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Abstract

In many spatial resource models, it is assumed that an

agent is able to harvest the resource over the complete

spatial domain. However, agents frequently only have

access to a resource at particular locations at which a

moving biomass, such as fish or game, may be caught or

hunted. Here, we analyze an infinite time‐horizon
optimal control problem with boundary harvesting and

(systems of) parabolic partial differential equations as

state dynamics. We formally derive the associated

canonical system, consisting of a forward–backward
diffusion system with boundary controls, and numeri-

cally compute the canonical steady states and the

optimal time‐dependent paths, and their dependence

on parameters. We start with some one‐species fishing

models, and then extend the analysis to a predator–prey
model of the Lotka–Volterra type. The models are rather

generic, and our methods are quite general, and thus

should be applicable to large classes of structurally

similar bioeconomic problems with boundary controls.

Recommedations for Resource Managers

• Just like ordinary differential equation‐constrained
(optimal) control problems and distributed partial

differential equation (PDE) constrained control pro-

blems, boundary control problems with PDE state

dynamics may be formally treated by the Pontryagin’s
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maximum principle or canonical system formalism
(state and adjoint PDEs).

• These problems may have multiple (locally) optimal

solutions; a first overview of suitable choices can be

obtained by identifying canonical steady states.

• The computation of canonical paths toward some

optimal steady state yields temporal information about

the optimal harvesting, possibly including waiting

time behavior for the stock to recover from a low‐stock
initial state, and nonmonotonic (in time) harvesting

efforts.

• Multispecies fishery models may lead to asymmetric

effects; for instance, it may be optimal to capture a

predator species to protect the prey, even for high

costs and low market values of the predators.

KEYWORD S

bioeconomics, bistable model, infinite time horizon, optimal boundary

control, optimal harvesting, Pontryagin’s maximum principle,

predator–prey model

1 | INTRODUCTION

Optimal control (OC) theory is an important tool to design optimal harvesting strategies in the
management of natural resources. Much of the literature considers only the temporal
dimension, see, for example, the monographs of Conrad and Clark (1987), Conrad (2010), and
Clark (2010), but recent work captures the spatial dimension as well. Early spatial models
feature discrete patches, where at each location of the resource, the stock evolves according to
an ordinary differential equation (ODE). Migration of the biomass is then modeled as entry and
exit of the biomass from one location to the other, see, for example, Sanchirico and Wilen
(1999), Behringer and Upmann (2014), and the references therein. However, in many cases, the
continuous process of migration is more adequately described by partial differential equations
(PDEs) characterizing the spread or diffusion of the resource within the domain.

For the case of ODE‐constrained OC problems, a main tool is Pontryagin’s maximum
principle providing first‐order necessary optimality conditions (Pontryagin, Boltyanskii,
Gamkrelidze, & Mishchenko, 1962); see also Aniţa (2000), Lenhart and Workman (2007),
Grass, Caulkins, Feichtinger, Tragler, and Behrens (2008), and Aniţa, Arnăutu, and Capasso
(2011) for textbook expositions, including many examples related to natural resources. In
bioeconomics, the objective often contains a discounted time integral

∫J J v t u t t= e ( ( ), ( )) d ,
T

ρt
c

0

− (1)

where ρ > 0 is a discount rate, ∈v t( ) n are the states of the system, ∈ ⊂u t U( ) p represents
the controls, and Jc is called the current value function. If ∞T = in (1), then we have infinite
time horizons, while for ∞T < we have a finite time horizon. Also for PDE‐constrained OC
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problems, a large theory has been developed (Hinze, Pinnau, Ulbrich, & Ulbrich, 2009; Li &
Yong, 1995; Lions, 1971; Tröltzsch, 2009). Some maximum principles have been rigorously
established in an abstract way, assuming a priori the existence of optimal solutions, but almost
exclusively for the finite time‐horizon case. See Section 3 for further comments and references.

In a number of bioeconomic and resource‐economic papers (e.g., Baker, Diele, Marangi,
Martiradonna, & Ragni, 2018; Ding & Lenhart, 2009; Fister & Lenhart, 2006; Fister, 1997; Kelly,
Xing, & Lenhart, 2016; Lenhart, Liang, & Protopopescu, 1999), the existence of OCs, and
subsequently the validity of the Pontryagin’s maximum principle, has been proven on a case by
case basis using some minimizing sequence and compactness arguments (see also Aniţa et al.,
2011, chapter 5; Lenhart & Workman, 2007, chapter 25). However, all these studies consider
steady problems or finite time horizons. More specifically, Fister (1997) considers spatially
distributed harvesting of both the prey and the predator (on the full spatial domain) in a
predator–prey diffusive model population. In Fister (2001), the economic agent is interested in
harvesting the predator only, but the model also introduces a boundary control, which allows
for controlling the migration of the populations across the boundary (e.g., a fence, mesh size of
a net, filter). Similarly, the further studies referred to above consider OC in a bioeconomic time‐
dependent diffusive setting. One common result of these studies is that for distributed
harvesting, it may be (economically) advantageous to have zones of no or substantially reduced
harvest (“marine reserves” in the context of fisheries). The population may then grow to a high
level in the no‐harvest zone, and the “spillover” by diffusion gives a higher yield than the one
obtained from a uniform harvesting. See also Leung (1995) and Neubert (2003) for similar
results for steady‐state problems.

For the PDE case with infinite time horizons, Pontryagin‐type optimality conditions have
been proven for some linear PDE problems with linear‐quadratic objectives, for example,
Barucci and Gozzi (2001), Faggian (2004), Faggian and Grosset (2013), Boucekkine, Camacho,
and Fabbri (2013), and Ballestra (2016). For genuinely nonlinear problems with diffusion, such
conditions have been formally derived in Brock and Xepapadeas (2008). See also Xepapadeas
(2010), Brock and Xepapadeas (2010), Uecker (2016), and Grass and Uecker (2017) for
applications that in particular may lead to the emergence of spatial heterogeneity of the
resource and the harvesting.

Here, we assume an infinite time horizon and a spatially distributed resource for which
harvesting can only be done on the boundary of the spatial domain. This constraint may result
from legal or physical restraints where the agent is not allowed or not able to harvest inside the
habitat. For instance, often a substantial part of fishing is done at the shore or near the shore by
artisanal fisheries; also, as fishing or hunting may be banned within protected areas, such as
nature reserves, marine protected areas, game reserves, and so forth, fishing and hunting
frequently happens at the boundaries of those protected areas, aiming at spillover to the
nonprotected areas (Fogarty & Murawski, 2004; Kellner, Tetreault, Gaines, & Nisbet, 2007;
McCauley et al., 2016). Moreover, harvesting may be further restricted to subsets of the
boundary, for example, to certain places at the shore of a lake. Specifically, we consider classes
of infinite time‐horizon OC fishery problems with diffusion, boundary catch, and classical
Cobb–Douglas production functions. We start with some one‐species problems, and then
extend the analysis to a two‐species predator–prey model. We formally (i.e., a priori assuming
the existence of OCs, see Section 3.3 for further comments) derive the so‐called canonical
systems, that is the necessary first‐order optimality conditions. The associated stationary
problems are systems of nonlinear elliptic PDEs, which, depending on the parameter regimes,
may have multiple solutions, and to first obtain a comprehensive picture of these so‐called
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canonical steady states, we use the continuation and bifurcation software pde2path (Uecker,
Wetzel, & Rademacher, 2014). In the second step, we compute canonical paths to canonical
steady states and compare their values, and thus characterize policies to reach optimal steady
states in a profit‐maximizing way.

It turns out that for both classes of models, that is, the scalar one and the interacting species
model, generally speaking, a “moderate harvesting policy” is optimal. This is quite intuitive, as
excessive fishing leads to a drastic diminution of the stock and thus impairs the conditions for
future yield. A moderate fishing activity forgoes present profits, but saves some of the stock
for later growth and catch. However, some results of our analysis are quite intriguing already
for one of our scalar models, distinguished by a bistable growth function. Here, the space of
initial states is divided into three sets, namely “subthreshold” initial states from which we can
only reach low‐stock canonical steady states, “superthreshold” initial states from which we can
only reach high‐stock canonical steady states, and a rather small “intermediate” set from which
we can reach both.

We complement our analysis by discussing the spatial distributions of the respective costates
or shadow prices. Whereas in the one‐species models, the shadow price of fish falls with the
distance from the shore, this does not necessarily hold for the predator in the two‐species case,
even though the net market value of the predator species is positive. Moreover, the asymmetric
interaction between both species gives asymmetric cost effects: Whereas an increase in the
fishing cost of the prey results in an increase in both stocks, an increase in the fishing cost of the
predator leads to a decrease in the stock of the prey. In particular, if fishing of the predator is
relatively costly, its value may become negative, even though its market price exceeds the
harvesting cost. Of course, here we leave the gap in that we apply the Pontryagin’s maximum
principle in a formal way. Still, we identify candidates for optimal solutions, and we believe that
our analysis makes a methodological contribution beyond the specific insights into optimal
boundary fishing: Our approach can be applied to other PDE problems with controls restricted
to the boundary of the domain, and is rather independent of the functional forms of the state
PDEs and the objective function.

To the best of our knowledge, such infinite time‐horizon boundary harvesting problems have
not yet been considered in the bioeconomic literature. In Fister (2001), a finite time‐horizon
problem is considered, and, additionally to distributed controls, a rather special boundary
control which is not directly connected to harvesting, whereas Kellner et al. (2007) focus on
steady states, and the boundary harvest is not strictly at the boundary. Moreover, both use
simple quadratic expressions for the yields as functions of efforts and stocks.

The remainder of the article is organized as follows. In Section 2, we describe our models,
and also provide a phase plane analysis of the constraints for the scalar stationary case. In
Section 3, we formally derive the canonical system for the scalar case, discuss this formal
derivation, and describe the basic numerical method for their solution. In Section 4, we present
the results for the one‐species models. Results of the two‐species model are in Section 5, and in
Section 6, we conclude by discussing possible extensions and future research directions.

