.83	0.70	0.63

Temperature RMSD





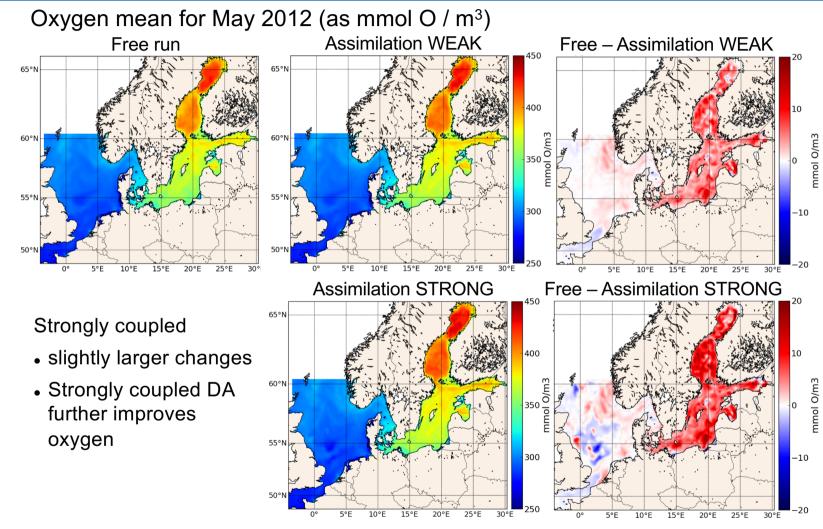
Influence of Assimilation on Surface Temperature



2 ways of influence:

- Indirect weakly-coupled assimilation model dynamics react on change in physics
- Direct strongly-coupled assimilation
 use cross-covariances between surface temperature and biogeochemistry

Weakly & strongly coupled effect on biogeochemical model



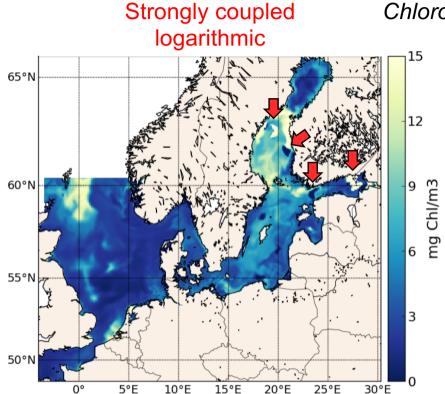
Goodliff et al., Ocean Dynamics, 2019, doi:10.1007/s10236-019-01299-7

Choice of variable in strongly coupled assimilation

- Chlorophyll is lognormally distributed
- Ensemble Kalman filter
 - Optimality for normal distributions
 - Linear regression between observed and unobserved variables
- → Apply strongly-coupled DA with logarithm on concentrations?

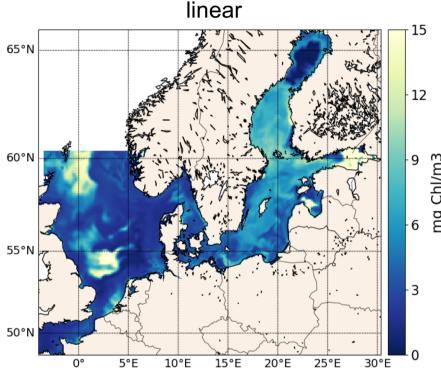
$$\mathbf{x}_k^{a(l)} = \mathbf{x}_k^{f(l)} + \mathbf{K}_k \left(\mathbf{y}_k^{(l)} - \mathbf{H}_k \mathbf{x}_k^{f(l)} \right)$$
 $\mathbf{K}_k = \mathbf{P}_k^f \mathbf{H}_k^T \left(\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k \right)^{-1}$
 $\mathbf{K}_k = \mathbf{X}_k' \left(\mathbf{H}_k \mathbf{X}_k' \right)^T \left(\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^T + \mathbf{R}_k \right)^{-1}$
model observations

Choice of variable in strongly coupled assimilation



- locally unrealistically high and low concentrations
 - → Linear regression with lognormal concentration not general solution

Chlorophyll concentrations
1 May 2012



Strongly coupled

- Larger effect in particular in North Sea
- Too high in Gulf of Finland

Summary

- Coupled data assimilation:
 - Weakly-coupled easy to apply
 - But changing one part can disturb the other
 - Strongly-coupled depends on cross-covariances
 - EnKF uses linear regression variables not well defined
- Unified software helps to bring new developments into usage
 - PDAF Open source available at http://pdaf.awi.de