2 | PROBLEM SETUP

2.1 | A class of scalar models

Consider a fishery problem where harvesting (fishing) can be done on the boundary of some
area, for example, a fisher catching fish from the shore. For simplicity, we consider a
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one‐dimensional space represented by the interval ≔ lΩ (0, ), with fishing only at location
x = 0, the position of the fisher. Let v v x t= ( , ) be the biomass of fish at location ∈x Ω at time
≥t 0. The catch depends on the available biomass of fish v and on the harvesting effort k of the

fisher, who wants to maximize his profit. We specify the catch (or harvest) as a standard
Cobb–Douglas function:

h h v k v k= ( , ) = α α1− (2)

with α0 < < 1. Let p > 0 denote the market price of one unit of fish, and c > 0 the (constant)
per unit cost of harvesting effort. As fish is a nondurable good, the catch is offered at the market
immediately when it is realized. Thus, we model the instantaneous profit from harvesting as

J v k ph v k ck( , ) = ( , ) − .c (3)

The evolution of the stock is governed by the net growth of the biomass and movement of
fish. Possible growth functions are

≔f v f v δ βv( ) = ( ) − (linear),lin (4a)

≔f v f v v δ βv( ) = ( ) ( − ) (logistic),log (4b)

≔f v f v v δ v β v( ) = ( ) −( − )( − )( − 1) (bistable),bi (4c)

with parameters δ β, > 0, respectively, ≤ δ β0 < < 1 for fbi. For f f= lin, the ODE v f v˙ = ( ) has
the unique globally stable fixed point ∕v δ β=* . For f f= log, we again have the stable fixed point
v*, and, in addition, the unstable fixed point v = 0. For our purposes, both models are quite
similar: In particular, for each set of parameters, both have a unique canonical steady state (CSS;
which refers to steady states of the canonical system [CS], see below), showing similar
qualitative behavior. The main difference is that for flin, we can compute these CSSs
semianalytically (see Section 4.1.1), which can also be used to validate the numerics.

For fbi, we have the stable fixed points v δ= and v = 1, and the unstable fixed point v β= .
For δ = 0, fbi models critical depensation (see, e.g., Conrad & Clark, 1987, p. 63; Da Lara &
Doyen, 2008, p. 18f), meaning that to grow the stock needs to be beyond the threshold β, for
example, for mating reasons (Allee effect). The parameter δ > 0 could be used to describe some
small constant external input, that is, f δβ(0) = > 0bi , but we rather see δ as a regularization
parameter, because h in (2) is not differentiable at v = 0 or k = 0, that is,

∂ ∂ ∞→ →h v k h v klim ( , ) = lim ( , ) =v v k k0 0 0 0 for all v k, > 00 0 . In economics, this models infinite
marginal values (Inada conditions) at low stocks/harvesting efforts. For (initially) large stocks,
we can also work with δ = 0, but here we shall also be interested in the case of optimal
harvesting of low initial stocks. For δ > 0 we can derive and solve the CS, and obtain well
behaved (steady and time‐dependent) solutions with low v. We can then a posteriori take the
limit →δ 0, which yields a well‐defined limit CS. Moreover, the (steady and time‐dependent)
solutions of the CS for δ > 0 converge to solutions of the limit CS, and although we do not have
a rigorous proof, this strongly suggests that the (low‐stock) solutions of the limit CS yield
optimal solutions of the problem with δ = 0. Altogether, we find that f f= bi gives a much richer
problem than flin and flog do.
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The movement of fish is modeled as diffusion, that is, by a term proportional to vΔ , where Δ
denotes the Laplace operator with respect to x .1 Thus, the biomass of fish evolves according to
the system of differential equations and boundary conditions (BC):

∂ ≔v G v D v f v= − ( ) Δ + ( ) in Ω × ,t 1 (5a)

∂ v l t( , ) = 0 in (zero flux at the right boundary),n (5b)

∂D v t g v t k t(0, ) + ( (0, ), ( )) = 0 in (control‐dependent flux at the left boundary),n (5c)

v x v x( , 0) = ( ) in Ω,0 (5d)

where D is the diffusion coefficient, n denotes the exterior normal to the boundary ∂Ω. In the
one‐dimensional case, we could assume (by rescaling the domain) that D = 1, but for
conceptual clarity and generalizations we keep D. The zero‐flux (or Neumann) BC at x l=

model that no fish can leave or enter. The harvesting at the left boundary ofΩ gives the flux BC
(5c): If g > 0, then also ∂ ∂v t v t D g(0, ) = − (0, ) = (1/ ) > 0x n , meaning that ↦x v x t( , ) is an
increasing function. As g is induced by the harvest h, we set

g v k γh v k( , ) = ( , ), (5e)

for some γ > 0. Hence, a larger takeout of fish at x = 0 increases the differential in stocks
between x = 0 and its (right) neighborhood x > 0, and γ can be thought of as the inverse of the
replacement flux of fish: when γ is high (low) a given amount of fishing leads to a large (small)
differential in stocks near x = 0, and this differential is due to a slow (fast) replacement of fish
due to diffusion. Thus, in a simple setting γ could be chosen proportional to ∕D1 , but we keep it
as an independent parameter, essentially to possibly model special conditions for the
replacement fluxes at the boundary.

Finally, given the instantaneous profit Jc from (3), the fisher seeks to maximize the total
discounted profits:

∫≔
∈ ∞

∞
V v J v k J v k J v t k t t( ) = max ( , ), where ( , ) e ( (0, ), ( )) d .

k C

ρt
c0

([0, ), )
0 0

0

−
+

(5f)

We thus have an OC problem with the PDE constraints (5a)–(5e) and the boundary control
∞ → ∞k: [0, ) [0, ). In particular, we do not impose an upper limit on the harvesting effort k.

Instead, it turns out that k is bounded above, and that the natural constraint ≥k 0 is
automatically fulfilled, that is, never becomes active.

2.2 | Phase plane analysis of the steady‐state constraint

To get an intuition for the constraints in (5), we first sketch a phase plane analysis of the
constraint in the stationary case, that is, for the scalar ODE

1Although we focus on the one‐dimensional case lΩ = (0, ), where ∂v vΔ = x
2 , we use dimension‐independent notation where suitable for the purpose of

possible generalization. Note that ∂ ∂v t v t(0, ) = − (0, )n x and ∂ ∂v l t v l t( , ) = ( , )n x .
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Dv f v″ + ( ) = 0, (6)

where, as a shorthand, we write ≡ ∂v v′ x and ≡ ∂v v″ x
2 . Equivalently, we can write (6) as a

spatial dynamics system

v v Dv f v′ = , ′ = − ( ),1 2 2 1 (7)

which is Hamiltonian with conserved energy E v v Dv F v( , ′) = (1/2) ′ + ( )2 , with F f′ = , because
x E v x v x v x Dv x f x(d/d ) ( ( ), ′( )) = ′( )( ″( ) + ( )) = 0, and hence the orbits are level lines of E. For

the specifications of f given in (4), we obtain

F v δv
β
v F

δ
v

β
v( ) = −

2
, =

2
−

3
,lin

2
log

2 3 (8)

F v δβv β β δ v β δ v v( ) = −
1

2
( + (1 + ) ) +

1

3
(1 + + ) −

1

4
.bi

2 3 4 (9)

Clearly, for all three, v v( , ) = (1, 0)1 2 is a saddle point of the energy. From the modeling, we
know that we should only be interested in orbits of (6) with v x( ) > 0 for all ∈x l(0, ), with
v l′( ) = 0, and with v′(0) > 0 because we want a positive takeout at x = 0. Thus, the only
relevant solutions of (6) are those which start at x = 0 with v (0) > 0 and v′(0) > 0.

Figure 1a,b illustrates that flin and flog behave rather similarly in the pertinent region of the
phase plane, that is, northwest of the fixed point (1, 0), but fbi in Figure 1c,d is qualitatively
different. The black orbit in Figure 1c is similar to those in Figure 1a,b, that is it starts northwest
and “near” the fixed point (1, 0). Additionally, see Figure 1d, there are now orbits (blue
example) that start at low v and v′ and end near (1, 0), and orbits (magenta example) that start
left of the low fixed point δ( , 0). Now, an immediate question is: For a given model, flin, flog, and
fbi, which of its steady states maximize Jc in the set of steady states? Moreover, we are

FIGURE 1 Phase plane analysis for (7), with (a) f f= lin and (b) f f= log, both without loss of generality with
δ β D= = = 1, and (c) f f= bi with β δ= 0.5, = 0.05. The blue lines are the level lines of the respective E , thus

giving the phase portrait, while the black orbits (in (a,b)) are obtained from choosing v l( ) near 1, v l′( ) = 0, that

is, v v l( , )( )1 2 near the fixed point (1, 0), and integrating “backward in time” to x = 0, here for illustration with

l = 2. The black points thus indicate the “initial condition” at x = 0. We obtain qualitatively similar behavior for
all l > 1, say, with the only difference that for larger l, the “endpoints” of the black orbits must be closer to the
fixed points in order that the solutions are in the first quadrant. In (c), we proceed similarly for fbi with l = 10. In

(d), we plot v t( ) for three orbits; the black orbit is from (c), while the blue one corresponds to a slightly smaller

v l( ), and the magenta one to nearly constant v near the fixed point v v δ( , ′) = ( , 0)
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interested in the solution of the intertemporal OC problem (5). Thus, in Section 3 we formally
derive the necessary first‐order optimality conditions, known as the CS, with steady solutions
called CSSs. Returning to Figure 1, for both, flin and flog, at a given set of parameters, there will
be a unique CSS, which corresponds to one of the black orbits in Figure 1a,b, respectively.
However, for f f= bi there will generically be multiple CSSs.

2.3 | A predator–prey system

The scalar model of Section 2.1 can be greatly generalized. As an example, consider a standard
Lotka–Volterra system for prey (v1) and predator (v2) in the form

∂

∂

v d v βv v v

v d v v v

= Δ + (1 − − ) ,

= Δ + ( − 1) ,

t

t

1 1 1 1 2 1

2 2 2 1 2

(10)

with diffusion constants dj, and self‐damping parameter of the prey β > 0. This system can

more compactly be written as ∂ v G v D v f v= − ( ) = Δ + ( )t 1 , with D
d

d
=

0

0
1

2

⎛
⎝⎜

⎞
⎠⎟ and growth

function f v
βv v v

v v
( ) =

(1 − − )

( − 1)

1 2 1

1 2

⎛
⎝⎜

⎞
⎠⎟. Using the Liapunov function ϕ v v v v( , ) = + −1 2 1 2

v β vln − (1 − )ln1 2, it follows that

V v v β= ( , ) = (1, 1 − )* 1 2 (11)

is the unique steady state of the ODE system t v f v(d/d ) = ( ) in the first quadrant, and is globally
stable. Similarly, using the functional

∫t ϕ v t x v t x xΦ( ) = ( ( , ), ( , )) d ,
Ω

1 2 (12)

it follows that for d1,2 sufficiently large, V * is the unique steady state of (10) with
zero‐flux BC, and is globally stable (see, e.g., Hastings, 1978). For ≡v 02 , the v1

equation corresponds to the case f f= log from Section 2.1, and we have the
additional fixed point ≡ ∕v v β( , ) (1 , 0)1 2 , but here and in the following we always restrict
to v v, > 01 2 .

Analogous to (5), we consider a boundary fishing problem for (10). We introduce J and
fishing efforts k k,1 2 as controls via

∑J p h c k h h v k v k= − , = ( , ) = ,c

j

j j j j j j j j j
α

j
α

=1

2
1−j j (13)

∂ ≔d v g γ h= − − as left BC,j n j j j j (14)

and want to maximize

∈ ∞
V v J v k( ) = max ( , ), subject to (10), (13) and (14),

k C
0

([0, ), )
0

+
2

(15)
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where ∫≔
∞

J v k J v t k t t( , ) e ( (0, ), ( )) dρt
c0 0

− , with the vector‐valued initial states →v : Ω0 +
2 ,

and the vector‐valued boundary control ∞ →k k k= ( , ): [0, )1 2 +
2 .

3 | THE CS FORMALISM

To solve (5), and (15), we formally derive the associated CSs, also called state‐costate or
state‐adjoint equations, which here take the form of forward–backward diffusion
problems. We first focus on the scalar case (5), and postpone the quite analogous
vector‐valued case (15) to Section 5. As already indicated in the Introduction, formally
here inter alia means that we a priori assume that OCs exist. See Section 3.3 for further
comments, and comparison with other methods and results for PDE‐constrained infinite
time‐horizon OC.

3.1 | Formal derivation

We consider the Lagrangian

∫ ∫≔ ∂
∞

{ }L v λ k J λ v G v x t( , , ) e − ( + ( )) d d ,ρt
c t

0

−

Ω
1 (16)

where →λ Q: , ≔ ∞Q Ω × [0, ) is the Lagrange multiplier for the PDE constraint (5a), also
called the costate variable, or, in economics, the shadow price of the biomass at location x at
time t . Using integration by parts in x , we have

∫ ∫ ∫

∫ ∫

⟨∇ ∇ ⟩ ∂

∂ ∂

∂

∂

λD v x λ D v x λD v s

D λ v x λ D v D λ v s

Δ d =− , d + d

= ( Δ ) d + ( ) − ( ) d ,

n

n n

Ω Ω

Ω

(17)

and integration by parts in t yields

∫ ∫ ∫ ∫ ∫∂ ∂
∞ ∞

λ v x t λ x v x x λ ρλ v x t− e d d = ( , 0) ( , 0) d + e ( − ) d d ,ρt
t

ρt
t

0

−

Ω Ω 0

−

Ω
(18)

where we used the so‐called transversality condition

∫
→∞

λ x t v x t xlim e ( , ) ( , ) d = 0,
t

ρt−

Ω
(19)

which here ensures that the boundary terms at ∞t = vanish. See Section 3.3 for further
comments. Next, using the BCs (5c) and (5b), that is, ∂D v g| = −n x=0 and ∂D v | = 0n x l= , we
obtain

∫ ∫

∫

∂ ∂

∂

∞

}
{L v λ k v x λ x x J λg D λ v D λ v

ρλ λ D λ v λf v x t

( , , ) = ( , 0) ( , 0) d + e ( − − ( ) )| − ( ) |

− ( − − Δ ) − ( ) d d .

ρt
c n x n x l

t

Ω 0

−
=0 =

Ω

(20)
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The first variation of L with respect to v, applied to a test function ∈ ∞ϕ C Q( ) with ⋅ϕ ( ,0) = 0,
yields

∫

∫

∂ ∂ ∂ ∂ ∂

∂ ∂

∞

}
{Lϕ J λ g D λ ϕ D λ ϕ

ρλ λ D λ f v λ ϕ x t

= e (( − − ) )| − ( ) |

− ( − − Δ − ( ) ) d d .

v
ρt

v c v n x n x l

t v

0

−
=0 =

Ω

Therefore, by density of ∞C Q( ) in L Q( )2 , and by density of ∂ ∞C (Ω)n in ∂L ( Ω)2 , the
condition ∂ Lϕ = 0v yields ∂ ∂ρλ λ D λ f v λ− − Δ − ( ) = 0t v and the BCs ∂D λ | = 0n x l= and
∂ ∂ ∂D λ J λ g− + = 0n v c v . Thus, using ∂ ∂J p h=v c v and ∂ ∂g γ h=v v , the CS is

∂ v D v f v v x v x= Δ + ( ), ( , 0) = ( ),t 0 (21a)

∂ ∂λ ρλ D λ f v λ= − Δ − ( ) ,t v (21b)

∂ ∂D v γh x v x l+ = 0 at = 0, = 0 at = ,n n (21c)

∂ ∂ ∂D λ p γλ h x λ x l− ( − ) = 0 at = 0, = 0 at = ,n v n (21d)

where k is obtained from ⋅ ⋅k t L v t λ t k( ) = arg max ( ( , ), ( , ), )k . In the absence of control
constraints (see the remarks after (5f)), the condition ∂ L = 0k yields

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

J γλ h v p γλ h

p h c λγ h v p γλ h p γλ h p γλ α h c

0 = − − ( − )

= − − − ( − ) = ( − ) − ( − ) − ,

k c k k v

k k v k k k

and thus

∂ ⇔ ͠ ͠
∕

p γλ α h c k k λ v k λ
α p γλ

c
( − )(1 − ) = = ( ) , ( ) =

(1 − ) ( − )
.k

α2 1⎛
⎝⎜

⎞
⎠⎟ (21e)

Hence, if an OC k for the OC problem (5) exists, then (21) gives first‐order optimality
conditions. In particular, the optimal effort is determined by (21e), where p γλ− represents the
total value of one unit of biomass. The extent to which a takeout affects future catch depends on
the replacement flux of fish at the boundary, measured by γ . If γ is large (small), then the
replacement flux of fish is slow (fast), so that the stock recovers slowly (quickly). In economic
terms, λ is the shadow price of fish, and γλ represents a future reduction of profit due to today’s
takeout of fish, and this value must be subtracted from the market price of fish.

3.2 | Numerical method

We want to solve (21) on the infinite time horizon ∈ ∞t [0, ), and thus at first might want to
think of (21) as an initial value problem. However, (21a) provides initial data for only half the
variables, while (21b) has backward diffusion. We proceed similar to Grass et al. (2008, chapter
7), Uecker (2016), and Grass and Uecker (2017) (see also Beyn, Pampel, & Semmler, 2001;
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Kunkel and von dem Hagen, 2000). First, setting u v λ= ( , ) we compute CSSs û, that is, steady
states of the CS. Then, given some initial state v0, we want to compute canonical paths (CPs)
↦ ⋅ ⋅ ⋅t u t v t λ t( , ) = ( ( , ), ( , )) connecting v0 to some CSS, and from these paths the OC ↦t k t( )

via (21e).
Thus, we write (21) as

∂ ≔u G u u v λ u x v x= − ( ), ( , ), ( , 0) = ( ),t 1 0 (22)

where we generally suppress the dependence on parameters. The CSSs are solutions of

G u( ) = 0. (23)

In general, (23) is a nonlinear elliptic system, and thus at a given set of parameters we may
expect multiple CSSs, u v λˆ = ( ˆ, ˆ), with (generically) different values J v ρ J v( ˆ) = (1/ ) ( ˆ)c , for
different CSSs. If, for instance, we let one parameter vary in (23); then the solutions come
in branches (one‐dimensional continua), from which at certain parameter values new
solution branches may bifurcate. To find such solution branches, we use the Matlab

continuation and bifurcation package pde2path (Uecker et al., 2014), designed
for PDEs of type (22) (and also for more general PDEs) over one‐, two‐ and three‐
dimensional domains, based on a spatial finite‐element method (FEM). As u in (23) always
has an even number of components, in the following, we write n2 for the spatial degrees of
freedom.

A CP connecting v0 to some CSS û is a time‐dependent solution ↦t u t( ) of (22) such that

→∞
u x v x u t u( , 0) = ( ) and lim ( ) = ˆ.

t
1 0 (24)

Only the first component u v| =t1 =0 0 is fixed, while u λ| = |t t2 =0 =0 and hence the control k (0) are
free. Different situations may arise as follows:

1. There is a unique CP connecting v0 to a CSS û.
2. There is a unique CSS û which can be reached from v0, but different CPs to do so.

3. Different CSSs u uˆ , ˆ , …(1) (2) can be reached from v0, and for each target there may be more
than one CP.

If, given v0, there is more than one CP by choice of λ (0), then we can compare the respective
values of J for those paths, and decide which one is optimal. Conversely, we can also consider a
given CSS û and ask from which v0 it can be reached by a CP. In particular, a CSS û that can be
reached from all nearby v0 and such that the associated CPs maximizes ⋅J v( , )0 is called a locally
stable optimal steady state (OSS), whereas a CSS which can be reached from all v0 that are
admissible, that is, here all ≥v 00 (pointwise), and such that the CPs maximize ⋅J v( , )0 , is called
a globally stable OSS. In general, all of the alternatives 1–3 can occur in a given system. In
particular, there may be multiple locally stable OSSs. See, for example, Grass et al. (2008) for
various ODE applications, and Uecker (2016) and Grass and Uecker (2017) for some PDE
examples. Additionally, there may be optimal limit cycles (Uecker, 2019, section 3.4; Wirl,
1996), or (slow, i.e., such that (19) still holds) divergence of optimal solutions to infinity, see the
AK example in Section 3.3.2.
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To compute a CP toward a CSS û, we numerically proceed as follows. Given the spatial
discretization of G u( ) = 0 with n2 degrees of freedom, that is, ∈u v λ= ( , ) n2 , (22)
becomes a coupled system of n2 ODEs, which with a slight abuse of notation, we again
write as

∈M
t
u G u v v

d

d
= − ( ), (0) = .n0  (25a)

Here ∈M n n2 ×2 is the mass matrix of the FEM. We choose a truncation time T and
approximate (24) by

∈ ∞u T E u u T u( ) ( ˆ) and || ( ) − ˆ || small,s (25b)

where E u( ˆ)s is the stable eigenspace of û for the linearization ∂M t ũ G u ũ(d/d ) = − ( ˆ)u of (25). At
t = 0 we already have the BCs v v(0) = 0 for the states. Then, to obtain a well‐defined two point
boundary value problem in time we need

E u ndim ( ˆ) = .s (26)

As the eigenvalues of the linearization are always symmetric around ∕ρ 2 (Grass & Uecker,
2017, appendix A) we always have ≤E u ndim ( ˆ)s . The number

d u n E u( ˆ) = − dim ( ˆ)s (27)

is called the defect of the CSS û. A CSS û with d u( ˆ) > 0 is called defective, and if d u( ˆ) = 0, then û
has the so‐called saddle point property (SPP). These are the only CSSs such that for general v0

close to v̂, we may expect a solution for the connecting orbits problem (25a) and (25b). See Grass
and Uecker (2017) for further comments on the significance of the SPP (26) on the discrete
level, and its (mesh‐independent) meaning for the CS as a PDE. Furthermore, see Uecker (2017)
for algorithmic details how to implement (25b) in pde2path, and how to find CPs connecting
some v0 to û by a continuation process in the initial states.

3.3 | Remarks on the formal derivation and comparison with other
methods

The derivation of (21) is formal in the sense that we assume

• that an OC ∞ →k: [0, )  exists and gives a finite value ∞J k v( , ) < ;
• that k and the associated solution →v: Ω ×   are sufficiently smooth such that the
integration by parts in x and t is valid;

• that the transversality condition (19) holds.

These are nontrivial assumptions. There are simple ODE OC problems where naive
application of maximum principles yields the wrong results (see, e.g., Lenhart &
Workman, 2007, example 2.1, or Serovaiskii, 2003 for various further examples and a
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thorough discussion).2 Thus, it would be desirable to prove the existence of an OC k for
(5), and to prove that (21) yields all candidates. However, a general theory for OC for the
for OC with PDE constraints so far only exists for finite time horizons (see, e.g., Casas &
Tröltzsch, 2015; Casas, Raymond, & Zidani, 2000; Casas, Ryll, & Tröltzsch, 2018; Raymond
& Zidani, 1999). The existing general theory for infinite time horizons only deals with
ODEs, and usually the existence of an optimal solution is a priori assumed (see, e.g., Grass
et al., 2008, sections 3.7, 3.8 and the references therein, or Tauchnitz, 2015).

In summary, (21) only gives some candidates for optimal solutions, that is, candidates within
the class for which (21) can be derived, and the solutions we obtain are necessarily regular in t
and x. Thus, we cannot guarantee that there are no “reasonable” controls k, for example,
∈ ∞k PC ([0, ), )0

+ , that yield a higher J than that obtained from the candidates from (21).
Moreover, we did not consider state or control constraints. However, our aim are computations
for models based on the Cobb–Douglas harvesting (2) that go beyond simple models based on
linear‐quadratic objective functionals (see Sections 3.3.1 and 3.3.2 below). In particular, we can
check a posteriori that all CSSs and CPs fulfill the natural constraints k t( ) > 0 for all ≥t 0, and

≥v x t( , ) 0 for all ≥t 0 and all ∈x Ω, and that both are also reasonably bounded from above.
Thus, we think that the existence of controls yielding a higher objective value, not obtained via
(21), is very unlikely.

On the other hand, there is some work which deals rigorously with (linear‐quadratic)
infinite time‐horizon OC problems with linear PDE constraints. In the following two
subsections, we give two examples and relate these to our formal analysis and the two‐step
numerical approach from Section 3.2.

3.3.1 | Age‐specific advertising

In Faggian and Grosset (2013) optimal advertising models with a linear‐quadratic objective are
studied, for instance, of the form

∫ ∫
∈

∞
V v J v w J v w π x v x t

κ x
w x t x t( ) = max ( , ), ( , ) = e ( ) ( , ) −

( )

2
( , ) d d ,

w

ρt
0 0 0

0

−

Ω

2
⎛
⎝⎜

⎞
⎠⎟ (28)

subject to the first‐order (transport) linear PDE:

∂ ∂v v δv w ω v t v x v x= − − + in Ω = (0, ), (0, ) = 0, ( , 0) = ( ).t x 0 (29)

Here, ω[0, ] is an age interval of customers, ∞ →v ω: [0, ] × [0, ) + is the (age and time‐
dependent) goodwill of the customers with respect to some product, the control w x t( , ) is the
advertising effort, distributed in age and time, and →π κ, : Ω  describe the profits and costs of
advertising, respectively. Similar first‐order PDE OC problems have also been considered in
Barucci and Gozzi (2001) and Feichtinger, and Veliov (2003) (see also Grass et al., 2008, section
8.3). Using results based on Barucci and Gozzi (2001), Faggian and Grosset (2013) provide some
rigorous analysis, which inter alia yields the following:

2An even simpler example would be the function →f :  , f x x( ) = 3, which has a unique solution x = 0 of the “necessary conditions” f x x′( ) = 3 = 02 , but f

has no maximum or mimimum. Also, if we restrict f to I = [−1, 1], then the extrema are at x = ±1 where f x′( ) = 0 does not hold. Clearly, f x′( ) = 0 is only

necessary for inner extrema, and in any case is in general not sufficient.
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[A] Assume that ∈ ∈ ≥π κ L v H κ π v, (Ω), (Ω, > 0, , 02
0

1
0 , and take

∫∞ ∞ → ∥
∞{ })L w w t t= ([0, ), = : 0, , e ( ) d ,ρ

p ρt
L
p

+
0

−
2 ⎟⎞⎠

⎡⎣

as the set of admissible controls. Then (28) has a unique optimal advertising strategy
w w x= ( )* * , which in particular does not depend on t . The associated optimal solution

∞v : Ω × [0, )* is

∫v x t v x t χ x
π x s

κ x s
s( , ) = e ( − ) ( ) + e

( − )

( − )
d ,* δt

t ω

t x
δs−

0 [ , ] 0

min ,
− (30)

where χI is the characteristic function of the interval I , that is, χ x( ) = 1I if ∈x I , 0 else, and
∈π H (Ω)1 can be explicitly computed. In particular, for all ∈v H (Ω)0

1 , ⋅ → ⋅v t v( , ) ˆ ( )* as
→ ∞t , where ∫v x π x s κ x s sˆ ( ) = e (( ( − ))/( ( − ))) d

x δs
0

− .

Similar results can be obtained for related (linear‐quadratic) models, which may also include
boundary controls (see, e.g., Barucci & Gozzi, 2001; Faggian, 2004). The proofs use some ideas
from dynamic programming, and a posteriori yield a Pontryagin maximum principle.
Additionally, Faggian and Grosset (2013) provide and discuss some interesting explicit results
for specific choices of π and κ.

We obtain the same results from directly applying the CS formalism as follows. The
Lagrangian reads

∫ ∫≔ ∂ ∂
∞ { }L v λ w πv

κ
w λ v v δv w x t( , , ) e −

2
− ( + + − ) d d ,ρt

ω

t x
0

−

0

2 (31)

and by integration by parts in t of ∫ ∫ ∂
∞

λ v x te d dρt
t0

−
Ω

(using the TC (19)), and integration by
parts in x of ∫ ∂λ v xdxΩ

, and taking first variations wrt λ and v we obtain

∂ ∂v v δv w v x v x v t= − − + , ( , 0) = ( ), (0, ) = 0,t x 0 (32a)

∂ ∂λ λ ρ δ λ π λ ω t= − + ( + ) − , ( , ) = 0,t x (32b)

while δ L = 0w yields ∕w λ κ= . Importantly, because Jc has no mixed term of the form vw, (32b)
decouples from (32a) and can thus be discussed first. This is also at the core of the solution via
dynamic programming. Here, (32b) has a unique steady solution λ xˆ ( ), which can be computed
to be κ x w x( ) ( )* . Moreover, (32b) is ill‐posed as an initial value problem because the BC
λ ω t( , ) = 0 is on the “wrong side” as the transport in (32b) is still to the right. Hence, λ xˆ ( ) is the
only feasible solution of (32b), and plugging ∕w λ κˆ = ˆ back into (32a) we obtain (30). Moreover,
concerning the (numerical) SPP in (26), the structure of (32a) and (32b), that is, the fact that
(32b) is ill‐posed and decoupled from (32a), yields the fact that every perturbation of λ̂ is in the
unstable eigenspace of û, and hence a priori ≡λ λ̂ for every CP.

All this is readily confirmed by applying the numerics from Section 3.2 to (32a) and (32b).
Additionally, for the numerics we can easily extend (28) and (29) beyond the linear‐quadratic
case.
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3.3.2 | The spatial AK model

A problem which is particularly interesting to illustrate the role of the TC (19), is the “spatial
AK model” analyzed in Boucekkine et al. (2013) and Ballestra (2016). It reads

∫ ∫
∈

∞

( )V v J v c J v c c x t x t c
c

σ
( ) = max ( , ), ( , ) = e ( ( , )) d d , ( ) =

1 −
,

c

ρt
σ

0 0 0
0

−

Ω

1−

(33)

subject to the linear diffusion equation

∂ ∂v v Av c t x π v v= + − ( , ) in Ω = (0, 2 ), | = ,t x t
2

=0 0 (34)

with the periodic BC ∂ ∂v t v π t v t v π t(0, ) = (2 , ), (0, ) = (2 , )x x (exactly the same results can be
obtained for homogeneous Neumann BC ∂ ∂v | = 0n Ω over general domains). Here, v v x t= ( , ) is
a distribution of capital, the control c c x t= ( , ) is consumption, and A ρ, > 0 and ∈σ (0, 1). In
Boucekkine et al. (2013), the following result is shown via dynamic programming, and has been
related to Pontryagin’s maximum principle in Ballestra (2016):

[B] Assume that A σ ρ(1 − ) < , and let ∕η ρ A σ πσ= ( − (1 − )) (2 ), ∕β A ρ σ= ( − ) and v =0

∫ v x x( ) d
π

0

2
0 . Then c c t c= ( ) = e* * βt

0 with c ηv=0 0 is the unique OC for (33).

In [B], the admissible controls fulfill ≥c v, 0 and a suitable limiting transversality condition,
which fixes the constant c0 in c*, which is discussed in detail and expressed in various ways in
Boucekkine et al. (2013) and Ballestra (2016).

Here, we want to illustrate that the CS formalism from Section 3.1 yields exactly the same
result via the equivalent TC (19). The Lagrangian reads

∫ ∫ ∂ ∂
∞

( )L v λ c c λ v v Av c x t( , , ) = e ( ) − ( − − + )d d ,ρt
t x

0

−

Ω

2

and going through the integration by parts (using the periodic BC in x and the TC (19) in t) and
taking first variations, we obtain the CS:

∂ ∂
∕

v v Av c c
λ

v v= + − , =
1

, | = ,t x

σ

t
2

1

=0 0⎜ ⎟
⎛
⎝

⎞
⎠ (35a)

∂ ∂λ λ ρ A λ= − + ( − ) ,t x
2 (35b)

with periodic BC for v and λ. Again, (35b) decouples, and has the general solution

∑ ∈
∈

λ x t a nx b nx μ n ρ A a b b( , ) = e ( cos( ) + sin( )), = + ( − ), , , = 0,
n

μ t
n n n n n

2
0n

0




(36)

but the nonnegativity λ > 0 (cause c > 0) yields a b= = 0n n for all ∈n . Thus,
λ x t λ t λ( , ) = ( ) = e ρ A t( − )

0 for some λ > 00 , and consequently
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∕∕ ∕c t c c λ( ) = e with = (1 ) .A ρ t σ σ( − )
0 0 0

1

With ∂et x
2
the semigroup for the linear diffusion equation ∂ ∂v v=t x

2 onΩ, the solution v x t( , ) of
(35a) then reads

∫∂ ∂v x t v c s v c
πη

( , ) = e − e e d = e + e
1

2
(e − 1).t A

t
t s A βs t A tA σ A σ ρ t( + )

0 0
0

( − ) ( + )
0 0

(1/ )( (1− )− )x x
2 2

As ∂et x
2
(with Neumann BC or periodic BC) conserves the average ∫v v x x= ( ) d

Ω
, we obtain

∕v t v
c

η
( ) = e + (e − 1) .tA A σ ρ t σ

0
0 ( (1− )− )

⎛
⎝⎜

⎞
⎠⎟

For A σ ρ(1 − ) < we have →∕e 0A σ ρ t σ( (1− )− ) for → ∞t , and the TC

∫
→∞ →∞

→∞

∕

λ t v x t x λ t v t

λ v
c

η

lim e ( ) ( , ) d = lim e ( ) ( )

= lim e e + (e − 1) = 0

t

ρt

t

ρt

t

A ρ t ρ A t A σ ρ t σ

− −

( − )
0

( − )
0

0 ( (1− )− ) !⎛
⎝⎜

⎞
⎠⎟

uniquely fixes c ηv=0 0 in dependence of the initial mass, illustrating the role of (19). In
particular, if one (wrongly) chooses c c> *0 0 , then → ∞v t( ) − as → ∞t , clearly violating the
assumption ≥v x t( , ) 0 for all x t, , and →∞ λ t v tlim e ( ) ( ) < 0t

ρt− . Conversely, if c c< *0 0 then

→∞ λ t v tlim e ( ) ( ) > 0t
ρt− , and consumption is smaller than optimal.

Note that → ∞v t c t( ), ( ) if ρ A< (long sighted consumers) and →v t c t( ), ( ) 0 if ρ A>

(short sighted consumers), and in these cases the method from Section 3.2 does not apply. In
the special case ρ A= , for which ≡c t c ηv( ) =* 0 0, we have (for fixed parameter values) a line

∕v λ v λ ηv{( ˆ, ˆ): ˆ > 0, ˆ = 1 ( ˆ) }σ of spatially constant CSSs, parameterized by the mass v̂. These are
“weak” saddle points in the sense that one eigenvalue always equals zero, and given a
nonnegative initial state v v x= ( )0 0 we obtain a unique CP to the CSS with v vˆ = 0.

4 | RESULTS FOR THE SCALAR FISHERY PROBLEMS

We return to (5) and want to compute CSSs and CPs, starting with f f= lin and flog. Whereas, in
general, we need numerics already for CSSs, for the case f f= lin in (5) we can also compute the
CSSs (semi)analytically. This can be used to verify the numerics, and, via comparative statics,
the modeling.

4.1 | Linear growth and logistic growth

4.1.1 | Semianalytical CSSs for linear growth

For f v δ βv( ) = −lin , the steady CS takes the form (without loss of generality choosing D = 1):

v δ βv ρ β λ λ0 = ″ + − , 0 = ( + ) − ″, (37a)
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∂v γh v l λ p γλ h λ l′(0) = , ′( ) = 0, ′(0) = −( − ) , ′( ) = 0.v (37b)

The ODEs in (37a) decouple, and the same holds true for the associated time‐dependent PDEs,
which makes them superficially similar to the examples in Section 3.3 but the two problems are
still coupled by the BC at x = 0 in (37b). The general solution of (37a) is

∕v x δ β a b λ x a b r ρ β( ) = + e + e , ( ) = e + e , = + ,β x β x rx rx
1 1

−
2 2

− (38)

and it remains to compute the constants a a b b, , ,1 2 1 2 from the BCs in (37b). From the Neumann
BC at x l= we get

b a b a= e , = e ,β l rl
1 1

2
2 2

2 (39)

and thus end up with an algebraic system for a a,1 2, namely

β a γk v ra αk v p γλ(e − 1) = , (e ) = ( − ),β l α α rl α α
1

2 1−
2

2 −1 1− −1 (40)

together with ∕ ∕k α p γλ c= ((1 − ) ( − ) ) α2 1 , where it is understood that λ λ= (0) and v v= (0)

are functions of a a,1 2 via (38) and (39).
We now give a bioeconomic discussion of the CSSs, aiming to illustrate general features.

Letting

≔x a
a

Ψ( , )
e + e

(e − 1)
,

xa a l x

la

(2 − )

2

the steady solutions of (37) can be implicitly written as

∕ ∂v x δ β γh v k x β λ x p γλ h v k x r( ) = − ( (0), )Ψ( , ), ( ) = ( − (0)) ( (0), )Ψ( , ),v

with spatial dependence given by Ψ. The stock of the resource in the CSS equals its steady‐state
value ∕v δ β=* minus some decrement, which depends on x and the decay rate β, but does not
(directly) depend on the discount rate ρ. As Ψ is decreasing in x , the stock is higher and the
shadow price is lower at more distant locations. Both results mirror the fact that a takeout of
fish exclusively takes place at the boundary x = 0. Due to the diffusion of fish, its removal at
x = 0 is compensated by gradual replenishment, but as this process takes time, the value of fish
is lower at more distant locations.

System (40) cannot easily be solved algebraically for a1,2, that is, for v λ(0), (0) and k, but it
can immediately and conveniently be solved numerically in Matlab or similar systems. As an
example, we choose the parameter specification

ρ α p γ β δ l( , , , , , , ) = (0.02, 0.3, 1, 0.5, 0.01, 0.01, 20), (41)

and let c vary between 0.1 and 2. For c = 0.1, 1, 2, we then obtain the unique solutions
a a( , ) = (−0.167, 0.0014)1 2 , a a( , ) = (−0.0077, 0.00022)1 2 , and a a( , ) = (−0.0027, 0.00006)1 2 ,
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respectively. The associated solutions (38) are shown in Figure 2a, and are indistinguishable
from the direct numerical solution of (37) using pde2path.

Following Section 3.2, the next step would be to compute the time‐dependent CPs from an
arbitrary initial state v0 (with v x( ) > 00 for all x) to the (for fixed parameters) unique CSS,
which is always a saddle point, and the computation of their values. However, it turns out that
the case f f= log is quite similar to f f= lin, and thus here we skip the presentation of CPs for
f f= lin as we present CPs for f f= log in Section 4.1.3.

4.1.2 | Comparative statics

Figure 2b illustrates the dependence of the economically interesting quantities k h J, , c and of
v λ(0), (0) on the effort cost c. Their qualitative behavior can also be obtained analytically,
which in economics is called comparative statics. From (21e) and (40), we obtain v v= (0),
λ λ= (0) and k as implicit functions of the cost parameter c. Using the shorthand
a aΨ( ) = Ψ(0, ) we have

∂ ∂v
δ

β
γh v k β λ p γλ h v k r c p γλ α h v k= − ( , )Ψ( ), = ( − ) ( , )Ψ( ), = ( − )(1 − ) ( , ).v k

(42)

Implicitly differentiating (42) with respect to c, using h v k v k( , ) = α α1− and solving for the
desired derivatives yields

FIGURE 2 Some results for linear growth. In (a) we compare the solution (38) from (40) with parameters
(41) (dots) with the direct numerical solution of (37) with pde2path (lines). Similarly, (b) compares the
dependence of k v λ, , , and Jc on c, computed via the two approaches
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v c
vγk β vk kαγv r

α α p γλ vk kγv r vk kγv β
′( ) =

Ψ( )( + Ψ( ))

(1 − ) ( − )( + Ψ( ))( + Ψ( ))
> 0,

α α α

α α α α

+1

(43a)

k c
k v vk kαγv r vk kαγv β

α α p γλ vk kγv r vk kγv β
′( ) = −

( + Ψ( ))( + Ψ( ))

(1 − ) ( − )( + Ψ( ))( + Ψ( ))
< 0,

α α α α α α

α α α α

+1 −

2
(43b)

λ c
k r

α vk kγv r
′( ) = −

Ψ( )

(1 − )( + Ψ( ))
< 0,

α

α α

+1

(43c)

h c
v c

γ β
′( ) = −

′( )

Ψ( )
< 0. (43d)

An increase in c renders harvesting effort more and more unattractive: Effort k is reduced
implying a reduction in harvest h, and thus an increase in the stock v; in parallel, higher costs
reduce the value of the stock λ. Correspondingly, the resulting profit falls with higher values of
c. As the comparative effects (43) are unambiguous, it is clear that our numerical results
depicted in Figure 2b are not due to our parameter specification but illustrate general features
of our model.

4.1.3 | Logistic growth

Similarly to the case f f= lin, for f f= log we again have unique CSSs v x λ x( ( ), ( )) which look
qualitatively and even quantitatively similar to those for f f= lin. The reason for this
similarity is that f v v δ βv( ) = ( − ) is positive in the relevant range ∕v v δ β0 < < =* (see
also our discussion of the phase plane in Section 2.2). Accordingly, the dependence on
parameters such as c is also qualitatively similar for logistic growth and linear growth.
Moreover, it turns out that the unique CSSs û for both models are globally stable OSSs,
that is, for any ≥v 00 (pointwise, with v x( ) > 00 at least at one point) there is a CP
connecting v0 to û. In Figure 3 we show two CPs for f f= log. In Figure 3a,b, we choose
≡v 10 (full initial stock in the domain), and in Figure 3c,d, ≡v 0.10 (almost depleted

FIGURE 3 Example CPs connecting initial states v0 to the unique globally stable CSS û for f f= log,
ρ α p γ δ β( , , , , , ) = (0.02, 0.3, 1, 0.5, 0.01, 0.01), c = 1, and ≡v 10 in (a,b), and ≡v 0.10 in (c,d). (a,c) show k J, c,

while (b,d) illustrate the associated evolution of v. Here, ∫
∞

J J u t t= e ( ( )) dρt
c0

− and

∫≔
∞ ( )J J u t ρ J u1 e ( ˆ) d = 1/ ( ˆ)ρt

c c0
− denote the values of the CP and of the target CSS, respectively
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stock). Figure 3a,c shows the control k and the current value Jc at the left boundary as a
function of time, while Figure 3b,c shows the associated evolutions of v.3 The results are as
expected: Starting at a high (low) v0, the fishing effort decreases (increases) monotonically
to that of the CSS. The main benefit of such a numerical computation is to find the precise
quantitative behavior of ↦t k t( ).

4.2 | Bistable growth

Compared with flin and flog, for f f= bi there are some important differences: depending on v l( )

(with v l′( ) = 0) we may expect CSSs with v of the black, blue, and magenta type indicated in
Figure 1d. We now fix l = 10, and, in contrast to Figure 2 where we used the costs c as
continuation parameter, we fix c and consider

α p β γ c( , , , , ) = (0.2, 8, 0.5, 1, 1), (44)

as a base parameter set. We also first fix δ = 0.05, and start with the discount rate ρ as our
primary continuation parameter for the computation of (branches of) CSSs, because this
turns out to be more convenient to obtain multiple CSSs. Subsequently we study the
dependence of “low‐stock CSSs” ⋅u δˆ ( ; ) on the “regularization parameter” δ. We
(numerically) find that ⋅ ⋅→ u δ ulim ˆ ( ; ) = ˆ ( ,0)δ 0 where ⋅û ( ,0) is a CSS of the formal limit
system, and moreover, that the associated CPs also converge (uniformly in x and t) for
→δ 0 to the limit CP. We also studied the dependence of CSSs and CPs on other

parameters such as c as we did for f f= lin in Figure 2. This dependence is as expected
(similar to Figure 2), and thus we refrain from presenting these results in detail, and only
note that fbi yields similar comparative statics results with respect to the parameters
α p γ c( , , , ) as flin and flog.

Remark 1. In the derivation of (21) we assume the differentiability of h in v and k, and
thus we need v t(0, ) > 0 and k t( ) > 0 for all ≥t 0. On the other hand, given (21e), we
may eliminate k from (21a), (21b), (21c), and (21d) and find that h v k( , )

͠v k k λ v= = ( )α α α1− 1− such that

∂ ͠h k λ= ( )v
α1− (45)

exists also for v = 0. This will now be relevant for f f= bi when we let the small
regularization parameter δ > 0 go to 0. We find a branch of CSSs ⋅u δˆ ( ; ) with
monotonously increasing ⋅ ≈v δ δ0 < ˆ ( ; ) , and monotonously decreasing ⋅λ δˆ ( ; ) > 0.
Moreover, for →δ 0, we find that ⋅ → ⋅u δ uˆ ( ; ) ˆ ( )0 , with ≡v̂ 00 and λ̂0 the solution of (21)
obtained from setting δ = 0 and using (45), and that, given some initial state v0 (with low
stocks), the CPs to ⋅u δˆ ( , ) converge to the CP to ⋅û ( )0 as well. This justifies using the CS
(21) with (45) also for δ = 0, although a direct derivation of (21) for this case fails due to
the nondifferentiability of h at v k( , ) = (0, 0).

3In these and similar plots to follow, “l1/pt13” denotes the target CSS, following the pde2path style branch/pointnumber for solution labeling. In the

surface plots ↦x t v x t( , ) ( , ) we only use a reduction of the computational grid for plotting, that is, typically every third or fourth point in the x and t directions.

The computation of the CPs uses adaptive mesh‐refinement in t , which usually occurs at the fast transitions at the start of the CPs.
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4.2.1 | The case δ > 0

Figure 4 illustrates that for the choice (44) and δ = 0.05 we have up to four CSSs for, for
example, ∈ρ ρ ρ( , )0 1 , where the left and right folds of the black branch are at ≈ρ 0.0510 and
≈ρ 0.111 , respectively. The continuation of this branch starts in the upper left with a solution

obtained from an initial guess of the form ∕v x x l( ) = 0.8 + 0.1 and λ x( ) = 1. The CSSs on the
first part (till the fold) have defect d = 0, on the middle part, we have d = 1, and after the
second fold d = 0 again. Here the first (second and third) parts correspond to solutions of
“black“ (“blue”) type in Figure 1d. Additionally we have the magenta branch obtained from an
initial guess of the form ∕v x δ λ x( ) = 2, ( ) = 1, with d = 0 throughout. The example solution
plots in (b) show four CSSs at ρ = 0.06 from (a). If we continue an “upper solution” such as
b1/pt14 in the costs c, then we obtain a very similar behavior as in Figure 2 for f f= lin and
for f f= log. Clearly, this can be expected from the phase portrait in Figure 1c, as northwest of
and close to the fixed point v v( , ′) = (1, 0), all three phase portraits are similar. Continuation in
c of solutions from the other branches, including the magenta branch, behave accordingly.

However, in contrast to the case of flin and flog, the upper solutions are not globally stable,
that is they cannot be reached from arbitrary initial states v0. For illustration, we fix ρ = 0.06

and thus have b1/pt14, b1/pt42, and b2/pt14 (magenta CSS) as possible target CSSs,
while b1/pt26 cannot be a target CSS as it has defect d = 1 > 0. It then depends on the initial
state v0, which CSS can be reached by a CP starting in v0, and which of these CPs is optimal. In
Figure 5a,b, we start with v0 from the defective CSS b1/pt26. From this v0 we can reach both,
b1/pt14, and b1/pt42, and both are locally stable OSSs. To reach b1/pt14 from v0, we need
to temporarily decrease k to almost 0, while k is almost constant on the CP to b1/pt42.

FIGURE 4 CSSs for f f= bi, parameters from (44), δ = 0.05. (a) Continuation in ρ of two branches of CSSs,
leading to multiple CSSs (at fixed parameter values). d = 0 (saddle points) and d = 1 refers to the defects of the
CSS on the respective (sections of the) branches. (b) Example CSS from the points marked in (a), b1 = black
branch, b2 = magenta branch, [...] cf. footnote 3 for the naming convention
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Therefore, even though the CSS b1/pt42 has a significantly lower value (J = 7.111 ) than the
CSS b1/pt14 (J = 15.041 ), in this case, it is preferable to control the system toward b1/pt42:
For the CP to b1/pt42 we obtain ≈J 9.76, while the CP to b1/pt14 only yields ≈J 8.83. A
CP to the low‐stock CSS b2/pt14 does not exist.

In Figure 5c, we give an illustration of the possible “waiting time” phenomenon associated
with CPs going to a CSS with a large stock, when the initial stock at x = 0 is low while there is
sufficient stock in the rest of the domain. Here we choose ∕v x= max(0.2 + 10, 1)0 . A CP to
b1/pt14 exists and has ≈k t( ) 0 until at ≈t 8 the diffusion has led to a sufficient growth of the
stock at x = 0. Nevertheless, for this v0 again, the path to b1/pt42 (not shown) is dominant as
it yields ≈J 8.95.

Due to the maximum principle for diffusion and the fact that f v( ) < 0 for ≤ δ v β0 < < , for
all v0 with ≤v x β0 < ( )0 for all x , the stock cannot increase beyond β at any point.
Consequently, the only target CSSs that can be reached are those from the magenta branch. In
Figure 5d, we consider ≡v 0.40 as an example. Here, the optimal strategy is to start with a large

FIGURE 5 Example CPs for f f= bi, parameters from (44), δ = 0.05. In the time‐series plots, J and J1 give
the values of the CP and the target CSS, respectively. In (a) and (b), we use the same initial state v0 from the

defective CSS b1/pt26, but connect to the two different saddle‐point CSSs on the black branch. The CP in (b)
gives a somewhat higher J , although the target in (a) has a higher J1. (c) Example of a CP with “waiting time”
for the stock to first increase at x = 0. (d) Example CP for the “subthreshold” initial state ≡v β0.4 < = 0.5,

connecting to the magenta CSS b2/pt14. (e,f) Two CPs for the constant “intermediate” initial state ≡v 0.51
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harvesting effort k which then monotonously decreases to that of the CSS. More generally,
motivated by the bistability of fbi, we introduce the set of “subthreshold” initial states, which
means that only a CP toward a low‐stock CSS from the magenta branch exists, and the set of
“superthreshold” initial states, for which only CPs toward the high‐stock CSSs exist, where one
could further distinguish between the analogs of b1/pt14 and b1/pt42. Initial states for
which CPs toward both, low‐stock and high‐stock CSSs exist are then called “intermediate.” In
Figure 5e,f we consider such an intermediate case, namely ≡v 0.510 . Here, CPs to b2/pt14

and to b1/p14 (but not to b1/pt42) exist. The resulting profit ≈J 7.405 is (slightly) higher by
going to the low‐stock CSS (e) than by going to the high‐stock CSS (f) with ≈J 7.316, as,
interestingly, the latter is again associated with a waiting time (k almost 0), during which the
stock increases uniformly.

A constant ≈v v> 0.520 0
0 turns out to be superthreshold. Of course, a precise characteriza-

tion of the subthreshold, superthreshold, and intermediate sets would be tantamount to the
computation of the “basins of attraction” (Grass et al., 2008, p237ff) of the analogs of
b2/pt14, and b1/pt14 and b1/pt42 at a given set of parameters, which is not feasible for
the present infinite dimensional PDE‐constrained problem, or even for the high‐dimensional
ODE problem obtained by spatial discretization. However, our simulations show that in the
class of constant v0, the superthreshold is only slightly larger than β, and that, generally
speaking, the intermediate set is rather small.

The “upper” CSSs (with large stocks at x = 0, e.g., b1/pt14) only exist up to ≈ρ 0.111 . For
higher discount rates (corresponding to more myopic fishers), only the lower black and the
magenta CSSs exist, but the (rough) characterization of subthreshold, intermediate, and
superthreshold initial states, and the associated CPs, are similar. Thus, so far, this example
illustrates the following:

1. To get an idea about possible optimal paths, it is crucial to first have a thorough
understanding of the multiple CSSs.

2. Given an initial state v0 for which CPs to different CSSs exist (intermediate case), we need to
compare the values of the CPs (not just of the target CSSs) to decide which CP is optimal.

3. Constant v0 only slightly larger than β are superthreshold. Further examples for
superthreshold v0 are v0 from b1/pt26 and v0 from Figure 5c, where in both cases a CP
to b2/pt14 does not exist; roughly speaking, most v0 with v x( )0 small at small x but v x( )0

large at more distant locations are superthreshold. This shows that the boundary control is
rather weak in the following sense. For a distributed control (without control constraints)
we would expect that a CP to a low‐stock CSS exists for all initial states v0 (even though this
CP might not be optimal). For the boundary harvesting, such a CP often does not exist; the
bulk of fish is safe on the right, and is not sufficiently strongly “pulled over” by diffusion,
and is thus protected.

4.2.2 | Low stocks and the limit →δ 0

The magenta branch from Figure 4 exists for all (small) δ > 0. Moreover, via (45), we may a
posteriori use the CS (21) also for δ = 0. Doing so, we can analytically compute the analog of
the magenta branch for δ = 0. We have ≡v̂ 0, and the ODE for λ becomes

Dλ ρ f λ″ = ( − ′(0)) , (46)
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where f β′(0)| = −δ=0 , with the general solution

∈ ∕λ x c c c c ν ρ β D( ) = e + e , , , = ( + ) .νx νx
1 2

−
1 2  (47)

The BC λ l′( ) = 0 yields c c= e νl
2

2
1, and the BC ͠Dλ p γλ k λ− ′(0) = ( − (0)) ( ) α1− (using (45)) then

yields the algebraic equation

͠Dν c p γc k c(e − 1) = ( − (1 + e )) ( (1 + e )) ,νl νl νl α2
1 1

2
1

2 1− (48)

which can easily be solved numerically for c1 using a Newton method with initial guess c = 01 .
The solution then can be cross‐checked with the numerical pde2path solution of (21) for
λ xˆ ( ; 0), and ≡v xˆ ( ; 0) 0, yielding a perfect match.

As the CS for δ = 0 is only obtained formally, in Figure 6 we illustrate the (numerical)
convergence of the solutions for δ > 0 to ⋅û ( , 0) as →δ 0. For this, we continue the CSS from
b2/pt14 in δ, and in Figure 6a, we display ⋅v δˆ ( ; ) and ⋅λ δˆ ( ; ) for δ δ= 0.05, = 0.01, and δ = 0.
The plots of ⋅λ δˆ ( , ) show that λ̂ very weakly depends on δ , and the differences are only visible in the
zoom. Figure 6b illustrates the convergence of λ δ(0; ), while all other quantities such as
v δ k δ(0; ), ( ) converge to 0 for →δ 0. Figure 6c illustrates the convergence of the CPs for fixed
≡v 0.40 (as in Figure 4a) for →δ 0 to the CP ↦t u t( )(0) obtained for the formal limit CS (δ = 0, full

lines). Although we have no rigorous proof, this strongly suggests that k t( )(0) from u t( )(0) is the OC
for δ = 0 for such “subthreshold” initial states, for which, as expected, the harvesting effort decreases
monotonically to 0. The CPs connecting to the upper black branch from Figure 4 are hardly affected
by changing δ, and thus we refrain from presenting these results.

5 | RESULTS FOR THE PREDATOR–PREY CASE

To apply the formalism from Section 3.1 to the vector‐valued problem (15), we introduce the
costates λ1,2 and the Lagrangian:

∫ ∫〈 ∂ 〉
∞

{ }L v λ k J λ v G v x t( , , ) = e − , + ( ) d d ,ρt
c t

0

−

Ω
1

FIGURE 6 (a,b) Continuation of the CSS b2/pt14 from Figure 4 in δ , yielding a branch ↦ ⋅δ u δˆ ( , ). (a)
Spatial dependence of CSSs, δ = 0.05 (dots), δ = 0.01 (dashed), and δ = 0 (full lines), with a zoom inset for λ̂. (b)
λ δ(0; ) as a function of δ , with λ δ λlim (0; ) = (0; 0) with λ (0; 0) from (48). (c) J and k on CPs from ≡v 0.40 to

the CSSs from (a), δ and line types as in (a)
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where ⟨ ⟩ ∑u v u v, =
i i i=1

2 is the standard inner product in 2 . Integration by parts in x and t with
the transversality condition

∫〈 〉
→∞

λ x t v x t xlime ( , ) ( , ) d = 0
t

ρt−

Ω
(49)

now yields

∫ ∫

∫

〈 ⋅ ⋅ 〉 〈 〉 〈 ∂ 〉 〈 ∂ 〉

〈 ∂ 〉 〈 〉

∞

{
}

L v λ k λ v x J λ g D λ v D λ v

ρλ λ D λ v λ f v x t

( , , ) = (0, ), (0, ) d + e [ − , − , ]| − , |

− − − Δ , − , ( ) d d .

ρt
c n x n x l

t

Ω 0

−
=0 =

Ω

Then ∂ L = 0v yields the evolution and the BCs of the costates (combining with (10), to have it
all together):

∂

∂ ∂

v D v f v

λ ρλ D λ f v λ
l

= Δ + ( ),

= − Δ − ( ( ))
in Ω = (0, ),

t

t v
T

⎫⎬⎭ (50a)

∂

∂ ∂ ∂

D v g

D λ g v λ J
x

+ = 0,

+ ( ) − = 0
on the left boundary = 0,

n

n v v c

⎫⎬⎭ (50b)

∂

∂

D v

D λ
x l

= 0,

= 0
on the right boundary = ,n

n

⎫⎬⎭ (50c)

and ∂ L = 0k yields

∕

k
α p γ λ

c
v j=

(1 − ) ( − )
, = 1, 2.j

j j j j

j

α

j

2 1 j⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (51)

As above, we first compute CSSs, that is, we start with the stationary version G u( ) = 0,
u v λ= ( , ) of (50), on Ω = (0, 20). We choose the base parameter set:

β d d γ γ ρ α α p p( , , , , , , , , , ) = (0.6, 1, 10, 0.1, 0.1, 0.03, 0.4, 0.4, 20, 10),1 2 1 2 1 2 1 2 (52)

and consider the costs c c( , )1 2 as our continuation parameters, starting with c c= = 0.11 2 . By
(52), we assume that the predators move faster than the prey, d d= 10 > 1 =2 1, and that the
market price of the prey exceeds the price of the predator, p p= 20 > 10 =1 2, so that,
disregarding the interaction of both species, the fisher is interested in catching the prey rather
than the predator. Yet, in view of the interaction of the species, the fisher may consider catching
the predator as well to “protect” the prey from the predator.

To find CSSs we use initial guesses of the form

∕ ∕v v δ β λ sx l λ sx l= 1, = (1 − ), = 50 + (1 − ), = 10 + (1 − ),1 2 1 2 (53)
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with parameters ∈δ (0, 1) and s close to 1, and some variations of (53). But if an initial guess of
this form yields convergence to a CSS, then (for the base parameters (52) this convergence
always leads to the same CSS. Note that a graphical phase plane analysis similar to Section 2.2 is
no longer possible, and thus it is not clear how many CSSs may exist for (50). However, given
that for d1,2 sufficiently large and zero‐flux BCs V * is the unique steady state of the
Lotka–Volterra system (10), it appears reasonable to expect that for the given parameters, the
system (50) has a unique CSS, as we assume rather large values for the diffusion parameters,
d d( , ) = (1, 10)1 2 , relative to the size of the domain.
Figure 7 depicts the CSSs and their dependence on the cost parameters c c( , )1 2 .4 Figure 7a,b

shows relevant quantities at the left boundary as functions of c1 and c2, respectively, while

FIGURE 7 (a,b) Continuation diagrams in c1 (costs for prey fishing) and c2 (costs for predator fishing);
J p h c k= −j j j j j, J J J= +1 2. For graphical reasons, we restrict to ∈c [0.1, 10]j (except for the plots of J ) but all

quantities continue as expected for ∈c [10, 20]j . (c) Example CSS plots, where k = (k1, k2) and h = (h1, h2) give

the control and the harvest, and v = (v1, v2) and λ = (λ1, λ2) are the values of the states and the co‐states at the left
boundary x = 0.

4We can extend our analysis to any parameter of the model, but as explained above, we confine ourselves to an analysis of the economically most immediate

parameters c1 and c2.
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Figure 7c shows the spatial shape of the CSSs for selected values of c c( , )1 2 . As expected, an
increase in ci (i = 1, 2) leads to a reduction in effort ki and the associated harvest hi, and thus
leads to a recovery of the stock vi. In addition, an increase in ci also imposes an indirect effect on
v i3− resulting from the interaction between both species. With respect to an increase in the
effort cost c1, there is no direct effect of c1 on the fishing effort k2 as its cost as well as the market
price p2 are unaffected. However, as an increase in c1 results in less fishing effort k1 and thus in
a higher stock v1, the living conditions of the predator species improve. Accordingly, the stock
v2 tends to increase, but as v2 and k2 are complements in the fishing technology, effort k2 can be
reduced with the catch h2 still going up. Naturally, with a higher cost c1 the value of the prey λ1

falls, but the indirect effect makes the value of the predator λ2 go up. The direct and the indirect
effect of an increase in c1 are also reflected in the profit terms. As expected, J1 is a decreasing
function of c1, but the induced interaction effects between both species make J2 to increase with
c1. As the direct effect dominates, total profit J falls with higher cost.

Due to the biologically asymmetric situation of both species, an increase in c2 has somewhat
different indirect effects. In this case, a higher c2 leads to a reduction in effort k2 and thus to an
increase in the stock v2. But with an increase of the predators the prey become more threatened,
rendering this population to decline, and thus the fishing effort k1 is reduced. In this way, as the
increase in c2 acts as protection of the predator against being fished, the growth of that
population exerts a negative effect on the prospects of fishing for the fisher. Accordingly, with
the predator population becoming sufficiently large, the value of a unit of this species becomes
negative. This explains why λ2 is decreasing in c2 and why it becomes (quickly) negative as the
stock v2 rises.

The qualitative structure of the spatial distribution of both species (and of the associated
shadow prices) is quite robust with respect to changes in the costs c c,1 2. Inspecting c1, c2, and c3
of Figure 7, we infer that by catching the predator species, the fisher makes sure that its stock is
kept low at the coast (left boundary) so as to safeguard the prey there. In fact, the stock of the
prey reaches its maximum close to the coast, but harvesting at the coast causes the stock to
decrease drastically there (unless c1 is very high, see c2 of Figure 7). In any case, fish located
close to the coast is more worthy than at more distant locations, where it is inaccessible for the
fisher, that is, λ1 and λ2 are both decreasing in x. There is one exception, though: When, as
explained above, c2 is sufficiently large, such that it is very expensive to catch the predator
species, this stock may swell until it interferes with the prospects of the fisher to catch the prey.
In this case, the value of the predator is negative, λ < 02 , and because the damage caused by the
predator species is the larger the closer it gets to the shore, λ2 has its minimum directly at the
shore.

In Figure 8, we illustrate the transition dynamics from the unique steady state (11) (with no
fishing) to the CSS. Setting c c( , ) = (0.1, 0.1)1 2 in Figure 8a and c c( , ) = (20, 0.1)1 2 in Figure 8b,
these figures can directly be compared with c1 and c2 of Figure 7, respectively. When the fishing
cost of both species are low, c c( , ) = (0.1, 0.1)1 2 , the transition to the CSS is accomplished by
extensive fishing of both species at an initial phase, with fishing intensities decreasing from
high toward low values. Thus, there is a some initial overfishing, followed by a recovery phase
during which the stocks of the CSS are reached from below, and during which the fisher
increases the fishing intensity to that of the CSS.5 If fishing the prey is very costly,
c c( , ) = (10, 0.1)1 2 , the CSS is characterized by a low effort level k1 and hence by a high stock of

5The initial transition is rather fast, and thus we use logarithmic scales in the time‐series of the values at the left boundary.
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the prey, comparing Figure 7(c2) and 8b. Similarly, along the CP leading to the CSS, the main
harvest is on the predator, with fishing effort being reduced over time, leading to the gradual
increase of the prey at the left boundary—and eventually on the complete domain. However,
some harvesting activity on the prey still takes place. Finally, for c c( , ) = (0.1, 10)1 2 , the roles are
basically reversed, subject to the indirect effects resulting from the implicit protection of the
predator species by a high effort cost c2, as explained above.

6 | DISCUSSION AND EXTENSIONS

To the best of our knowledge, in resource economics this is the first detailed numerical (and in
Section 4.1.1 semianalytical) analysis of infinite time‐horizon OC problems with PDE
constraints and a boundary control, beyond linear‐quadratic models as reviewed in Section
3.3. We have set up one‐species and two‐species fishery models and characterized their CSSs,
which turned out to be unique globally stable OSSs, except for the bistable case in the one‐
species model, for which multiple locally stable OSSs exist. Moreover, while previous studies in

FIGURE 8 Canonical paths starting from the spatially homogeneous steady state V * of(10)
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marine economics focus on the CSSs, we also compute the time‐dependent CPs connecting
initial states to OSSs; these describe the policies that achieve the OSS in the most profitable way.

However, as our derivation of the CSs is formal in the sense detailed in Section 3.3, the CSSs
and CPs obtained must be checked a posteriori for plausibility, but with this caveat, the method
seems highly effective. For the given examples, all results appear natural and intuitive, and they
are robust with respect to alternative parameter specifications. The optimal policy compromises
between immediate and future yield, taking into account that a higher stock left may favor
future growth of the resource, and the optimal harvesting may feature “waiting times” allowing
the stock to grow before fishing starts. For the bistable case, we can identify subthreshold and
superthreshold initial stocks, for which only CPs to low‐stock CSSs, respectively, high‐stock
CSSs exist. For initial states from an “intermediate” set we can go to both types of CSSs, and to
determine which CP is optimal we need to compute the CPs and their values. This intermediate
set turns out to be rather small, while the set of superthreshold initial states is rather large. This
illustrates some natural limits of boundary controls compared with the distributed controls.

For the two‐species Lotka–Volterra model, the asymmetric interaction between both species
provides an additional incentive to catch the predator species to protect the prey for the purpose
of own takeout. This asymmetry between both species carries over to the spatial distribution of
the biomass of both species and their respective shadow prices: Whereas the shadow price of the
prey decreases in the distance to the location of the fisher, the shadow price of the predator may
be higher at more distant locations, and may increase as the harvesting cost of the prey goes up.

Keeping the above caveat about the formal derivations of the CSs in mind, our approach can
be extended to more complex and realistic models. One obvious way would be to generalize the
one‐dimensional problems by, for instance, considering either spatially dependent coefficients
(of the PDEs), or more intricate multispecies fishery models; in addition, we may consider
advection to model the transport of fish by flow. A second class of generalizations would be to
extend the spatial domain to two (or even three) dimensions. The spatial domain could either
take the form of depth dependence of fishing at a fixed position in a river with one horizontal
dimension, of a lake, or of a marine reserve in the open sea. In all these cases, we have a
boundary control function defined on a given part of the boundary, rather than a scalar control.

Similar boundary control models occur in other bioeconomic circumstances. For instance,
the shallow lake OC model deals with the phosphorus contamination of a lake, with the
phosphate load, for instance from fertilizers, as control. Naturally, there is diffusion of the
phosphorus, and thus a spatially extended model with a distributed control is studied in Grass
and Uecker (2017). However, more realistically, the phosphate load should be taken as a
boundary control. Finally, models as in Section 3.3.1, including boundary controls, appear in a
variety of settings, see, for instance, Faggian (2004) and the references therein. It will be
interesting to extend these by genuine nonlinear terms. Moreover, as x in Section 3.3.1 models
the age of consumers, we have a transport equation for the goodwill, one could additionally
introduce a spatial coordinate y for the location of consumers, which may diffuse in space,
leading to a mixed 2D problem.
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